当前位置: 仪器信息网 > 行业主题 > >

波低噪声放大器

仪器信息网波低噪声放大器专题为您提供2024年最新波低噪声放大器价格报价、厂家品牌的相关信息, 包括波低噪声放大器参数、型号等,不管是国产,还是进口品牌的波低噪声放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合波低噪声放大器相关的耗材配件、试剂标物,还有波低噪声放大器相关的最新资讯、资料,以及波低噪声放大器相关的解决方案。

波低噪声放大器相关的资讯

  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • 我国高温超导滤波系统实现规模商业应用
    记者10月22日从在清华大学召开的高温超导滤波技术成果鉴定会上获悉,我国自主研制、拥有完全自主知识产权的高温超导滤波系统首批产品订货已完成生产并交付用户使用,在全国16个省市区的通信装备上投入长期实际应用。这是我国高温超导应用研究的重大突破,标志着我国高温超导在通信领域已进入规模商业应用和产业化阶段。鉴定会专家对项目成果给予高度评价,鉴定意见指出,项目总体技术达到国际先进水平,为采用高温超导技术提高通信装备的抗带外干扰性能和电磁兼容性奠定了坚实的技术基础,为我国通信现代化作出了重大贡献。   据该项目负责人、清华大学物理系教授曹必松介绍,自1986年高温超导材料发现至今,26年来我国投入大量人力物力进行应用研究和技术攻关,其最终目的就是要实现高温超导材料的大规模商业应用。“这次高温超导滤波系统由最终用户采购,在全国16个省市区批量供货投入运行,与一般的研究或以试验为目的的应用完全不同,标志着经过长期不懈的研究,我国高温超导研究已经从实验室研究阶段发展到了面向最终用户的大规模商业应用。高温超导真正的实际应用已经成为现实。”   据了解,在微波频段,高温超导材料的电阻比普通金属低2—3个数量级,用超导薄膜材料制备的滤波器带内损耗小、带边陡峭、带外抑制好,具有常规滤波器无法比拟的、近于理想的滤波性能。“但是高温超导材料必须在其转变温度Tc以下才能实现其超导零电阻特性,所以高温超导滤波系统的研发难度非常大。我们和综艺超导科技有限公司共同研发的超导滤波系统是由超导滤波器、在零下200摄氏度工作的低噪声放大器和小型制冷机等部件组成的,具有极低的噪声和极好的频率选择性,可应用于各种无线通信装备,同时大幅提高灵敏度和选择性、提高抗干扰能力和探测距离等。”曹必松说。   2005年,在国家科研经费支持下,该项目组在北京建成了超导滤波系统移动通信应用示范基地,实现了小批量长期应用。为实现超导滤波系统在我国的规模化商业应用,在国家相关部门和各级领导支持下,清华大学和综艺超导科技有限公司的研究团队十余年如一日,艰苦奋斗,攻克了高性能超导滤波器和低温低噪声放大器设计制备技术、多通道超导滤波器性能一致性研制技术、满足装备苛刻使用要求的环境适应性技术和超导滤波系统集成技术等一系列技术难题,获得超导滤波技术授权发明专利10多项,于2009年12月完成了超导滤波系统产品样机的研制。   2010年1月至11月,在国家主管部门的组织下,由7个专业测试单位对超导滤波系统产品进行了全面性能测试,包括电性能测试,满足通信装备高低温、冲击、振动、低气压、盐雾、霉菌、湿热等苛刻使用要求的环境适应性试验,通信装备加装超导滤波系统前后的性能对比试验和用户长期试用等。   试验结果表明,超导滤波系统的全部性能都达到或超过了通信装备实际应用的技术要求。在通信装备上加装超导滤波系统前后的性能对比试验表明,超导滤波系统使重度干扰下原本无法工作的通信装备恢复了正常工作,使中度干扰下装备最大作用距离比原装备平均增加了56%。自2010年10月起,超导滤波系统在该型通信装备上投入长期运行,至今已连续无故障运行2年以上。   2011年1月19日,超导滤波系统通过了国家主管部门组织的技术鉴定,获得了在我国通信装备实际应用的许可。同年8月,综艺超导公司获得了首批5种型号超导滤波系统产品的订货合同,在全国10多个省市区推广应用。其他型号超导滤波系统产品也将在未来几年内陆续投入市场。   据介绍,综艺超导科技有限公司由江苏综艺股份有限公司等股东投资、在2006年成立的高新技术企业,公司设在北京中关村科技园区。目前,综艺超导已建成一流水平的超导滤波系统生产基地,并且已经顺利完成首批高温超导滤波系统批量生产和用户交付。   曹必松说,高温超导滤波技术在移动通信、重大科学工程和国防领域具有广阔的应用前景。为进一步推广超导滤波技术的应用,还需要攻克适应于各种不同通信装备应用要求的高难度的超导滤波系统设计、制备技术、适应于各种应用环境的环境适应性技术等研究难题。   与会专家认为,经过未来几年的努力,该技术将在更多无线通信领域获得大规模应用,并带动超导薄膜、制冷机、专用微波元器件等相关产业链的形成和发展,在我国形成一个全新的高温超导高技术产业,为我国通信技术的升级换代提供一种全新的、性能优异的解决方案。
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • Moku:Go轻松助力校园无线电接收实验的教学
    Moku:Go轻松助力校园无线电接收实验的教学Moku:Go将10几种实验室仪器结合在一个高性能设备中,具有2个模拟输入、2个模拟输出、16个数字I/O和可选的集成电源。 一. 介绍本实验的目的是介绍调幅无线电接收器的基本原理,并演示使用锁相放大器的基本原理。你将使用Moku:Go的锁定放大器、数字滤波器、频谱分析仪和集成电源来设计和优化AM无线电接收器。调幅(AM)无线电,虽然在很大程度上被调频(FM)无线电所取代,但它仍然是通过无线电波传输信息中非常有用的一种方法。本实验设计并实现一个调幅无线电接收器。可以学习到如何找到本地AM无线电频率,并使用锁定放大器实现无线电接收器。图1显示了使用频谱分析仪在澳大利亚堪培拉接收到的AM无线电信号。图1 堪培拉地区频谱分析仪的例子 扫码查看产品详情二. 背景2.1 调幅广播在调幅收音机中,信号的振幅是经过调制的;与调幅收音机相比,调频收音机的信号频率是经过调制的。这种差异可以从图2中看出,在调幅调制波形中,波的振幅明显变化,而在调频调制波形中,正弦波的频率随时间变化。两种类型的无线电传输都有优点和缺点。商业调幅广播电台工作在535kHz至1605kHz的范围内,因此与调频广播相比,其覆盖范围通常更大在88-108 MHz范围,但它更容易受到噪声的影响,与基于音乐的广播节目相比,更适合谈话广播。图2 使用Moku:Go上的波形发生器的调幅波形和调频波形示例。 AM收音机通过使用正弦载波工作,该载波由消息信号(音频信号)调制;正在发送的信息就是这个音频。在这种类型的调制中,载波的振幅被信息信号被改变(因此称为AM)。特定无线电台的调制信号在频域中可以清楚地被视为尖峰(例如图1),尽管在时域中通常很难看到。Moku:Go的FIR滤波器生成器可以帮助我们在无线电台周围设置一个窄带通滤波器,去除电台以外的几乎所有信号。图3给出了一个例子,FIR滤波器生成器挑选出一个大约600 kHz的AM无线电台。蓝色轨迹中可以清楚地看到用语音信号调制的AM载波。红色的轨迹(天线输入)表明,如果没有窄带通,就不可能接收这个或任何其他电台;事实上,该信号完全由截图所在办公室的可调光LED照明的~25 kHz开关控制。 图3 FIR滤波器生成器将AM广播电台(蓝色轨迹)与背景信号(红色)隔离开来。 为了接收和收听消息信号,无线电接收器需要接收特定的AM无线电频率并对其进行解调,以从消息信号中分离出载波信号。