当前位置: 仪器信息网 > 行业主题 > >

差热扫描分析仪

仪器信息网差热扫描分析仪专题为您提供2024年最新差热扫描分析仪价格报价、厂家品牌的相关信息, 包括差热扫描分析仪参数、型号等,不管是国产,还是进口品牌的差热扫描分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合差热扫描分析仪相关的耗材配件、试剂标物,还有差热扫描分析仪相关的最新资讯、资料,以及差热扫描分析仪相关的解决方案。

差热扫描分析仪相关的论坛

  • TG热重分析仪 热重分析仪TGA,DSC差示热扫描仪测试标准及测试方法

    TG热重分析仪 热重分析仪TGA,DSC差示热扫描仪测试标准及测试方法http://www.faruiyiqi.com/upfile/article/20141018156682889985.jpg热重分析仪FR-TGA-101热重分析仪http://www.faruiyiqi.com/images/home.gif 产品详细介绍: 热重分析法(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。测量与研究材料的如下特性:热稳定性、分解过程、吸附与解吸、氧化与还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学。技术参数:1. 温度范围: 室温~1150℃2. 温度分辨率: 0.1℃3. 温度波动: ±0.1℃4. 升温速率: 1~80℃/min5. 温控方式: 升温、恒温、降温6. 冷却时间: 15min (1000℃…100℃)7. 天平测量范围: 1mg~2g ,可扩展至30g8. 解析度: 0.1μg9. 恒温时间: 0~300min 任意设定10.显示方式: 汉字大屏液晶显示11.气氛装置: 内置气体流量计,包含两路气体切换和流量大小控制(气氛:惰性、氧化性、还原性、静态、动态)12.软件: 智能软件可自动记录TG曲线进行数据处理、打印实验报表13.数据接口: RSS-232接口,专用软件(软件不定期免费升级)14.电源: AC220V 50HzANSI/ASTM D2288-2001 增塑剂受热重量损耗测试方法(X-15-373-1) Test Method for Weight Loss of Plasticizers on Heating (X-15-373-1) (08.02)ANSI/ASTM D6375-2009 用热重分析仪(TGA)测定润滑油蒸发损耗的试验方法(Noack法) Test Method for Evaporation Loss of Lubricating Oils by Thermogravimetric Analyzer (TGA) (Noack Method)ASTM D6382-1999(2005) 屋顶和防水屋顶膜材料的热重力和动态机械分析的标准操作规程 Standard Practice for Dynamic Mechanical Analysis and Thermogravimetry of Roofing and Waterproofing Membrane MaterialASTM E2402-2005 热重分析仪的质量损耗和剩余量测量验证的标准试验方法 Standard Test Method for Mass Loss and Residue Measurement Validation of Thermogravimetric AnalyzersASTM E2551-2007 和热重分析仪一起使用的湿度发生器湿度校正(或构型)的标准试验方法 Standard Test Method for Humidity Calibration (or Conformation) of Humidity Generators for Use with Thermogravimetric AnalyzersASTM E2550-2007 热重分析法测定热稳定性的标准试验方法 Standard Test Method for Thermal Stability by ThermogravimetryASTM E1641-2007 用热重分析法的分解动力学用标准试验方法 Standard Test Method for Decomposition Kinetics by ThermogravimetryASTM E2043-1999(2006) 热重分析法测量农业辅助剂溶液中不挥发物质的标准试验方法 Standard Test Method for Nonvolatile Matter of Agricultural Adjuvant Solutions by ThermogravimetryBS EN 60811-4-1-2004 电缆和光缆的绝缘和护套材料.通用试验方法.聚丙烯和聚丙烯化合物专用方法.抗环境应力致裂.熔化流动指数测量 Insulating and sheathing materials of electric and optical cables - Common test methods - Methods specific to polypropylene and polypropylene compounds - Resistance to environmental stress cracking - Measurement of the melt flow index - Carbon black and/or mineral filter content measurement in PE by direct combustion - Measurement of carbon black content by TGA - Assessment of carbon black dispersion in polyethylene using a microscopeBS ISO 12989***** 铝生产用碳素材料.焙烧阳极和侧壁块.空气反应性的测定.热重分析法 Carbonaceous materials used in the production of aluminium - Baked anodes and sidewall blocks - Determination of the reactivity to air - Thermogravimetric methodBS EN ISO 11358-1997 塑料.聚合物的热重分析法(TG).一般原理 Plastics - Thermogravimetry (TG) of polymers - General principlesBS ISO 11358-*****塑料.高聚物的热重分析法(TG).活化能测定 Plastics - Thermographimetry (TG) of polymers - Determination of activation energyBS ISO 21870-2005 橡胶配合剂.炭黑.热重分析法测定加热的高温损失 Rubber compounding ingredients - Carbon black - Determination of high-temperature loss on heating by thermogravimetryBS ISO 9924-3-2009 橡胶和橡胶产品.利用热重量分析法测定硫化橡胶和混炼胶料的成分.提取后的烃类橡胶,卤化橡胶和聚硅氧烷橡胶 Rubber and rubber products - Determination of the composition of vulcanizates and uncured compounds by thermogravimetry - Hydrocarbon rubbers, halogenated rubbers and polysiloxane rubbers after extractionDIN EN ISO 11358-1997 塑料.聚合物的热重测定.一般原理 Plastics - Thermogravimetry (TG) of polymers - General principles (ISO 11358:1997); German version EN ISO 11358:1997IEC 60811-4-1-2004 电缆和光缆绝缘和护套材料的通用试验方法.第4-1部分:聚乙烯和聚丙烯化合物专用方法.抗环境应力致裂.熔化流 Insulating and sheathing materials of electric and optical cables - Common test methods - Part 4-1: Methods specific to polyethylene and polypropylene compounds - Resistance to environmental stress c

