当前位置: 仪器信息网 > 行业主题 > >

辨荧微成像制器

仪器信息网辨荧微成像制器专题为您提供2024年最新辨荧微成像制器价格报价、厂家品牌的相关信息, 包括辨荧微成像制器参数、型号等,不管是国产,还是进口品牌的辨荧微成像制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合辨荧微成像制器相关的耗材配件、试剂标物,还有辨荧微成像制器相关的最新资讯、资料,以及辨荧微成像制器相关的解决方案。

辨荧微成像制器相关的资讯

  • 高速三维动态成像 苏州医工所在结构光照明超分辨显微成像仪器研制方面取得进展
    对于生物医学研究,著名物理学家理查德费曼有句名言:“...很多基础生物学的问题是很容易被回答的;你只是需要看到它们就够了”。这句话一定程度上说明了直接观察的光学显微镜对于细胞生物学、发育生物学、免疫学、病理药理学等生物医学研究的重要性。但是受衍射极限的限制,传统光学显微镜的分辨率理论上只能达到光波长的一半。近20年来,超分辨荧光显微成像技术的出现有效打破了光学衍射极限的束缚。基于单分子定位技术的超分辨显微镜(SMLM)和受激发射损耗显微镜(STED)以及结构光照明超分辨显微镜(SIM)等技术在众多课题组的努力下都得到了长足发展,尤其是结构光照明显微镜由于成像速度快、光毒性小、无需特殊荧光标记等优势,已成为生命科学领域尤其是活细胞成像中最受欢迎的技术手段。近期,苏州医工所李辉课题组围绕着结构光照明超分辨显微成像方法、高保真SIM重构算法、以及国产化的SIM显微镜研制等方面取得了一系列重要进展。   三维成像方法因可以获取到更多的生物样品信息而备受关注。但是现有的三维成像不可避免的带来离焦模糊和时间分辨率差的问题,很难用于对样品的快速三维动态成像。为了实现对厚样品的快速三维成像,李辉课题组发展了基于数字微镜阵列器件(DMD)和液体变焦透镜(ETL)的结构光照明层切显微技术,并开发了基于两张原始图像的层切成像算法。该方法将传统的三维层切成像的速度提高了数倍以上,课题组利用该技术对斑马鱼和大脑血管的心血管系统进行了高速动态成像,清晰地显示了心脏跳动期的收缩-舒张过程以及腹部血管的蠕动特性。相关成果以“Four-dimensional visualization of zebrafish cardiovascular and vessel dynamics by a structured illumination microscope with electrically tunable lens”为题发表在Biomedical Optical Express(2020)上,其中博士生陈冲为论文第一作者。   图1 基于两张正反图像的结构光照明层切算法(左);斑马鱼心脏跳动过程的快速三维成像(右)。   结构光照明超分辨成像技术在多种纳米尺度的亚细胞结构研究中已经得到广泛的应用。但是对于具有大动态范围的样本,例如聚集的细胞囊泡,样品中荧光较强的聚集性区域和亮度较弱的稀疏区域不能同时呈现。现有的SIM方法针对这种样品无法重建出高质量的图像。对此,李辉课题组提出了一种采用多重曝光采集的高动态SIM成像方法HDR-SIM,采集三组不同强度照明的SIM图像然后融合出一帧超分辨图像。用HDR-SIM,强度相差400多倍单个和聚集的荧光小球样本在同一张SIM超分辨图中可以同时观察到,并且对分辨率不会产生影响。在使用本方法观测不同尺度的细胞囊泡结构,单个小囊泡和大的囊泡聚集都可以同时获得清晰的分辨。相关成果以“High Dynamic Range Structured Illumination Microscope Based on Multiple Exposures”为题发表在Frontiers in Physics (2021)上,其中梁永为论文第一作者。   图2 高动态SIM成像原理(左);“聚集-单个”的荧光小球高动态SIM成像(右)。   在结构光照明成像过程中,超分辨图像重建算法尤为关键。SIM重建算法的一些固有缺陷造成超分辨图像中经常出现重构伪影,使得SIM图像的保真度经常受到质疑,并且图像重建时需要完成一系列复杂的参数设定,限制着普通用户对SIM技术应用。李辉课题组开发了一种基于点频谱优化的高保真SIM重建算法。该算法有效克服了常规SIM算法极易产生重构伪影且光学层切能力差的问题,对不同质量原始数据的处理均能获得具有极少伪影和良好光学层切的高质量超分辨图像,有效提高了SIM成像的保真度。同时,该算法对OTF失配和用户自定义参数不敏感,使用生成的理论OTF和较少的参数即可重构高质量SIM图像,降低了SIM成像对实验实施和后处理重构的高要求,提升了算法对普通用户的友好度。相较于几种传统的SIM算法, HiFi-SIM算法对多种不同图像质量、不同样品复杂度、不同图像来源(商用设备/自主搭建SIM系统)的原始数据进行重建, HiFi-SIM均展现出了最少的重建伪影和最优的图像质量。相关成果以“High-fidelity structured illumination microscopy by point-spread-function engineering”为题发表在国际光学类顶级期刊Light: Science & Applications (2021) 上,其中文刚为论文第一作者。   图3 高保真结构光照明超分辨成像重建算法HiFi-SIM(左);细胞结构HiFi-SIM与其他算法重建结果比较(右)。   李辉课题组自2014年以来一直专注SIM成像的技术创新、仪器研发和应用推广,开发了多种形式的结构光照明显微镜系统。最近,基于课题组最新的研究成果,研发了一套可集成于显微镜下层光路的结构光照明插件,具有结构紧凑、方便易用等特点。插件可配置国产倒置荧光显微镜,实现了SIM超分辨成像系统的国产化替代。首台机器已经于近期交付某大学用户进行试用。 图4 插件式结构光照明超分辨成像系统   以上工作得到了国家重点研发计划项目和国家自然科学基金委项目的支持。
  • 上海高研院在量子增强的超分辨显微成像机制研究中取得进展
    中国科学院上海高等研究院王中阳课题组提出新型的基于荧光量子相干的超分辨显微成像方法,研究成果以Breaking the diffraction limit using fluorescence quantum coherence为题,近日发表在 《光学快报》(Optics Express)上。 在经典光学成像中,显微镜的空间分辨率受阿贝衍射极限限制为?λ/2NA,其中λ为光波长,NA为显微物镜的数值孔径。近二十年来,各种超分辨荧光显微成像技术的出现打破了光学衍射极限,将空间分辨率提高到纳米尺度,主流技术包括随机光学重构超分辨成像技术(STORM)、结构光照明显微技术(SIM)和受激辐射损耗技术(STED)。其中STED和STORM通过不断提升测量精度极限来提高分辨率,如STED利用非线性受激辐射损耗机制来压制衍射受限的埃里斑尺寸再通过点扫描获得超分辨成像,而STORM通过统计荧光分子中心位置的定位精度来超衍射极限分辨,其分辨率由测量精度即统计分辨率极限? ?N?1/2决定,?N?为探测到平均光子数。 在量子光学中,现有研究表明利用光的量子性质能够突破经典的空间分辨率限制,从而进一步提升分辨率。例如,利用N个纠缠光源的光子干涉能够将分辨率提升到海森堡极限?1 / N。而在荧光显微镜中,同样可以利用荧光光源的量子特性来实现分辨率的提升。单个荧光分子或原子的发射具有单光子辐射源的性质,在一次脉冲激发下仅发出单个光子,因此光子发射统计概率不同于热辐射光源的一簇一簇的光子辐射,而是一个接一个发出,体现了明显的反聚束统计特性,并且理想的单光子源发出的光子在光谱、偏振上完全相同,即具有高的光子不可区分特性。上述荧光的量子性质已被实验证明存在于荧光显微成像常用的荧光染料中,例如单个有机染料分子、单个量子点以及单个金刚石色心,为发展新型的超分辨荧光显微成像技术带来了新的量子信息维度。 基于此,王中阳课题组提出了基于荧光光源的量子性质的超分辨成像方法,并对成像机制展开研究。研究者从荧光光源的发光机制出发,考虑了大多数荧光染料所包含的退相和光谱扩散机制,构建了通用的单光子波函数并考虑其在显微系统中的时间和空间维成像变换;通过计算双光子干涉的时间和空间的探测概率分布,从而获得荧光量子相干统计模型。该模型为宏观部分相干理论与荧光微观辐射机制提供了桥梁。基于此模型,研究者还提出了一种基于荧光量子相干性的超分辨荧光显微成像方法。利用新型的单光子雪崩探测器(SPAD)阵列统计荧光光子的时间和空间涨落p(r, t)。为了提取荧光光子相干性,通过引入时间门Tg作为光子到达时间的后选择窗口来提取高度相干的光子并沿Tg积分构造时间相干调制函数p(r, Tg),如图1所示。 时间相干调制函数与荧光光源空间分离量s有关。因此,通过准确测量时间相干调制函数,并预先确定其它变量,可从中准确提取出衍射极限内荧光光源空间分离距离s。此时,分辨率(即光源分离距离s)取决于荧光时空相干性的测量精度,而相干性测量精度又与探测到的光子数和空间采样率有关,如图2所示,仿真结果表明,当探测到的光子数达到104时,分辨率可以达到50 nm。该新型量子增强成像技术能够发掘荧光量子时空涨落特性及量子相干性,有助于实现荧光弱信号下的快速超分辨成像。  论文链接   图1.基于荧光量子相干的超分辨荧光显微成像方法示意图。(a)实验装置图;(b)传统成像方式和SPAD阵列探测方案对比图;(c)成像过程时序图;(d)荧光光子时空相干性概率分布;(e)引入时间门调制后荧光光子时空相干性概率分布。 图2.不同累计光子数下p(0, Tg)的测量精度(荧光光源距离s分别为50和100 nm)
  • 超分辨光学显微成像研究取得进展
    p   近日,中国科学院深圳先进技术研究院研究员郑炜与美国国立卫生研究院教授Hari Shroff合作,成功研发出新型双光子激发的超分辨光学显微成像系统,该系统同时具备超分辨光学显微成像功能和大深度三维成像能力,使光学超分辨成像深度推进至破纪录的250微米,相应研究成果Adaptive optics improves multiphoton super-resolution imaging(《自适应光学提升超分辨显微成像》)最近发表在《自然-方法》(Nature Methods)上,郑炜是该文的第一作者兼通讯作者。 br/ /p p   “看得细”和“看得深”是光学显微成像领域面临的两大挑战,经过科研人员几十年来的不懈努力,无论是在“看得细”还是“看得深”方面,都涌现了一批创新技术,取得了巨大成功,但是同时具备“看得细”和“看得深”这两项功能的光学显微成像技术却并不多见。 /p p   在该项研究中,郑炜等人把具备深层生物组织成像能力的双光子显微成像技术(Two-Photon Microscopy, TPM)和具备超分辨成像功能的瞬时结构光照明显微成像技术(InstantStructuredIllumination Microscopy, ISIM) 有机结合起来,实现双光子激发的超分辨显微成像功能。同时,研究人员又利用自适应光学(Adaptive Optics, AO)技术成功克服了由生物组织引起的波前相位畸变问题,最终实现176纳米的横向分辨率、729纳米的纵向分辨率及250微米的探测深度的成像效果。利用该技术,可以对细胞、线虫胚胎及幼虫、果蝇脑片和斑马鱼胚胎开展高清晰三维成像研究,成像效果显著优于传统双光子成像质量。值得一提的是,由于该技术提高了光子利用效率,从而降低了所需激光功率,可以对线虫胚胎的发育过程开展长时间、高清晰的三维动态观测。在长达1个小时的连续三维成像过程中未对线虫胚胎发育造成任何影响,该技术对胚胎发育研究具有重要作用。 /p p   该研究得到了国家自然科学基金、国家重点基础研究发展(“973”)计划和深圳市海外高层次人才创新创业孔雀计划的项目支持。(来源:中国科学院深圳先进技术研究院) /p p    a href=" http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4337.html" target=" _self" title=" " 论文链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/86d620c1-204c-489e-b896-ab006f4ab6e2.jpg" title=" 1.jpg" width=" 462" height=" 282" style=" width: 462px height: 282px " / /p p   左图为果蝇脑片在传统双光子成像(2P WF)、双光子超分辨成像(2P ISIM)和结合有自适应光学的双光子超分辨(2P ISIM AO)显微成像结果对比,右上图为位于胶原凝胶150微米深处细胞三维成像对比,可见无论是横向还是纵向,新技术的分辨率都有显著提升。右下图为线虫胚胎发育过程中连续1小时的三维观测,细胞正常分裂进程证明了该技术可用于胚胎发育动态研究。 /p p br/ /p
  • 中科院科研装备研制项目 “非线性结构光照明超分辨显微成像系统”顺利验收
    p   6月1日,中国科学院条件保障与财务局组织专家在中国科学院生物物理研究所对中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”进行了验收。 /p p   该项目由中科院苏州生物医学工程技术研究所与生物物理所在2014年联合申报,其中苏州医工所作为研制单位,生物物理所作为用户单位。研制工作由苏州医工所研究员李辉课题组具体组织实施,2016年9月李辉课题组将研制的非线性SIM超分辨显微镜送至生物物理所进行测试试用。在本套系统中,课题组提出了基于结构光激活+结构光激发的弱光非线性结构光照明超分辨成像方法,并采用铁电液晶空间光调制器替代机械光栅,结合FPGA并行同步控制系统,实现了更灵活的成像方式和更快的成像速度。同时课题组开发了能够适用于弱信号样品的SIM/NL-SIM超分辨图像重建算法和软件。利用该设备对荧光微球、细胞内质网、线粒体、细胞核以及细胞骨架等生物样品进行观测,实现了线性SIM模式下100nm横向分辨率,非线性SIM模式下62nm横向分辨率。 /p p   专家组听取了项目工作报告、财务报告、用户使用报告,并进行了现场测试验收。经过现场测试并充分讨论后,专家组认为,项目各项技术指标均达到或优于实施方案要求,满足生物医学成像超分辨观测应用需求,一致同意“非线性结构光照明超分辨显微成像系统”通过验收。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/20efc081-6105-4bed-8fdd-1ed50217c97b.jpg" title=" W020170606426930859631.png" /    /p p style=" text-align: center " 中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”通过验收 br/ /p p br/ /p
  • 重大仪器研制项目“高分辨多功能化学成像系统”顺利验收
    p   6月20日至21日,国家自然科学基金委员会在京对中国科学院化学研究所承担的重大仪器研制项目“高分辨多功能化学成像系统”进行了结题验收。国家自然科学基金委员会相关负责人、中科院条件保障与财务局相关负责人、项目验收专家组、项目监理组、化学所相关人员、项目组全体成员等70余人参加了项目验收会。项目验收专家组由包括仪器测试组、财务验收组、档案验收组等在内的18位专家组成,中科院院士柴之芳担任验收专家组组长。结题验收会由国家自然科学基金委员会化学学部常务副主任陈拥军主持。 /p p   国家自然科学基金委员会副主任姚建年在发言中指出,重大仪器研制项目的设立符合国家创新驱动发展战略的需求,仪器创新是科研创新的源头。陈拥军介绍了“高分辨多功能化学成像系统”项目的立项过程,并对验收工作提出了具体要求。中科院条件保障与财务局副局长曹凝介绍了中科院的监理制度和监理情况,对基金委长期以来对中科院仪器创新工作的支持表示感谢。 /p p   项目负责人、中科院院士万立骏对“高分辨多功能化学成像系统”项目的完成情况进行了详细汇报。该系统包括超分辨光学STED成像模块、CARS成像模块、AFM成像模块、共聚焦激发的MALDI-MS成像模块、SIMS质谱成像模块等,能够在各模块单独工作的基础上,实现各模块之间的联用成像,在纳米尺度和分子水平对复杂体系界面结构进行形貌和化学组成表征。仪器测试专家组在验收会前对仪器进行了现场严格测试,全部技术指标达到或优于任务书预定的要求。利用研制的化学成像系统,项目组在能源材料和生物体系的表界面结构与功能等领域取得了系列研究成果,申请国际国内发明专利40余件,授权国际专利4件,国内专利14件,发表了一批高水平论文。在项目执行过程中,项目组在技术人才培养方面探索出了新的机制,形成了一支有特色的多学科交叉的科学仪器研制团队。 /p p   验收专家组现场查看了研制系统的运行情况,并对财务和档案进行了验收。验收专家组听取了监理报告、仪器测试报告、档案验收报告和财务验收报告。通过现场考察和听取汇报,验收专家组认为,该项目完成了实施方案规定的研制任务,达到了项目预期目标,一致同意项目通过验收。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d317e9ca-86a6-4da7-9af0-f79f022f8745.jpg" title=" iVGd-fyhskrp7666782.jpg" /    /p p style=" text-align: center " 验收会主会场 br/ /p p br/ /p
  • 支持国产!安徽省大规模更新质谱、超分辨显微成像、核酸提取仪等仪器设备