简单AM无线电接收器的框图如图4所示。图4 调幅无线电接收器框图接收器通过使用无线电天线检测无线电波来工作;然而,这种信号通常相对较弱,因此需要一个RF放大器来增强信号,以便进一步处理。由于天线将捕捉所有可能的频率,因此需要一个调谐器来找到所需的特定频率。 图5 LC电路原理图示例 2.2 模拟解调模拟解调调谐器通常由一个LC(电感电容)电路组成,如图5所示。根据所用的电感和电容,电路将在特定频率下谐振。高于和低于该谐振频率的所有其他频率将被阻挡。消息信号可以被整流为仅给出DC信号,并通过二极管和旁路电容器从载波中解调。该信息信号然后可以被放大并发送到扬声器、耳机等。2.3 锁定放大器锁定放大器是一种功能强大的器件,可以从噪声背景中分离出调制信号,在我们的情况下,是从一系列信号中分离出特定的AM信号。这意味着锁定放大器可以作为无线电接收器,因为它包含无线电接收器的几个关键部件。Moku:Go的锁定放大器能够通过使用相敏检波器(PSD)解调调制信号,例如无线电波。它使用与载波信号频率相同的正弦参考信号。它可以跟踪参考信号的任何变化,因此能够跟踪频率漂移。PSD将两个信号相乘或“混合”在一起,产生两个信号的和项和差项。所需频率和参考信号由相同的频率组成,因此频率之间的差异为零。因此,所需的无线电波信号被设置为DC。混合信号然后通过低通滤波器发送,该低通滤波器去除调制信号的交流分量。这仅留下与信号幅度成比例的DC信号,在这里,信号然后可以使用直流放大器放大。输出幅度可以从通过混频器和低通滤波器发送的信号中找到。这些可以在直角坐标或极坐标中找到。振幅R可以通过坐标之间的转换得到,其中 。对于AM信号,只需要振幅或R(在极坐标中);信号的相位可以忽略。三. 实验前练习找到并详细列出你所在地区的AM电台列表。你觉得什么信号会最强?为什么?实验装置成分:○ Moku:Go [2x]○ 天线○ 扬声器○ 低噪声放大器(可选)1○ 鳄鱼夹○ 实验室程序3.1 第一部分确保您拥有最新版本的在地址:Moku: desktop app2将磁性电源适配器插入每个Moku:去等待前面的LED变成绿色。这些最初的步骤将解决Moku:Go #1的配置问题。将天线连接到Moku:Go的输入1,如图6和图7所示。图6 第一部分照片Moku:去设置 1、常用的30分贝LNA。如需完整的物料清单,请联系我们。2、Moku:Go可以通过三种不同的方式连接到笔记本电脑:以太网、USB-C和Wi-Fi。请参考Moku:Go Quick StartGuide 如何连接你的Moku:去你的电脑。一旦连接,Moku:Go将出现在Windows或MacOS应用程序的设备选择屏幕上。图7 Moku:go:设置第1部分 双击频谱分析仪。找到调幅范围,并随意平均频谱,以改善图表。找到最主要的调幅无线电信号频率,你可以通过添加一个跟踪光标来完成。信号应在小于2 MHz的范围内。频谱分析仪和设置配置的示例如图8所示。 图8 如何配置频谱分析仪 ○ 将您的扬声器连接到Moku:Go #1的输出1。○ 返回仪器选择屏幕,双击锁定放大器。打开示波器部分,确保可以看到A和b。○ 将探针A添加到输入1(天线)○ 将探头B添加到输出1(扬声器)在图9中可以看到锁定放大器仪器页面的一个例子。 图9 锁定放大器解调AM广播电台的示例。上面(红色)的轨迹是天线信号,下面(蓝色)的轨迹是音频。 改变本地振荡器到你最主要的调幅信号的频率。首先将低通滤波器设置为12kHz。根据需要改变极性和增益。您可能需要改变低通滤波器和增益,以改善信号并产生尽可能清晰的声音。小心不要让信号饱和。图10给出了堪培拉地区各种变量的设置示例。 图10 堪培拉地区锁定放大器设置示例。 3.2 第二部分在第2部分中,我们将使用第二个Moku:Go作为数字滤波器来进一步增强接收到的无线电信号。将扬声器连接电缆移至Moku:Go #2的输出2。将一根电缆从Moku:Go #1的输出1连接到Moku:Go #2的输入2。这种设置可以在图11和图12中看到。 图11 Moku的照片:去设置第2部分 图12 Moku:go:设置第2部分 返回主屏幕,双击Moku:Go #2的图标。双击数字滤波器框。数字滤波器盒界面如图13所示。 图13 数字滤波器盒用户界面 将探针A添加到输入2,将探针B添加到输出2。首先,将滤波器改为贝塞尔带通滤波器,并根据需要改变增益。改变频率,仅隔离信息信号,即音乐或声音,从而尝试去除低频噪音。试着瞄准音乐和声音产生的频率。图14给出了堪培拉地区的数字滤波器盒变量。 图14 堪培拉地区的数字滤波器盒示例 3.2 第3部分将低噪声放大器连接在天线和Moku:Go #1的输入1之间。为低噪声放大器供电,将鳄鱼夹连接到电源连接和Moku:Go #1的背面。设置如图15所示。图15 Moku的框图:设置第3部分 确保它连接到PPSU2或类似的12 V电源。单击 打开电源,并将电压设置为12 V。电源弹出窗口可能如图16所示。 图16 PPSU的例子 根据需要改变数字滤波器盒和锁定放大器的变量,以产生尽可能清晰的信号。尝试改变你所在区域的其他AM信号,你能通过改变锁定放大器和数字滤波器盒中的变量来优化你的音质吗?3.3.1 摘要本实验探索在Moku:Go上使用锁定放大器作为AM无线电接收器。锁定放大器是一个强大的工具,帮助学生了解如何从嘈杂的背景中解调信号。此外,学生还能够学习如何利用许多其他工具进一步提高信号清晰度。在Moku: App中,通过截屏或文件共享可以轻松发布和报告结果。您可以通过点击屏幕顶部的云图标来完成此操作。Moku的好处:Go面向教育工作者和实验室助理有效利用实验室空间和时间易于实现一致的仪器配置专注于电子设备而非仪器设置最大限度地利用实验室助教的时间个人实验室,个人学习通过屏幕截图简化评估和评级对于学生来说各个实验室按照自己的节奏加强理解和保留便携式,选择实验室工作的速度、地点和时间,无论是在家里、在校园实验室,甚至是在熟悉的Windows或macOS笔记本电脑环境中进行远程协作,同时使用专业级仪器。3.3.2 Moku:Go演示模式您可以在Liquid Instruments网站下载适用于macOS和Windows的Moku:Go应用程序。演示模式操作不需要任何硬件,并提供了使用Moku:Go的一个很好的概述。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。   声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。   在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。   无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。   新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。   关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。   高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p style=" text-align: center " img width=" 250" height=" 321" title=" ea14fe0b8668f5b02fa47ae1ab982279.jpg" style=" width: 250px height: 321px " src=" http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。 /p
