当前位置: 仪器信息网 > 行业主题 > >

薄膜沉积控制仪

仪器信息网薄膜沉积控制仪专题为您提供2024年最新薄膜沉积控制仪价格报价、厂家品牌的相关信息, 包括薄膜沉积控制仪参数、型号等,不管是国产,还是进口品牌的薄膜沉积控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合薄膜沉积控制仪相关的耗材配件、试剂标物,还有薄膜沉积控制仪相关的最新资讯、资料,以及薄膜沉积控制仪相关的解决方案。

薄膜沉积控制仪相关的方案

  • 北京英格海德:薄膜的磁控溅射沉积研究
    Hiden的EQP等离子体质量、能量分析仪在薄膜的磁控溅射沉积研究中可以提供残余气体分析、随磁控源开关产生的气体分析、离子能量分布、中性粒子分析等多种分析手段。
  • 等离子增强原子层沉积系统沉积高均匀性和高保型性介电薄膜
    ★超薄,纳米尺度介电薄膜与金属/金属性薄膜是MEMS/NEMS器件、其它IC部件,传感器,光学器件或催化剂关键部件★IC业中的高精度30器件, 如高深宽比沟槽与穿透性硅通孔, ALO工艺是唯可以在这些器件上实现高保形,平整,无缺陷,无针孔的薄膜材料。★可规模化生产的ALO工艺, 几种金属/金属性材料与介电材料: Pt, Ir, Ru, Cu, Ag, Au, TiN, AIN, TiAIN, ln203与Al203.★沉积工艺可选:传统热ALO或者等离子增强ALD。
  • 微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代
    目前微波等离子体化学气相沉积(MPCVD)系统中的真空压力控制装置普遍采用美国MKS公司的控制阀和控制器。本文介绍了采用MKS公司产品在实际应用中存在控制精度差和价格昂贵的现象,介绍了为解决这些问题的国产化替代方案,介绍了最新研发的真空压力控制装置国产化替代产品,并验证了国产化替代产品具有更高的控制精度和价格优势。
  • 利用原子层沉积系统ALD沉积不同薄膜材料获得周期有序微格结构
    通过高分子网状模板沉积不同薄膜材料(Au, Cu, Ni, SiO2, poly(C8H4F4))获得周期有序微格结构,其密度在0.5 mg/cm3 to 500 mg/cm3之间。以压力法测得杨氏模量和强度,并且进行了密度定标。在低相对密度的情况下,观察到与微格材料无关的50%或更高的压力应变恢复。一个分析模型的预测了在可恢复性“伪超弹性”与不可恢复塑性形变之间的转换关系,并适合所有研究材料。此次研究的材料在储能应用,可展开结构,声,冲击,振动阻尼研究方面有着很高的关注度。
  • 天津兰力科:ZRNx快离子导体薄膜的制备及其Cr掺杂性能的研究
    全固态电致变色器件的实用化研究一直是该领域的研究热点。电致变色器件全固态化的关键是采用合适的快离子导体(有时亦称固体电解质)作为器件的离子传导层。目前,用于电致变色器件的快离子导体仍以固态聚合物电解质为主,然而,聚合物电解质存在易老化、机械强度差、工业化生产难度较大等缺点。无机快离子导体是最有希望用于全固态电致变色器件的离子导体材料。本实验室前期研究结果表明,在合适的工艺参数下制备的 ZrNx薄膜具有高的透过率、良好的热稳定性、耐磨性和化学稳定性,适合于作为电致变色器件的离子导体层。 到目前为止,制备离子导体薄膜最常用的方法有溶胶-凝胶法、真空蒸发法、化学气相沉积法和溅射沉积法等,其中磁控溅射以沉积速率高、基片温升低、膜层均匀性及附着力好、工艺参数易控制等优点而日益成为制备离子导体薄膜的理想工艺方法。 