当前位置: 仪器信息网 > 行业主题 > >

测量等离子体仪

仪器信息网测量等离子体仪专题为您提供2024年最新测量等离子体仪价格报价、厂家品牌的相关信息, 包括测量等离子体仪参数、型号等,不管是国产,还是进口品牌的测量等离子体仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测量等离子体仪相关的耗材配件、试剂标物,还有测量等离子体仪相关的最新资讯、资料,以及测量等离子体仪相关的解决方案。

测量等离子体仪相关的论坛

  • 点火测量后的等离子体火焰问题

    等离子体点然后,稳定一段时间,开始检测,检测的时候发现有时候等离子体火焰颜色发白光,有时候是红光,不知道具体影响如何?

  • 等离子体光谱仪

    等离子体光谱仪原理 当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。等离子体光谱仪特点(1) 测定每个元素可同时选用多条谱线;(2) 可在一分钟内完成70个元素的定量测定;(3) 可在一分钟内完成对未知样品中多达70多元素的定性;(4) 1mL的样品可检测所有可分析元素;(5) 扣除基体光谱干扰;(6) 全自动操作;(7) 分析精度:CV 0.5%。等离子体光谱仪应用 等离子体光谱仪的研究领域是生命科学。 等离子体光谱仪的主要用途:用于环保、地质、化工、生物、医药、食品、冶金、农业等方面样品的定性、定量分析。 等离子体光谱仪能够自动等离子激发和待机运行模式,可以节省能耗和氩气耗量。能够适应样品种类的连续变换,同时可确保对多种样品甚至快速更换样品时始终具有稳定、有效的等离子体能量。

  • 等离子体废气处理设备的放电等离子体处理

    目前,我国对废气处理的重视程度越来越高,越来越多的企业投资于等离子废气处理设备。   等离子废气处理设备工业尾气的放电等离子体处理因其自身的特点受到企业的青睐。   下面介绍了一种等离子体废气处理设备的放电等离子体处理方法。   等离子废气处理设备   等离子废气处理设备的放电等离子体处理方法是通过高压放电获得非热平衡等离子体;   产生大量的由电子产生的O、OH、N基活性粒子,破坏C-H、C-C等化学键,引起置换反应。   尾气分子中H、Cl、F等的作用,然后产生CO_2和H_2,即工业废气经排放处理以后不再对人的健康有害。   等离子废气处理设备是目前处理有害气体的有效方法之一。   世界对协同催化剂和反应器进行了大量的研究工作。   在等离子体中添加催化剂,可以提高污染物的去除效率,大大降低能耗和副产物。   世界上对这种协同催化剂的研究主要集中在金属氧化物和二氧化钛催化体系。   利用等离子体和催化反应的协同作用,提高有机废气的净化率,使能耗降低是成功的。

  • 高温等离子体和低温等离子体

    等离子体可以按温度分为高温等离子体和低温等离子体两大类。当温度高达10[sup]6[/sup]-10[sup]8[/sup]K时,所有气体的原子和分子完全离解和电离,称为高温等离子体;当温度低于10[sup]5[/sup]K时,气体部分电离,称为低温等离子体。在实际应用中又把低温等离子体分为热等离子体和冷等离子体。当气体压力在1.013X10[sup]5[/sup]帕(相当1大气压)左右,粒子密度较大,电子浓度高,平均自由程小,电子和重粒子之间碰撞频繁,电子从电场获得动能很快传递给重粒子,这样各种粒子(电子、正离子、原子、分子)的热运动能趋于相近,整个气体接进或达到热力学平衡状态,此时气体温度和电子温度基本相等,温度约为数千度到数万度,这种等离子体称为热等离子体。例如直流等离子体喷焰(DCP)和电感耦合等离子体炬(ICP)等都是热等离子体,如果放电气体压力较低,电子浓度较小,则电子和重粒子碰撞机会就少,电子从电场获得的动能不易与重粒子产生交换,它们之间动能相差较大电子平均动能可达几十电子伏,而气体温度较低,这样的等离子体处于非热力学平衡体系,叫做冷等离子体,例如格里姆辉光放电、空心阴极灯放电等。