    近日,《安徽省推进卫生健康领域设备设施迭代升级工作方案》正式印发。明确各单位更新仪器品类,并强调“国产化率全面提升”:  鼓励国家区域医疗中心、省级区域医疗中心等一批省内拔尖医院对标国际国内一流水平,适度超前配置一批高端放疗设备、超高场强磁共振成像系统、手术机器人、高分辨质谱仪、超高分辨率显微成像及分析系统等融合型、交叉型重大医疗和科研设备,提升医院疑难危重症诊疗、关键医学技术攻关能力。  围绕提升传染病病原体检测能力。以提升新发突发传染病和不明原因疾病“早发现”为重点,支持医疗机构、疾病预防控制机构等按照相应标准规范,更新配备生物安全柜、高压蒸汽灭菌器、核酸提取仪、荧光定量PCR等设备,迭代更新实时监测、冷链等设备,加强实验室仪器设备升级和生物安全防护能力建设,提升传染病病原体等检验检测能力。推动医疗机构病原微生物实验室监测能力建设,提高传染病患者病原学诊断率。  立足血液供应保障和血液安全实际需要,支持血站设备配置提升,更新配备核酸检测设备、酶免分析仪、血型分析仪、生化分析仪等血液检测及血液采集运输、制备、储存等设备,提升血液管理信息化水平,提高血液供应保障能力和安全水平。  详情如下:安徽省推进卫生健康领域设备设施迭代升级工作方案  根据《国务院关于印发推动大规模设备更新和消费品以旧换新行动方案的通知》(国发〔2024〕7号)和《安徽省人民政府关于印发安徽省推动大规模设备更新和消费品以旧换新实施方案的通知》(皖政秘〔2024〕95号)精神,为加快推进卫生健康领域设备设施更新改造,制定如下方案。  一、工作目标  实施先进医疗设备示范应用、县域医疗设备达标提质、城市医疗设备更新升级和数字化转型、公共安全保障设备能力提升四大行动,鼓励具备条件的医疗机构加快医学影像、放射治疗、远程诊疗、手术机器人、智能养老康复辅具等医疗装备更新改造,全面提升医疗卫生机构设施设备配置水平,拓展医疗健康数字化应用场景,推动卫生健康事业高质量发展。  到2027年,全省各级医疗卫生机构医疗装备和信息化设备完成迭代升级,适度超前配置装备,数字化、智能化、国产化率全面提升,超使用年限占比、故障率、维修率显著降低,装备技术服务能力显著增强。  二、重点任务  (一)实施先进医疗设备示范应用行动。  1.加快高端医疗设备创新应用。结合研究型医院建设和首台(套)装备示范推广机制,以临床服务、科技创新、应用转化能力强的高水平医院(含中医院)为主体,推动技术水平先进、应用前景广阔、实现重大技术突破的先进医疗设备及核心部件示范应用,加快形成"示范应用-反馈改进-水平提升-辐射推广”的医疗设备创新迭代体系,示范带动医疗设备创新链、服务链、产业链优化升级。  2.鼓励拔尖医院重大医疗设备配置升级。聚焦肿瘤、心脑血管病、代谢性疾病等严重危害人民群众健康的重大疾病,鼓励国家区域医疗中心、省级区域医疗中心等一批省内拔尖医院对标国际国内一流水平,适度超前配置一批高端放疗设备、超高场强磁共振成像系统、手术机器人、高分辨质谱仪、超高分辨率显微成像及分析系统等融合型、交叉型重大医疗和科研设备,提升医院疑难危重症诊疗、关键医学技术攻关能力。  (二)实施县域医疗设备达标提质行动。  3.支持县级医院医疗设备提质。综合县域服务人口以及承担功能定位,加快县级医院64排及以上CT、1.5T及以上MRI、DSA、手术高清腔镜系统等医疗装备补缺和更新,提升县域医学检验、心电诊断、医学影像等设备配置水平。支持县级医院科学合理配置除仪、呼吸机、血液透析、便携式彩超、转运监护仪、新生儿监护、床旁血气分析仪等设备,支持配备中医电、磁、热等特色诊疗设备,提升肿瘤、心脑血管疾病等重大疾病诊疗能力,加强急诊、重症、中医、老年医学、康复、安宁疗护等专科能力建设,支撑县级医院更好发挥县域龙头作用。  4.推进乡村医疗卫生机构设备标准化。以中心乡镇卫生院为重点加强规范化建设,立足当地人口和医疗服务需求实际,支持对照相关标准健全设备配置,推动中心乡镇卫生院达到县域医疗卫生次中心水平,支撑县域医共体诊疗服务能力提升,提高县域群众就医可及性和便利性。支持服务人口多、基本医疗服务能力强的乡镇卫生院根据医疗服务实际需求,在充分论证的基础上合理配置CT、DR、彩超、全自动生化分析仪等设备。按照填平补齐、对标达标的原则,支持乡镇卫生院配置呼吸机、肺功能仪等满足基本医疗服务需求的通用和专用设备,加快提升常见病、多发病诊疗以及预防保健、康复护理、健康管理、医养结合、中医药健康服务能力,提高设施设备适老化水平。加强乡村医疗卫生人员配备与培训,提升设备运行维护能力,坚决杜绝闲置浪费。  5.加强县乡村医疗服务协同联动。推进紧密型县域医共体建设,提升医学检验、医学影像、心电诊断、病理诊断、消毒供应等资源共享中心设备配置水平,统筹县域肿瘤防治、慢病管理等临床服务相关设备配置,提高资源配置和使用效率。推动基层医疗卫生机构设备数字化替代,支持模拟设备加快向数字化设备转型升级,支持配置临床诊疗实用型、小型化、集成化、可移动医疗设备,探索配备装配DR、快速检验等设备的智能化巡回医疗车等。支持共享中药房设备配备,提高智慧化中医药服务能力。提高人工智能辅助诊断技术在县域医共体内应用能力,促进远程医疗延伸到乡村,推动基层检查、上级诊断、结果互认,助力实现“一般病在市县解决,日常疾病在基层解决”目标。  (三)实施城市医疗设备更新升级和数字化转型行动。  6.支持省域医学高地设备更新扩容和数字化转型。围绕实现大病不出省目标,支持国家区域医疗中心、省级高水平医院、中医特色重点医院等,以医学影像、放射治疗、远程诊疗、手术机器人等设备为重点,配置磁共振成像系统(MR)、X射线计算机断层扫描系统(CT)、数字减影血管造影检查(DSA)等医学影像设备,医用直线加速器、手术机器人等治疗设备,体外膜肺氧合机(ECMO)、呼吸机、远程监护等生命支持设备。推动数据驱动型信息化建设模式,推进医疗设备智能化改造升级,升级计算、存储、安全等基础设备,提高医疗数据资源的高效汇集、安全使用、合规分析能力。加强远程医疗和信息化设备配置,加快有线网、5G网、物联网、无线网等网络设备更新换代,支撑提升疑难危重症及罕见病诊治能力,让群众在省域内享有更加公平可及、系统连续、高质量的健康服务。  7.加快城市医院老旧设备淘汰更新。以人口净流入量大、公共服务缺口大的城市为重点,加快淘汰落后低效、故障率和维修成本过高的医疗设备,更新换代高性能磁共振、彩超、胃肠镜等需求大的诊疗设备,缩短患者排队等候时间。推进紧密型城市医疗集团等医联体建设,更新换代精准化、便捷化、智能化、远程化医疗设备和信息化设施,提高医疗资源配置使用效率。鼓励城市二级医院转型,更新换代康复护理、监护、中医诊疗等智能医疗设备。推广应用远程诊断、远程治疗、远程教学系统,发展应用脉诊、康复等智能中医诊疗设备,提高医疗服务效率和质量。支持社区卫生服务中心设备更新升级。协同病房改造提升行动,配备补齐监护仪、即时即地检验(POCT)等床旁设备及康复训练设备。  (四)实施公共安全保障设备能力提升行动。  8.提升突发事件卫生应急响应和紧急医学援能力。统筹考虑突发事件公共安全风险和区域应急资源规划布局,支持国家紧急救援基地、国家紧急医学救援队、国家突发急性传染病防控队伍等更新抢救、监护、检测、治疗、手术等必要设备,强化应急通讯指挥、专业处置、后勤保障等设备保障,提升突发事件紧急医学救援综合能力。发挥中医药在新发突发传染病等重大公共卫生事件中的独特作用,加强国家中医疫病防治基地等设备配备。推进“平急两用”应急保障医院建设,支持合肥市合理配置和更新医疗应急设施设备,增强城市公共安全韧性。提升院前急救和创伤救治设备水平,地方应按标准配置更新地市、县域院前急救车辆和车载设备,更新换代超过或接近使用年限的急救车辆,积极推动配备AED、车载CT等设备配置。  9.提升传染病病原体检测能力。以提升新发突发传染病和不明原因疾病“早发现”为重点,支持医疗机构、疾病预防控制机构等按照相应标准规范,更新配备生物安全柜、高压蒸汽灭菌器、核酸提取仪、荧光定量PCR等设备,迭代更新实时监测、冷链等设备,加强实验室仪器设备升级和生物安全防护能力建设,提升传染病病原体等检验检测能力。推动医疗机构病原微生物实验室监测能力建设,提高传染病患者病原学诊断率。  10.提升血液供应保障能力。立足血液供应保障和血液安全实际需要,支持血站设备配置提升,更新配备核酸检测设备、酶免分析仪、血型分析仪、生化分析仪等血液检测及血液采集运输、制备、储存等设备,提升血液管理信息化水平,提高血液供应保障能力和安全水平。  11.提升其他专业公共卫生服务能力。支持妇幼保健机构、危重孕产妇和新生儿救治中心、产前筛查诊断机构、新生儿听力障碍筛查诊治机构,参考相关标准等要求加强重点设备配备与更新,着力强化妇产科、儿科、乳腺外科、妇幼保健等专科能力建设,全面提升妇幼健康服务能力。支持职业病防治院所等相关机构,加强职业病防治、危害监测及事故事件应急处置所需设备的配置。  三、保障措施  (一)落实主体责任。各地、各级医疗卫生机构要立足本地、本单位实际开展科学分析研判,摸清底数、梯次推进抓紧做好需求摸底和项目储备前期工作,统筹医疗设备与卫生人力等要素资源合理布局配置,实事求是、科学合理申报投资计划,有序组织项目实施,坚决杜绝闲置浪费。进一步健全政策措施,引导商家适度让利,形成更新换代规模效应。  (二)加强政策支持。相关部门加大对设备更新政策支持,积极开通设备更新项目绿色通道,优化配置许可、招标采购、资产处置等流程。加强对医疗卫生机构和医疗装备生产企业的政策指导,形成协同推进先进医疗设备示范应用与研发创新的政策合力。大型医用设备按照相关管理办法配置使用。统筹医疗设备配置与人才队伍建设,更好发挥国家区域医疗中心等高水平医院高质量发展示范作用,推进紧密型县域医共体建设,在人事薪酬、绩效考核等方面给予倾斜支持。  (三)强化标准引领。各地、各级医疗卫生机构要严格执行相关技术规范,优先淘汰性能无法达到临床诊疗需求,医疗技术落后或已经淘汰、维修成本过高及依照国家有关规定需要报废处置的其他情形医疗设备,并根据国家相关医疗卫生机构设备配置标准、服务能力标准等,制订完善有关标准规范和指南指引,指导机构科学合理实施设备更新。  (四)严格项目管理。各地、各级医疗卫生机构要严格按照资金、资产管理有关法律法规要求,规范资金使用和资产管理工作,确保资金资产安全完整,地方要加强资金全过程、全链条、全方位监管,保障中央资金专款专用,杜绝挤占、挪用和截留现象发生。  (五)做好宣传引导。各地要及时发布推动医疗卫生领域设备更新政策信息,加强政策宣传解读和舆论引导,总结挖掘典型案例和创新经验,做好经验宣传推广和交流互鉴,调动医疗卫生机构和医疗装备生产企业的积极性,营造良好的社会氛围。
  • 空间代谢组学高分辨率质谱成像揭示鞘脂控制真皮成纤维细胞异质性
    人类真皮成纤维细胞是皮肤的细胞成分,由于它们的动态细胞特性而表现出细胞间表型异质性。因此,单个真皮成纤维细胞可以有不同的细胞特性,负责伤口修复、纤维化或细胞外基质的重塑。脂质代谢在具有不同表型的成纤维细胞中是否存在不同的形态,以及脂质成分是否参与成纤维细胞亚型的建立尚不清楚。  2022年4月,洛桑联邦理工学院的Laura Capolupo等人在Science上发表了题为“Sphingolipids control dermal fibroblast heterogeneity”的研究成果,通过空间分辨代谢组学和单细胞转录组学研究方法,通过研究单个细胞的脂质组成,揭示了鞘脂在成纤维细胞状态确定中的驱动作用。研究背景  外部信号(例如激素、细胞因子和生长因子)和细胞自主特性(例如单个细胞的转录和代谢状态)共同决定细胞命运的决定。尽管在数十年的深入研究中,外部信号的作用方式已经得到了广泛的详细说明,但细胞自主对命运决定的分子基础仍难以捉摸。脂质参与能量代谢,负责生物膜的组装,充当信号分子,并与蛋白质相互作用以影响其功能和细胞内分布。脂质组成因细胞类型而异,并在分化事件中重新编程。然而,脂质组重塑是否以及如何帮助改变细胞特性尚不清楚。  研究思路  研究结果  1. 通过空间代谢组学揭示脂质异质性的组织原理,单细胞分析显示脂质协同调节  图1和图2展示了研究人员首先对原代真皮人成纤维细胞 (dHF) 进行了空间代谢组学解析,结合电喷雾电离液相色谱-质谱(ESI-LC/MS)和基于多反应监测(MRM)的脂质组学分析,发现dHF 中存在两个共存的脂质变异轴。一个轴与细胞内组织有关,另一个轴与脂质相关的细胞间异质性有关,其中鞘脂途径受到高细胞间变异性的影响。随后的单细胞脂质组根据脂质组成对细胞进行分组,产生了不同的细胞簇。当考虑鞘脂的水平时,某些鞘脂在特定的细胞簇中富集,表明 dHF 以不同的鞘脂代谢状态存在。  研究人员随后用可识别不同鞘脂头部基团的荧光标记的细菌毒素对细胞进行染色,验证了这一结果,发现dHF 以亚稳态鞘脂代谢配置存在,与给定的表型状态相对应,并在细胞世代中持续存在,研究人员将这些脂质代谢状态称为lipotypes。  图1 | dHFs的单离子空间代谢组学分析  (A)空间代谢组学检测方法示意图  (B)正离子模式检测的部分脂质成像图  (C)每个像素的PCA坐标显示  (D)前10种脂质的贡献度展示  图2 | 单细胞脂质组学分析  (A)空间代谢组数据单细胞分析方法示意图  (B)显示通过257个细胞计算的脂质CV的条形图  (C)脂质协变网络  (D)单细胞脂质组学数据的t-SNE图  (E)鞘脂染色t-SNE分布图  (F)鞘脂前体和负责鞘脂的成像图  2. 单细胞转录组测序对细胞类型进行分类并对应不同脂型结合分析  研究人员接着对dHF 进行了单细胞 RNA 测序 (scRNA-seq),并将转录组定义的亚型与鞘脂定义的亚型联系起来,发现特定的lipotypes与普遍的细胞状态有关,表明lipotypes是 dHF 细胞状态的标志物。此外,dHF lipotypes还反映在不同真皮区域的成纤维细胞亚型上,如真皮较深区域的网状成纤维细胞与较浅区域的乳头状成纤维细胞会呈现差异化的lipotypes,且与皮肤癌的相关性不同。由此,lipotypes可以在体内标记特定的 dHF 群体。  图3 | 脂肪类型映射到转录细胞的状态  (A)通过指定聚类对5652个单独DHF的scRNA序列进行UMAP嵌入分析  (B)聚类标记基因的基因表达点图  (C)A中单个dHF细胞的扩散图,突出了不同细胞状态之间转录变异轴  (D)DHF的sRNA序列数据PAGA轨迹分析图  (E)每个FACS分类的脂肪型群体的富集基因的平均基因表达热图  (F)不同的脂型基因特征分数UMAP图  (G)不同簇细胞的平均脂型z分数点图  (H)ShTxB2e+、ShTxB1a/2e+、ChTxB+和triple+的PAGA轨迹分析图  (I)成纤维细胞(ACTA2)和基底细胞(LMNA)的两种典型标记物的UMAP图  (J)几种染色细胞的共焦显微照片  3. 鞘脂扰动对细胞状态的影响  研究人员最后探究了鞘脂扰动对细胞状态的影响,发现lipotypes异质性通过使原本相同的细胞对细胞外刺激的反应多样化来影响细胞特性,并且操纵鞘脂组成足以将细胞重新编程为不同的表型状态。此外,鞘脂还能整合到参与细胞状态确定的调节回路中,这些回路解释了代谢和转录成纤维细胞的异质性。具体来说,研究人员观察到鞘脂调节成纤维细胞生长因子2 (FGF2) 的信号传导,其中globo系列鞘脂Gb3/Gb4 充当正调节剂,而神经节苷脂GM1 充当负调节剂。反过来,FGF2 信号通过维持导致Gb3/Gb4 产生的替代代谢途径来抵消 GM1 的产生。  图4 | 鞘脂扰动对FGF信号的影响  相关讨论  该研究通过将高分辨率质谱成像与单细胞转录组学相结合,测量了单个人类真皮成纤维细胞的脂质组和转录组,发现特定脂质代谢途径的细胞间变化有助于建立参与皮肤结构组织的细胞状态如图5所示。这为细胞间异质脂质代谢在多细胞系统的自组织中发挥指导作用提供了证据。图5 |鞘脂控制真皮成纤维细胞异质性
  • 哈工大仪器学院李浩宇教授团队突破超分辨显微成像质量评估难题
    近日,哈工大仪器学院李浩宇教授团队在超分辨荧光显微成像技术领域取得突破性进展。针对目前超分辨荧光显微图像重建质量难以有效精确评估的问题,该团队提出了一种像素级的误差量化方法,利用滚动傅里叶环相关计算方法(rolling Fourier ring correlation,rFRC),评估超分辨尺度下的图像重建不确定度(基于超分辨成像在超高分辨能力的层面上对更微细结构进行成像测量的不确定度),在无需比对参考图像的条件下,通用地生成超分辨尺度下像素级的误差定量分布图。该项技术可准确描绘出生物分析并精确定位可靠性较低的区域,相比图像不确定分析领域内现有的方法,其判定尺度的精细程度最高可提升近10倍。12月14日,该研究成果以《滚动傅里叶环相关定量超分辨显微成像质量异质性分析和评定》(Quantitatively mapping local quality of super-resolution microscopy by rolling Fourier ring correlation)为题,以长文形式在线发表于《自然》(Nature)杂志旗下的国际权威光学期刊《光:科学与应用》(Light: Science & Applications,2022年影响因子20.3)。通过设置荧光探针或结合物理的受激辐射现象,超分辨荧光显微镜已经突破了分辨率的物理衍射极限(200~300纳米)。然而,超分辨显微镜对样本的超分辨信息提取能力,往往依赖于图像的计算重建与后续处理,而化学环境和光学设置等因素会在重构中对图像产生影响,造成噪声与失真,降低超分辨图像质量。因此,对超分辨图像进行精确可靠的质量评估,可有效量化误差和不确定性,从而进一步分析生命科学问题。尽管目前已有几种方法可对超分辨图像质量进行评估,但还无法在超分辨尺度上进行超精密且无参考的量化分析,且难以准确评价图像分辨率分布的异质性。为解决上述问题,李浩宇教授团队针对图像的像素级细小误差,采用滚动傅里叶环相关计算在超分辨尺度上进行量化和估计。与此同时,对于较大的结构失真等错误,引入改进的分辨率比例尺误差图(RSM),最终构成一套完善的超分辨尺度显微图像重建质量评估方案(Pixel-level ANalysis of Error Locations-PANEL,像素级图像误差定位分析)。利用该项技术可以精确比较不同单分子定位显微镜重建算法的性能,并进一步促进超分辨率尺度下不同重建图像的有效融合,最大限度降低了潜在误差。此外,该方法还能够与目前常用的多种模态光学超分辨显微成像技术结合,成为一种易于使用的图像局域质量评估分析工具。利用该方法可以有效评估单分子定位显微镜(STORM)分辨率异质性。这里展示的是单分子定位显微镜拍摄的微管数据集对提出的评估方法进行验证(如下图左),从图中给出的不确定量化评价和分辨率分布地图,证明该方法成功绘制出微管密集程度变化引起的分辨率异质性(如下图右)。rFRC评估单分子定位显微镜的超分辨率图像。左:于COS-7细胞中用Alexa Fluor647标记的α-微管蛋白的 STORM重建结果(四周)与其rFRC图(中央);右:STORM 结果(亮绿色)和高斯平均 rFRC 图(shifted jet图)的合并视图,用于突出显示低质量区域。 超分辨荧光显微技术虽然突破了分辨率的衍射极限,使得科学问题可以进一步在更小尺度对微观世界直接探索和感知,但在看得清不清之外,看得准不准和看得真不真实依旧是生命科学研究探索中的重大阻碍。只有明确知道超分辨成像测量的不确定度,才能指导我们走向更高的成像分辨率与质量。因此,提出新的量化分析技术在超分辨的精细尺度,以像素级准确量化误差能力,揭示了图像空间信息的不确定性和分辨率分布的异质性,不仅告诉我们超分辨结果的准确度,基于超分辨图像的生物分析提供了重要支持,还可利用量化评估信息,对不同重建方法甚至不同模态的超分辨结果融合利用,最大限度降低误差,充分利用高频空间的超分辨信息,进一步提升图像的整体分辨率。除此之外,该方法原理的通用性使其可以广泛用作跨模态工具,评估其他基于定位和基于波动的显微镜的分辨率异质性,在生物显微成像技术领域有望成为广泛应用的生物数据分析评定方法,推动计算显微成像技术领域获得更大的进步和应用价值。该项研究成果主要由哈工大仪器学院、北京大学未来技术学院和南开大学物理学院合作完成。哈工大为论文第一通讯单位,哈工大助理教授赵唯淞为论文第一作者,哈工大李浩宇教授和北京大学陈良怡教授为论文通讯作者。北京大学助理教授黄小帅和南开大学博士后杨建宇为论文共同第一作者,共同通讯作者还有南开大学潘雷霆教授和北京大学赵士群副研究员。哈工大仪器科学与技术学科带头人谭久彬院士为论文共同作者和哈工大科研团队负责人。该项工作受到国家自然科学基金项目(优秀青年科学基金、国家重大科研仪器研制项目)和科技部重点研发计划(前沿生物技术)等项目资助。