因此本文以纯锆靶及纯铬靶为靶材,采用反应磁控溅射工艺在 WO3/ITO/Glass基片上沉积 ZrNx薄膜和 ZrNx:Cr 薄膜,通过紫外-可见分光光度计、循环伏安法、交流阻抗法、X 射线衍射仪、热场发射扫描电镜以及扫描隧道显微镜等测试分析方法,研究了制备工艺参数以及 Cr 掺杂对 ZrNx薄膜离子导电性能和结构的影响 。研究结果表明:采用射频反应磁控溅射工艺制备的 ZrNx薄膜和 ZrNx:Cr 薄膜均为非晶态结构,溅射功率和氮气分量等工艺参数对薄膜的离子导电性能有较大影响,选择合适的氮分量和溅射功率有助于提高 ZrNx薄膜的离子导电性能,在本实验的条件下,原位沉积 ZrNx薄膜的可见光透过率大于 75%,ZrNx/WO3/ITO/Glass器件的光学调节范围最大可达 57%以上,在离子传导过程中表现出良好的离子导电性能。 掺杂后的 ZrNx:Cr 薄膜,晶态趋势大于未掺杂的 ZrNx薄膜,结构的变化导致ZrNx:Cr 薄 膜 的 离 子 传 导 性 能 有 所 下 降 , 电 化 学 窗 口 变 小 , 从 而 使ZrNx/WO3/ITO/Glass 器件的光学调节范围缩小。
  • 薄膜太阳能电池材料质量安全控制解决方案
    在太阳能电池的各组件中背板的作用不容小觑,背板起着保护光伏组件中的电池片的作用;用于太阳能电池组件封装的背板一般又被称为TPT 聚氟乙烯复合膜,TPT一般常用三层结构(PVF/PET/PVF),外层保护层PVF具有良好的抗环境侵蚀能力,中间层为PET聚脂薄膜具有良好的绝缘性能,内层PVF需经表面处理和EVA具有良好的粘接性能。通常,太阳能电池产品使用年限一般按照25年以上设计,要确保产品达到如此长的使用期限,就需要严格控制各组件质量。 Labthink兰光推出多款检测仪器,专业用于薄膜太阳能电池材料的阻隔性能、剥离强度、材料厚度检测,帮助企业对薄膜太阳能电池进行质量控制。
  • 低气压线性控制技术在防止同步辐射光源和原位透射电镜氮化硅薄膜窗口破裂中的应用
    氮化硅薄膜窗口广泛应用于同步辐射光源中的扫描透射软X射线显微镜和原位透射电镜,但氮化硅薄膜只有几百纳米的厚度,很容易因真空抽取初期的快速压差变化造成破裂。为此,本文提出了线性缓变压力控制解决方案,即控制安装有氮化硅薄膜窗口的真空腔内的气压,按照固定的速度进行缓慢减压,从而实现氮化硅薄膜窗口的防止。同时本解决方案对以往的高精度控制方案进行了简化,简化为只用一只皮拉尼真空计和只控制电动球阀。
  • 原子层沉积技术——精准、逐层“3D打印”催化剂!
    原子层沉积技术(ALD),亦称原子层外延技术(ALE),是一种基于有序、表面自饱和反应的化学气相薄膜沉积技术。由于ALD沉积的绝大多数金属和氧化物材料本身就是某些反应中的催化剂,因此ALD在催化领域的应用也很早就引起了人们的关注。此外,作为一种自下而上的新方法,ALD独有的三维共形性、高均匀性、原子级精准控制和低生长温度等特点,如同“3D”打印一般实现了高均一性催化剂的精细可控合成。
  • 氦质谱检漏仪脉冲激光沉积系统 PLD 检漏
    脉冲激光沉积系统 PLD脉冲激光沉积系统 Pulsed laser deposition 是制备高通量多晶薄膜, 外延薄膜和多层异质结构和超晶格结构的物理气相沉积设备, 通常需要保证本底真空度达到 10-8mbar, 同时高真空环境对系统配置的 RHEED 及温控系统等关键设备的寿命也至关重要.