  • 等离子体的近红外光谱

    1,测量等离子体的近红外光谱,可不可以由其光谱的中心波长计算等离子体的温度。2,假设红外光谱仪已经标定来看中心波长,红外光谱仪怎样标定?本人菜鸟,红外光谱测量不懂,感谢。

  • 【资料】电感耦合等离子体光谱仪(ICP-AES)

    电感耦合等离子体光谱仪(ICP-AES) 分析性能评价 J.M Mermet University of Lyon 里昂大学 1.ICP-AES市场 全世界每年约售销ICP光谱仪1400~1500台,粗略计,50%为顺序(扫描))型,50%为(同时)多道型.目前,全世界已经超过17,000台.主要生产厂家有Perkin-E1mer公司,Thermo Optek司,Varian公司和Jobin一Yvon/Horiba公司等。 2.通过实验对ICP一AES分析性能评价 一般用户要求通过较为简单的实验对ICP-AES性能进行评价,而这些性能可以反映分析结果的质量以及仪器系统的质量,因此可以对不同的分析仪器进行比较。 2.1等离子体的稳定性(Robustness) 等离子体的稳定性是指仪器系统在负载发生变化时,分析信号强度发生的变化的程度。负载变化主要来于基体浓度或基体本身发生的变化。可以通过MgII280nm/MgI285mn的强度比来简单计价等离子体的稳定性,这一比值在0.1~15范围内,其理论值接近12,此时等离子体处于动态平衡状态,为保证合适的操作条件,JY公司仪器的这一比值应大于6。 2.2实际分辨率(△λins) 实际分辨率可以通过以下两条窄线进行测量: Cdl228nm, BaII233nm,分辨率取决于:理论分辨率(光栅刻线数);光谱通带(线色散和狭缝宽度),光学象差。 对实际分辨率为△λins的仪器,两条强度相等的谱线,波长差为2△λins 时能够被分开。 谱线宽度范围: a.多普勒效应(Doppler effect) △λ1=0.9~7nm b.超精细结构:10~32pm c.理论上可以获得小于△λ1的实际分辨率 即 △λins〈△λ1 2.3检出限(LOD)检出限是指从空白中能确切地检测到的最低浓度,一般分两步:首先测出最小的检测信号,然后通过校正曲线将其转换成浓度。检出限降低,定量测量下限也相应降低,定量测量下限指获得期望的重现性时的最低测量浓度。检出限可以通过下式近似计算: CL=3• C• RSDB/SBR 式中:C,测量元素的浓度: RSDB,谱线背景强度的相对标准偏差; SBR,谱线信号`背景强度之比。 2.4重现性(repeatability) 可以通过测量信号(如MgI285nm)的相对标准偏差(RSD)来判断分析结果的重现性。在测量元素的纯溶液中,浓度高于100倍检出限时,最佳的ICP光谱仪系统其RSD可低达0.2%,RSD因以下几个因素而变差: a.使用高盐溶液 b.雾化不充分 c.样品导入系统本身出现干扰(如悬浮体或导入系统发生消蚀)。 2.5 实验原理 特性 诊断 元素及分析线 测量 选择性 分辨率 谱线半峰宽 重现性 信号RSD RSD长期稳定性 (4) 预热时间 稳定性 时间 RSD(信号) 等离子体 稳定性 强度比 检测限 背景 处) 信背比 最佳背景RSD3.ICP-AES仪器性能评分标准 得分诊断 谱线范围分辨率信号RSD 分辨率()预热 重现性(%RSD)预热时间()长期稳定性(%RSD)信背比()背景RSD

  • 等离子体抖动

    仪器开机点火,观察等离子体,发现等离子体抖动的厉害,通过检查泵管,清洗雾化器和雾化室等,最后恢复了正常。版友们在测样过程中有遇到等离子体抖动的情况吗?怎么处理的呢?欢迎分享!

  • 等离子体 ON 监视

    VARIAN 700系列中,在炬室中安装了一根光导纤维,用来检测等离子体。如果等离子体熄灭,计算机软件中出现 'Plasma has gone out' 提示信息,同时自动关闭RF发生器及气路。有时候软件报错提示等离子体熄灭,可以试着用酒精粘着棉签擦试下光纤,等离子体 ON 监视光纤使用,你都了解吗?