  • 苏州医工所李辉团队在SIM超分辨显微成像研究中取得系列进展
    结构光照明显微镜(SIM)以成像速度快、无需特殊荧光标记和光毒性小等优势,被视为当前最适合活细胞成像的超分辨(SR)技术。经过二十多年的快速发展,SIM在成像理论和应用研究方面都取得了长足进步,但依然有许多普遍存在的棘手问题亟待解决和完善。   中国科学院苏州生物医学工程技术研究所李辉团队着眼于解决SIM在实际生物成像应用中的短板,致力于打造“user acknowledgeable”的SIM成像技术和仪器装备,最近在避免结构光参数估计、深度学习图像重构、升级宽场显微镜系统的模块化SIM解决方案等方面取得系列重要进展。   长期以来,大多数SIM算法直接或间接遵循标准的Wiener-SIM架构或依赖于其重建结果。Wiener-SIM重建涉及耗时的照明条纹参数估计和伪影敏感的频域去卷积。此前,李辉团队发展了基于“频谱优化”理念的高保真SIM重建技术HiFi-SIM并发表于Light: Science & Applications, 10, 70, (2021),有效克服了SIM图像中的典型伪影,但HiFi-SIM仍依赖于结构光条纹参数的精确估计。然而,条纹参数很小的偏差就会导致Wiener-based SIM算法产生明显伪影,实践中现有的参数估计方法在很多成像场景中经常难以估计出可靠的条纹参数。更关键地,Wiener-SIM重建假设条纹参数在成像视场内均匀分布,但采集图像的条纹参数不仅依赖于条纹质量还受样本特性影响,因此难以保证全视场中的均一性。   针对上述问题,李辉团队的文刚等开发了一种无需估计结构光条纹参数的直接重建SIM算法,direct-SIM (direct reconstruction SIM algorithm)。该方法采用空域直接重建与频域频谱优化相结合的联合重建策略,避免了耗时且麻烦的条纹参数估计,同时采用新型频谱优化策略绕过了伪影敏感的频域Wiener滤波去卷积(图1a)。得益于其局域独立重建的特性,direct-SIM对于包含多组不同条纹的场景依然能够重建高质量SR图像(图1b)。该研究成果以“Spectrum-optimized direct image reconstruction of super-resolution structured illumination microscopy”为题发表于PhotoniX 期刊(中科院1区Top,IF16.5),其中,文刚副研究员为第一作者,唐玉国研究员和李辉研究员为通信作者。相比于上述基于物理模型的SIM算法,深度学习近年来被广泛用于SIM超分辨图像重建来减少样本光漂白和光毒性。然而,数据驱动的深度学习算法用于预测未经训练的生物结构的可靠性仍饱受质疑。当前,基于深度学习的SIM算法需要对不同生物样本单独训练以达到理想的预测性能,但仍难以可靠地应用于未训练结构的观察。   为此,李辉团队进一步发展了一种基于关键帧辅助的动态SIM成像方程,命名为KFA-RET:在动态成像过程中,第1帧SR图像由成像初始采集的完整原始图像通过传统SIM重建算法重建,该高保真SR图像被作为关键帧参与后续重建;随后通过基于深度学习的重构算法KFA-RET实现宽场图像的SR重建。KFA-RET以关键帧结构作为参照并结合生物结构的时间连续性,极大地提高了重建SR图像的质量,同时有效地减少了光漂白和光毒性。此外,KFA-RET对网络未训练过的新生物样本结构也具有很强的迁移能力。该研究成果以“Keyframe-aided resolution enhancement network for dynamic super-resolution structured illumination microscopy”为题发表于Optics Letters,其中博士研究生唐于珺为论文第一作者,李辉研究员为通信作者。为了适应更多不同用户对SIM成像仪器配置的要求,李辉团队在之前开发安装于显微侧边的结构光照明插件(HiFi-SIM-C)的基础上,进一步开发了安装于显微镜后口的结构光照明模块HiFi-SIM-B。可安装于多款国产和进口的倒置荧光显微镜,并且与常规的宽场荧光照明器兼容,具有体积小、稳定性高、安装方便等优点,为实验室原有荧光显微镜进行高性价比的超分辨升级改造提供了更多选择。目前,搭载在国产舜宇IRX60倒置荧光显微镜的HiFi-SIM-B样机在2023年细胞生物学大会展,获得广泛关注。搭载在奥林帕斯IX73手动倒置荧光显微镜的HiFi-SIM-B样机也于近期交付中国科学技术大学生命科学院使用。图3 (a)兼容荧光照明器的显微镜后口结构光照明模块HiFi-SIM-B (b)搭载在国产舜宇显微镜的HiFi-SIM-B在2023年中国细胞生物学第十八次学术大会(苏州)上展出 (c)搭载在奥林巴斯IX73显微镜上的HiFi-SIM-B在中国科学技术大学装机现场及成像效果图。
  • 国家重大科研仪器研制项目“光电融合超分辨生物显微成像系统”现场验收会在北京召开
    p style=" text-align: center" img style=" width: 500px height: 333px " src=" http://img1.17img.cn/17img/images/201607/insimg/a958b6ad-b8e4-428c-ac59-22f50c57a8e8.jpg" title=" " height=" 333" hspace=" 0" border=" 0" vspace=" 0" width=" 500" / /p p & nbsp & nbsp & nbsp 2016年6月21日,国家重大科研仪器研制项目(部门推荐)“光电融合超分辨生物显微成像系统”现场验收会在北京召开。国家自然科学基金委员会(以下简称基金委)副主任沈岩院士出席会议并讲话。基金委计划局局长王长锐、生命科学部常务副主任杜生明研究员、生命科学部副主任冯雪莲研究员、财务局副局长郝观玮及计划局、财务局和生命科学部相关工作人员参加会议。现场验收会议由杜生明研究员主持并担任项目管理工作组长。 /p p   根据《国家重大科研仪器设备研制专项实施管理工作细则》和《国家重大科研仪器研制项目验收工作方案(试行)》要求,本次现场验收考核专家组由重大科研仪器专项专家委员会委员、科学部专家咨询委员会委员、管理工作组专家、科技财务评审专家及相关专业同行专家等共13位专家组成,分为仪器测试专家小组、技术文件档案专家小组和财务验收专家组,分别由北京大学程和平院士和中国科学院力学研究所龙勉研究员担任组长。 /p p   会上,验收专家组分别听取了项目负责人中国科学院生物物理研究所徐涛研究员的项目工作报告和项目监理组长中国科学院动物学研究所孟令霞研究员的项目监理报告,对仪器技术指标进行了现场实地考察和仪器测试,对项目技术文件档案及归档情况、相关账务报告等进行了审核。经认真讨论,专家组认为,该项目研制原理正确,方案设计合理,通过自主研制核心功能模块,结合购置关键标准化部件,完成了设备级系统的研制,建议继续积极探索该项目研制的科研仪器的开放运行机制,尽快推动仪器使用以发挥其最大效益。 /p
  • 直播预告 | 探索黑科技,改变你对现有高分辨显微CT成像的认知
    【直播介绍】您是否用过一款显微CT,同时满足您对时间分辨率以及空间分辨率的要求?扫码报名,解锁UniTOM HR和XL:如何通过高读取速度且高功率的X射线源和探测器,在几秒钟就能采集完整的3D断层图像;还有高信噪比、无采集伪影和出色的对比度;更重要的是可实现不间断的4D原位实验。助力科研人员:摆脱时间困扰 - 使您终于可以扫描许多样品来增加统计数据,达到更精准的量化兼具出色的图像质量 - 更易区分,实现更精确的图像测量。40 x 3 cm 混凝土核心 7 mm 感兴趣位置以 5 微米体素尺寸扫描以 590 nm 体素分辨率成像的电池阴极箔纤维复合材料有孔虫_750nm体素大小通过此直播,您将了解UniTOM HR和XL在材料科学及生命科学的应用研究。即刻前往“中国电镜用户之家”,听Micro-CT 产品专家:Wesley De Boever 带给我们的精彩介绍。【直播时间】2月16号 星期三16:00 - 17:00 (北京时间)注意:注册时,会有2场会议时间供您选择,针对中国用户,请选择以下会议场次:4:00 - 5:00 PM CST
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(一)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期介绍第一部分。1. 背景介绍成像技术是推动生命科学几乎所有学科基础研究的核心平台。在神经科学领域,近几十年来,共聚焦显微镜技术已成为分析神经组织的标准荧光成像技术。激光扫描共聚焦显微镜对固定的神经元样本进行观察,在扫描水平上提供了三维和多色图像并使单个细胞达到树突结构的分辨率。作为补充,电子显微镜(EM)用于获取神经元和亚区室超微结构的信息,并用于大脑的连通性分析。EM非常适合于神经元突触和囊泡、细胞器和膜构象的结构分析。然而,由于靶向特异性标记方法的局限性,基于EM的复杂样品中蛋白质和特定电子密度特征的识别受到限制。为了进一步理解神经元功能,包括双光子显微镜在内的几种活体视频显微镜应用的发展使神经元细胞培养的活细胞成像、器官型切片培养和动物模型的活体成像成为可能。同时,新的荧光染料、功能探针和荧光蛋白以及光遗传学方法和光驱动(如笼状化合物)不仅可以表征神经元,还可以操纵神经元及其从单分子水平到整个神经系统的相互作用。然而,荧光显微图像中可见细节的水平,即图像分辨率,仍然受到衍射极限的限制。一个多世纪以来,由λ/2NA定义的阿贝衍射极限(λ为波长,NA为显微镜物镜的数值孔径)决定了光学显微镜的分辨率极限,限制了两个位置小于200纳米的细节分辨。在过去的二十年中,超分辨显微镜(SRM)已经发展成为一种非常有效的亚细胞水平荧光成像和分辨细胞器结构的研究手段。SRM现在可以提供远低于常规光学显微镜衍射极限的空间分辨率,从而能够深入了解神经元细胞和组织中蛋白质的空间结构和相互作用。本文综述了超分辨显微镜和荧光标记方法及其在神经科学中的成功应用。我们将首先详细介绍各种SRM方法的基本原理、新的功能型荧光探针和标记技术。接着,我们将回顾SRM如何有助于我们理解神经元亚细胞结构和功能以及神经元−胶质细胞相互作用。此外,我们将概述超分辨率成像方法如何帮助研究自身免疫和神经退行性疾病的病理生理学。最后,我们将介绍这些新的成像方法是如何应用于神经精神疾病相关的人类样本的分析。由于该领域持续快速发展,我们最多只能代表一份中期报告。进一步的创新和新的显微镜方法的发展将使人们对神经系统功能有更详细的了解。 2. 神经科学中的超分辨率成像方法2.1. 光学衍射极限及其对神经科学的影响人类大脑包含超过800亿个神经元,每个神经元由数千个突触连接。因此,它构成了复杂神经元网络。这些网络的主要组成部分,例如突触神经末梢,显示的空间维度接近于光学衍射极限分辨率∼200 nm。释放递质的突触活性区(突触前细胞基质的特化区)的直径通常约为300±150 nm。突触小泡作为递质运输和释放的关键元件,其尺寸平均小10倍,直径为40−50nm。这些递质被释放到宽度为20-50nm的突触间隙中−再结合突触后受体。由于衍射极限的尺寸限制,胞吐机制和跨突触信号在传统的光学显微镜下基本上是无法观测到的,因此需要用提高10倍分辨率的方法进一步研究。(图1)。图1. 兴奋性突触结构组成。左图为兴奋性突触的油画示意图,右图为左图的灰度图像,其中浅紫色圆圈为衍射极限光斑;玫红色圆圈为兴奋性突触囊泡,约40-50nm;绿色为突触后膜AMPA受体,尺寸小于10nm;黄色部分为突触间隙,约20-30nm。 此外,大量参与突触信号传导的不同的分子,位于极小的突触内,造成很高的分子分布密度,这对微观研究具有挑战性。例如,对于较小的突触,兴奋性突触可以包含数百个小泡,对于大型苔藓纤维束突触,可以包含数千个小泡,每个小泡包含多达1万到10万个递质分子。在这些囊泡中,约有10±5个与释放部位对接,释放的递质平均与0−20 个NMDA受体和0−200个AMPA受体结合,而这些突触后受体又被320±130个突触后PSD-95密度蛋白分子环绕。由于加速电子的波长要短得多,因此EM是唯一能够解析突触纳米级结构的方法。然而,虽然传统的EM产生的电子密度图像具有极好的超微结构分辨率,但需要进行固定和靶向特异性标记的制样方法在很大程度上限制了蛋白质识别和神经元追踪。荧光显微镜可以很容易地对蛋白质进行选择性标记,但是受制于可见光的衍射(400−700 nm)使生成的图像无法实现对纳米结构的分析。 2.2.绕开光学衍射极限的光学显微镜方法 20世纪后期,人们开发了新的策略,通过利用物理或化学手段来区分不同荧光团的发射或减少同一时间荧光分子的数量,以尽量绕过衍射极限。减少荧光团的点扩散函数(PSF)的重叠可以通过生成光图案在集合级别以确定性方式进行,或者通过减少同一时间荧光团的数量在单分子水平上以随机方式进行。在下文中,我们将从确定性集合方法开始介绍,该方法将激光扫描共聚焦显微镜(CLSM)的有效空间分辨率推到理论极限。2.2.1. 确定性集合超高分辨率成像方法(Deterministic Ensemble SR-Imaging Methods) CLSM用针孔探测器阵列替换单点探测器,空间分辨率可以提高√2倍。CLSM测量每个扫描位置探测器每个点的荧光信号。在应用适当的算法后,生成分辨率提升的图像。这些所谓的像素重分配方法包括图像扫描显微镜(ISM)、重扫描共聚焦(RSC)、光学光子重分配(OPRA)、AiryScan和即时结构照明显微镜(iSIM)。对于信号检测,使用了诸如CCD相机、光电倍增管阵列、单光子雪崩二极管阵列和六角光纤束等探测器阵列。结构照明显微镜(SIM)在光路中插入光栅,产生与样品干涉的相干光束,生成横向和轴向方向不同的新照明图案。然后可以使用傅里叶变换提取这种新照明图案的信息,从而在所有三维空间中实现空间频率分解和分辨率倍增。SIM对样品制备的要求最低,并且可使用所有常规荧光探针,这些探针具有最低的光稳定性,并且可以很容易地扩展到多色成像。然而,当记录三维或长时间成像时,强烈建议使用光稳定性更高的荧光团。此外,SIM使用更低的激发强度,因此是活细胞SR实验的理想选择。为了获得更高的分辨率,引入了通过图案化饱和或荧光激发或图案化耗损光开关染料的非线性SIM(NL-SIM)。然而对染料开关特性的苛刻要求限制了NL-SIM在常规生命科学实验中的适用性。非线性SIM单位时间内还需要采集更多的图像,因此实际上仅限于2D成像。另一方面,掠入射(GI)-SIM显示了高达每秒266帧的快速超分辨率成像以及100nm分辨率,揭示前所未有的细胞器动力学细节。结构照明的局限性在于其对波长的普遍依赖性、与其他SR成像技术相比的低分辨率以及对系统稳定校准的需要。最后,后处理需要进行先验质量检查以避免伪影,例如由于高背景信号或不充分标记产生的低对比度图像导致的人工蜂窝图案。通过受激发射耗损(STED)显微镜进行超分辨率成像是一种实现更高空间分辨率的成像方法。这里,高斯分布的激发激光束被中空的甜甜圈样的耗损激光束覆盖,使扫描点外围的荧光团返回基态,这导致纳米级焦点区的直径与耗损光束的强度成反比,耗损光束的强度直接转换为STED显微镜的分辨能力:上图公式中λ为波长,n为折射率,α为物镜的收集角,ISTED为STED光束的照射强度,IS为饱和强度。因此,可以通过改变损耗激光强度来调整分辨率,可定制设计分辨率达30−80nm 的显微镜。STED显微成像可通过连续或脉冲激光激发、门控检测。带有脉冲激光的STED显微镜会降低激发能量,从而减少实时成像中的光毒性效应。STED显微镜中的时间门控检测可以去除荧光团光子到达时间前的空间信息,并且可以在较低的平均功率下工作。商品化STED能提供用户友好的高分辨率成像,无需进一步的数据后处理。活体成像,例如活体树突棘动态成像已经很成熟,但快速动态成像仅限于小帧尺寸,因为它仍然是点扫描方法,高激光强度可能会导致光损伤。STED通过应用自适应照明方式Dymin和rescue技术,可以明显减少光损伤。在Dymin STED中,在共聚焦模式下扫描时确定最低可能的STED光束强度。根据样品的标记密度,这将使STED光束强度降低20到100倍。Rescue STED同样通过减少STED激光开放的区域,从而比普通STED减少光漂白接近8倍。STED的另一个限制是对荧光团光稳定性的依赖,因为在高激光强度下会发生明显的光漂白。这影响了动力学的研究和三维图像的获取。值得注意的是,最近通过使用荧光团标记的寡核苷酸(瞬时结合到连接靶蛋白结合探针的互补寡核苷酸)或非结合荧光团来进行细胞STED成像,从而绕过了STED光漂白问题。