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 国家5G中高频器件创新中心落地深圳 带来新一轮半导体仪器采购商机
    2021年11月,工业和信息化部批复组建的国家5G中高频器件创新中心落地深圳。该创新中心依托深圳市汇芯通信技术有限公司组建,是深圳获批建设的第2家国家制造业创新中心,聚焦新型半导体材料及工艺、5G中高频核心器件、面向射频前端的硅基毫米波集成芯片等三大研发方向。为何选择在深圳建设国家5G中高频器件创新中心?2019年8月,中共中央、国务院印发《关于支持深圳建设中国特色社会主义先行示范区的意见》,明确要求深圳“在未来通信高端器件、高性能医疗器械等领域创建制造业创新中心”。5G中高频器件是指应用于5G中频(Sub-6GHz)和高频(毫米波)频段的射频器件,具体包括功率放大器、滤波器、射频开关、低噪声放大器、射频收发器等。中高频器件通信高端器件直接决定5G通信设备的信号功率、信号带宽、信号质量和系统功耗等多项核心参数,是5G通信设备的核心器件。目前,深圳5G专利申请数量占到全球的34%,5G通信技术全球领先;累计建成5G基站4.93万个,5G基站密度每平方公里24.68个,率先实现5G独立组网全覆盖,为5G中高频器件技术的规模验证提供完备测试应用环境。深圳及周边地区聚集了华为、中兴、小米、荣耀、OPPO、vivo、魅族等客户,是全国最大的通信用中高频器件应用市场。深圳半导体和集成电路领域在建、拟建项目总投资额超千亿元,在集成电路、分立器件设计领域积累了大量的人才和产业基础技术。因此,深圳具有专利申请多、网络基础好、应用市场大、技术积累好等优势。国家5G中高频器件创新中心总经理樊晓兵介绍,创新中心以行业重大需求为牵引,紧扣5G及未来通信中高频核心器件设计、制造、测试和应用等各环节关键技术,搭建国际领先的硅基GaN射频和毫米波的量产技术研发中试平台。该创新中心还将整合产业链优势资源,为产业链的器件企业提供技术成果从中试到量产的共性技术开发和验证的公共技术服务,从而降低企业,尤其是中小型企业在中试-量产环节的投入门槛,加速技术成果首次商用的进程,降低企业的创新成本,打通科学完整的移动通信产业链,抢占未来移动通信领域产业先机。深圳国家5G中高频器件创新中心不是孤例,对于仪器行业而言,应及时关注国家相关政策及相关半导体仪器采购商机。中美贸易关系的紧张局势以及新冠疫情加剧了全球半导体的供应短缺,并从全球化逐渐转向区域化的趋势。国家近年来,大力推进国家具有自主知识产权的半导体行业体系建设,由此发展出一系列的研究中心和工程中心,势必带来大量的半导体相关仪器设备的采购订单。缺芯问题迫在眉睫,自主研发刻不容缓,尤其对于国产仪器厂商而言,这既是机遇也是挑战,如何打破国外技术垄断,发展出具有核心知识产权的仪器设备,率先打破固有格局突出重围的远见者和先行者或将在国际形势和政策红利下,引发新一轮的行业洗牌。
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title=" 微信图片_20170518091903_副本.jpg" / /p p style=" text-align: center " 文章封面以及毛细力构筑单热点结构示意图 /p
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 br/ /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院) /p p br/ /p p br/ /p
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 赛恩科仪双通道锁相放大器被以色列维茨曼研究所应用在SQUID扫描显微镜测量中
    赛恩科仪双通道锁相放大器OE1022D被以色列维茨曼研究所应用在SQUID扫描显微镜测量中,维茨曼研究所已累计采购了十多台赛恩科学仪器的锁相放大器,该型号锁相放大器获得以色列维茨曼研究所的认可,具体见如下用户评价:
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
  • Molecular Devices 网络讲座:如何更有效使用Axon pCLAMP软件和Axon放大器系列讲座之二
    立即注册参加Axon传统电生理网络讲座 题目:全细胞电压钳记录模式为何需要补偿串联电阻?日期:2012年9月26日,周三时间:9:00 -10:00 AM 建议参会人包括: 正要建立新电生理实验室的教授及研究人员 大学研究院所和医药界的电生理学家 现在使用Axon软件及放大器的用户题目: 全细胞电压钳记录模式为何需要补偿串联电阻?主讲人:Jeffrey Tang, PhD, Product Marketing Manager of Axon Conventional Electrophysiology, Molecular Devices, LLC. 请点击 在线注册 注册本次网络讲座。本次讲座费用全免,但是参会人数有限,请尽快注册。在线注册后,您将收到一封确认邮件,同时附有如何登陆本次网络讲座的资料。我们期待您的参与! 若您在注册时遇到任何问题,请联系info.china@moldev.com或jeffrey.tang@moldev.com询问。
  • 18家国内氮化镓头部企业:做研发有多烧钱?
    国家“十四五”研发计划已明确将大力支持第三代半导体产业的发展,氮化镓等第三代半导体材料也是支持新基建的核心材料,呈现巨大的潜在市场。目前氮化镓的应用市场分布于LED照明、激光器与探测器方向、5G射频和功率器件等。与国外领先企业相比,国内企业在技术积累上有着较大的差距,但国内企业之间的差距并不明显。通过调研国内18家氮化镓头部企业的研发投入,希望帮助行业人士通过本文了解目前氮化镓上市企业的研发费用情况。综合来看,氮化镓相关企业每年的研发费用最低在千万级,最高高达近30亿元;研发投入相对于营业收入占比,最低在3%以上,最高高达近26%。2020年国内氮化镓相关上市企业研发投入企业名称研发费用/元(单位:RMB)闻泰科技28.02亿三安光电9.3亿安克创新5.68亿华润微5.67亿士兰微4.86亿和而泰2.53亿赛微电子1.96亿华灿光电1.53亿亚光科技1.47亿奥海科技1.44亿易事特1.36亿国星光电1.34亿扬杰科技1.32亿乾照光电9086万捷捷微电7439万京泉华6505万聚灿光电6133万台基股份1283万各家企业简介及2020年研发投入情况如下:1.闻泰科技闻泰科技全资子公司安世半导体是全球知名的半导体IDM公司,总部位于荷兰奈梅亨,产品组合包括二极管、双极性晶体管、模拟和逻辑IC、ESD保护器件、MOSFET器件以及氮化镓场效应晶体管(GaN FET)。在与国际半导体巨头的竞争中,安世在各个细分领域均处于全球领先,其中二极管和晶体管出货量全球第一、逻辑芯片全球第二、ESD保护器件全球第一、功率器件全球第九。安世半导体第三代半导体氮化镓功率器件(GaN FET)广泛应用于电动汽车、数据中心、电信设备、工业自动化和高端电源,特别是在插电式混合动力汽车或纯电动汽车中。目前650V氮化镓(GaN)技术已经通过车规级测试。 2020年闻泰科技研发投入约28.02亿,研发投入总额占营业收入的5.42%。 2.三安光电三安光电主要从事化合物半导体材料与器件的研发与应用,以砷化物、氮化物、磷化物及碳化硅等化合物半导体新材料所涉及的外延片、芯片为核心主业。