  • 薄膜太阳能电池材料质量安全与检测控制技术
    在太阳能电池的各组件中背板的作用不容小觑,背板起着保护光伏组件中的电池片的作用;用于太阳能电池组件封装的背板一般又被称为TPT 聚氟乙烯复合膜,TPT一般常用三层结构(PVF/PET/PVF),外层保护层PVF具有良好的抗环境侵蚀能力,中间层为PET聚脂薄膜具有良好的绝缘性能,内层PVF需经表面处理和EVA具有良好的粘接性能。通常,太阳能电池产品使用年限一般按照25年以上设计,要确保产品达到如此长的使用期限,就需要严格控制各组件质量。
  • 天津兰力科:普鲁士蓝薄膜电极的制作及充放电研究
    以多孔阳极氧化铝作电极活性物质的支撑体,制备了一种新型的普鲁士蓝薄膜电极。制备过程包括纯铝片在草酸溶液中阳极氧化成多孔阳极氧化铝,电化学法去多孔阳极氧化铝的阻挡层,磷酸中扩孔,无电沉积一层钯,再在孔中组装普鲁士蓝。用扫描电镜对支撑体和电极表面形貌进行了表征,用循环伏安法对电极进行了电化学研究。结果表明,这种支撑体孔隙率大于65%,组装的普鲁士蓝(P B )薄膜电极在-0.2~0.6 V 和0.6~1.2 V 两个电位窗口内呈现两对稳定的可逆峰,由这种薄膜电极组成的微型P B 薄膜蓄电池,容量达到65 m C /cm 2,表现出良好的充放电性能。
  • 分束器和四分之一波长反射镜的质量控制——多层光学镀膜的多角度 UV-Vis-NIR 测量
    光学镀膜和镀膜技术经过多年发展,在设计、生产和表征工艺方面已非常成熟。现在,光学镀膜已非常普及,从研究和空间光学到消费品和工业的应用中都能找到它的身影。光学镀膜应用广泛,包括眼镜、建筑和汽车玻璃、照明和灯光系统、显示器、滤光片、专业反射镜、光纤和通信,以及医用光学。光学镀膜的性能取决于镀膜的规格和基底材料。设计和制造高质量多层光学镀膜不仅需要精确测量最终生产组件,还需要精确测量薄膜层中材料的光学常数。这些测量结果能够用于(有时)非常复杂的多层镀膜的详细设计。在生产结束时和生产过程中的测量结果也可以用于光学镀膜的逆向工程,提供有关设计制造工艺的反馈[1]。逆向工程的主要目的是检测单层参数中的系统误差和随机误差,有助于改善层控制,优化光学镀膜沉积。
  • 薄膜的光学表征——采用配备全能型测量附件的 Agilent Cary UV-Vis-NIR 分光光度计
    该研究的详细情况首次发表在《应用光学》2012 年 1 月 10 日号(总第 51 卷,第二期)上[1]。精确测定薄膜和多层镀膜的光学参数(使用光学镀膜的逆向工程)对于生产高质量的产品至关重要。这些数据可以给设计和生产环节提供反馈。对每一层依次进行评估后得到的逆向工程结果可以用来调整沉积参数,重校监测系统,改善对各层的厚度控制。通常是使用紫外-可见-近红外 (UV-Vis-NIR) 或傅里叶变换红外 (FTIR) 分光光度法进行光学表征,对透明基板上的薄膜样品垂直入射或接近垂直入射时的透射率 (T)和/或反射率 (R) 的数据进行分析。然而,基于垂直入射的透射率和反射率测量的光学表征以及基于垂直或接近垂直入射的透射率和反射率测量数据的可靠的逆向工程仍然十分困难。
  • 薄膜的光学表征——采用配备全能型测量附件的 Agilent Cary UV-Vis-NIR 分光光度计
    该研究的详细情况首次发表在《应用光学》2012 年 1 月 10 日号(总第 51 卷,第二期)上[1]。精确测定薄膜和多层镀膜的光学参数(使用光学镀膜的逆向工程)对于生产高质量的产品至关重要。这些数据可以给设计和生产环节提供反馈。对每一层依次进行评估后得到的逆向工程结果可以用来调整沉积参数,重校监测系统,改善对各层的厚度控制。通常是使用紫外-可见-近红外 (UV-Vis-NIR) 或傅里叶变换红外 (FTIR) 分光光度法进行光学表征,对透明基板上的薄膜样品垂直入射或接近垂直入射时的透射率 (T)和/或反射率 (R) 的数据进行分析。然而,基于垂直入射的透射率和反射率测量的光学表征以及基于垂直或接近垂直入射的透射率和反射率测量数据的可靠的逆向工程仍然十分困难。