这两种方法中,基于DNA互补标记的STED成像和超分辨率阴影成像SUSHI分别通过荧光团标记的寡核苷酸和高浓度的非结合和自由扩散的荧光团不断交换来防止光漂白。SUSHI的方法已经成功地用于活体脑片中细胞外间隙和神经肽的结构解析及其动力学的STED成像。如果使用具有毫秒或更长寿命的两种稳定状态的可逆切换荧光团来代替标准荧光团,则STED强度可以显著降低。可逆饱和切换光学线性荧光转换方法(RESOLFT)已通过可逆可切换荧光蛋白(reFPs)实现,并成功应用于活体海马脑片树突棘的超分辨率成像。2.2.2. 随机单分子SR成像方法(Stochastic Single-Molecule SR-Imaging Methods)上述的确定性方法是通过改变激发模式或相位掩膜来暂时控制荧光发射达到超分辨成像,而基于单分子的定位SR显微镜则是随机地在时间上分离单个荧光团的发射。单分子定位显微镜(SMLM)基于单个荧光团的随机激活,使用配备高灵敏相机(EMCCD或sCMOS)的宽场荧光显微镜进行单分子检测,以及精确的位置测定。通过将理想PSF与实际测量的光子分布拟合来进行分子定位。只要信号来自单个发射区,且单个发射区之间的距离大于显微镜能分辨的最小距离,则通过收集更多光子和最小化噪声,定位的标准误差可以任意小。激活和定位过程重复多次,所有定位最终用于重建超分辨率图像。为了确保在成像的任何时候,只有稀疏的小荧光团以其活性荧光形式存在(开启状态),使用了光开关、光转换、光激活或自发闪烁的荧光团。由于定位精度和最终图像分辨率取决于每次检测到的光子数量,通常采用明亮且稳定的荧光团与1 kW/cm2的辐照强度相结合的方式。根据所使用的荧光团不同,SMLM可达到10−50 nm横向分辨率。光激活荧光蛋白(FPs),自2006年以来已用于光激活定位显微镜(PALM),例如在405 nm的激光照射下可从关闭状态不可逆地转换为打开状态的PA-GFP和PA-mCherry 以及可通过适当波长的激光照射从一种波长状态不可逆地转移到另一种波长状态的光转换FPs,例如MEO。此外,还成功地应用了诸如Dronpa之类的光开关FPs,其在不同激发波长的激光照射下可在非荧光和荧光状态之间可逆地切换。对于活细胞应用,使用荧光蛋白的PALM是首选方法。因为在理想情况下,每个感兴趣的蛋白质都可以用荧光蛋白进行计量标记。然而,荧光蛋白比有机染料表现出更低的光稳定性和光子计数,从而降低了定位精度,并且通常需要更长的采集时间。此外,对于PALM成像而言,融合蛋白通常会过度表达,这可能会导致不真实图像,而用转基因变体替代显示野生型表达和功能的自身蛋白仍然具有挑战性。对于细胞内源性蛋白质的标记,通常使用有机染料的免疫标记。SMLM适用的有机染料必须是光开关、光激活或自发闪烁的,以实现单个染料发射的时间分离,但化学计量标记要困难得多。有机染料通常表现出较高的光子计数和光稳定性,从而使定位精度达到5−10nm。花菁染料Cy5和Alexa Fluor 647可以在荧光开启状态(其典型寿命为10 ms)和非荧光关闭状态(寿命为几秒,利用光开关缓冲液,缓冲液包括PBS,10−100mM硫醇,如ß-巯基乙缅(MEA),酶促氧清除剂,可以有/没有激活染料)之间可逆切换,为随机光学重建显微镜(STORM)和直接型STORM(dSTORM)的发展铺平了道路。近年来,应用于(d)STORM的染料已大大扩展,除了菁染料外,还包括罗丹明和恶嗪染料。有趣的是,最近的研究表明,即使是多个标记的抗体在光开关缓冲液中也呈现出类似于单发射的表现,因此适用于dSTORM实验。光活化染料的作用与光活化荧光蛋白相似。也就是说,它们在被光照射或自发激活之前处于非荧光状态。罗丹明衍生物PA-JF549和PA-JF646以及桥环菁染料Cy5B是已成功用于SMLM的光活化染料。此外,在没有光开关缓冲液的水溶液中,硅罗丹明HMSiR等自发闪烁染料也能应用于SMLM。最近,通过图案化照明方式实现更高的定位精度,单个荧光发射区的定位得到了改进。定位精度取决于信号的大小和强度,可以通过测量的PSF标准偏差的平方除以收集的光子数来估计。然而,包括拟合性能、标记密度、标记误差和显微镜漂移在内的其它参数决定了高定位精度是否可以转化为低于10 nm的空间分辨率。此外,到目前为止,因为SMLM方法成像需要昂贵的仪器和成像者具备广泛的专业知识,这在一定程度上阻碍了其广泛应用。2.2.3. SMLM-点累计纳米成像技术(PAINT,Point Accumulation for Imaging Nanoscale Topography)第一代SMLM技术依赖于荧光团的光开关和光激活,其分辨率需要有效地利用荧光团发出的光子数,而PAINT(point accumulation for imaging nanoscale topography)方法使用活的,与目标区域结构短瞬结合的染料。在成像过程中,被漂白的荧光团可以被成像介质中充足的新鲜荧光团不断置换替补。由于游离染料在采集单个图像帧期间在多个像素上快速扩散,因此它们仅显示为模糊背景且不能准确定位,而结合染料显示为PSF且能准确定位。因此PAINT的第一种方法是将荧光染料(如尼罗红)与细胞膜进行非特异性结合,然后进行光漂白和新的结合。此外,基于蛋白质片段的探针被用于单分子定位标记。在最近的一个研究中,将这种方法与传统的基于phalloidin的肌动蛋白标记方法进行了比较。通过引入通用PAINT(uPAINT)使Ni-Tris-NTA与转基因蛋白质上表达的His-Tags更特异结合,并可用于突触间隙成像。uPAINT也可以应用于其它标记方法,如免疫标记(内源性蛋白抗体、纳米抗体如绿色荧光蛋白)或受体配体结合。为了提高PAINT的适用性和特异性,引入DNA-PAINT方法。它使用长度小于10个核苷酸的短的可控的寡核苷酸链(成像链)瞬时标记其靶结合互补寡核苷酸链(对接链)。成像链与对接链的瞬时结合产生明显的闪烁。因此,荧光团开-关状态之间的切换与其光物理性质不直接关联。DNA-PAINT首先在DNA折纸(DNA-origami)上得到验证。DNA折纸是一种自组装的DNA结构(具有已知的大小),通过侧链和荧光团进行结合,并通过宽场显微镜观察。总的来说,DNA-PAINT是一种易于实现的SR成像标记方法,无需特定光物理特性的荧光团。因为探针可以在一轮结合后,从成像介质中置换补充荧光团,从而避免了光漂白。DNA-PAINT的缺点是图像获取时间长,这是由成像链与对接链的结合和解离速率决定的,以及荧光成像链的纳摩尔浓度引起的背景信号。尽管通过使用优化的DNA序列和缓冲条件,以及使用串联的周期性DNA结构域或通过短肽的卷曲螺旋相互作用(称为“Peptide-PAINT”),可以加快采集速度,但还是要利用全内反射荧光(TIRF)(仅限于对靠近盖玻片结构进行成像的特点),才能更好地减少成像链的背景信号。另一方面,基于DNA的探针提供了序列成像复用的明显优势,如Exchange PAINT中所述,已成功用于小鼠视网膜切片中多个结构的成像(图2)。Exchange PAINT的概念也被推广到dSTORM、STED、SIM和更传统的衍射限制的宽场和共聚焦荧光显微镜。最近,通过一种称为PRISM(probe-based imaging for sequential multiplexing)的基于DNA-PAINT的成像方法,实现了高达10个神经元蛋白质的分辨率约为20nm的多通道成像。该方法使用了低亲和力成像探针,该探针与突触、肌动蛋白和微管一抗上的对接链结合。图2 原代神经元中多个神经元靶点的多标Exchange-PAINT成像。(A)DNA-PAINT顺序成像的四种突触蛋白的超分辨图像:圆圈表示漂移校正的基准点;(B)为(A)中不带*的感兴趣区域的高放大倍率图和超分辨图像。(C)为(A)中带*的感兴趣区域的超分辨结果及单通道图像。2.2.4. 定量SMLM如果每个目标分子都可以单独标记和定位的话,与所有其他超分辨率成像技术相比,SMLM还可以提供有关分子分布和分子绝对数的单分子信息。然而,内源性蛋白质的定量免疫标记仍然是一个挑战,并且多标记抗体的不同定位数目也会使数据解释复杂化。另一方面,达到内源性表达水平比较困难,另外FPs蛋白成熟缓慢也同样会令定量化困难。然而,可以通过设计专门的对照实验估计拷贝数,并提取出有关生物目标结构分子的真实信息。借助合适的算法,SMLM可以提供有关拷贝数、聚类、共定位和复杂化学计量的数据,用于定量模型的生成和模拟。此外,还可以通过将突触结构信息与其功能关联来实现量化,例如膜片钳神经元的生物细胞素标记。例如,通过对链霉亲和素标记后膜片钳神经元进行STORM成像,结合CB1受体的免疫标记,然后在GABA能的海马轴突终端内定量,研究了内源性大麻素信号。本研究发现,与树突投射型中间神经元相比,胞周投射型中间神经元具有更高的CB1受体密度和更复杂的活动区。通过免疫标记和dSTORM研究了黑腹果蝇神经肌肉连接处内源性Bruchpilot(Brp)分子的数量。利用抗体滴定实验,确定了野生型神经肌肉连接处活性区细胞基质中Brp蛋白的数量为137个,其中四分之三以约15个七聚体簇状排列结合从相同组织样本记录的电生理数据,研究Brp如何组织控制活动区功能。利用DNA纳米结构作为校准,每个活性区Brp蛋白的数量估计通过定量DNA-PAINT(qPAINT)实验证实。此外,定量dSTORM实验表明,每个活性区Brp蛋白的数量和分布受突触标记蛋白-1的影响,这说明突触活性区递质释放的复杂性。在最近的一项研究中,使用Alexa Fluor 532和Alexa Fluor 647免疫标记的双色dSTORM已用于小鼠小脑平行纤维活性区中代谢型谷氨酸受体4(mGluR4)的定量研究(图3)。该研究还使用抗体滴定实验估计每个活性区平均包含约35个mGluR4分子,并排列在小纳米结构中。此外,mGluR4通常在munc-18-1和CaV2.1通道附近被发现,这支持了mGluR4与这些蛋白质相互作用以调节突触传递的观点。图3小鼠脑片中代谢型mGluR4受体定位定量双色dSTORM。上图:mGluR4和Bassoon免疫染色的小脑冠状切片的dSTORM图像,作为活性区参考。与宽场显微镜结果的比较。(A)DBSCAN聚类算法定义了近距离的En face活性区表面积(灰色)和mGluR4信号(品红)。(B)活性区大小的频率分布直方图(C)mGluR4信号到突触和突触外区域的映射。(D)通过Ripley H函数分析评估Bassoon和mGluR4的聚集分布。与随机分布的分子(蓝色、灰色)进行比较。虚线表示Ripley分析的最大值。这些研究显示了定量SMLM在神经科学研究中的潜力。可以预见,定量SMLM的进一步发展将为突触前和突触后蛋白质的功能关系,及其组织和结构的研究提供更有价值的信息。2.2.5. 组织三维(3D)SMLM虽然SMLM方法实现了仅几纳米的非常高的水平定位精度,但它需要特殊的方法来打破图像平面上方和下方PSF的对称性,来实现高轴向定位精度。实现高轴向定位精度的两种方法是PSF重塑和多焦面检测,通常用于在3D中精确定位荧光团。在SMLM中最常用的方法是通过在成像路径中插入单个柱面透镜从而不对称地扭曲PSF,利用光学像散原理来实现三维定位。基于像散方法的3D dSTORM技术还可以与光谱拆分相结合,对COS-7细胞中的网格蛋白表面小窝成像。像散引起的畸变程度由荧光团的轴向位置决定,因此可用于轴向位置计算。例如,3D散光SMLM已用于确定抑制性突触后密度区gephyrin蛋白和受体复合物的分布和拷贝数,或突触前活动区和突触后密度区各种成分的空间关系。采用双物镜像散成像方案,通过3D SMLM研究组织中肌动蛋白、血影蛋白和其他相关蛋白的结构,发现这些蛋白在轴突中形成190nm的周期性环状结构。替代方法包括使用相位掩模、变形镜实现双螺旋、四足或鞍点PSF重塑,和双焦面成像方法实现更大的轴向范围,并已成功应用于不同的应用中。为了在2D和3D中定位单个荧光发射区,已经开发了不同的算法和软件工具。在最近的一次综述中,列出了不同3D SMLM方法获得的水平和轴向分辨率,以供比较高30倍。此外,使用NHS染料对所有蛋白进行标记,然后进行迭代ExM,可以对高蛋白密度的结构或细胞器(如线粒体),实现与EM相比具有更高对比度的超微结构细节。为了在分子尺度上进行成像,ExM与SMLM方法(如dSTORM)相结合是一个理想的选择。然而在含有硫醇和盐的传统光转换缓冲液中,会发生荷电氢凝胶收缩。可通过使用低离子强度缓冲液或加入中性溶液使凝胶稳定以避免收缩。另一种策略是使用自发闪烁的荧光团(如HMSiR)在水中进行SMLM。通过Ex-dSTORM实现分子分辨率的关键是膨胀后标记,这增加了表位可及性,从而提高了标记效率并减少了标记错误。Ex-dSTORM超分辨成像已成功应用于原代细胞和神经元中微管和中心粒结构的解析。
  • Advanced Science:多功能高分辨率磁光克尔显微成像系统助力自旋忆阻器研究取得突破性进展
    忆阻器是一类表示磁通与电荷关系的基础电路元件,也是构建人工神经网络的理想元件。传统忆阻器多数是基于材料内部的离子迁移和价带变化实现的,存在工作寿命短和反应速度慢等缺陷,无法支撑持续训练学习的神经网络的长时间工作[2]。与之相反,自旋电子器件基于材料内部的磁性变化工作,具有工作寿命长、反应速度快等优势[3-7]。长期以来,科学和产业界在不断地探索如何将磁隧道结等自旋器件应用于神经网络计算[8]。然而,经典的磁隧道结仅具有高、低二值阻态,无法在神经网络计算方面发挥优势。 2021年3月7日,北京航空航天大学集成电路科学与工程学院赵巍胜教授团队教师张学莹、博士生蔡文龙、教师王梦醒及潘彪以共同位作者,赵巍胜教授为通讯作者在Advanced Science期刊在线发表了题为“Spin‐Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing” 的学术论文[1]。赵巍胜教授团队设计了一种带有特自由层结构的磁隧道结,即在自由层中插入了单原子层的W,然后利用退火技术,让W形成聚簇效应,实现了一种基于垂直各向异性磁隧道结的自旋忆阻器,并在百纳米的器件中实现了稳定的近乎连续的多态,也是国际上次实现百纳米尺寸的可全电学操控的自旋忆阻器(如图1所示),有望为自旋电子器件在人工智能领域的应用打开道路。图 1 (a,b)该工作实现的自旋忆阻器件通过电压脉冲序列激励诱导的阻态变化;(c-e)器件的脉冲时序依赖可塑性验证。 该研究对这种新型器件的性质进行了全面的实验表征,验证了这种器件阻态的脉冲时序依赖可塑性(简称STDP,是脉冲神经网络的基础),证明了其构成的系统能够高效率、低功耗地实现手写数字识别等功能。 此外,该研究次发现了一种立体的手性涡旋结构(图2d):在CoFeB/W/CoFeB构成的自由层中,CoFeB/W界面和W/CoFeB界面产生的Dzyaloshinskii-Moriya作用(DMI)相反,同时,两层CoFeB之间的耦合作用则随着W的厚度变化出现强度涨落或铁磁/反铁磁耦合交替。在局部区域W出现聚簇效应,反铁磁耦合与反向DMI联合作用,促使磁畴壁演变成手性涡旋结构,形成能量势阱。在磁隧道结自由层翻转过程中,这种涡旋结构会将运动的畴壁牢牢地钉扎住,从而形成了稳定的多阻态。图 2 (a)论文所用MTJ膜层中W原子的分布;(b)在反向DMI和不同RKKY耦合强度下CoFeB/W/CoFeB双磁层中可能存在的磁畴壁形态;(c)不同磁畴壁形态对应的能量;(d)在W原子聚簇区域由反向DMI和RKKY反铁磁耦合共同促进形成的立体涡旋结构示意图。 值得一提的是,Quantum Design中国与致真精密仪器(青岛)有限公司合作推出的多功能高分辨率磁光克尔显微成像系统对解析自旋忆阻器的工作原理分析和多态来源方面发挥了重要作用。 先,作者通过高分辨率磁光克尔显微镜观察了MTJ膜层自由层的磁性翻转过程,与磁滞回线测量结果进行了对照,发现文章所用膜层存在较强的磁畴钉扎作用(如图3)。同时,作者测量了该材料自由层中磁畴壁移动速度,通过蠕行公式(creep mode motion)拟合,提取了一个重要的参数:本征磁畴壁钉扎磁场Bdep,如图4a所示。这个磁场是表征磁性薄膜磁畴壁钉扎强度的标志性参数,低于该临界磁场,不考虑热扰动的情况下,磁畴壁无法运动。经对比发现,薄膜中提取的该磁场与忆阻器件中多态在低温下的临界稳定磁场几乎相等,由此确定了自旋忆阻器件的多态来源于磁畴钉扎(图4b)。以磁光克尔显微镜为工具,通过磁畴壁速度测量提取磁畴壁本征钉扎磁场强度,是少有的能够定量评估磁性薄膜质量和畴壁钉扎强度的方法,在开发新材料,优化自旋电子器件性能方面得到广泛应用[7][9]。 图 3 利用高倍磁光克尔显微镜观察到的该自旋忆阻器自由层中磁畴扩张状态与磁滞回线的对应关系。图 4 (a) 磁光克尔显微镜测量的CoFeB/W/CoFeB磁性薄膜(蓝)与普通CoFeB薄膜(红)中磁畴中磁畴壁运动速度的比较;以及CoFeB/W/CoFeB中内禀钉扎磁场(16.3 mT)与(b)器件在低温下的多态稳定磁场(去除偏置后为15.5 mT)的比较。 在CoFeB/W/CoFeB自由层薄膜中,为什么会有如此强的磁畴壁钉扎作用呢?作者利用磁光克尔显微镜,从DMI、海森堡交换作用强度等多个角度进行了细致表征。先,分别定量测量了sub/MgO/CoFeB/W薄膜、sub/W/CoFeB/MgO两种镜面对称薄膜结构的DMI,发现两种膜层的DMI手性相反且强度相当(图5)。随后,测量了多态器件所用的自由层薄膜CoFeB/W/CoFeB的DMI,强度几乎为零。由此推测,CoFeB/W界面和W/CoFeB的DMI被中和。另一方面,通过透射电镜,作者观察到了CoFeB/W/CoFeB中W原子的分布并不均匀,局部出现了聚簇,W原子垒叠成2层甚至3层,而多数区域W原子则为单层甚至出现断裂。依据S. Parkin测量结果[10],双原子层的W能够使上下两层铁磁材料发生RKKY反铁磁耦合。进一步,作者通过微磁仿真,结合磁光克尔成像获得了关于DMI,海森堡交换作用(测量方法见该文章附加材料[1])等参数,证明在具有W聚簇的区域,能够形成上下层手性相反的的垂直涡旋结构。而且,这种涡旋结构具有较低能量,在磁畴壁经过之时,能够形成强烈的钉扎作用。图 5 利用磁光克尔显微镜测量不同薄膜结构中磁畴壁运动的速度以及DMI的提取。 