其中所生产的GaN光电器件——LED、光伏电池应用于照明、显示、背光、农业、医疗、光伏发电等领域;GaN微波射频器件——功率放大器、滤波器、低噪声放大器、射频开关器、混频器、振荡器、单片微波集成电路等应用于移动通信设备和基站、WiFi/蓝牙模组、卫星通信、CATV等;GaN电子电力器件——肖特基势垒二极管、金属氧化物半导体场效应晶体管、绝缘栅双极型晶体管、氮化镓场效应晶体管等应用于消费电源快速充电器、家用电器、新能源汽车、不间断电源、光伏/风能电站、智能电网、高速铁路等领域。2020年三安光电研发投入约9.3亿,研发投入总额占营业收入的11%。3.安克创新安克创新主要从事自有品牌的移动设备配件、智能硬件等消费电子产品的自主研发、设计和销售,是全球消费电子行业知名品牌商,产品主要有充电类、无线音频类、智能创新类三大系列。基于持续和巨大的研发投入,公司在各个产品领域形成了丰富且深入的技术积累,如将GaN(氮化镓半导体材料)材料应用在移动电源等相关产品中,在较大程度提高移动电源充电效率的同时降低了产品体积。2020年安克创新研发投入约5.68亿元,研发投入总额占营业收入的6.07%。4.华润微电子华润微电子是中国领先的拥有芯片设计、晶圆制造、封装测试等全产业链一体化经营能力的半导体企业,产品聚焦于功率半导体、智能传感器与智能控制领域,目前公司主营业务可分为产品与方案、制造与服务两大业务板块。公司产品与方案业务板块聚焦于功率半导体、智能传感器与智能控制领域。公司制造与服务业务主要提供半导体开放式晶圆制造、封装测试等服务。此外,公司还提供掩模制造服务。目前在研项目“硅基氮化镓功率器件设计及工艺技术研发”预计总投资规模约2.44亿元,目标完成650V硅基氮化镓器件的研发,建立相应的材料生产、产品设计、晶圆制作和封装测试能力,并应用于智能手机充电器、电动汽车充电器、电脑适配器等领域,达到领先水平。至2020年,该项目累计投入金额约3746亿元,目前自主开发的第一代650V硅基氮化镓Cascode器件静态参数达到国外对标样品水平,产出工程样品,可靠性考核通过。2020年华润微电子研发投入约5.67亿元,研发投入总额占营业收入的8.11%。5.士兰微电子士兰微电子主要产品包括集成电路、半导体分立器件、LED(发光二极管)产品等三大类。经过二十多年的发展,公司已经从一家纯芯片设计公司发展成为目前国内为数不多的以IDM模式(设计与制造一体化)为主要发展模式的综合型半导体产品公司。公司属于半导体行业,公司被国家发展和改革委员会、工业和信息化部等国家部委认定为“国家规划布局内重点软件和集成电路设计企业”,陆续承担了国家科技重大专项“01专项”和“02专项”多个科研专项课题。2020年,公司的硅上GaN化合物功率半导体器件在持续研发中,并获“极大规模集成电路制造装备及成套工艺”专项约1495万元补助。2020年士兰微电子研发投入约4.86亿元,研发投入总额占营业收入的11.34%。 6.和而泰深圳和而泰子公司铖昌科技主营业务为微波毫米波射频芯片的设计研发、生产和销售。铖昌科技在芯片行业拥有核心技术的自主研发能力,公司产品质量达到了服务于航天、航空的水准。铖昌科技主要产品包括GaN功率放大器芯片、低噪声放大器芯片模拟波束赋形芯片、数控移相器芯片、数控衰减器芯片等,产品应用于我国卫星遥感、卫星导航和通信等领域。2020年深圳和而泰研发投入约2.53亿元,研发投入总额占营业收入的5.41%。7.赛微电子赛微电子现有GaN业务包括外延材料和器件设计两个环节,其中GaN外延材料业务是基于自主掌握的工艺诀窍,根据既定技术参数或客户指定参数,通过MOCVD设备生长并对外销售6-8英寸GaN外延材料。2020年赛微电子研发投入约1.96亿元,研发投入总额占营业收入的25.54%。8.华灿光电华灿光电是全球领先的LED芯片及先进半导体解决方案供应商,主要产品为LED芯片、LED外延片、蓝宝石衬底及第三代半导体化合物氮化镓基电力电子器件。华灿光电十五年聚焦氮化镓材料在LED领域的技术研发,并于2020正式进入氮化镓基电力电子器件领域,产品主要面向移动消费电子终端快速充电器、其他电源设备,云计算大数据服务器中心、通信及汽车应用等领域。2020年华灿光电研发投入约1.53亿元,研发投入总额占营业收入的5.78%。9.亚光科技亚光科技集团系由原太阳鸟游艇股份有限公司在收购成都亚光电子股份有限公司基础上改名而来,太阳鸟为国内领先全材质的游艇、商务艇和特种艇系统方案提供商,连续多年公司复合材料船艇产销量行业领先。2017年9月,上市公司太阳鸟以发行股份的方式完成亚光电子97.38%股权的收购,成为国内体量最大的军用微波射频芯片、元器件、组件和微系统上市公司,是我国军用微波集成电路的主要生产定点厂家之一。在核心射频芯片方面,亚光科技大力扩大芯片研发团队规模,形成设计、封装、测试全流程研发生产能力,集中突破砷化镓/氮化镓射频芯片关键技术,在芯片制造领域与国内流片厂深度合作,打造完整的新型半导体射频芯片产业链,在满足自用的基础上,逐渐扩大对外芯片设计、流片、测试和封装的整体芯片设计外包业务;并以5G/6G射频前端芯片和光通讯芯片为突破口,加快民品芯片设计服务拓展。2020年亚光科技研发投入约1.47亿元,研发投入总额占营业收入的8.10%。10.奥海科技奥海科技主要从事充电器等智能终端充储电产品的设计、研发、制造和销售,产品主要应用于智能手机、平板电脑、智能穿戴设备(智能手表等)、智能家居(电视棒/机顶盒、智能插座、路由器、智能摄像头、智能小家电等)、人工智能设备(智能音箱、智能机器人、智能翻译器等)、动力能源、网络能源等领域。在GaN研发项目上,已经布局了30W、45W、65W产品,GaN充电器方面将布局100W、120W充电器。2020年奥海科技研发投入约1.44亿元,研发投入总额占营业收入的4.87%。11.易事特易事特主要从事5G+智慧电源(5G供电、轨道交通供电、智能供配电、特种电源)、智慧城市&大数据(云计算/边缘计算数据中心、IT基础设施)、智慧能源(光伏发电、储能、充电桩、微电网)三大战略板块业务的研发、生产与销售服务,为广大用户提供高端电源装备、数据中心、充电桩、5G供电、储能、轨道交通智能供电系统、光储充一体化系统等产品及能效解决方案。经过三十一年的发展,现已成全球新能源500强和竞争力百强企业,行业首批国家火炬计划重点高新技术企业、国家技术创新示范企业、国家知识产权示范企业。2020年易事特研发投入约1.36亿元,研发投入总额占营业收入的3.26%。12.国星光电国星光电是集研发、设计、生产和销售中高端半导体发光二极管(LED)及其应用产品为一体的国家高新技术企业,主营业务为研发、生产与销售LED器件及组件产品。公司作为国内LED器件封装的龙头企业,涉足电子及LED行业50余年,产品广泛应用于消费类电子产品、家电产品、计算机、通讯、显示及亮化产品、通用照明、车灯、杀菌净化等领域,技术实力领先,产品精益制造,拥有全面的生产和质量管理认证体系。公司主要产品分为器件类产品(包括显示屏用器件产品、白光器件产品、指示器件产品、非视觉器件产品)、组件类产品(包括显示模块与背光源、Mini背光模组)及LED外延片及芯片(包括各种功率及尺寸的外延片、LED芯片产品),业务涵盖LED产业链上、中、下游产品。2020年国星光电研发投入约1.34亿元,研发投入总额占营业收入的4.09%。“硅基AlGaN垂直结构近紫外大功率LED外延、芯片与封装研究及应用”、“晶圆级GaN纳米阵列生长与紫外探测器芯片研制项目”等获得政府补助。13.