  • 原子层沉积 ALD 在纳米材料方面的应用
    在微纳集成器件进一步微型化和集成化的发展趋势下,现有器件特征尺寸已缩小至深亚微米和纳米量级,以突破常规尺寸的极限实现超微型化和高功能密度化,成为近些年来的热点研究领域。微纳结构器件不仅对功能薄膜本身的厚度和质量要求严格,而且对功能薄膜/基底之间的界面质量也十分敏感,尤其是随着复杂高深宽比和多孔纳米结构在微纳器件中的应用,传统的薄膜制备工艺越来越难以满足其发展需求。ALD 技术沉积参数高度可控,可在各种尺寸的复杂三维微纳结构基底上,实现原子级精度的薄膜形成和生长,可制备出高均匀性、高精度、高保形的纳米级薄膜。
  • 采用配有最新全能型测量附件的 Agilent Cary 5000 紫外-可见-近红外分光光度计对薄膜进行光学表征
    该研究的详细情况首次发表在《应用光学》2012 年 1 月 10 日号(总第 51 卷,第二期)上。 精确测定薄膜和多层镀膜的光学参数(使用光学镀膜的逆向工程)对于生产高质量的产品至关重要。这些数据可以给设计和生产环节提供反馈。对每一层依次进行评估后得到的逆向工程结果可以用来调整沉积参数,重校监测系统,改善对各层的厚度控制。 通常是使用紫外-可见-近红外 (UV-Vis-NIR) 或傅里叶变换红外 (FTIR) 分光光度法进行光学表征,对透明基板上的薄膜样品垂直入射或接近垂直入射时的透射率 (T)和/或反射率 (R) 的数据进行分析。然而,基于垂直入射的透射率和反射率测量的光学表征以及基于垂直或接近垂直入射的透射率和反射率测量数据的可靠的逆向工程仍然十分困难。
  • 微波消解薄膜
    薄膜是一种薄而软的透明薄片。用塑料、胶粘剂、橡胶或其他材料制成。薄膜科学上的解释为:由原子,分子或离子沉积在基片表面形成的二维材料。例如光学薄膜、复合薄膜、超导薄膜、聚酯薄膜、尼龙薄膜、塑料薄膜等等。薄膜被广泛用于电子电器,机械,印刷等行业。薄膜材料是指厚度介于单原子到几毫米间的薄金属或有机物层。电子半导体功能器件和光学镀膜是薄膜技术的主要应用。我们选择一种薄膜样品,将其剪碎后进行微波消解,探索最适合的消解参数,有利于后续对多种无机元素的快速准确测定。
  • 粉末原子层沉积的应用
    粉末技术经过多年的发展,已经形成多样化的制备及加工技术。其中,表面包覆技术作为提升粉末物理化学性能的重要手段,长期以来一直缺乏有效的精密手段。与传统的表面改性不同,粉末原子层沉积技术PALD 是真正可以实现原子级/分子层级控制精度的粉末涂层技术,并保持良好的共形性。
  • 原子层沉积在微电子方面的应用
    自摩尔定律问世以来,微电子器件的特征尺寸一直在不断缩小,以提高集成电路的集成度和性能。由于短沟道效应的限制,鳍式场效应晶体管和环栅场效应晶体管等非平面型器件已逐渐被半导体行业所采用。为了满足制造具有这些复杂结构的芯片的要求,ALD因其可以在三维结构上生长高度均匀的保形薄膜的特点,已被广泛用于集成电路先进制程中的关键步骤。ALD技术在很大程度上依赖于所涉及的表面化学,它可以显著影响沉积膜的特性,如膜厚、形貌、组分和保形性。此外,ALD前驱体对薄膜沉积也起着至关重要的作用。ALD前驱体通常为金属有机化合物,前驱体的挥发性、热稳定性和自限制反应性会显著影响薄膜的ALD生长行为。因此,全面了解ALD的表面化学机制和前驱体化学结构设计是进一步开发和利用ALD技术的关键。在本文中,作者等人对原子层沉积的最新进展进行了详细介绍。