磁光克尔显微镜除了能够获得高分辨率的动态磁畴观测外,在磁性薄膜材料和自旋电子器件动力学分析领域也有着突出的优势,它能够直观、高效、无损地测量多种参数,包括饱和磁化强度、各向异性强度、海森堡交换作用强度和DMI强度等。通用型的磁光克尔显微镜很难对这些磁学参数进行直接的测量,为了降低使用门槛,使磁光克尔成像和磁畴动力学分析技术在磁学和自旋电子学中发挥更大作用,张学莹老师在多年积累的测试经验和仪器配置方案基础上,开发出了一款多功能、智能化的多场高分辨率磁光克尔成像系统。该系统能够让用户利用软件定义电、磁等多种想要的波形,一键触发后,在样品上同步施加垂直/面内磁场、电流脉冲、微波信号,可同时进行磁光克尔成像和电阻等参数的测量。这种多功能的设备将电输运测试和磁光克尔成像结合,预期将在自旋轨道矩、斯格明子磁泡动力学等方面发挥更大作用。 目前,这款多场高分辨率磁光克尔成像系统已经获得了清华大学、中国科学院物理研究所、北京工业大学、上海科技大学等客户多套订单。 图6多功能高分辨率磁光克尔显微成像系统 产品基本参数:向和纵向克尔成像分辨率可达300 nm;配置二维磁场探针台,面内磁场高达1 T,垂直磁场高达0.3 T(配置磁场增强模块后可达1.5 T);快速磁场选件磁场反应速度可达1 μs;可根据需要选配直流/ 高频探针座及探针;可选配二次谐波、铁磁共振等输运测试;配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;4K~800K,80K~500K 变温选件可选。 参考文献 [1] X. Zhang#, W. Cai#, M. Wang#, B. Pan#, K. Cao, M. Guo, T. Zhang, H. Cheng, S. Li, D. Zhu, L. Wang, F. Shi, J. Du, and W. Zhao*, Adv. Sci. 2004645, 2004645 (2021).[2] M. A. Zidan, J. P. Strachan, and W. D. Lu, Nat. Electron. 1, 22 (2018).[3] X. Lin, W. Yang, K. L. Wang, and W. Zhao*, Nat. Electron. 2, 274 (2019).[4] M. Wang, W. Cai, K. Cao, J. Zhou, J. Wrona, S. Peng, H. Yang, J. Wei, W. Kang, Y. Zhang, J. Langer, B. Ocker, A. Fert, and W. Zhao*, Nat. Commun. 9, 671 (2018).[5] M. Wang#, W. Cai#, D. Zhu#, Z. Wang#, J. Kan, Z. Zhao*, K. Cao, Z. Wang, Y. Zhang, T. Zhang, C. Park, J. P. Wang, A. Fert, and W. Zhao*, Nat. Electron. 1, 582 (2018).[6] S. Peng#, D. Zhu#, W. Li, H. Wu, A. J. Grutter, D. A. Gilbert, J. Lu, D. Xiong, W. Cai, P. Shafer, K. L. Wang, and W. Zhao*, Nat. Electron. 3, 757 (2020).[7] X. Zhao#, X. Zhang#, H. Yang#, W. Cai, Y. Zhao, Z. Wang, and W. Zhao*, Nanotechnology 30, 335707 (2019).[8] X. Zhang, W. Cai, X. Zhang, Z. Wang, Z. Li, Y. Zhang, K. Cao, N. Lei, W. Kang, Y. Zhang, H. Yu, Y. Zhou, and W. Zhao*, ACS Appl. Mater. Interfaces 10, 16887 (2018).[9] X. Zhao et al., Appl. Phys. Lett. 115, (2019).[10] S. S. P. Parkin, Phys.Rev.Lett. 67, 3598(1991)
  • 如何看得细又看得深 深圳先进院Nature Methods发布超分辨光学显微成像新成果
    p   近日,中国科学院深圳先进技术研究院研究员郑炜与美国国立卫生研究院教授Hari Shroff合作,成功研发出新型双光子激发的超分辨光学显微成像系统,该系统同时具备超分辨光学显微成像功能和大深度三维成像能力,使光学超分辨成像深度推进至破纪录的250微米,相应研究成果Adaptive optics improves multiphoton super-resolution imaging(《自适应光学提升超分辨显微成像》)最近发表在《自然-方法》(Nature Methods)上,郑炜是该文的第一作者兼通讯作者。 /p p   “看得细”和“看得深”是光学显微成像领域面临的两大挑战,经过科研人员几十年来的不懈努力,无论是在“看得细”还是“看得深”方面,都涌现了一批创新技术,取得了巨大成功,但是同时具备“看得细”和“看得深”这两项功能的光学显微成像技术却并不多见。 /p p   在该项研究中,郑炜等人把具备深层生物组织成像能力的双光子显微成像技术(Two-Photon Microscopy, TPM)和具备超分辨成像功能的瞬时结构光照明显微成像技术(InstantStructuredIllumination Microscopy, ISIM) 有机结合起来,实现双光子激发的超分辨显微成像功能。同时,研究人员又利用自适应光学(Adaptive Optics, AO)技术成功克服了由生物组织引起的波前相位畸变问题,最终实现176纳米的横向分辨率、729纳米的纵向分辨率及250微米的探测深度的成像效果。利用该技术,可以对细胞、线虫胚胎及幼虫、果蝇脑片和斑马鱼胚胎开展高清晰三维成像研究,成像效果显著优于传统双光子成像质量。值得一提的是,由于该技术提高了光子利用效率,从而降低了所需激光功率,可以对线虫胚胎的发育过程开展长时间、高清晰的三维动态观测。在长达1个小时的连续三维成像过程中未对线虫胚胎发育造成任何影响,该技术对胚胎发育研究具有重要作用。 /p p   该研究得到了国家自然科学基金、国家重点基础研究发展(“973”)计划和深圳市海外高层次人才创新创业孔雀计划的项目支持。 /p p   论文链接 /p p style=" text-align: center " img width=" 550" height=" 335" title=" W020170620699568004819.jpg" style=" width: 550px height: 335px " src=" http://img1.17img.cn/17img/images/201706/noimg/1642339d-b807-493a-b486-12fd9a26cd26.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   左图为果蝇脑片在传统双光子成像(2P WF)、双光子超分辨成像(2P ISIM)和结合有自适应光学的双光子超分辨(2P ISIM AO)显微成像结果对比,右上图为位于胶原凝胶150微米深处细胞三维成像对比,可见无论是横向还是纵向,新技术的分辨率都有显著提升。右下图为线虫胚胎发育过程中连续1小时的三维观测,细胞正常分裂进程证明了该技术可用于胚胎发育动态研究。 /p p & nbsp /p p & nbsp /p
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(二)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期接着上期的第一部分超高分辨率显微技术在神经科学中的应用(一) ,为第二部分内容。4.荧光标记与样品制备4.1. 荧光标记神经元和脑片的超分辨率成像是用适当的荧光团标记感兴趣的生物分子,理想情况下是以定量和化学计量的方式。虽然SIM和其他超分辨方法的成像质量取决于信号背景(S/B)比,但SIM对荧光团没有特殊要求。另一方面,STED显微镜可达到的分辨率在很大程度上取决于所用荧光团的光稳定性。RESOLFT显微镜使用可逆光开关FPs,具有两个稳定状态,因此可以使用较低的激光照射强度。所有SMLM方法的定位精度取决于每个事件检测到的光子数。dSTORM需要光开关有机荧光团,包括菁、罗丹明和恶嗪染;而PALM则需要使用光开关、光转换和光激活FPs。与此相反,DNA-PAINT理论上适用于所有荧光团,因为开/关速率由对接链和成像链序列和缓冲条件决定,而其中 Cy3B和ATTO 643效果最好。、为了获得一张好的超分辨率图像,除了成像方法以外,样品制备也非常关键。使用荧光探针进行高效和特异的标记,并且使标记误差(荧光团和目标之间的距离)达到最小。为了通过荧光成像进行结构解析,标记密度(即荧光探针之间的距离)必须显著高于所需的分辨率。另一方面,特别是对于接近几乎分子分辨率的超分辨率成像方法,标记误差必须尽可能小,以达到高精度成像。对于活细胞标记而言,在合适的表达载体中融合感兴趣的蛋白质的基因编码FPs无疑成为首选。然而,FPs的亮度较低,与有机染料相比,其图像分辨率较低。理想的标记方法是使用荧光染料标记基因编码的蛋白质、肽标签或单一氨基酸。在模式生物如果蝇或秀丽隐杆线虫的应用得益于基因编码工具,通过转座子、操纵二分体Gal4/UAS表达系统或Crispr/Cas9方法引入或去除突触蛋白和荧光蛋白。由于瞬时转染的细胞表现出不同的蛋白质表达水平,蛋白质的分布和功能不一定反映野生型的情况。图5 通过单体链霉亲和素结合AP标记的突触蛋白成像结果显示Nlg1和LRRTM2的差异分布(dSTORM成像)。上排:Homer 1c GFP作为突触后室的参考。第二排:Nlg1和LRRTM2(dSTORM成像)。左下:频率分布直方图,用于显示相对于Homer 1位置中心的信号分散情况。右下:列出比较两种蛋白质的突触结构域数量的直方图。然而,通过构建优化表达,稳定表达的细胞或CRISPR基因敲入等方法可以产生从内源性到强过表达的蛋白质表达水平。根据不同的转染策略,可以采用不同的方法转染神经元。传统的磷酸钙共沉淀法和脂质体法在大多数实验室都可实施,但这两种技术的转染效率很低。而病毒转染的效率比较高,允许注射到大脑区域,但需要实验者具备病毒生产方面的专业知识,并需要考虑生物安全问题。此外,还必须考虑病毒类型、插入片段大小、毒性和差异表达等因素。要达到高转染效率,可以使用高压脉冲将核酸直接输送到细胞核,进行核转染。然而其缺点是,当这种方法应用于小鼠原代神经元时,会导致细胞存活率较低,并且实验设备昂贵,还需要根据神经元密度和物种对脉冲参数进行多次测试。另外,也可以使用细胞附着式高电阻管,在完整神经元网络(如器官型切片)中进行单细胞电穿孔。利用这种方式,结合CRISPR基因敲入获得了接近内源性的蛋白质表达水平。基于CRISPR基因敲入,在神经元发育的不同时间点通过脂质感染、核感染或病毒转染在神经元中实现。如前所述,FPs光稳定性和荧光光子输出较低,这降低了图像质量。另外,连接大小为2−5nm的FP后,蛋白质功能可能会受到影响。因此,首先必须清楚感兴趣的蛋白质在野生型的功能表现。而有机染料比FPs小得多,有更高的光子产率和光稳定性,但需要与其它能与感兴趣分子结合的分子进行连接耦合。对于固定细胞,使用一抗和二抗进行免疫染色仍然是标记内源性蛋白质的首选方法。缺点是由两个大小17.5 nm左右的IG抗体间接免疫标记有可能导致标记误差。使用直接法免疫荧光或Fab片段可以减少标记误差。另外针对GFP或转基因短肽标签的更小(1.5×2.5 nm)的骆驼“纳米抗体”已应用于dSTORM成像。此外,耦合了链霉亲和素的荧光染料可用于神经元和器官型组织中靶蛋白的特异性标记。使用这种标记方法,研究了神经氨酸酶-1ß、神经肽原-1和富含亮氨酸的重复跨膜蛋白2的动力学和纳米级结构,并揭示了跨突触粘附结构的形成(图5)。另外可以使用生物正交肽或自标记蛋白质标签,例如FlAsH tags, SNAP-tags, and Halo-tags。这些标签蛋白与目标蛋白共表达,并以共价和特异性结合其各自的荧光标记试剂或配体。对于肌动蛋白和微管的标记,可以使用小肽药物,如双环七肽-鬼笔环肽和紫杉烷类药物,如紫杉醇。膜和细胞器的标记可以通过荧光脂质和细胞器的追踪试剂来实现。此外,小肽或配体可以直接用荧光团标记,并特异性结合生物分子,例如,显示抑制性突触后位点的超结合肽。要达到最小的标记误差,可以通过单个非天然氨基酸的特定位点标记实现。通过基因编码导入设计的非天然氨基酸,并用四嗪染料进行生物正交点击化学标记。显然,神经元和组织切片必须根据要成像的结构进行透膜和固定。与所使用的标记方法无关,特别注意所用的试剂必须能保留自然细胞环境中生物分子的超微结构。通过化学试剂固定交联蛋白质,可能会影响结合亲和力,也可能削弱分子间的相互作用。在大多数情况下,多聚甲醛(PFA)和戊二醛已成功用于神经科学的超分辨率成像。此外,还引入了乙二醛等新型固定剂。膜分子应始终使用4%的PFA和0.2%戊二醛固定,以尽量减少残余流动性并避免伪影,例如抗体结合诱导的簇形成。4.2. 神经元的多色遗传标记荧光蛋白彻底改变了神经元的活细胞成像方式,因为荧光蛋白可以与感兴趣的蛋白质融合,并且在假定不影响野生型功能的前提下,用于双色和三色成像。神经系统具有非常高密度的轴突和树突相互作用结构,需要使用更多不同颜色的标记来区分不同的神经元连接。2007年,随着一种名为Brainbow的转基因方案的开发,这一问题得到了解决,该策略能够对神经元进行多色标记。结合单细胞分辨率成像技术,Brainbow技术可以用来创建大脑图谱,详细描述神经元如何形成回路,其连接体以及它们投射到何处。Brainbow利用了三原色,即可见光谱的所有颜色都可以由三种原色的不同混合物生成,即红色、绿色、蓝色(RGB)或转化为荧光蛋白,例如RFP、YFP和CFP。为了实现这一想法,应用了Cre/lox重组系统,该系统可以通过DNA切除、反转或染色体重组启动基因表达,使三个荧光蛋白基因中的一个在转基因中随机表达。转基因盒的多个拷贝的引入导致三个不同拷贝数的基因在每个细胞中组合表达,从而产生几十种颜色,使相邻神经元分化并观察其相互作用。Brainbow技术非常适合绘制不同神经元类型之间的连接模式,追踪轴突,并识别大脑中远距离的神经元连接。此外,已经证明Brainbow表达可以成功地用于研究周围神经损伤后的轴突再生,并检测大脑发育过程中的重要阶段。为了进一步改进Brainbow在包括突触蛋白在内的大脑和连接图谱中的应用,SRM的应用是显而易见的。最近通过结合Brainbow、顺序免疫染色和ExM同时研究同一脑切片上的形态、分子标记和连接,成功地证明了这一点(图6)。将这项技术应用到全脑研究一直是一个挑战,直到最近才成功应用。图6 结合Brainbow和ExM的多轮免疫染色和ExM(miriEx)成像。(A) 实验方案:在Parvalbumin cre/+ 小鼠的脑切片中,Parvalbumin蛋白阳性中间神经元通过Brainbow进行观察,并在下一轮应用4倍ExM成像。使用EYFP信号对Homer1和Gephyrin进行免疫染色来观察突触。(B) Brainbow 信号的免疫染色。(C) 分别通过突触后标记homer1和Gephyrin的免疫染色来区分抑制性和兴奋性突触。插图(D)−(F)和(G)−(I) 显示图像的更多细节图。(J)和(K)神经元的形态重建(使用ImageJ软件插件nTracer),包括其各自传入的特征。虚线框表示(B)和(C)中所示的区域。重建的神经元按顺序编号。标尺(膨胀前的):10μm(B/C)、2.5μm(I)、20μm(J/K)。4.3. 神经科学中的光电联合显微镜电子显微镜(EM)和电子断层扫描具有光学显微镜无法达到的空间分辨率,可以获得细胞和细胞器的超微结构信息。然而,EM和电子断层扫描不能标记特定的分子,因此难以识别未知的细胞结构或具有相似形态特征的结构。用胶体金标记结合抗体可以实现蛋白质的纳米级定位,但抗原的标记效率低下,这意味着胶体金颗粒的数量仅占抗原总数量的1%到20%。而另一方面,荧光显微镜虽然分辨率较低,但可以进行大视场成像和对活细胞中蛋白质进行定位。对固定样本细胞中的各种分子进行高效和特异的分子标记后,结合超分辨率荧光显微镜方法,达到的空间分辨率可以远低于衍射极限。因此,光电联合显微镜(CLEM)作为一种通用的方法,在电子显微镜提供的细胞超微结构背景下,通过超分辨率成像来可视化蛋白质的定位和相互作用。然而,将超分辨率成像与EM结合起来更为困难,因为乍一看,这主要是由于两种方法的样品制备流程不同且不兼容。例如,EM中保存超微结构所需的固定和染色会引入很强的自发荧光。而且荧光蛋白还会在固定和聚合物包埋所需的脱水和氧化条件下淬灭。此外,这两幅图像必须在纳米精度下精确叠加,首先需要使用在荧光成像和EM中都表现出极好的对比度的固定对准标记物,如裸金微球。 另外,样品脱水引起的结构变形会严重破坏两幅图像的正确叠加。所以必须在超微结构和荧光保存之间找到折衷方案。例如,已经证明,对于某些周期性分子结构,如核孔复合体,无需使用对准标记,dSTORM和EM扫描图像可以以20 nm的精度叠加。光电联合显微镜的流程是先对轴突和树突进行荧光实时成像后,再使用透射电镜观察。例如,表达GFP的脑组织在荧光成像后进行化学固定,再使用电子密度标记进行免疫标记,例如EM金。或者采用更成熟的方法,如过氧化物酶或胶体金标记。最后,可以通过光转化在荧光团处局部生成二氨基联苯胺(DAB)聚合物。为了克服标记问题并确保超微结构的保存,已经开发了用于EM (NATIVE)的纳米体辅助组织免疫染色。NATIVE能够高效标记蛋白质,无需苛刻的渗透步骤、特殊树脂、锇替代物或透明化试剂。随着方法的改进和技术的发展,光电联合显微镜已被证明是研究不同种类突触和定位突触蛋白的理想选择。5.超分辨显微镜观察神经元隔室/突触以及神经元−胶质细胞相互作用下面我们将展示通过超高技术获得的有关细胞骨架组成和动力学、突触前室和突触后室对神经传递准确性至关重要的分子组装,以及形成神经元功能的星形细胞结构的调节和构建的最新数据。5.1. 