扬杰科技扬杰科技专业致力于功率半导体芯片及器件制造、集成电路封装测试等中高端领域的产业发展,主营产品为各类电力电子器件芯片、MOSFET、IGBT及碳化硅SBD、碳化硅JBS、大功率模块、小信号二三极管、功率二极管、整流桥等,产品广泛应用于消费类电子、安防、工控、汽车电子、新能源等诸多领域。“900V耐压GaN基垂直结构功率器件研发及产业化项目”获得政府补助。2020年扬杰科技研发投入约1.32亿元,研发投入总额占营业收入的5.01%。14.乾照光电乾照光电一直从事半导体光电产品的研发、生产和销售业务,主要产品为LED外延片、全色系LED和芯片及砷化镓太阳电池外延片及芯片,为LED产业链上游企业。在氮化镓LED方面,随着南昌生产基地一期的满产,公司全面布局普通照明产品、高压产品、灯丝产品、高光效产品、背光产品、倒装产品、Mini/Micro-LED产品,以及显示屏芯片产品。全新一代的Alioth系列照明产品,采用全新的外延结构设计、芯片结构设计和芯片制程工艺,在产品性能上得到大幅度的提升,凭借较高的性价比,迅速占领市场。2020年厦门乾照光电研发投入约9086万元,研发投入总额占营业收入的6.91%。“通用照明用GaN基材料及LED芯片制造技术改造项目”、“氮化镓基第三代半导体照明用材料及高效白光LED器件产业化项目”等获得政府补助。15.捷捷微电子江苏捷捷微电子是专业从事功率半导体芯片和器件的研发、设计、生产和销售,具备以先进的芯片技术和封装设计、制程及测试为核心竞争力的IDM业务体系为主。公司集功率半导体器件、功率集成电路、新型元件的芯片研发和制造、器件研发和封测、芯片及器件销售和服务为一体的功率(电力)半导体器件制造商和品牌运营商。2021年将加快功率MOSFET、IGBT、碳化硅、氮化镓等新型电力半导体器件的研发和推广,从先进封装、芯片设计等多方面同步切入,快速进入新能源汽车电子(如电机马达和车载电子)、5G核心通信电源模块、智能穿戴、智能监控、光伏、物联网、工业控制和消费类电子等领域。2020年江苏捷捷微电子研发投入约7439万元,研发投入总额占营业收入的7.36%。16.京泉华京泉华专注于电子元器件行业,是一家集磁性元器件、电源类产品的生产及组件灌封、组装技术于一体的解决方案提供者。公司电源产品按照产品特性可分为电源适配器和定制电源两大类,智能电源是定制电源产品系列中的新研发产品。电源具体产品包括:智能电源、氮化镓电源、电源适配器、裸板电源、LED电源、模块电源、医疗电源、工控电源、通信电源、光伏逆变电源、数字电源等多个系列。2020年京泉华研发投入约6505万元,研发投入总额占营业收入的4.95%。17.聚灿光电聚灿光电主要从事化合物光电半导体材料的研发、生产和销售业务,主要产品为GaN基高亮度LED外延片、芯片。与华中科技大学合作承担的“面向高端车用市场的氮化镓基倒装LED芯片研发及其产业化”政府科技项目,通过研发设计芯片版图、开发新工艺,已开发出车用大尺寸倒装芯片,产品性能优异,对占领国产高端芯片市场份额具有重要意义。2020年聚灿光电研发投入约6133万元,研发投入总额占营业收入的4.36%。18.台基股份台基股份专注于功率半导体器件的研发、制造、销售及服务,主要产品为大功率晶闸管、整流管、IGBT、电力半导体模块等功率半导体器件,广泛应用于工业电气控制系统和工业电源设备,包括冶金铸造、电机驱动、电机节能、大功率电源、输变配电、轨道交通、新能源等行业和领域。2020年台基股份研发投入约1283万元,研发投入总额占营业收入的3.30%。结合这18家氮化镓上市企业的研发费用可以看出,近年来国内企业在氮化镓相关领域投入研发资金高达上百亿元,而多数企业在财报中都表明看好未来氮化镓材料在LED照明、激光器与探测器方向、5G射频和功率器件等多个领域的市场前景,纷纷加码布局氮化镓项目。据了解,多家企业不乏获得政府千万级补贴的在研氮化镓项目。这预示着未来几年相关半导体检测仪器市场或将继续快速增长。
  • 第三代半导体材料GaN的挑战和未来
    氮化镓 (GaN) 是一种宽带隙半导体,其在多种电力电子中的应用正在不断增长。这是由于这种材料的特殊性能,在功率密度、耐高温和在高开关频率下工作方面优于硅 (Si)。长期以来,在电力电子领域占主导地位的硅几乎已达到其物理极限,从而将电子研究转向能够提供更大功率密度和更好能源效率的材料。GaN 的带隙 (3.4 eV) 大约是硅 (1.1 eV) 的 3 倍,提供更高的临界电场,同时降低介电常数,从而降低 R DS( on)在给定的阻断电压下。与硅相比(在更大程度上,与碳化硅 [SiC])相比,GaN 的热导率更低(约为 1.3 W/cmK,而在 300K 时为 1.5 W/cmK),需要仔细设计布局和适当的开发出能够有效散热的封装技术。通过用 GaN 晶体管代替硅基器件,工程师可以设计出更小、更轻、能量损失更少且成本更低的电子系统。 受汽车、电信、云系统、电压转换器、电动汽车等应用领域对日益高效的解决方案的需求的推动,基于 GaN 的功率器件的市场占有率正在急剧增长。在本文中,我们将介绍 GaN 的一些应用,这些应用不仅代表了技术挑战,而且最重要的是,代表了扩大市场的新兴机遇。01 电机驱动由于其出色的特性,GaN 已被提议作为电机控制领域中传统硅基 MOSFET 和 IGBT 的有效替代品。GaN 技术的开关频率高达硅的 1,000 倍,加上较低的导通和开关损耗,可提供高效、轻巧且占用空间小的解决方案。高开关频率(GaN 功率晶体管的开关速度可以达到 100 V/ns)允许工程师使用较低值(因此尺寸更小)的电感器和电容器。低 R DS( on)减少产生的热量,提高能源效率并实现更紧凑的尺寸。与 Si 基器件相比,GaN 基器件需要具有更高工作电压、能够处理高 dV/dt 瞬态和低等效串联电阻的电容器。 GaN 提供的另一个优势是其高击穿电压(50-100 V,与其他半导体可获得的典型 5 至 15-V 值相比),它允许功率器件在更高的输入功率和电压下运行而无需损坏的。更高的开关频率允许 GaN 器件实现更大的带宽,因此可以实现更严格的电机控制算法。此外,通过使用变频驱动 (VFD) 电机控制,可以实现传统 Si MOSFET 和 IGBT 无法获得的效率水平。此外,VFD 实现了极其精确的速度控制,因为电机速度可以上升和下降,从而将负载保持在所需的速度。图1 显示了 TI TIDA-00909 参考设计,该设计基于具有三个半桥 GaN 电源模块的三相逆变器。GaN 晶体管的开关速度比 Si 晶体管快得多,从而降低了寄生电感和损耗,提高了开关性能(小于 2ns 的上升和下降时间),并允许设计人员缩小或消除散热器的尺寸。GaN 功率级具有非常低的开关损耗,允许更高的 PWM 开关频率,在 100kHz PWM 时峰值效率高达 98.5%。 02 5GGaN 还在 RF 领域提供了具体且非常有趣的前景,能够非常有效地放大高频信号(甚至几千兆赫的数量级)。因此,可以创建能够覆盖相当远距离的高频放大器和发射器,用于雷达、预警系统、卫星通信和基站等应用。作为下一代移动技术,5G 在更大容量和效率、更低延迟和无处不在的连接方面具有显着优势。使用不同的频段,包括 sub-6-GHz 频段和毫米波 (mmWave)(24-GHz 以上)频段,需要 GaN 等能够提供高带宽、高功率密度和卓越效率的材料价值观。由于其物理特性和晶体结构,GaN 可以在相同的施加电压下支持比可比较的横向扩散 MOSFET 器件更高的开关频率,从而实现更小的占位面积。新兴的 5G 技术,例如大规模多输入多输出 (MIMO) 和毫米波,需要专用的射频前端芯片组。