  • 原子层沉积(ALD)在半导体先进制程的应用
    原子层沉积(ALD)是一种可以将物质以单原子膜的形式,一层一层镀在基底表面的先进沉积技术。一个ALD循环包括两个先后进行的半反应。在一定的真空环境下,前驱体和共反应物交替地通入反应腔体,饱和吸附并在衬底表面发生化学反应形成单原子层。每个半反应间通入惰性气体进行清洗,确保完全除去过量的反应物和生成的小分子副产物。理论上,经过一个循环工艺,基底表面便镀上了一层单原子膜。通过增加循环次数,原子层将依次沉积在表面上,形成薄膜。
  • 微波消解薄膜
    薄膜是一种薄而软的透明薄片。用塑料、胶粘剂、橡胶或其他材料制成。薄膜科学上的解释为:由原子,分子或离子沉积在基片表面形成的二维材料。例如光学薄膜、复合薄膜、超导薄膜、聚酯薄膜、尼龙薄膜、塑料薄膜等等。薄膜被广泛用于电子电器,机械,印刷等行业。薄膜材料是指厚度介于单原子到几毫米间的薄金属或有机物层。电子半导体功能器件和光学镀膜是薄膜技术的主要应用。我们选择一种薄膜样品,将其剪碎后进行微波消解,探索最适合的消解参数,有利于后续对多种无机元素的快速准确测定。
  • 纳米颗粒光俘获层对薄膜太阳能电池的优化
    使用纳米颗粒(NPs)制备薄膜镀层材料日益受到了人们的重视,并且被广泛应用到如显示器、传感器、医疗器械、储能和能量收集材料等各种现代产品和研究领域。纳米粒子的合成方法已经广为人知,但为了能够在上述应用中使用它们,需要将纳米颗粒从溶液相转移到基材表面。为此,需要一种可控的沉积方法。附件白皮书回顾了在气-液界面处形成纳米颗粒单层膜的方法以及使用Langmuir-Blodgett和Langmuir-Schaefer方法制备薄膜后,将其转移到固体基底上的方法。如果您对如何沉积单层纳米球感兴趣,请下载附件的白皮书。
  • 天津兰力科:铝基体上电沉积聚苯胺膜及其耐蚀性
    探讨了电化学方法在Al 基体上沉积聚苯胺膜的控制工艺, 研究了聚苯胺膜的耐蚀性。结果表明, Al 基体上沉积一层Ni 后, 可用电化学方法沉积聚苯胺膜。循环伏安法的扫描电位上限、恒电流法的电流密度、恒电位法的电位范围和电解质的酸度均影响苯胺的聚合速度和聚苯胺膜的物理性能。动电位极化曲线表明, 在0.5 mol/LNaCl 溶液中, 用各种电化学方法沉积聚苯胺膜的Al 样品, 其点腐蚀电位比无膜时有所升高。Al 基体表面覆盖导电聚苯胺膜以后, 其耐蚀性能得到提高。
  • 上海伯东普发涡轮分子泵组脉冲激光沉积系统应用
    脉冲激光沉积(Pulsed Laser Deposition, PLD),是一种利用激光对物体进行轰击,然后将轰击出来的物质沉淀在不同的衬底上, 得到沉淀或者薄膜的一种手段. PLD 系统由多个真空腔体组成,整个系统需要超高真空且不能引入任何杂质,对环境的清洁度要求较高,必须配备无油干泵和分子泵抽真空。由于各个辅助腔体体积较小, 因此特别适合使用 pfeiffer Hicube 系列分子泵组. 伯东公司销售维修的 Pfeiffer 分子泵组因其结构紧凑体积小,清洁无油(前级泵配备干泵)、抽速快、极限真空度高达10-11mbar等优点一经上市好评如潮。
  • 天津兰力科:V2O5离子存储薄膜的制备及其Ni掺杂改性研究