  • ICP-OES等离子体,SPARK-OES等离子体,LIBS等离子体有何异同?

    对发射光谱而言,光源的分析特性决定其分析性能(如灵敏度,线性范围,分析方法的建立等),可见光源在光谱分析中所占的地位是何等重要.ICP-OES等离子体,SPARK-OES等离子体,LIBS等离子体子这三种等离子体中或许ICP-OES及SPARK-OES等离子体研究的最为透彻,而LIBS等离子体则相对不是那么成熟,大家谈谈这三种等离子体有何异同...

  • 【原创】ICP等离子体温度到底有多高?

    [b][color=#ba4b01][size=4]ICP等离子体在相当高的温度之下工作,有资料介绍温度为6000-7000K,也有的说最高到8000K-10000K的高温,激发光源ICP等离子体温度到底有多高?用的什么方法测量的?如何验证这么高的温度?请高手出山。[/size][/color][/b]

  • ICP等离子体概念

    等离子体(plasma)一词首先由朗缪尔(Langmuir)在1929年提出。目前泛指电离的气体。等离子体与一般气体不同,他不仅含有中性原子和分子,而且含有大量的电子和离子,因而是电的良导体。因其中正电荷和负电荷相等,从整体来看是电中性的,故称等离子体。光谱分析常说的等离子体是指电离度较高的气体,其电离度约在0.1%以上。普通的化学火焰电离度很低,一般不能称为等离子体。等离子体按其温度可分为高温等离子体和低温等离子体两大类。当温度达到106-108的范围时,气体中所有分子和原子完全理解和电离。称为高温等离子体。当温度低于105时,气体仅部分电离,成为低温等离子体。作为光谱分析的ICP放电所产生的等离子体是属于低温等离子体,其最高温度不超过104K,电离度约为0.1%。在实际应用中又把低温等离子体分为热等离子体和冷等离子体。当气体在大气压力下放电,粒子(原子和分子)密度较大,电子的自由行程较短,电子和重粒子之间频繁碰撞,电子从电场获得的动能较快地传递给重粒子。这种情况下各种粒子(电子,正离子,原子和分子)的热运动动能趋于相近,整个体系接近或达到热力学平衡状态,气体温度和电子温度比较接近或相等,这种等离子体成为热等离子体。作为光谱分析光源的直流等离子体喷焰,ICP放电都是热等离子体,是在大气压力下产生的。如果放电在低气压下进行,电子密度较低,则电子和重粒子之间的碰撞机会少,电子从电场中得到的动能不易与重粒子交换,他们之间的动能相差较大,放电中气体的温度远低于电子温度,这样的等离子体处于非热力学平衡状态,或者处于非局部热力学平衡状态,叫做冷等离子体。作为光谱分析光源的辉光放电灯和空心阴极管光源等,都是冷等离子体。

  • 【讨论】等离子体应用相关仪器

    这些是不是算作等离子体还请高手指正!1、等离子体清洗机/刻蚀/灰化/减薄 通过等离子体与固体表面的相互作用,消除固体表面的有机污染物,或者与样品表面的材料反应生成相应的气体,由真空系统排出反应腔,整个过程在样品表面不产生残留物,固体如: 金属、陶瓷、玻璃、硅片等等,同时可以用等离子处理系统对样品表面进行 处理,改善样品表面的特性,如亲水/疏水特性,表面自由能,以及表面的 吸附/粘附特性等等。 2、离子溅射:氩气充入已被低真空泵抽真空的样品室里。多次充入氩气,使不需要的气体排出,特别是水蒸汽。这样,样品室内充满了尽可能多的纯的氩气。然后调节样品室内工作压力为0.05-0.1mbar,这样就可以开始溅射了。 开始溅射时,在靶(阴极)加上高压,在靶和样品台(阳极)之间产生了一个高压区。空间内的自由电子在磁场作用下进入旋转轨道,与空间内的氩原子碰撞。每次碰撞把氩原子外层中的一个电子撞出,使中性的氩原子带正电。这个雪崩效应激发了辉光放电。 带正电的氩离子被阴极吸引撞向阴极靶,撞出阴极靶上的金属原子。释放的金属原子之间以及金属原子与真空室内的其它气体分子之间的碰撞使金属原子四处发散,形成雾状。这样金属原子从各个方向撞击样品表面然后均匀地凝聚在样品表面,在即使是非常多裂缝的样品表面也能覆盖一层均匀的、有足够导电性的金属薄膜。 由于金和银原子表面的高度扩散性,它们容易在样品表面形成岛状,这样,除非金属镀层有10nm厚,否则达不到所需导电性。白金能产生最细腻的镀层。 溅射镀层的细腻程度取决于靶材、工作距离、气体压力和溅射电流以及反应持续时间3、磁控溅射:电子枪发射的电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。4、等离子切割机:等离子切割是利用高温等离子电弧的热量使工件切口处的金属  等离子切割机标准图片部份局熔化(和蒸发),并借高速等离子的动量排除熔融金属以形成切口的一种加工方法。等离子切割机配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区。