GaN-on-SiC,它将 GaN 的高功率密度与 SiC 的高导热性和降低的射频损耗相结合,被证明是高功率 5G 和射频应用的最合适的解决方案。目前市场上有几种适用于 5G 应用的 GaN 器件,例如用于 5G 大规模 MIMO 应用的低噪声放大器和多通道开关。03 无线电力传输GaN 最具创新性的应用之一是无线充电技术,其中 GaN 的高效率通过将更多的能量传输到接收设备来降低功率损耗。这些系统通常包括一个射频接收器和一个功率放大器,工作频率为 6.78 或 13.56 MHz,并基于 GaN 器件。与传统的硅基器件相比,GaN 晶体管获得了尺寸非常紧凑的解决方案,这是无线充电应用的关键因素。一个示例应用是在无人机中,其中可用空间有限,并且可以在无人机从短距离悬停在充电器上的情况下进行充电。最有效的集成无线功率传输解决方案使用 GaN 晶体管将系统尺寸减小多达 2 到 3 倍,从而降低充电系统成本。650-V GaNe-HEMT 晶体管为高效无线充电提供了理想的解决方案,功率范围从大约 10 W 到超过 2 kW。图 2 显示了一种基于 GaN 器件的小型工具或移动设备无线充电解决方案。 04 数据中心GaN 与硅的结合也为数据中心领域提供了重要机会,其中高性能和降低成本至关重要。在云服务器 24/7 全天候运行的数据中心中,电压转换器被广泛使用,典型值为 48 V、12 V 甚至更低的电压,用于为多处理器系统内核供电。随着全球发电量的快速增长,电力转换效率已成为寻求实现净零排放的公司的关键因素,包括运营数据中心和云计算服务的公司。数据中心在更小的空间内需要越来越多的功率,这是 GaN 技术可以广泛满足的要求,实现转换器和电源的更高效率、尺寸减小和更好的热管理,从而降低供应商的成本。在数据中心中非常常见的是 AC/DC 转换器,其中 PFC 前端级将总线电压调节为 DC 值,然后是 DC/DC 级,用于降低总线电压并提供电流隔离和调节的 DC 输出(48 V、12 V 等)。PFC 级使电源的输入电流与电源电压保持同步,从而最大限度地提高有功功率。基于 GaN 的图腾柱 PFC(见从而最大化实际功率。基于 GaN 的图腾柱 PFC(见 从而最大化实际功率。基于 GaN 的图腾柱 PFC(见 图 3 ) 在效率和功率密度方面被证明是一个成功的拓扑。 05 氮化镓挑战从历史上看,实现 GaN 技术不断增长的扩散需要克服的主要挑战是可靠性和价格。与可靠性有关的第一个问题已基本解决,商业设备能够通过在高于 200°C 的结温下运行来保证超过 100 万小时的平均故障时间。尽管早期的 GaN 器件比硅等竞争技术要贵得多,但价格差距已从最初的 2 到 4 英寸晶圆到 6 英寸晶圆以及最近的 8 英寸(200 毫米)晶圆上的 GaN 生产显着缩小晶圆。最近的发展和持续的工艺改进将继续降低 GaN 器件的制造成本,使其价格更具竞争力。
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 湛江湾实验室海洋电磁式可控震源研发子平台设备采购项目(第二次)招标
    一、项目基本情况项目编号:ZJCG2022-VC074-1项目名称:湛江湾实验室海洋电磁式可控震源研发子平台设备采购项目采购方式:公开招标预算金额:1,645,000.00元采购需求:合同包1(湛江湾实验室海洋电磁式可控震源研发子平台设备采购项目):合同包预算金额:1,645,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他试验仪器及装置通用水听器8(台)详见采购文件144,000.00-1-2其他试验仪器及装置低频水听器5(台)详见采购文件400,000.00-1-3其他试验仪器及装置振动测试器1(台)详见采购文件140,000.00-1-4其他试验仪器及装置加速度传感器5(台)详见采购文件350,000.00-1-5放大器低噪声放大器1(台)详见采购文件30,000.00-1-6放大器FET放大器1(台)详见采购文件30,000.00-1-7其他试验仪器及装置电子陀螺仪6(台)详见采购文件60,000.00-1-8其他试验仪器及装置高温低温箱1(台)详见采购文件30,000.00-1-9其他试验仪器及装置高性能实时目标机1(台)详见采购文件163,000.00-1-10其他试验仪器及装置移动版实时目标机1(台)详见采购文件186,000.00-1-11其他试验仪器及装置IO132模块2(台)详见采购文件112,000.00-本合同包不接受联合体投标合同履行期限:合同生效后120日历天内完成供货、安装、调试、验收、交付使用二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明)副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:提供2021年度财务状况报告或基本开户行出具的资信证明。如供应商已对接“粤省事”“粤商通”“粤信签”等系统能查询到相关内容,则需提供已对接“粤省事”“粤商通”“粤信签”等系统且能通过系统查询到相关内容的承诺声明函,格式自拟。4)履行合同所必需的设备和专业技术能力:提供履行合同所必需的设备和专业技术能力的证明材料;(提供《关于资格的声明函》)。5)参加采购活动前3年内,在经营活动中没有重大违法记录:提供参加政府采购活动前 3 年内在经营活动中没有重大违法记录的书面声明(提供《关于资格的声明函》)。2.落实政府采购政策需满足的资格要求:合同包1(湛江湾实验室海洋电磁式可控震源研发子平台设备采购项目)落实政府采购政策需满足的资格要求如下:按财政部、工业和信息化部印发的《政府采购促进中小企业发展管理办法》(财库﹝2020﹞46 号)要求,本项目非专门面向中小企业采购。本项目中小企业划分标准所属行业:工业。3.本项目的特定资格要求:合同包1(湛江湾实验室海洋电磁式可控震源研发子平台设备采购项目)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。三、获取招标文件时间: 2022年11月15日 至 2022年11月22日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年12月06日 09时30分00秒 (北京时间)递交文件地点:湛江市公共资源交易中心(湛江市赤坎区体育北路 2 号天润中心六楼) 第5号开标室开标地点:湛江市公共资源交易中心(湛江市赤坎区体育北路 2 号天润中心六楼) 第5号开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。/七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南方海洋科学与工程广东省实验室(湛江)地 址:霞山区文体路一号联系方式:0759-20868082.采购代理机构信息名 称:广东万诚工程造价咨询有限公司地 址:广东省湛江市赤坎区体育北路15号湛江商务大厦第九层910-912房联系方式:0759-22921133.项目联系方式项目联系人:余工电 话:0759-2292113广东万诚工程造价咨询有限公司2022年11月15日
  • Eurofighter战斗机项目将机场周围噪声降至更低