细胞骨架神经元的极化性质以及树突和轴突的长度都需要结构和功能性支架来支持它们的稳定性、适应可塑性和物质运输,这些特性对神经元的存活和信号传递是必不可少的。因此,神经细胞骨架的结构在过去几十年中引起了神经科学家的注意,并在其它文献中进行了详细的回顾。20世纪70年代的电镜研究表明,神经细胞骨架由三种主要类型的神经纤维组成:大小约为20−30 nm的微管,直径为10 nm的神经纤维和5−10 nm大小的肌动蛋白丝。微管是由异二聚体在GTP依赖性组装过程中结合α和β微管蛋白单体组装而成的圆柱体,称为原丝,再由13个这样的原丝形成一个微管单元。轴突的微管成束状组织,并根据其相对于神经元胞体的位置显示不同的方向。它们的极化通过快速增长的正端和缓慢增长的负端体现。STED显微镜揭示了快速生长极依赖钙锚定在肌动蛋白皮质上。使用dSTORM对发育中的神经元进行活细胞成像证明了神经元极性和轴突具有方向一致的、平行的由TRIM46驱动的微管束,而树突微管的特征是混合极性。用Motor-PAINT方法进行纳米跟踪发现稳定和乙酰化的微管显示负端向外的方向,而动态和酪氨酸酶化的微管则显示相反的方向(图7)。例如轴突起始节中微管密集地聚集在束簇中,由于密集的重叠定位,使用SMLM方法具有挑战性。这个问题可以通过两种实验方法来解决:第一,设计更小的标记探针,如微管蛋白纳米抗体,这不需对神经元微管更详细的观察。第二,一种降低群聚密度的超分辨率方法,如ExM,可用于胞体和树突中微管亚群的可视化。神经纤维是在轴突中形成的广泛平行网络的异质聚合物,它为轴突提供稳定性并调节轴突直径和传导速度,其组成包括低、中、高分子量神经纤维、中间蛋白和外周蛋白的三联体。它们的自组装首先形成平行的异二聚体,然后半交错地结合成反平行的四聚体。最后,八个四聚体横向聚集成单位长度的神经纤维,进一步拉长并径向压缩至最终的神经纤维外观。用电镜观察到在神经纤维之间的交界面,形成3−5 nm大小的交叉桥,但对其功能及其与神经纤维的分子相互作用仍不清楚。在这里,ExM与SMLM的结合或DNA-PAINT的应用可能有助于研究密集神经纤维中的这种相互作用。神经纤维动力学已经通过光转换和光活化SRM实验进行了研究,显示了端到端蛋白合成中的退火和切断过程。肌动蛋白最初被认为与一组更集中的短肌动蛋白丝结合在一起,在轴浆中形成斑点状的膜下层。在原代神经元和脑切片中使用phalloidin Alexa Fluor 647进行STORM成像,揭示了轴突肌动蛋白的新的组成原理。这些实验揭示了轴突中存在圆周式肌动蛋白环,每190 nm固定重复间隔绕一圈,并进一步表征了轴突中具有类似尺寸的ßII血影蛋白和钠通道的周期性条带,而树突状腔室内显示出更细长的肌动蛋白组织。此外,通过STORM成像发现,并通过STED显微镜的研究得到证实,这种肌动蛋白组织模式的普遍性也存在于树突中。进一步的报告发现,尽管树突中也存在基于肌动蛋白血影蛋白的周期性膜骨架,树突中这种结构的形成倾向和发育速度低于轴突。此外,本文还显示了肌动蛋白和血影蛋白在胞体和部分树突中的二维多边形晶格结构,类似于红细胞中的膜骨架结构。此外,使用SiR-actin,可通过STED显微镜在活的原代神经元中观察到这种周期性结构。最后,最近的CLEM方法结合铂金复原电镜(PREM)和STORM研究了无顶轴突中的肌动蛋白组织,并提供了轴突编织状肌动蛋白结构与周期性肌动蛋白超微结构相关的证据(图8)。图8。原代神经元无顶轴突(unroofed axons)的CLEM成像(结合铂复型电子显微镜和STORM的光电联合成像)。用铂复型电镜(PREM)(灰色)显示的轴突辫状条带(箭头)被叠加到大鼠原代神经元的超分辨肌动蛋白环(伪彩)上,比例尺=2, 1, 0.2μm(从左到右)。中间:轴突辫状条带间距测量后显示出与周期肌动蛋白间距相似的尺寸。右图:在铂复型电镜(PREM)中记录的神经纤维厚度,未分裂(交织在一起)和分裂(分裂开)的轴突肌动蛋白辫状条带为蓝色,树突中的单个肌动蛋白神经纤维为紫色,微管为灰色参考。采用平均值和标准误显示数据。Copyright 2019 Springer Nature.ßII 血影蛋白基因敲除导致周期性肌动蛋白环结构破坏,同时细胞器的双向轴突运输受损。SMLM结果显示,与轴突相比,轴突起始节中的分子组织其特征是轴突起始节(AIS)蛋白ankyrin-G和ßIV-血影蛋白,这种基于肌动蛋白-血影蛋白的细胞骨架与远端轴突相似。此外,在AIS中存在ßIV-血影蛋白和Ankyrin G,而在远端轴突中存在ßi--血影蛋白和Ankyrin B。SMLM显示与肌动蛋白环相连的纵向头对头ßIV血影蛋白和Ankyrin的二价取向有助于建立紧凑的AIS超微结构,该超微结构甚至对针对肌动蛋白和微管的药物治疗具有抵抗力。进一步显示Ankyrin-G会聚集到亚结构域,增强神经元活性,而成为精神疾病的主要风险基因。随后的SMLM研究还阐明了αII血影蛋白与ßIV血影蛋白共同在AIS提供强健的周期性细胞骨架组织以及防止AIS装配不完全和神经变性的重要性。一份相关报告显示,αII 血影蛋白丰度随有髓鞘轴突直径的增加而增加,表明大直径轴突更容易发生神经退行性病变。在免疫标记II血影蛋白后,将其连接到一种可膨胀的聚合物,并在水中膨胀后,通过ExM研究ßII spectrin沿轴突的周期性模式。这一新方法证实了如前所述的细胞骨架内部的组织原理。不幸的是,在ExM过程中,phalloidin探针在膨胀过程中被冲掉。有两种策略解决这一问题:一方面,携带甲基丙烯酸基团的phalloidin三功能抗体被设计用于与凝胶的有效标记;另一方面,最近的一份报告使用荧光团结合抗体,类似于常规免疫染色,将荧光团靶向phalloidin探针与凝胶连接。在中枢神经系统的几种神经细胞类型和动物物种中,肌动蛋白和附属蛋白的强大超微结构组织也得到了证实。外周神经系统(PNS)中,STED显微镜也显示在梳理的神经纤维样本上有重复的细胞骨架成分。最后,SMLM揭示了肌动蛋白-血影蛋白骨架的一个重要生物学功能:它可以作为一个信号平台,通过组织跨膜信号蛋白,包括G蛋白偶联受体(GPCR)、细胞粘附分子(CAM)和受体酪氨酸激酶(RTK),在神经元中进行信号转导从而实现GPCR-和CAM介导的RTK信号。5.2. 突触前室为了确保有效的神经化学传递,突触前膨大参与突触囊泡循环、神经递质填充以及与突触前膜在活性区(特殊蛋白质密集分布的纳米隔室)的融合,以最终释放神经递质。在这里,我们关注SRM如何扩展我们对突触前功能的理解。早期只能使用EM对化学固定神经元里的小直径突触小泡进行研究,但随着SRM的出现,应用快速STED显微镜,通过免疫标记位于突触前室突触小泡上的钙传感器突触标记蛋白1(SYT1)来观察突触小泡的活动。STED显微镜进一步显示,突触小泡融合后Syt1分子似乎驻留在突触膜上,也支持胞吐后突触小泡蛋白的清除过程。此外,在突触小泡融合过程中,当暴露于细胞外空间时,靶向Synaptobevin 2 pHluorin的荧光团结合纳米体后,亚衍射追踪显示了突触小泡的异质性迁移。一种类似的方法使用vGlut1 pHluorin在原代神经元中的表达来观察单个神经元突触小泡,定位精度为27 nm,并揭示了突触小泡的多个不同释放位点。作为一项方法学的进步,为了对主动循环的小泡成像,设计了一种名为mCLING的亲脂膜探针,该探针可对突触膜进行染色,通过内吞作用和固定,可以进行免疫标记,且和SRM相结合。突触小泡的胞吐过程需要一组属于突触前细胞基质的突触前蛋白质的高度可靠的相互作用,使突触小泡接近和暂时驻留在所谓活动区的膜上,并最终释放突触小泡。黑腹果蝇易于遗传,有助于精确定位果蝇幼虫神经肌肉接头(NMJ)活动区的第一个重要蛋白质。Bruchpilot(Brp)是一种必不可少的活性区成分,是一种大的、卷曲的螺旋蛋白,对于钙通道聚集和突触囊泡定位到突触释放位点至关重要。除了通过Brp研究钙通道聚集外,STED显微镜还证明了该蛋白细长的组织结构,并揭示了与Brp相互作用的蛋白(如syd-1α、liprin和rim结合蛋白(RBP))的定位。定量dSTORM方法研究了果蝇活动区Brp丝的数量,并显示了Brp的结构组织与其功能之间的强相关性。接下来的研究通过dSTORM评估Syt1敲除后的活动区(CAZ)电生理学和细胞基质参数。这项研究表明,在果蝇NMJs 1b型突触膨胀中,Syt1基因的敲除导致更高的Brp计数和簇内Brp图谱的改变。在哺乳动物突触中,突触前支架蛋白bassoon 和 piccolo参与突触囊泡释放的调节。据报道,bassoon蛋白通过与RBP的相互作用来控制CaV2.1型钙通道的定位。此外bassoon蛋白能加速囊泡释放,因为其丢失导致小脑苔藓纤维到颗粒细胞突触中的突触囊泡数量显著减少和突触抑制。STED显微镜显示bassoon 和 piccolo蛋白是一个夹心三明治结构,两侧为piccolo蛋白,bassoon蛋白居中。STORM成像通过距离测量显示bassoon蛋白相对于突触前和突触后室中其他相关突触蛋白质的方向。囊泡胞吐过程由一组可溶性ethylmaleimide敏感因子附着受体(SNARE)蛋白质进一步协调。位于突触膜上的囊泡SNAREs (v-SNAREs) 蛋白和 t-SNARES蛋白的复杂形成导致突触囊泡成功融合。在质膜上的突触体相关蛋白25(SNAP-25)和突触融合蛋白聚集首先通过STED显微镜进行研究。这项研究表明,大约75个突触融合蛋白分子被堆积成50- 60 nm大小的纳米团簇。在之后的研究中,SMLM以更高的精度对SNAP-25和突触融合蛋白的分布进行成像。在这里,描述了Syntaxin簇内的分子密度梯度。dSTORM成像显示,未聚集的分子紧密地定位于聚集区域。最近的一项研究显示了一种以syntaxin或SNAP-25为靶点的像。研究表明,集中在突触前部位的60%的通道是可变的。此外,通过应用BAPTA钙缓冲降低了钙通道的扩散。结果表明,突触小泡和钙通道之间的纳米域偶联保证了神经传递的精确度,并可根据需要通过突触前钙通道的扩散进行精细调节。 在融合和递质释放后,内吞机制诱导循环产生新的囊泡,从而重建可释放的囊泡池并为持续的神经传递提供基础。囊泡循环的主要机制由网格蛋白介导的内吞作用组成。使用光遗传学和”闪光冷冻”电镜的研究也报道了比超快的内吞快200倍的过程。如双色iso-STED显微镜所示,通过摄取针对囊泡内膜结合位点的Syt 1抗体,将内吞位点定位到活性区外周。此外,在神经内分泌细胞中,STED显微镜也揭示了囊泡只能部分与突触前膜融合释放递质,形成一个“Ω”形状的结构,而没有完全融入膜中,因此有利于“接触后即脱离”(kiss and run)的模式。与网格蛋白介导的内吞作用相比,它会产生更快囊泡再循环率的递质释放模型。依赖于活性的大量内吞作用进一步增加了可能涉及的机制的复杂性,有人提出,根据突触类型和活动,多种内吞模式可能并行运作。本文由超高显微技术应用工程师郭连峰、黄梓彤编译
  • Quantum Design中国合作引进 多功能高分辨率磁光克尔显微成像系统
    磁畴是铁磁体材料在自发磁化的过程中,为降低静磁能而产生分化的方向各异的小型磁化区域。它的研究可将材料的基本物理性质、宏观性质和应用联系起来。近年来,由于材料的日益完善和器件的小型化,人们对磁畴分析的兴趣与日俱增。目前市面上主要的磁畴观测设备有磁光克尔显微镜、磁力显微镜、洛伦兹电镜、以及近兴起的NV色心超分辨磁学显微镜等,其中,磁光克尔显微镜可以灵活的结合外加磁场、电流及温度环境等来对材料进行面内、面外的动态磁畴观测,成为目前常用的磁畴观测设备,可用于多种磁性材料的研究,如铁磁或亚铁磁薄膜、钕铁硼等硬磁材料、硅钢等软磁材料。 2020年11月,Quantum Design中国与致真精密仪器(青岛)有限公司签署了中国区战略合作协议,合作推出多功能高分辨率磁光克尔显微成像系统。通过此次战略合作,Quantum Design中国希望能够为磁学及自旋电子学等领域的研究提供更多的可能。图1 多功能高分辨率磁光克尔显微成像系统 多功能高分辨率磁光克尔显微成像系统由北京航空航天大学集成电路学院张学莹老师带领团队,根据多年的磁畴动力学实验技巧积累和新的磁学及自旋电子学领域的热点课题研究需求研发。它采用先进的点阵LED光源技术,能够在不切换机械结构的情况下,同时进行向和纵向克尔成像,不仅能同时检测样品垂直方向和面内方向的磁性,成像分辨率还能够达到270 nm,逼近光学衍射限。与传统的磁光克尔显微镜相比,多功能高分辨率磁光克尔显微成像系统配置了多功能磁铁探针台,能够在保证450 nm高分辨率的前提下,向被测样品同时施加面磁场、垂直磁场、电流和微波信号。 此外,多功能高分辨率磁光克尔显微成像系统拥有专门的智能控制系统,用户界面友好,无需复杂设置,一键触发既能实现多维度磁场、电学信号与克尔图像的同步操控。该系统的另一亮点是配置了反应速度高达1 μs的超快磁场,为微米器件中磁畴的产生、磁畴的高速运动捕捉等提供了可能。 张学莹老师师从北航赵巍胜教授和法国巴黎萨克雷大学Nicolas Vernier教授,从2015年开始研究磁光克尔成像技术和磁畴动力学,其有关磁性材料性质的论文获得北京航空航天大学博士学位论文。经过3年潜心研究,该团队于2018年完成了台克尔显微镜样机的集成,并创立致真精密仪器(青岛)有限公司。至2020年初,在北航青岛研究院和北航集成电路学院经过两轮迭代和打磨,已经完成了产品的稳定性验证,目前,该设备已经被清华大学、中科院物理所、北京工业大学等多家单位采购。 产品磁畴成像照片案例图2 CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5)薄膜中的迷宫畴图3 斯格明子磁畴观测 多重信号的叠加,能够满足客户多种前沿课题的实验需求面内磁场和垂直磁场的叠加可以进行Dzyaloshinskii-Moriya作用(DMI)的测试[1,2]图4 样品Pt(4 nm)/Co(1 nm)/MgO(t nm)/Pt(4 nm)DMI作用测量[1] 自旋轨道矩(spin-orbit torque,简称SOT)是近年来发展起来的新一代电流驱动磁化翻转技术,如何更好的表征SOT翻转,在当今自旋电子学领域具有重要的理论和应用价值。 多功能高分辨率磁光克尔显微成像系统配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态 [3,4]。图5 面内磁场和电流的叠加用于sot驱动的磁性变化过程研究 在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用多功能高分辨率磁光克尔显微成像系统微秒别的超快磁场脉冲与电流同步,观测垂直磁场与电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应 [5]。图6 垂直磁场和电流的叠加可用于观测单磁场或者电流无法驱动的磁性动力学过程 克尔成像下磁场和微波的叠加则能够为自旋波和磁畴壁的相互作用研究提供可能[6]。图7 自旋波驱动的磁畴壁运动[6] 多功能高分辨率磁光克尔显微成像系统还可进行多种磁性参数的微区测量局部饱和磁化强度Ms表征[7]由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下磁畴壁的距离,可以提取局部区域的饱和磁化强度Ms。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(致真技术顾问)在2014 年先提出并验证,与VSM测量结果得到良好吻合。图8 局部饱和磁化强度Ms表征及与其他测试方法Ms结果对比 海森堡交换作用刚度[8]采用系统的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度Aex。图9 海森堡交换作用刚度提取 自旋电子薄膜质量的表征、自旋电子器件的损坏检测等[9]图10 磁性薄膜质量检测 除此之外,该系统还开发了性价比超高的变温系统。针对永磁材料研究的用户,开发了能够兼容克尔成像的高温强磁场模块。针对硅钢等软磁材料研究用户,开发了大视野面内克尔显微镜。 动态磁畴成像案例图11 cofeb薄膜动态磁畴图12 sot磁场+电流驱动磁畴翻转图13 钕铁硼永磁动态磁畴观测图14 磁性材料内钉扎点的观测,可与巴克豪森噪声同步匹配 产品基本参数✔ 向和纵向克尔成像分辨率可达300 nm;✔ 配置二维磁场探针台,面内磁场高达1 t,垂直磁场高达0.3 t(配置磁场增强模块后可达1.5 t);✔ 快速磁场选件磁场反应速度可达1 μs;✔ 可根据需要选配直流/ 高频探针座及探针;✔ 可选配二次谐波、铁磁共振等输运测试;✔ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;✔ 4k~800k,80k~500k 变温选件可选。 小结多功能高分辨率磁光克尔显微成像系统除了拥有超高分辨的动态磁畴观测能力外,还能结合多功能磁场探针台提供的外加电流、面内/面外磁场等对多种磁学参数进行提取。 样机体验目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供了测样体验,欢迎感兴趣的老师或同学拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献[1] A. Cao et al., Nanoscale 10, 12062 (2018).[2] A. Cao et al., Nanotechnology 31, 155705 (2020).[3] X. Zhao et al., Appl. Phys. Lett. 116, 242401 (2020).[4] G. Wang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 66, 215 (2019).[5] X. Zhang et al., Phys. Rev. Appl. 11, 054041 (2019).[6] J. Han et al., Science (80-. ). 366, 1121 (2019).[7] N. Vernier et al., Appl. Phys. Lett. 104, 122404 (2014).[8] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).[9] Y. Zhang et al., Phys. Rev. Appl. 9, 064027 (2018).