  • 【资料】-微波等离子体及其应用

    【资料】-微波等离子体及其应用

    关键词: 化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积 微波等离子体CVD法 微波等离子体热处理仪 金刚石薄膜 微波烧结 新材料 纳米催化剂 一、微波等离子体简介等离子体的研究是探索并揭示物质“第四态” ——等离子体状态下的性质特点和运行规律的一门学科。它是包含足够多的正负电荷数目近于相等的带电粒子的非凝聚系统。等离子体的研究主要分为高温等离子体和低温等离子体。高温等离子体中的粒子温度高达上千万以至上亿度,是为了使粒子有足够的能量相碰撞,达到核聚变反应。低温等离子体中的粒子温度也达上千乃至数万度,可使分子 (原子)离解、电离、化合等。可见低温等离子体温度并不低,所谓低温,仅是相对高温等离子体的高温而言。高温等离子体主要应用于能源领域的可控核聚变,低温等离子体则是应用于科学技术和工业的许多领域。高温等离子体的研究已有半个世纪的历程,现正接近聚变点火的目标;而低温等离子体的研究与应用,只是在近年来才显示出强大的生命力,并正处于蓬勃的发展时期。微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积技术原理是利用低温等离子体(非平衡等离子体)作能量源,工件置于低气压下辉光放电的阴极上,利用辉光放电(或另加发热体)使工件升温到预定的温度,然后通入适量的反应气体,气体经一系列化学反应和等离子体反应,在工件表面形成固态薄膜。它包括了化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积的一般技术,又有辉光放电的强化作用。 金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1. 在药瓶内镀上金刚石薄膜,可以避免药品在瓶内起反应,延长药品的保 全寿命; 2. 可作为计算机硬盘的保护层。目前的计算机硬盘,磁头在不用时要移到硬盘旁边的位置上,如果硬盘包有金刚石薄膜,则磁头可以始终放在硬盘上,这样就提高了效率; 3. 在切割工具上镀上金刚石薄膜,可以使工具在很长时间内保持锋利; 4. 用于制造带有极薄金刚石谐振器的扬声器; 5. 涂于计算机集成电路块,能抗辐射损坏,而一般硅集成块却易受辐射损坏。它能将工作时产生的热迅速散发掉,使集成块能排列得更紧凑些; 6. 用于分析X射线光谱的仪器,透过X射线的性能较别的材料好。 金刚石膜沉积必须要有两个条件: 1. 含碳气源的活化; 2. 在沉积气氛中存在足够数量的原子氢。 由于粒子间的碰撞,产生剧烈的气体电离,使反应气体受到活化。同时发生阴极溅射效应,为沉积薄膜提供了清洁的活性高的表面。因而整个沉积过程与仅有热激活的过程有显著不同。这两方面的作用,在提高涂层结合力,降低沉积温度,加快反应速度诸方面都创造了有利条件。 微波等离子体金刚石膜系统应由微波功率源,大功率波导元件、微波应用器及传感与控制四部分组成。应用器是针对应用试验的类型而设计,其微波功率密度按需要而设定,并按试验需要兼容各种功能,具有较强的专用性质。微波功率源、大功率波导元件及传感和控制三种类型的部件,是通用的部件,可按需要而选定。反应器必须可以抽成真空;且可置于高压。因此微波传输必须和反应器隔离开来。反应器中可以通入其他气体。下面是一个反应器图。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221201_18795_1613333_3.jpg[/img]半导体生产工艺中已经采用微波等离子体技术,进行刻蚀、溅射、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积、氧化硅片;还可用于金属、合金、非金属的表面处理;用于等离子体光谱分析,可检测十几种元素。 二、微波等离子体源 目前国内微波离子体源的研究工作,大部分在2450MHZ这个频段上进行,部分还可能采用915MHZ频段。这两个频段均采用连续波磁控管,并做成连续波功率微波源。但实际情况均具有较大的波纹因素,说得确切一些是三相全波整流或单相全波整流的波形被磁控管锐化了波纹状态。家用微波炉的电路结构实际上是可控的单相半波倍压整流电路,其波纹因素更大。 这种工作状态受电网波动的影响,平均功率不断变化,具有很大的不稳定性,造成功率密度的不确定。在微波等离子体金刚石膜制作系统要求很严格的情况下,会造成实验结果重复性不满意。因此需要稳定且纹波系数小的微波源是系统成功关键。 另外,近来微波等离子体的研究首先发现这些问题,电源的不稳定性会造成等离子体参数的变化。但用毫秒级的脉冲调制连续波磁控管,在许多实验中取得了良好的实验效果。理论分析调制通断时间的选定可以获得改善效果。 1. 物料介电损耗的正温度系数锐化了不均匀的加热效果,造成局部点的热失控现象。必要的周期停顿,利用热平衡的过程,可以缓解这些不均匀因素,抑制热失控现象的建立。 2. 避免了微波辅助催化反应过程中若干不需要副反应的累积。周期性的停顿可以避免这些副反应累积增强,停顿就是副反应的衰落,再从新开始,这样就避免了副反应的过度增长。 三、微波等离子体的应用 微波等离子体的应用技术主要用来制造特种性能优良的新材料、研制新的化学物质,加工、改造和精制材料及其表面,具有极其广泛的工业应用——从薄膜沉积、等离子体聚合、微电路制造到焊接、工具硬化、超微粉的合成、等离子体喷涂、等离子体冶金、等离子体化工、微波源等。等离子体技术已开辟的和潜在的应用领域包括:半导体集成电路及其他微电子设备的制造;工具、模具及工程金属的硬化;药品的生物相溶性,包装材料的制备;表面上防蚀及其他薄层的沉积;特殊陶瓷(包括超导材料);新的化学物质及材料的制造;金属的提炼;聚合物薄膜的印刷和制备;有害废物的处理;焊接;磁记录材料和光学波导材料;精细加工;照明及显示;电子电路及等离子体二极管开关;等离子体化工(氢等离子体裂解煤制乙炔、等离子体煤气化、等离子体裂解重烃、等离子体制炭黑、等离子体制电石等)。 微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制备纳米催化剂的研究等。 微波等离子体的应用前景广阔。来源于汇研微波