    Bruel & Kjaer与空客公司开展了一项合作,以计算Eurofighter系列战斗机的地面噪声暴露。该研究项目旨在完善一个关于战斗机起飞和降落时噪声辐射的复杂软件模型。这个模型的目的是对战斗机的起飞和降落路径进行规划,从而使Eurofighter系列战斗机对其所使用机场的周边社区产生的噪声干扰降到更低。对于各种各样的飞行配置和操作条件,该模型支持对各方向辐射的噪声进行精确估算。这能帮助空客公司的国防及航天部门设计低噪声飞行路径,从而使得飞机发出的噪声远离人口密集区域。Bruel & Kjaer将为项目贡献专业知识、数据采集设备和软件。Bruel & Kjaer工作人员将描绘Eurofighter战斗机各个噪声源的特性,并在不同的推力和飞行配置条件下测量它们的指向性。空客公司的国防及航天部门将使用这些详细的数据来更新和验证他们的Eurofighter战斗机噪声模型,并随后将这些信息输入到软件模型,以计算噪声情况更优的起飞和降落路线。了解更多关于Bruel & Kjaer航空航天解决方案的信息,请访问如下链接:http://www.bksv.cn/Markets/Aerospace 关于Bruel & KjaerBruel & Kjaer是先进的声学与振动测量系统制造商和供应商。我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。全面了解我们的解决方案、系统和产品,请访问我们的网站:www.bksv.cn。Bruel & Kjaer是总部位于英国的思百吉集团(www.spectris.com)旗下的子公司。思百吉集团2013年销售额达12亿英镑,集团的4个业务板块在全球共有大约7,500名员工。媒体联系朱立市场传播经理Bruel & Kjaer 中国电话:+86 21 61133678邮箱:julie.zhu@bksv.com.cn网站:www.bksv.cn
  • Bruel & Kjaer绘制Eurofighter系列战斗机的飞行噪声
    空客公司的国防及航天部门和Bruel & Kjaer已经成功地完成了对Eurofighter系列战斗机的噪声测量,并计算了其在不同推力和飞行配置下的地面暴露噪声。 噪声测量的实现方式是让飞机反复飞越过Bruel & Kjaer数据采集系统,并由设置在地面上的一个直径29米的传声器阵列进行数据采集。 合作项目的研究人员将利用这些数据来构建一个复杂的战斗机声学辐射软件模型。 正如飞行测试指挥员和空客公司国防及航天部门Eurofighter噪声测量项目负责人Christian Waizmann所说:“由Bruel & Kjaer对Eurofighter系列战斗机进行的噪音数据分析,验证了飞机的声音模型,从而可将该模型用于优化起飞和降落过程,进一步减少噪音干扰。” 该声音模型的用途是计划起飞和着陆的飞行路径,从而使Eurofighter系列战斗机对其所使用的机场周围的当地社区产生更小的噪声干扰。 该声音模型适用于很大范围的飞行配置和操作条件,可对所有方向的噪声辐射进行准确的估计。这将使空客公司国防及航天部门能够设计低噪声飞行路径,从而使飞机辐射的噪音远离人口密集地区。 在德国的Neuburg空军基地测试期间,Bruel & Kjaer的工作人员提供了专业知识、数据采集设备和软件。 Christian Waizmann表示:“Bruel & Kjaer是空客公司国防及航天部门很好的伙伴,他们具有广泛的国际领域和先进技术,能提供符合噪声测量技术领域要求的综合解决方案。因为在Eurofighter系列战斗机噪声测量项目中每个阶段的专业合作,我们可以用现今可能的效率更高的方法从飞越过程中成功地获得数据。” 了解更多关于Bruel & Kjaer航空航天解决方案的信息,请点击如下链接: http://www.bksv.cn/Markets/Aerospace 关于Bruel & Kjaer Bruel & Kjaer是先进的声学与振动测量系统制造商和供应商。 我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。 我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。 我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。 全面了解我们的解决方案、系统和产品,请访问我们的网站:www.bksv.cn。 Bruel & Kjaer是总部位于英国的思百吉集团(www.spectris.com)旗下的子公司。思百吉集团2013年销售额达12亿英镑,集团的4个业务板块在全球共有大约7,500名员工。 媒体联系朱立市场传播经理Bruel & Kjaer 中国电话:+86 21 61133678邮箱:julie.zhu@bksv.com.cn网站:www.bksv.cn
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 中国科大实现百公里开放大气双光梳精密光谱测量
    中国科学技术大学潘建伟、窦贤康、张强和薛向辉等组成的交叉研究团队,通过发展大功率低噪声光梳,结合时间频率传递等量子精密测量技术,在国际上首次实现百公里级的开放大气双光梳光谱测量。这一技术可应用于监测大尺度范围的地球大气温室气体和污染气体,并可以扩展到卫星和地面之间的大气双光梳光谱测量,用于全球尺度的温室气体监测和精确校准。9月12日,相关研究成果在线发表在《自然-光子学》(Nature&ensp Photonics)上。大气光谱学是研究大气化学和物理性质的关键技术,通过探讨光与大气中分子和颗粒的相互作用来研究大气问题,广泛应用于全球气候变化、碳预算评估和空气污染研究等领域。目前,大气光谱遥感使用的光栅光谱仪、外差光谱幅度计和傅里叶变换光谱仪等技术能够以不同的时间和空间分辨率提供地球大气成分的光谱学数据。然而,这些技术存在较多限制,如无法在夜间进行测量、无法同时测量多种组分等。近年来,开放大气双光梳光谱技术被证明是进行准确、连续、多气体测量的理想技术。双光梳光谱技术具有高采集速度、溯源至原子钟级别的绝对频率精度和可以同时测量多个组分等优点,在油田监测、城市车辆排放、畜牧排放测量和温室气体监测等领域应用广泛。该技术不受湍流散斑和背景噪声的影响,在原理上能够在不校准的情况下测量更长的距离,被认为是用于大气遥感的理想精密光谱工具。当前,国际上能够实现的最远的测量距离不超过20公里,只可针对工厂、牧场等小范围区域实现监测,无法应用于更大的区域如大型城市、雨林等。该团队开发出新的双基站开放大气双光梳光谱测量方案。相比于传统单基站方案,该方案无需在测量远端放置反射器,光只需要经过待测路径一次即可完成测量,从而减小了链路损耗,更适用于远距离、大尺度的测量。利用该方案,科研人员在乌鲁木齐测量得到113公里水平开放大气中水汽和二氧化碳的强度谱与相位谱。这一距离比国际上最远的测量距离高了约一个数量级。该工作创新性地融合了潘建伟、张强等前期发展的高精度自由空间时间频率传递技术且频率准确度达到10kHz,并运用自主研发的高精度反演算法,使二氧化碳反演精度在36分钟内小于0.6ppm。该研究使得双光梳光谱能够测量的大气距离从十几公里提升至一百多公里,扩大了这一技术的应用范围。同时,系统可容忍最大损耗为83dB,与中高轨星地链路损耗相当,为实现未来的星地大气双梳光谱测量奠定了基础。上述研究是量子信息科学与地球科学深度交叉融合取得的成果,基于光频梳的量子精密测量技术有望在地球科学、深空探测、环境科学和油气行业等领域得到应用。研究工作得到国家发展和改革委员会、国家自然科学基金委员会、科学技术部、中国科学院、上海市、安徽省和山东省的支持。百公里开放大气双光梳光谱测量示意图
  • 《聚创环保小科普》噪声检测仪可以降低噪声吗?