  • 哈工大突破高通量超分辨显微成像难题
    近日,哈尔滨工业大学仪器学院青年教授李浩宇团队在生物医学超分辨显微成像技术领域取得突破性进展。针对目前超分辨显微镜所面临的成像通量限制,团队提出基于计算光学成像的新一代高通量三维动态超分辨率成像方法,通过计算成像技术增强荧光涨落探测灵敏度,使探测灵敏度提升两个数量级以上,突破了现有显微成像技术在高通量视场、高空间分辨率和高时间分辨率等难以兼顾的难题,将目前世界上超分辨显微镜中最高通量视场成像范围提升至毫米级,可在10分钟内对包含超过2000个细胞的视场上实现了128纳米的超高空间分辨率成像,为细胞学异质性和生物医学等研究提供新的科学影像仪器。   该研究成果以《通过增强荧光涨落检测实现高通量超分辨率成像》为题,以长文形式在线发表于国际权威杂志《自然光子学》(Nature Photonics,2021年影响因子39.7,光学类最高)。
  • 全新高通量光片显微镜,帮您实现活细胞长时间多样品高分辨成像!
    瑞士Viventis公司推出的高通量活细胞高分辨光片显微镜LS系列,是一款全新的光片成像平台,该设备适用于活性光敏感样品(如卵子、胚胎、类器官等)的长期成像,具有低光毒性、高分辨率等特点。高通量活细胞高分辨光片显微镜是近些年来研发的创新技术,它的照明光是与一张与成像面平行的薄薄的光片,只有焦平面的样品被照亮,而光片上下的样品不受影响。该成像系统在细胞与组织层面的实时成像对于深入理解生物学行为至关重要。尤其适合于对直径达300 μm的光敏样品(如卵母细胞,胚胎和类器官)进行长期实时高时空分辨率和低光毒性的观察与成像。Viventis提供细胞发育过程的环境并进行实时成像Viventis的主要特点——双侧照明光片显微镜双侧照明均可以通过软件进项控制,仅需要点击鼠标就可以控制光束的平移和旋转。光片厚度仅为1.5~6 μm,且厚度可调、位置可自动校准,以适应更多的样本尺寸。配合上高NA物镜,可以实现更好的穿深,更少的伪影。另外,系统配置可见激发激光器,让用户通过检测物镜,对自定义样品中感兴趣的区域进行快速定位成像操作。高通量,多样品同时成像Viventis光片显微镜可以快速对多个样品进行同时成像而无需更换样品,支持绝大多数胚胎样品并可并排摆放,方便添加培养基、加药等操作。Viventis的样本槽大于50 mm,对于并排的样本系统也可以连续采集成像。对于细胞球、类器官等本身较易漂浮的样本,Viventis也提供了较好的解决方案,采用人工基底膜/水凝胶嵌入式等方案,实现上述样本的稳定成像。软件界面简洁 易于上手Viventis系统对于光片成像的初学者来说操作简单,多种模式一键切换,软件界面简洁,可以帮助您快速的建立自己的光片成像之旅,打开lightsheet大门,助力科研之路。典型文章:[1] Science. Mechanism of spindle pole organization and instability in human oocytes.2022[2] Nature. Left–right symmetry of zebrafish embryos requires somite surface tension.2022[3] Nature cell biology. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. 2021[4] Cell Stem Cell. Capturing Cardiogenesis in Gastruloids. 2021[5] Science. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. 2019[6] Nature. Self-organization and symmetry breaking in intestinal organoid development. 2019典型国外用户:国内用户:相关产品1、高通量活细胞高分辨光片显微镜
  • 新品 | 海康微影重磅推出【在线式测温显微热成像仪】
    近日,杭州海康微影传感科技有限公司(以下简称“海康微影”)重磅推出【在线式测温显微热成像仪】,7×24h在线,满足科研人员的快速专业测温需求。产品特性——快——01 快捷切换:微距or远景,一扭切换模式单镜头,多模式。无需拆卸更换镜头,简单一扭即可变身。常规模式下的热图微距模式下的热图常规模式25mm,微距模式最小可分辨35um,能看清比头发丝更细小的物体。最小可分辨35um02 快捷连接:10秒开机,一连出图一插即连,10秒快速开机。直接接入Analyzer,瞬间出图,免去繁琐配置(仅首次连接需完成设备激活,后续便可即插即用)。插入电源接入软件03 快捷安装:单手可安装,轻巧易集成标准1/4螺纹孔设计,轻松应对各类安装场景(三脚架等)。体积小、重量轻,单手可持握,安装超便捷。1/4螺纹孔单手可握持单手可安装——专——01 专业监测:7x24h在线,数据记录超省心支持定时,可7x24小时在线监测,一键录制与拍照,满足长时间数据记录需求。支持7x24小时在线监测02 专业分析:自研客户端软件,功能强大【在线实时分析】最高支持6条实时温度曲线,帮助了解温度变化;可自定义点线框测温规则,对测温参数分区调节。支持6条实时温度曲线自定义测温规则【历史温度分析】离线图片/视频可在客户端分析;离线图片/视频的3D热成像可在客户端显示。支持离线分析支持3D热图【强大的数据渲染能力】最高50帧裸数据,保障画面流畅稳定性,二次分析更还原。50hz流畅画面【报告便捷导出】预设多种专业报告模板,可自由组合布局,一键导出,专业且美观。自由组合布局报告一键导出/分享——精——01 精准测温:测温精度±1℃,匠心研发提品质测温精度可达±1℃,突破实现业内高水准,帮助科研人提升研究数据精准度。-20-150℃:±1℃或者读数的±1%(取最大值),均匀性±1℃或者读数的±1%(取最大值);0-650℃:±2℃或者读数的±2%(取最大值),均匀性±1℃或者读数的±1%(取最大值)。02 精准记录:8h不打挡片,保障数据不丢失探测器可自适应环境变化,自动达到最佳观测效果,能连续8h测温不打挡片,有效避免数据缺帧情况发生。搭配推荐配套支架,支持多模式调节;建议配套微影专业桌面支架使用,支持粗调和微米级微调模式,保障稳定、精准调节测距。用户应用实例在注重科技创新的今天,各行各业都会有科研项目产生,诸如机械研究、化学制药、电路板热设计等。对于科研过程中涉及的各类物理化学实验、材料检测、机械工艺以及硬件测试而言,都需要借助温度检测手段,通过温度数据与温度分布情况来发现和分析问题。生物医药研究芯片研发仪器放电温度监测材料温度分布监测材料耐热性检测光纤熔接点质量监测海康微影热成像仪已成功赋能多个行业的研究工作,辅助上万位科研人员精准高效测温、快速排查问题、提高研究效率。
  • 日本东京大学研制纳米级量子传感器,实现高分辨率磁场成像
    日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。(a)六方氮化硼中的硼空位缺陷。空位可充当用于磁场测量的原子大小的量子传感器,对磁场敏感,就像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光可反应磁场的变化。图片来源:东京大学研究团队
  • 国产超分辨显微成像商业设备首次落地交付
    2022年5月7日,纳析科技为中国科学院深圳先进技术研究院等首批用户交付了Multi-SIM超分辨显微镜系统,为客户提供了性能优异的活细胞超分辨显微成像体验,获得了客户的广泛赞誉。纳析科技实现了国产超分辨显微成像设备的首次商业交付!纳析科技于今年3月完成天使轮融资后快速实现了超分辨产品商业化。纳析科技始终秉持求是与创新的理念,以深厚的源头技术创新积累,扎实推进生物显微成像新产品落地,完善核心部件国产化、丰富超分辨显微成像解决方案的产品管线、提供智能、定量的成像方案。纳析科技始终致力于为用户提供生物过程可视化全流程解决方案,包括细胞培养、样本标记、成像采集、图像重建、数据后处理分析、数据展示等步骤的全链式服务范式。用户评价中国科学技术大学/中国科学院深圳先进技术研究院 毕国强 教授表示:“我们非常高兴引入纳析科技研发的Multi-SIM系统,其优异的活细胞三维超分辨成像性能为我们研究神经突触等亚细胞结构的动态演变提供了有效的新技术手段,期待这一工具与冷冻电镜断层三维重构等方法的结合,将帮助我们更深入理解突触可塑性等脑认知功能的底层机制。”中国科学院深圳先进技术研究院 陶长路 副研究员表示:“Multi-SIM作为国产超分辨成像解决方案,其优异的成像效果,以及能够满足不同实验需求的多种成像模态,令人印象深刻;并且其易用性和稳定性,适于平台建设和运行。”
  • 中科院微观磁共振重点实验室成功实现高分辨电阻抗医学成像
    p   记者从中国科学技术大学获悉:该校杜江峰院士领导的中科院微观磁共振重点实验室在医学电阻抗成像方面取得重要进展,他们利用参数化水平集方法实现了高分辨的电阻抗图像重建。该成果发表在医学成像领域国际顶级期刊《医学影像》上。 /p p   电阻抗成像技术是根据生物体内不同组织在不同功能状态下具有不同电阻抗的原理,通过在生物体体表注入安全激励电流,测量体表响应电压,重建生物体内部的电阻抗分布,从而反映体内结构及功能的新型医学成像技术。由于电阻抗成像具有功能成像的特点,而且对人体无害、使用方便、设备价格相对低廉,成为近年来国内外研究的热点。但电阻抗重建图像通常分辨率较低且对模型误差极为敏感,因此开发高效、稳定且具有高分辨能力的成像算法是电阻抗技术的关键和难点。 /p p   杜江峰院士团队通过利用近年来发展起来的参数化水平集方法及临床医学上现有信息,设计了新的电阻抗成像算法,成功实现高分辨的电阻抗图像重建,并通过大量仿真实验验证了算法的有效性和可行性,结果表明该算法不仅具有高分辨图像重建能力,而且对医学电阻抗成像中普遍存在的模型误差、参数优化设置方式等具有很好的稳定性。 /p p   据介绍,该研究成果有望推动电阻抗成像技术向更为实用的应用方向发展,例如肺部临床电阻抗成像等。 /p
  • 新型纳米力学成像探针实现原子力显微镜下DNA的直读检测和高分辨成像
    p   近日,中国科学院上海应用物理研究所物理生物学研究室与上海交通大学、南京邮电大学合作,基于DNA纳米技术发展了一系列DNA折纸结构并作为纳米力学成像探针,实现了原子力显微镜下对基因组DNA的直读检测和高分辨成像。相关结果发表于《自然-通讯》(Nature Communications 2017, 8, 14738)。 /p p   DNA折纸结构是利用DNA碱基互补配对原则,通过程序性设计将M13 DNA在上百条DNA短链的辅助下折叠成指定几何形状。上海应物所博士张宏陆等在研究员樊春海指导下,并与晁洁、师咏勇等合作,通过设计DNA折纸结构作为原子力显微镜的纳米力学成像探针,在单分子水平下实现了对DNA分子的特异性标记和单核苷酸变异性(SNP)的直读检测。相较于基于荧光成像的直读方法,这种新技术将分辨率提升一个数量级,可达到远超光学衍射极限的10 纳米分辨。基于DNA纳米折纸结构设计的探针为原子力显微镜的图像获取提供了精确的标尺和丰富的选择,为遗传分析等生物学应用提供了新的工具。进一步,他们还将该方法与之前发展的纳米PCR和单倍型分析技术(Nature Nanotechnology 2011, 6, 639)结合,实现了单分子水平的遗传样本单倍型分析。这种单分子水平的单倍型分析通量高,可靠性好,有望用于易感基因的发现、疾病相关基因的鉴定和药物设计等方面。 /p p style=" text-align: center " img title=" W020170419526524657437.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/5ce2d220-65c2-4a85-8844-d5d4e94428db.jpg" /  & nbsp /p p /p p style=" text-align: center " 上海应物所等在DNA折纸纳米力学成像探针设计方面取得进展 /p p /p p /p
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p   癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。 /p p   有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展? /p p   答案是肯定的。 /p p   由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。 /p p   “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对科技日报记者说。 /p p   虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。 /p p   “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。 /p p   此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。 /p p   值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。 /p p   “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。 /p p   相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。 /p p   “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。 /p
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p   癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。 /p p   有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展? /p p   答案是肯定的。 /p p   由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。 /p p   “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对记者说。 /p p   虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。 /p p   “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。 /p p   此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。 /p p   值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。 /p p   “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。 /p p   相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。 /p p   “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。 /p
  • 显微镜界的“黑科技”:3D超分辨成像系统
    近, 法国abbelight公司研发的模块化多功能单分子定位显微 (SMLM)系统凭借其有的DAISY等技术在3D超分辨成像领域取得重大突破,在学术界引起了广泛的关注。该系统次实现在三维空间上的15 nm超3D定位;且因为模块化设计具有高兼容,仅需使用一个c-mount接口即可将客户的倒置荧光显微镜升成超分辨显微镜,是佳的超分辨搭建方案。 轴向延伸 定位Abbeligh公司系列超分辨模块采用了先进且特的双通路DAISY技术能够将以往定位不佳的Z轴精度提高到15 nm,真正实现三维空间上的15 nm超3D定位。同时此技术巧妙地结合DONALD和SAF技术的优势,有效解决采集过程中的热漂移和多色成像中不同波长激光位置不同等问题,大幅度提高了长时间和多色成像的度,并且还可实现多4色的同时3D成像。超大视野 图像采集在光路方面,SAFe light 能够实现在较低激光能量下对大视野图像的均匀照射。这使得abbelight能够在不增加采集时间的前提下,一次性采集200 × 200 μm2 范围内的图像,并且能够保证图像照射光的整体均一性。灵活兼容 轻松升abbelight具有高度兼容性,仅需使用一个c-mount接口即可将您的倒置荧光显微镜升成超分辨显微镜,并且基本不会破坏显微镜的原有功能,节约您的预算与空间。(除了模块外,abbelight也提供完整的超分辨系统)先进软件 功能强大abbelight 同时还是一台十分简便易用的设备,该设备的NEO软件简单、直观、优化良好,可提供全面的参数控制命令、实时3D漂移校正、实时3D重构图像、高速3D定位图像处理、空间分析和测量、分辨率计算等功能。初次应用 轻松上手对于超分辨中的光漂问题,abbelight的商业化成像液能够有效的降低成像过程中的光漂作用。对于初学者来说,abbelight 还提供全面的技术支持,帮助您快速的建立自己的超分辨观测方法,打开超分辨大门,助力科之路。【新发表文章】[1]. Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).[2]. Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: Optimized Single Molecule Localization Microscopy." bioRxiv (2019): 568295.[3]. Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.[4]. Capmany, Anahi, et al. "MYO1C stabilizes actin and facilitates the arrival of transport carriers at the Golgi complex." J Cell Sci 132.8 (2019): jcs225029.