  • ICP光谱仪中等离子体焰的形成过程及原理

    ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰。 电感耦合高频等离子(ICP)光源 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP)作为原子发射光谱的激发光源始于本世纪60年代。 ICP装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27~50 MHz,最大输出功率通常是2~4kW。  感应线圈一般以圆铜管或方铜管绕成的2-5匝水冷线圈。  等离子炬管由三层同心石英管组成。外管通冷却气Ar的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入Ar气维持等离子体的作用,有时也可以不通Ar气。内层石英管内径约为1~2mm,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用Ar做工作气的优点是,Ar为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。  当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气载带试样气溶胶通过等离子体时,被后者加热至6000-7000K,并被原子化和激发产生发射光谱。  ICP焰明显地分为三个区域:焰心区、内焰区和尾焰区。  焰心区呈白色,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量。该区温度高达10000K,电子密度很高,由于黑体辐射、离子复合等产生很强的连续背景辐射。试样气溶胶通过这一区域时被预热、挥发溶剂和蒸发溶质,因此,这一区域又称为预热区。  内焰区位于焰心区上方,一般在感应圈以上10-20mm左右,略带淡蓝色,呈半透明状态。温度约为6000~8000K,是分析物原子化、激发、电离与辐射的主要区域。光谱分析就在该区域内进行,因此,该区域又称为测光区。  尾焰区在内焰区上方,无色透明,温度较低,在6000K以下,只能激发低能级的谱线。