    离子存储层(对电极层)是全固态电致变色器件的关键膜层,其作用是存储和提供电致变色所需的离子,维持电荷平衡,因此要求它具有较大的离子存储能力,较好的离子存储稳定性及循环寿命,并且同电致变色材料同步致色时光学性能变化较小,其性能的好坏直接影响到整个器件的循环耐用性和光学对比度。在以a-WO3薄膜为电致变色层的灵巧窗中,弱阴极致色的V2O5薄膜是最具有实用价值的候选锂离子存储材料之一,它具有半导体特性和层状结构,有利于离子传输,在聚合物电解质中化学性能稳定,具有较大的电荷储存密度,光学性质不明显依赖于注入的离子和电子浓度。但是目前要使其真正进入实际应用还需进一步提高薄膜的离子存储能力,优化制备工艺参数和对薄膜进行合理掺杂是两种有效提高薄膜性能的方法。实验采用射频磁控反应溅射技术在ITO玻璃基片上沉积固态V2O5和V2O5:Ni薄膜,文中介绍了薄膜的离子存储及溅射掺杂机理,并通过X射线衍射、X射线光电子能谱、紫外-可见光分度计和标准三电极法分别研究薄膜的结构、组成、光学及电化学性能,主要讨论氧分量、溅射功率、溅射温度等工艺参数以及Ni掺杂参数对薄膜的结构和性能的影响。研究表明:室温下用射频磁控反应溅射技术制备的V2O5和V2O5:Ni薄膜为非晶态,少量Ni掺杂不会改变薄膜的非晶态结构,在Li离子注入/退出过程中表现出良好的离子存储特性;较低的氧分量和溅射温度有助于提高薄膜的半导体特性及离子存储特性,在一定范围内提高溅射功率,可有效提高薄膜的离子存储能力及伏安循环特性;而V2O5薄膜掺杂Ni之后,非晶态的趋势稍强于纯V2O5薄膜,结构的微弱变化导致了V2O5:Ni薄膜具有更好的离子存储特性;掺杂工艺对薄膜的电化学性能影响较为复杂,主要与相对掺杂量和掺杂方式有关,当相对掺杂量处于有效掺杂范围和最佳值附近时,掺杂越均匀,薄膜的综合性能越好,同时掺杂次数也存在一个最佳值。
  • 扫描探针显微镜(SPM)用于金属玻璃薄膜材料的加工硬化行为表征
    金属玻璃薄膜的原子无序结构使其表现出许多独特且优良的物理、化学和力学性能,如高强度、高韧性、高电阻率、高磁性等,可广泛应用于微机电系统器件。本文采用扫描探针显微镜SPM-9700HT结合Nano 3D Mapping软件测试了三种不同沉积衬底温度下制备的金属玻璃薄膜的粘附力,在一定程度上揭示了沉积衬底温度对金属玻璃薄膜加工硬化行为的影响,从而对金属玻璃薄膜制备工艺具有一定的指导意义。
  • KRi 射频离子源 IBSD 离子束溅射沉积应用
    上海伯东美国 KRi 考夫曼品牌 RF 射频离子源, 无需灯丝提供高能量, 低浓度的宽束离子束, 离子束轰击溅射目标, 溅射的原子(分子)沉积在衬底上形成薄膜, IBSD 离子束溅射沉积 和 IBD 离子束沉积是其典型的应用.
  • 用作薄膜传感器的MsM钴铁氧体油墨的分散解决方案
    目前,通过沉积和光刻技术制造的MsM具有成本高和易产生废物的局限性,所以有必要开发一种性价比高的制造方法。我们将制得的油墨经过喷墨打印、干燥和烧结后,得到具有理想几何形状的紧凑可靠MsM钴铁氧体薄膜(图1)。而制备薄膜的关键在于MsM纳米粒子墨水的有效分散。但由于纳米粒子具有高的表面能,极易团聚,采用搅拌机等设备没法解决纳米粒子的分散。所以我们采用TRILOS三辊机来分散MsM油墨。
  • 粉末工程的革命—粉末型原子层沉积(PALD)设备选型
    原子层沉积技术(ALD)是一种自限制性的化学气相沉积手段,通过将目标反应拆解为若干个半反应,实现表面涂层的原子层级厚度控制。利用该技术制备的涂层具有:共形,无针孔,均匀的特点,对于复杂的表面界面以及高纵深比样品有较好的沉积效果。
  • 各向异性对高取向Bi2Te3电沉积薄膜热电性能的影响
    由于开发替代能源的必要性,相比于那些依赖化石燃料的能源,热电材料已经引起了人们的极大关注。Bi2Te3基合金就是一种热电材料,非常适合在室温至100℃的温度范围内工作。Antonova等人的工作中,强调了平行和垂直于C轴的单晶体碲化铋的室温各向异性热电性能。因此,可以利用Bi2Te3薄膜的各向异性特性来获得最大性能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制