  • 850万!西安建筑科技大学计划采购高分辨无损X射线显微成像系统
    一、项目基本情况项目编号:SZT2022-SN-SC-ZC-HW-0548.项目名称:高分辨无损X射线显微成像系统设备采购项目(二次)采购方式:公开招标预算金额:8,500,000.00元采购需求:合同包1(高分辨无损X射线显微成像系统采购项目):合同包预算金额:8,500,000.00元合同包最高限价:8,000,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1光学式分析仪器高分辨无损X射线显微成像系统1(台)详见采购文件8,500,000.008,000,000.00本合同包不接受联合体投标合同履行期限:合同生效后6个月内二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:合同包1(高分辨无损X射线显微成像系统采购项目)落实政府采购政策需满足的资格要求如下:(1)财政部、国家发展和改革委员会关于印发《节能产品政府采购实施意见》的通知(财库[2004]185号);(2)财政部、国家环保总局联合印发《关于环境标志产品政府采购实施的意见》(财库[2006]90号);(3)国务院办公厅关于建立政府强制采购节能产品制度的通知国办发〔2007〕51号,以财库〔2019〕9号为准;(4)财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号);(5)财政部?司法部关于政府采购支持监狱企业发展有关问题的通知(财库〔2014〕68号);(6)财政部、民政部、中国残疾人联合会关于促进残疾人就业政府采购政策的通知(财库〔2017〕141号)。(7)《陕西省中小企业政府采购信用融资办法》(陕财办采(2018)23号);(8)《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);(9)如有最新颁布的政府采购政策,按最新的文件执行。3.本项目的特定资格要求:合同包1(高分辨无损X射线显微成像系统采购项目)特定资格要求如下:1)供应商为合法注册的法人、其他组织或自然人,具有独立承担民事责任的能力,提供具有统一社会信用代码证的营业执照(或事业法人证),供应商为自然人的提供身份证;2)供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法定代表人身份证,并与营业执照上信息一致。法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证;3)进口产品代理商需提供产品制造厂家授权书,或具有授权权限的代理商对所投进口产品的授权书(同时提供完整的授权链证明文件),产品制造厂家直投无需提供;4)本项目不接受联合体投标,单位负责人为同一人或者存在直接控股、管理关系的不同单位,不得参加同一项下的政府采购活动。对列入失信被执行人、政府采购严重违法失信行为记录名单的供应商,拒绝参与本项目政府采购活动。三、获取招标文件时间: 2022年09月16日 至 2022年09月23日 ,每天上午 08:00:00 至 12:00:00 ,下午 13:30:00 至 17:30:00 (北京时间,法定节假日除外)地点:西安市高新区高新四路1号高科广场A座10楼1001方式:现场获取售价: 500元四、提交投标文件截止时间、开标时间和地点时间: 2022年10月09日 14时30分00秒 (北京时间)提交投标文件地点:西安市高新区高新四路1号高科广场A座5楼0503第三会议室开标地点:西安市高新区高新四路1号高科广场A座5楼0503第三会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、报名时需携带单位介绍信及经办人身份证。2、请供应商按照陕西省财政厅关于政府采购供应商注册登记有关事项的通知中的要求,通过陕西省政府采购网(http://www.ccgp-shaanxi.gov.cn/)注册登记加入陕西省政府采购供应商库。3、本项目为非专门面向中小企业采购项目。4、本项目已进行进口论证,接受进口产品参与。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安建筑科技大学地址:西安市雁塔路中段13号联系方式:029-822022212.采购代理机构信息名称:陕西中技招标有限公司地址:西安市高新区高新四路1号高科广场A座10楼1001联系方式:029-88364979-8063.项目联系方式项目联系人:肖懿电话:029-88364979-806陕西中技招标有限公司2022年09月16日
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(三)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,分四期介绍。本期为第三部分内容。5.3. 突触后室突触受体位于突触后室,负责传递来自突触前末端的信号。它包含支架蛋白--负责锚定突触后受体的专门用于信号整合的信号分子。在神经元树突中,从主要树突轴起源并突起的小体积树突棘提供分区功能,并根据突触活动和发育阶段显示大小和形状的动态变化。树突棘是突触长时程增强(LTP)的结构相关物,因此与学习和记忆有关。要想准确观察树突棘的小尺寸、不同形状和动力学,一般要求采用超过衍射极限的分辨率并有可能进行活体成像的光学显微镜方法。第一个将活细胞SMLM应用于原代神经元的研究之一是使用碳菁染料(如Dil)可视化脊髓和丝状足。对于突触后膜结构的可视化,已经发现了一个新的膜标记试剂系列,该系列可实现神经元追踪和树突棘的可视化。最近,通过快速SIM和增强共聚焦显微成像研究了树突棘上微小突起(称为小刺)的动力学。通过将SIM成像与计算方法相结合,进一步评估了树突棘的几何结构,证实凹面对于棘结构稳定的重要性。在树突棘中,F-肌动蛋白高度定位富集在突触后密度区(PSD)和树突棘膜上。肌动蛋白的分子速度升高已让其扩散到除棘尖外整个棘的亚区。为了分析脊髓中肌动蛋白的动力学,我们设计了一种低亲和力的光转换肌动蛋白探针,并利用像差校正光学系统对活体脑切片动力学进行了表征。通过STED显微镜观察对phalloidin-ATTO647N标记的原代神经元,可以在树突棘颈和丝状棘中观察到F-肌动蛋白的周期性片段。同年,STORM成像也显示树突棘颈和丝状棘中存在以肌动蛋白为基础的周期性膜骨架。在树突棘中,分支的F-肌动蛋白在PSD附近聚集,而延伸仅限于指状突起的尖端,并为棘突提供了基础。通过基于监督学习的模式识别进行图像分割,可以对树突肌动蛋白组成异质性做自动分析。用SMLM也对树突F-肌动蛋白进行了同样的分析,并使用树突铂复原电镜进行了验证。使用STED显微镜在活体小鼠脑切片海马CA1神经元上进行延时拍照并结合FRAP及电生理学检查,证明在神经递质释放诱导的长时程增强(LTP)时树突棘颈部具有可塑性(宽度增加并长度减少)。使用正置STED显微镜实现了活体小鼠树突棘动力学的首次超高分辨率成像。在这里Thy1 EYFP小鼠体感皮层中的树突棘在其头部和颈部表现出形态可塑性。另外使用双光子STED成像对活体小鼠的海马树突棘动力学进行了研究,树突棘密度与早期报告相比高出2倍,并能测算几天内的树突棘蛋白周转率(图10)。图10 体内长时程双光子STED成像--海马CA1锥体神经元树突棘蛋白周转。左上图:使用长工作距离物镜的实验方法和CA1锥体神经元的双光子整体图像。右上图:传统的双光子成像与双光子STED成像的比较,显示了总体上更高的棘突密度和更详细的形态,特别是在轴和棘突中。空的箭头标志着常规双光子成像不能显示的棘突,而填充的箭头表示双光子STED报告的棘突数量更多、形态更复杂。底部图像:在海马CA1区基底树突的一个选定区域内,连续几天(第0天、第2天和第4天)成像的树突棘周转。树突棘被连续编号。AB=接近树突的轴突(缩回的棘突用红色标记;新的棘突用绿色标记)。转载自原文参考文献 273。此外,sptPALM揭示了富集在突触棘的突触后激酶CaMKII的空间和动力学亚群,该激酶介导钙依赖性可塑性机制。这些动力学似乎由棘肌动蛋白调节,因为Latrunculin A导致棘内CaMKII扩散显著改变。在PSD内的棘头,一个密集的蛋白质复合物含有不同的突触后支架蛋白,如PSD-95、homer1和shank3,它们排列在大小为∼80纳米的亚突触域中。根据不同的突触类型,PSD-95被动态组织为单个单元或多个纳米簇的形式。STED显微镜揭示了突触后支架蛋白负责将离子受体锚定到突触后膜上,SMLM观察到的活体原代神经元也是一样。在这里,活细胞单分子成像结合定量分析揭示了含有GluA2的AMPA-Rs(优先聚集在突触下的PSD-95簇中)的稳态调节。而PSD-95的uPAINT成像和AMPA-Rs的spt PALM报告在70 nm大小的PSD-95纳米域内平均聚集了20个AMPA-Rs,进一步证实了上面提到的这个发现。AMPA-Rs形成纳米颗粒,并能在几分钟内动态改变其大小和形状。与突触可塑性匹配的是:动态变化是通过突触内和突触外隔室之间的AMPA-Rs在时间维度交换,通过横向扩散来实现的。这些过程通过以微球标记抗体为靶点的内源性受体的单分子追踪实验得到证实。受体运动的类型被认为是布朗扩散,与突触后元件发生短暂的、低亲和力的相互作用。单分子追踪实验中使用Atto 647N修饰的抗体揭示了谷氨酸诱导的脱敏AMPA-Rs的侧向扩散增加导致的短期可塑性。AMPA-Rs的侧向扩散也与突触的短时程增强和长时程增强(分别为STP和LTP)有关。例如,已经证明,为了从突触抑制中恢复,脱敏受体通过侧向扩散被功能受体替换。此外,追踪实验表明,在CaMKII激活诱导LTP后,AMPA-Rs扩散到突触部位。这一过程由钙浓度升高触发,它导致CaMKII介导的stargazin(它与PSD-95一起能够调节AMPA-R的迁移率)磷酸化。进一步的研究报道,AMPA-Rs的交联导致膜上受体制动,它阻止了成功的LTP诱导。这一机制也可能导致由AMPA的致病性抗体介导的自身免疫性CNS疾病的病理生理学。与NMDA-R和mGluR5代谢受体的GluN1亚单位相比,AMPA-Rs的纳米级结构以不同的簇大小为特征。令人惊讶的是,突触前mGluR5受体表现出更均匀的分布,没有聚集行为。通过一种新的基于敲入的基因组编辑方法观察到,代表NMDA-R总库的内源性GluN1亚单位受体被证明聚集在一个由单个受体包围的主要单簇中。在关注NMDA-R细分的NR2A和NR2B亚型时,SMLM表明,在突触发育过程中,这些亚型被分割成纳米结构域,并根据其突触比率进行重塑。关于谷氨酸受体的活动性,单分子追踪实验揭示,神经元活动优先影响AMPA-R的活动性,而NMDA-R的活动是由蛋白激酶C活动触发的,而不是由钾升高触发的。此外,dSTORM成像表明,不同的NR2亚单位定位于不同的纳米结构域,这些纳米结构域在神经元发育过程中表现出灵活性。根据NR2A和NR2B的纳米结构,LTP的表达可以双向调节。kainate受体的单分子追踪实验也表明,突触捕获紧随着突触活性增加后发生。这里,突触激活导致的kainate受体与突触β-连环蛋白/N-钙粘蛋白复合物结合,形成短期可塑性。作为抑制性突触的对应物,gephyrin是将GABAA(GABA-a R)或甘氨酸受体(GlyR)并入突触后膜所必需的关键锚定分子。通过对突触中gephyrin分子的PALM/dSTORM成像发现:抑制性PSD(iPSD)体积为0.01至0.1μm3,并且每个iPSD中有200−250个gephyrin分子。单分子成像进一步揭示了gephyrin分子与受体结合位点的化学计量比约为1:1.96。类似于兴奋性突触,抑制性PSD(IPSD)根据突触活动动态调节其大小。通过NMDA-R激活形成的抑制性突触LTP加剧突触gephyrin积累,从而以CaMKII依赖的方式增加GABA-AR聚集,从而诱导GABA能突触后电流的增强。相反,抑制gephyrin向突触区的募集导致GABA-AR迁移率降低,并阻止iLTP的诱导。iLTP诱导后,gephyrin片段化为纳米结构域。gephyrin的重组降低了抑制性突触后电流的振幅变异性,证明了GABA-AR准确定位对于iLTP的真正表达非常重要。有趣的是,单粒子追踪显示,脱敏的GABA-AR甚至可以通过侧向扩散在并列的GABA能突触之间交换,为控制GABA能电流提供了另一种机制。此外,为了阐明多巴胺能突触的超微结构布局,dSTORM成像将多巴胺转运体映射到胆固醇依赖性纳米结构域,从而为更好地理解多巴胺能神经传递的病理生理过程奠定基础。5.4.亚突触结构域中的跨突触排列早期电生理学实验中已经发现,突触强度取决于突触前融合位点和突触后受体组织之间的空间关系,突触释放由释放位点的数量,突触小泡的释放概率,以及受体提供的突触后基本反应来决定。首先观测到的亚结构域的跨突触组织是突触粘附分子SynCAM 1位于边缘,EphB2位于PSD的中央。SynCam1在PSD中形成突触下云,可被长期抑郁症模式重塑。SMLM观察链霉亲和素的新单体变体(设计用于减少突触区域的交联和空间位阻),表明跨突触伙伴神经肽原1和神经纤维素1ß在突触处扩散受阻,形成相反的簇。这项研究还表明,另一种粘附分子LRRTM2的流动性不如神经肽1,并形成更密集、更稳定的簇。最近揭示了兴奋性突触上活性区的细胞基质和突触后受体支架的跨突触排列,它与提供高保真突触传递的靶向神经递质释放有关。在这里,释放位点定位是通过一种基于融合到突触囊泡蛋白Vglut1的pHluorin标记和RIM1/2纳米簇的超分辨检测的新方法实现的。多色3D定位显微镜显示RIM1/2和突触后PSD-95形成相反的纳米簇。LTP诱导导致PSD-95密度断裂增加,同时增强了纳米柱的排列,而LTD导致突触后柱的紊乱。突触前和突触后关键分子的这种纳米级排列主要由于neuroligin 1。此外,在应用STED显微镜的实时成像实验中,已经报道了树突棘体积增加和排列的纳米模块数量之间的紧密相关性。还报道了抑制性突触的亚突触结构域的纳米级排列。在这里,STED和SIM阐明了gephyrin和GABA-AR突触前亚区域的紧密联系。此外,突触后GABA-A 受体云显示与突触前边缘结构域结合(图11)。在小鼠神经肌肉连接处,带连接褶开口的突触后乙酰胆碱受体和突触前活动区的排列已通过应用SIM成像可视化。图11. 抑制性突触上的突触亚结构域。突触前的RIM元素与突触后的gephyrin支架分子以及抑制性突触的GABA-A R的突触下结构域的排列。PSD的体积和突触下域的数量随着活动相关的突触大小的变化而变化。转载自原文参考文献302。5.5. 三联突触星形胶质细胞是神经传递的基本调节者,神经元突触周围突触前星形细胞突起(PAPs)的吞噬产生了三联突触这一术语。PAPs能够通过传递调节分子来改变和控制突触的传递。通过dSTORM重建星形细胞突起,可以通过标记胶质酸性纤维蛋白(GFAP)和谷氨酰胺合成酶和S100b的成像来实现星形细胞的纳米级可视化。最近的一份报告应用ExM来观察脑片中突触周围的星形胶质细胞谷氨酸转运体显示,在与这些棘附近的GLT-1水平较高有关的较大的神经元树突棘中,谷氨酸的摄取效率降低(图12)。图12. 海马大脑切片中CA 1锥体神经元周围的星形细胞突起。锥体神经元的树突在Thy1-YFP小鼠系标记(绿色);星形胶质细胞则是在海马脑片上的GLT-1免疫染色显示(红色)。蓝色信号代表树突区和星形细胞突起的共同定位。更高的放大率插图见右图。左下:大棘和小棘的分类。底部中间和右侧:GLT-1和神经元YFP的共定位像素的量化。请注意右图树突棘体积归一化后的变化;红点表示平均数和SEM,p = 0.0220 (绝对GLT-1覆盖率),p = 0.00223(相对GLT-1覆盖率)。转载自原文参考文献307。EM和STORM发现,PAPs也配备了局部翻译位点,以避免星形细胞体细胞中合成的蛋白质的长距离运输路线。最近在器官型切片中进行的3D STED显微镜研究揭示了星形细胞钙信号的结构前提。在星形细胞内检测到了海绵状结构,它包含了接近突触部位的节点和轴。钙离子瞬变的共聚焦成像与星形细胞结构的STED显微镜相结合,显示自发的钙离子瞬变紧密地映射到这些结点。因此,这些结点被认为是类似于树突棘的空间分隔作用。胶质传导物质的外渗需要提供胶质囊泡。通过将电容测量与葡聚糖摄取后星形胶质细胞内的囊泡的SIM图像相关联,发现了外吞和内吞之间的Dynamin依赖性膜中间物。通过STED显微镜和SIM分析单个胶质小泡的特征,在星形胶质细胞中有两个小泡群,其大小和融合能力不同。Phluorin实验结合SIM确定星形胶质细胞囊泡上Syb2分子的拷贝数为25∼。此外,应用STED和TIRF显微镜对培养的星形胶质细胞中的VAMP3阳性囊泡进行了单囊水平的分析。测量结果显示VAMP3覆盖的囊泡大小约为80纳米,并提供证据表明这些囊泡参与了钙依赖性的囊泡循环。SIM成像还可以发现,突触蛋白中一种已知的参与神经元外排的v-SNARE蛋白,也普遍存在并组织在单个星形胶质细胞的囊泡上,以实现高效的外排。星形胶质细胞还通过回收proBDNF到BDNF参与促进兴奋性LTP。这里,SIM成像显示,proBDNF在体细胞区域位于囊泡大小的集群中,而沿星形胶质细胞末梢的点状模式占主导地位,以扩大BDNF对记忆的作用。为了最大限度地减少激发光的散射,通过应用被动CLARITY进行组织透明化和多光子显微镜,改善了组织深处的星形细胞成像。通过使用SiR-actin和SiR-tublulin探针的STED显微镜和原子力显微镜(AFM)的相关方法来测量膜的拓扑结构和硬度,将星形细胞的细胞骨架和膜的生物物理特性联系起来。(未完待续)本文由超高显微技术应用工程师郭连峰、黄梓彤编译(受篇幅限制,未将参考文献列出)相关阅读:超高分辨率显微技术在神经科学中的应用(一)超高分辨率显微技术在神经科学中的应用(二)
  • 全国首套多功能高分辨率磁光克尔显微成像系统成功落户清华大学
    2021年5月,多功能高分辨率磁光克尔显微成像系统在清华大学顺利完成安装和调试,并获得用户的高度认可。该系统是由北京航空航天大学集成电路学院赵巍胜教授指导,张学莹老师带领团队根据多年积累的磁畴动力学实验技巧和 新的磁学及自旋电子学领域的热点课题研究需求设计的,也是Quantum Design中国与致真精密仪器(青岛)有限公司合作推出后在国内完成的套安装和验收。 致真精密仪器(青岛)有限公司工程师与用户的现场合影 安装精彩瞬间相比于传统的磁光克尔显微镜,该系统除了拥有高达300 nm的纵向和向克尔成像(分别对应面内和垂直各向异性样品磁畴测量),还增加了灵活的磁场探针台及面内旋转的磁场和高度智能化的软件控制系统。其中磁场探针台可以同时施加面内和垂直的磁场,通过智能控制系统,能够让用户利用软件定义电、磁等多种想要的波形,一键触发后,在样品上可同步施加垂直/面内磁场、电流脉冲、微波信号,进行磁光克尔成像及微区磁滞回线提取、局部饱和磁化强度Ms表征、局部各项异性能K的表征、海森堡交换作用常数Aex,Dzyaloshinskii-Moriya作用的表征等,在磁性薄膜材料和自旋电子器件动力学分析领域有着突出的优势。这套多功能高分辨率磁光克尔显微成像系统历经5年多的研发历程,在北航集成电路学院、北航青岛研究院的支持下,经过了3轮迭代和试用,在致真精密仪器(青岛)有限公司团队进行工程化之后,形成了性能稳定,功能多样,多场景适配改装方便的系统。该产品还获得了青岛市市长杯创新创业大赛一等奖。北航团队在该设备的强大功能支撑下,在DMI测量[1]、自旋轨道矩(SOT)效应研究[2]、磁畴壁动力学[3-4]、磁性材料和自旋电子器件研究[5]等方面,取得了丰富的成果。同时,该设备还可用于永磁材料和硅钢等软磁材料的磁畴分析等。该设备的成功落户标志着国产商用磁光克尔显微镜领域的长期空白得以弥补。作为北航集成电路学院工艺与装备系孵化的公司,致真精密仪器(青岛)有限公司传承了北航文化,响应在高端科研设备方面的需求,与时俱进,精益求精,敢于啃硬骨头,做高品质高可靠性产品。同时,作为本土企业,致真精密仪器会始终与用户保持良好沟通,紧密追踪前沿热点,以用户的需求和科学发展方向为指引,将 新的测试技术融入到产品中去,为新老用户持续做好服务,支持中国甚至全球更多的科研者的科学探索。目前,该系统已经更新至三代,感谢所有提出过建议的老师和同学们,也欢迎大家继续提供宝贵的意见!在此,特别感谢清华大学的老师对我们的信任与支持,祝他们科研顺利,硕果累累!目前,这款多功能高分辨率磁光克尔显微成像系统已经获得了清华大学、中国科学院物理研究所、北京工业大学、上海科技大学等客户多套订单。 产品基本参数: ☛ 向和纵向克尔成像分辨率可达300 nm;☛ 配置二维磁场探针台,面内磁场 高达1 T,垂直磁场 高达0.3 T(配置磁场增强模块后可达1.5 T);☛ 快速磁场选件磁场反应速度可达1 μs;☛ 可根据需要选配直流/ 高频探针座及探针;☛ 可选配二次谐波、铁磁共振等输运测试;☛配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;☛ 4K~800K,80K~500K 变温选件可选。 样机体验:目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供测样体验,欢迎感兴趣的老师或同学通过拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献:[1]. Cao, A. et al. Tuning the Dzyaloshinskii–Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness. Nanoscale 10, 12062–12067 (2018).[2]. Zhao, X. et al. Ultra-efficient spin–orbit torque induced magnetic switching in W/CoFeB/MgO structures. Nanotechnology 30, 335707 (2019).[3]. Zhang, X. et al. Low Spin Polarization in Heavy-Metal–Ferromagnet Structures Detected Through Domain-Wall Motion by Synchronized Magnetic Field and Current. Phys. Rev. Appl. 11, 054041 (2019).[4]. Zhang, Y. et al. Domain-Wall Motion Driven by Laplace Pressure in CoFeB/MgO Nanodots with Perpendicular Anisotropy. Phys. Rev. Appl. 9, 064027 (2018).[5]. Zhang, X. et al. Spin‐Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing. AdvancedScience 8, 2004645 (2021).
  • “超高时空分辨微型化双光子在体显微成像系统”专项取得重要成果
    p   在国家自然科学基金国家重大科研仪器研制专项“超高时空分辨微型化双光子在体显微成像系统”(项目编号:31327901)的支持下,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,历经三年多的协同奋战,成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。相关研究成果以“Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice”(高速高分辨微型化双光子显微镜在小鼠自由行为中获取大脑图像)为题于5月29日在线发表在Nature Method上。相关技术文档同步发表在Protocol Exchange上,并已申请多项专利。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/9523a7f7-b0b6-4b67-981d-b74805580c21.jpg" title=" 2017-06-14_094040.jpg" / /p p style=" text-align: center " 2.2g可佩戴式微型双光子显微镜 /p p   目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。 /p p   新一代微型化双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。 /p p   此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。 同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和神经回路的活动。 /p p   微型化双光子荧光显微成像改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。 /p p   该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。” /p p   可以期待,微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥不可或缺的重要作用。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制