  • 【求购】等离子体光谱诊断系统

    实验室需要直流电弧等离子体光谱诊断系统一套包括单色仪,光电倍增管,a/d相应的计算机及软件需要测量的波长范围为300~800nm联系方式qianjinxue@yahoo.com.cn

  • 关于稳定的等离子体火焰

    电感耦合高频等离子(ICP)光源  等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP)作为原子发射光谱的激发光源始于本世纪60年代。 ICP装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27-50 MHz,最大输出功率通常是2-4kW。  感应线圈一般以圆铜管或方铜管绕成的2-5匝水冷线圈。  等离子炬管由三层同心石英管组成。外管通冷却气Ar的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入Ar气维持等离子体的作用,有时也可以不通Ar气。内层石英管内径约为1-2mm,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用Ar做工作气的优点是,Ar为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。  当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气载带试样气溶胶通过等离子体时,被后者加热至6000-7000K,并被原子化和激发产生发射光谱。

  • 【求购】等离子体光谱诊断系统

    实验室需要直流电弧等离子体光谱诊断系统一套包括单色仪,光电倍增管,a/d相应的计算机及软件需要测量的波长范围为300~800nm联系方式qianjinxue@yahoo.com.cn

  • 电感耦合等离子体发射光谱仪的应用

    电感耦合等离子体发射光谱仪的应用

    [align=center][font='宋体'][size=16px]电感耦合等离子体发射光谱仪的应用[/size][/font][/align][font='宋体'][size=16px]中广测配备了电感耦合等离子体发射光谱仪(ICP-OES),配有CMOS固态检测器,具有真实同步直读式测量检测,全谱一次曝光同时读取的功能,读取速度是传统CCD检测器速度的10倍。ICP-OES作为无机分析的主要手段之一,可测定元素周期表中硫、磷、硅等73种元素金属和非金属元素,可用于医药、食品、化妆品、化工产品、肥料等各类样品中常量、微量无机元素的快速定性分析及定量分析。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271130132059_3999_2862401_3.jpeg[/img][/align][align=center][font='宋体'][size=16px][color=#000000]电感耦合等离子体发射光谱仪[/color][/size][/font][/align][font='宋体'][size=16px]一、仪器信息[/size][/font][font='宋体'][size=16px]1.仪器名称:电感耦合等离子体发射光谱仪[/size][/font][font='宋体'][size=16px]2.英文名称:Inductively Coupled Plasma Optical Emission Spectrometer[/size][/font][font='宋体'][size=16px]3.生产制造商:美国利曼公司[/size][/font][font='宋体'][size=16px]4.型号:Prodigy7[/size][/font][font='宋体'][size=16px]二、主要技术参数[/size][/font][font='宋体'][size=16px]1. 波长范围:165-900nm;[/size][/font][font='宋体'][size=16px]2.光学分辨率:≤0.007nm (@200nm);[/size][/font][font='宋体'][size=16px]3.重复性:Zn/Ni/Mn/Cr/Cu/Ba小于1.5%;[/size][/font][font='宋体'][size=16px]4.稳定性:Zn/Ni/Mn/Cr/Cu/Ba小于2.0%;[/size][/font][font='宋体'][size=16px]5.等离子体观测方式:具备水平和垂直两种观测方式;[/size][/font][font='宋体'][size=16px]6.检测器:CMOS固态检测器,具有真实同步直读式测量检测,全谱一次曝光同时读取。[/size][/font][font='宋体'][size=16px]三、应用领域[/size][/font][font='宋体'][size=16px]用于医药、食品、化妆品、化工产品、肥料等领域。[/size][/font][font='宋体'][size=16px]四、服务范围[/size][/font][font='宋体'][size=16px]1.各类样品中常量、微量无机元素分析检测[/size][/font][font='宋体'][size=16px]2.样品中常量、微量无机元素含量测定的方法开发与验证[/size][/font][font='宋体'][size=16px]五、应用案例[/size][/font][font='宋体'][size=16px]肥料中的矿物元素对植物的生长有重要的意义,根据NY 1429-2010 含氨基酸水溶肥料标准要求,采用ICP-OES测定了含氨基酸水溶肥料(微量元素型)中的微量元素,结果如下:[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271130134300_1550_2862401_3.png[/img][/align]

  • 你所了解的等离子体?