    大家好,本期《聚创环保小科普》为大家普及噪声的基础知识,很多朋友会问:噪声检测仪可以降低噪声吗?接下来,由小编为您阐述噪声检测仪的功用。我们统称的噪声检测仪有多个分类,在上期文章中有详细给大家说明,有兴趣的朋友可以去看看。城市噪声污染已严重危害人类健康噪声检测仪从字面看,它主要是作为检测使用,是在一定范围的空间或者场所使用的一种对声音来源和大小的测试仪器,本身是不具有降低检测值功能的。但是我们使用了噪声检测仪起从而活得了相关数据,我们就能从根本源头上自主的减少制造噪声,从这个意义上来讲,也是在声源处减弱噪声了。声环境功能区的5类划分 制图:段恒 比如,在工业生产过程中,您发现车间员工抱怨声音过大已经严重影响了生产效率,但又无法精确找到声音的来源,这时您可以使用噪声检测仪,通过多组测量找到来源,正确分析声源的发声机理和特性,区别空气动力性噪声、机械噪声和电磁噪声,以及高频噪声和中、低频噪声,然后确定相应的措施。噪音危害警示牌 必须佩戴听觉防护器具 另一种在线实时监测的噪声检测仪,我们在马路上或者工地门口经常能碰到,如图所示,上面会显示噪声:54.6db,db是分贝的意思,是声音高低的一种表示。PM2.5:39ug/m3,以及一些温度湿度风力的表示。这种在线式的仪器是告诉我们,这个场地周边的一些实时的数据,若是数据高了,施工的力度要放缓,甚至说,附近的居民可以直接联系市政的管理人员说家附近很吵,这时市政的管理人员会联系工地停工检查或者直接安装隔音板。在线实时扬尘噪声监测设备 噪声污染对人体健康的危害已经得到多方验证,高频率的噪声会让人烦躁,低频率的噪声会让人抑郁,频率的高低都严重危害这人体的健康。噪声通常是指那些难听的声音,令人厌烦的声音。噪音是杂乱无章的,小编查阅资料得知从环境保护的角度看,凡是能影响人类生活学习工作和休息的声音,凡是在某些场合里”不需要存在的声音“,都统称为噪声。如夜晚的汽车鸣笛,汽车的马达声,人群的嘈杂声以及各种物体碰撞发出的声响,都称之为噪声。听觉效果和声音的强弱对人体的影响 本期聚创环保为您推荐的是杭州爱华产AWA5636声级计,环境噪声的监测,是为了确保人类更好的提供生活质量的重要环节,在各大城市的繁华街道和小区,都已经有专业的在线监测设备矗立街头了。AWA5636声级计是一款便携式噪音检测设备,采用数字化和模块化设计,可根据用户的采集状况和需求进行灵活选配。仪器采用了数字检波技术,具有可靠性高稳定性能好,测量范围宽等优点,能满足民用,工业检测需要,可以广泛应用在工况企业,机关学校等需要对环境噪声测量和控制的场合。 杭州爱华AWA5636声级计以上内容由聚创环保编撰整理,转载及分享请注明出处。下一期《聚创环保小科普》为大家普及油气回收方面的文章哦,满满的干货敬请期待。
  • 我国首次在国际上实现百公里开放大气双光梳精密光谱测量
    根据中国科学院官网信息,中国科学技术大学潘建伟、窦贤康、张强和薛向辉等组成的交叉研究团队,通过发展大功率低噪声光梳,结合时间频率传递等量子精密测量技术,在国际上首次实现百公里级的开放大气双光梳光谱测量。这一技术可应用于监测大尺度范围的地球大气温室气体和污染气体,并可以扩展到卫星和地面之间的大气双光梳光谱测量,用于全球尺度的温室气体监测和精确校准。9月12日,相关研究成果在线发表在《自然-光子学》(Nature Photonics)上。资料显示,大气光谱学是研究大气化学和物理性质的关键技术,通过探讨光与大气中分子和颗粒的相互作用来研究大气问题,广泛应用于全球气候变化、碳预算评估和空气污染研究等领域。目前,大气光谱遥感使用的光栅光谱仪、外差光谱幅度计和傅里叶变换光谱仪等技术能够以不同的时间和空间分辨率提供地球大气成分的光谱学数据。然而,这些技术存在较多限制,如无法在夜间进行测量、无法同时测量多种组分等。近年来,开放大气双光梳光谱技术被证明是进行准确、连续、多气体测量的理想技术。双光梳光谱技术具有高采集速度、溯源至原子钟级别的绝对频率精度和可以同时测量多个组分等优点,在油田监测、城市车辆排放、畜牧排放测量和温室气体监测等领域应用广泛。该技术不受湍流散斑和背景噪声的影响,在原理上能够在不校准的情况下测量更长的距离,被认为是用于大气遥感的理想精密光谱工具。当前,国际上能够实现的最远的测量距离不超过20公里,只可针对工厂、牧场等小范围区域实现监测,无法应用于更大的区域如大型城市、雨林等。该团队开发出新的双基站开放大气双光梳光谱测量方案。相比于传统单基站方案,该方案无需在测量远端放置反射器,光只需要经过待测路径一次即可完成测量,从而减小了链路损耗,更适用于远距离、大尺度的测量。利用该方案,科研人员在乌鲁木齐测量得到113公里水平开放大气中水汽和二氧化碳的强度谱与相位谱。这一距离比国际上最远的测量距离高了约一个数量级。该工作创新性地融合了潘建伟、张强等前期发展的高精度自由空间时间频率传递技术且频率准确度达到10kHz,并运用自主研发的高精度反演算法,使二氧化碳反演精度在36分钟内小于0.6ppm。该研究使得双光梳光谱能够测量的大气距离从十几公里提升至一百多公里,扩大了这一技术的应用范围。同时,系统可容忍最大损耗为83dB,与中高轨星地链路损耗相当,为实现未来的星地大气双梳光谱测量奠定了基础。据悉,上述研究是量子信息科学与地球科学深度交叉融合取得的成果,基于光频梳的量子精密测量技术有望在地球科学、深空探测、环境科学和油气行业等领域得到应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制