    所谓等离子体是1-高温气体;2-离子和原子云;3-整个等离子体不呈电中性;4-RF发生器使电感线圈发生高频震荡磁场;5-RF发生器能量耦合到线圈中;6-高温达10000K。你觉得上述说法哪些正确,哪些错误?欢迎解答

  • 等离子体的危害,你了解吗?

    [list=1][*]离子体 温度极高(大约10,000 K) 并辐射危险性射频(RF)和紫外能量。工作线圈工作在 1500 V RMS电压及40 MHz 频率状态下。RF和UV的泄漏会严重伤害皮肤及眼睛,靠近等离子体会使皮肤严重烧伤,等离子体放电会将人体击出相当远一段距离并可能导致死亡、严重电击或皮肤深层烧伤。等离子体的危害,你了解吗?[/list]

  • 电感耦合等离子体光谱仪和光电直读光谱仪的区别

    光谱仪的种类多,基体也是,有铁基、铜基、钛基和镍基。可根据实际的需求来进行选择。关于[url=http://www.huaketiancheng.com/][b]电感耦合等离子体光谱仪[/b][/url]和光电直读光谱仪的区别,主要有以下几点。  直读光谱是直接检测 而ICP是需要进行前处理,将样品处理成溶液再进样。从使用角度来说,光电直读光谱仪便捷多了。但是如果样品种类多,配起来就要很多通道了,价格会很高,用ICP就没有通道一说了,但使用起来要费时费事,如果样品不多,而且做样的时候对时间也没有太高要求,那可偏向选择电感耦合等离子体光谱仪。  另外,直读光谱仪是以基体为内标,其实就是为了便于校正系统误差的影响,标准曲线可以不用每次都做,只是每次用之前标准化一下就可以了,用的是CCD检测器。电感耦合等离子体光谱仪是液体进样,用的是CID检测器,一般用外标发测量。

  • ICP光谱议中等离子体焰的形成过程及原理

    ICP光谱议中等离子体焰的形成过程及原理ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰. 电感耦合高频等离子(ICP)光源 等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP)作为原子发射光谱的激发光源始于本世纪60年代。ICP装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27-50 MHz,最大输出功率通常是2-4kW。  感应线圈一般以圆铜管或方铜管绕成的2-5匝水冷线圈。  等离子炬管由三层同心石英管组成。外管通冷却气Ar的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入Ar气维持等离子体的作用,有时也可以不通Ar气。内层石英管内径约为1-2mm,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用Ar做工作气的优点是,Ar为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。  当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气载带试样气溶胶通过等离子体时,被后者加热至6000-7000K,并被原子化和激发产生发射光谱。  ICP焰明显地分为三个区域:焰心区、内焰区和尾焰区。  焰心区呈白色,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量。该区温度高达10000K,电子密度很高,由于黑体辐射、离子复合等产生很强的连续背景辐射。试样气溶胶通过这一区域时被预热、挥发溶剂和蒸发溶质,因此,这一区域又称为预热区。  内焰区位于焰心区上方,一般在感应圈以上10-20mm左右,略带淡蓝色,呈半透明状态。温度约为6000-8000K,是分析物原子化、激发、电离与辐射的主要区域。光谱分析就在该区域内进行,因此,该区域又称为测光区。  尾焰区在内焰区上方,无色透明,温度较低,在6000K以下,只能激发低能级的谱线。

  • 等离子体尾焰切割斜了???

    仪器使用过程中提示尾焰切割气关闭,压力不足60,然后等离子体熄灭。检查各管路正常,压力正常,再次点火成功,观察等离子体,尾部切割线呈现斜向右上方。并非之前竖直的平整状态。问题在哪里?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制