  • 选购热分析仪或差式扫描热量计(DSC)

    本人欲选购一台热分析仪或差式扫描热量计(DSC),用于测量聚乙烯(PE)原料及产品的氧化诱导期,因本人不懂这方面测试,希望有熟悉相关设备的朋友帮忙。也希望设备厂家介绍或寄资料并报价。E-mail:xatwa@sohu.com

  • DSC差热扫描量热仪产品介绍与技术交流

    DSC差热扫描量热仪产品介绍与技术交流

    [color=#565656]2018年上海菁仪化工材料有限公司对原有DSC-513升温扫描型差热扫描量热仪做的全新调整,对炉体采用一体成型技术,多层炉盖技术,是炉体温度恒定,温度波动小,温度精度可以精确到正负0.1度,目前在国内同内产品中采用一体多层炉腔精密控温技术。对改进型DSC523[color=#565656]差热扫描量热仪[/color]采用水循环制冷系统,可以从0度-600-0度,完成升温扫描与降温扫描曲线,可以满足大部分用户的实验需求,降低实验与采购成本。[/color][color=#565656]下面直接上图,欢迎技术同行等老师,指导吐槽。技术交流QQ:693302425,邮箱:kety121@163.com,谢谢![/color][color=#565656][img=,633,471]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111446_8250_3360728_3.jpg!w633x471.jpg[/img][/color][color=#565656][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111451_4358_3360728_3.jpg!w690x517.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111451_136_3360728_3.jpg!w690x517.jpg[/img][img=,397,232]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111451_2975_3360728_3.jpg!w397x232.jpg[/img][/color][color=#565656][img=,690,331]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111459_2484_3360728_3.jpg!w690x331.jpg[/img][img=,690,349]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111459_5070_3360728_3.jpg!w690x349.jpg[/img][/color][color=#565656]DSC差热扫描量热仪应用介绍:[/color][color=#565656]DSC[/color][color=#565656]测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性:如玻璃化转变温度。冷结晶、相转变、熔融、结晶、热稳定性、固化[/color][color=#565656]/[/color][color=#565656]交联、氧化诱导期等,都是[/color][color=#565656]DSC[/color][color=#565656]的研发领域。[/color][color=#565656] [/color][b][color=#565656]主要特点[/color][color=#565656]:[/color][/b][color=#565656]1.[/color][color=#565656]全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性[/color][color=#565656][/color][color=#565656]2.[/color][color=#565656]数字式气体质量流量计,精确控制吹扫气体流量,数据直接记录在数据库中[/color][color=#565656]3.[/color][color=#565656]仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便[/color][color=#565656][/color][b][color=#565656]附产品技术资料,如下:[/color][color=#565656]DSC-513[/color][color=#565656]技术参数[/color][color=#565656]:[/color][/b] [table=359][tr][td][color=#222222]温度范围[/color][/td][td][color=#222222]室温~800℃[/color][/td][/tr][tr][td][color=#222222]量程[/color][/td][td][color=#222222]0[/color][color=#222222]~±500mW[/color][/td][/tr][tr][td][color=#222222]升温速率[/color][/td][td][color=#222222]1~80[/color][color=#222222]℃/min[/color][/td][/tr][tr][td][color=#222222]降温速率[/color][/td][td][color=#222222]/[/color][/td][/tr][tr][td][color=#222222]曲线扫描[/color][/td][td][color=#222222]升温扫描[/color][/td][/tr][tr][td][color=#222222]温度分辨率[/color][/td][td][color=#222222]0.1[/color][color=#222222]℃[/color][/td][/tr][tr][td][color=#222222]温度灵敏度[/color][/td][td][color=#222222]0.1[/color][color=#222222]℃[/color][/td][/tr][tr][td][color=#222222]DSC[/color][color=#222222]灵敏度[/color][/td][td][color=#222222]0.1uW[/color][/td][/tr][tr][td][color=#222222]重复性偏差[/color][/td][td][color=#222222]±1%[/color][/td][/tr][tr][td][color=#222222]控温方式[/color][/td][td][color=#222222]升温、恒温(全程序自动控制)[/color][/td][/tr][tr][td][color=#222222]炉体结构[/color][/td][td][color=#222222]专用陶瓷炉体[/color][/td][/tr][tr][td][color=#222222]优势[/color][/td][td][color=#222222]性价比最高,适用范围广,国内最早[/color][/td][/tr][tr][td][color=#222222]冷却方式[/color][/td][td][color=#222222]风冷[/color][/td][/tr][tr][td][color=#222222]流量计[/color][/td][td][color=#222222]浮子式[/color][/td][/tr][/table][b][color=#565656]DSC-523[/color][color=#565656]技术参数[/color][color=#565656]:[/color][/b] [table=341][tr][td][color=#222222]温度范围[/color][/td][td][color=#222222]室温~600℃~室温 [/color][/td][/tr][tr][td][color=#222222]量程[/color][/td][td][color=#222222]0[/color][color=#222222]~±500mW[/color][/td][/tr][tr][td][color=#222222]升温速率[/color][/td][td][color=#222222]1~80[/color][color=#222222]℃/min[/color][/td][/tr][tr][td][color=#222222]降温速率[/color][/td][td][color=#222222]5~30[/color][color=#222222]℃/min [/color][/td][/tr][tr][td][color=#222222]曲线扫描[/color][/td][td][color=#222222]升温扫描&降温扫描[/color][/td][/tr][tr][td][color=#222222]温度分辨率[/color][/td][td][color=#222222]0.1[/color][color=#222222]℃[/color][/td][/tr][tr][td][color=#222222]温度灵敏度[/color][/td][td][color=#222222]0.1[/color][color=#222222]℃[/color][/td][/tr][tr][td][color=#222222]DSC[/color][color=#222222]灵敏度[/color][/td][td][color=#222222]0.1uW[/color][/td][/tr][tr][td][color=#222222]重复性偏差[/color][/td][td][color=#222222]优于1%[/color][/td][/tr][tr][td][color=#222222]控温方式[/color][/td][td][color=#222222]升温、恒温(全程序自动控制)[/color][/td][/tr][tr][td][color=#222222]炉体结构[/color][/td][td][color=#222222]专用陶瓷炉体[/color][/td][/tr][tr][td][color=#222222]优势[/color][/td][td][color=#222222]降温速率可控、温度控制精准[/color][/td][/tr][tr][td][color=#222222]冷却方式[/color][/td][td][color=#222222]风冷[/color][/td][/tr][tr][td][color=#222222]流量计[/color][/td][td][color=#222222]浮子式[/color][/td][/tr][/table][b][color=#565656]DSC-533[/color][color=#565656]技术参数[/color][color=#565656]:[/color][/b] [table=405][tr][td][color=#222222]温度范围[/color][/td][td][color=#222222]0[/color][color=#222222]℃~550℃~0℃[/color][/td][/tr][tr][td][color=#222222]量程[/color][/td][td][color=#222222]0[/color][color=#222222]~±500mW[/color][/td][/tr][tr][td][color=#222222]升温速率[/color][/td][td][color=#222222]0.1~100[/color][color=#222222]℃/min[/color][/td][/tr][tr][td][color=#222222]降温速率[/color][/td][td][color=#222222]1~30[/color][color=#222222]℃/min [/color][/td][/tr][tr][td][color=#222222]曲线扫描[/color][/td][td][color=#222222]升温扫描&降温扫描[/color][/td][/tr][tr][td][color=#222222]温度分辨率[/color][/td][td][color=#222222]0.01[/color][color=#222222]℃[/color][/td][/tr][tr][td][color=#222222]温度灵敏度[/color][/td][td][color=#222222]0.01[/color][color=#222222]℃[/color][/td][/tr][tr][td][color=#222222]DSC[/color][color=#222222]灵敏度[/color][/td][td][color=#222222]0.01uW[/color][/td][/tr][tr][td][color=#222222]重复性偏差[/color][/td][td][color=#222222]优于1%[/color][/td][/tr][tr][td][color=#222222]控温方式[/color][/td][td][color=#222222]升温、恒温(全程序自动控制)[/color][/td][/tr][tr][td][color=#222222]炉体结构[/color][/td][td][color=#222222]轻质新型合金炉体[/color][/td][/tr][tr][td][color=#222222]优势[/color][/td][td][color=#222222]基线更平稳、DSC灵敏度更高[/color][/td][/tr][tr][td][color=#222222]冷却方式[/color][/td][td][color=#222222]半导体制冷[/color][/td][/tr][tr][td][color=#222222]流量计[/color][/td][td][color=#222222]质量流量计[/color][/td][/tr][/table][b][color=#565656]DSC-713[/color][color=#565656]技术参数[/color][color=#565656]:[/color][/b][table=405][tr][td][color=#222222]温度范围[/color][/td][td][color=#222222](-100[/color][color=#222222]℃) ~600℃~ (-100℃) [/color][/td][/tr][tr][td][color=#222222]量程[/color][/td][td][color=#222222]0[/color][color=#222222]~±500mW[/color][/td][/tr][tr][td][color=#222222]升温速率[/color][/td][td][color=#222222]0.1~100[/color][color=#222222]℃/min[/color][/td][/tr][tr][td][color=#222222]降温速率[/color][/td][td][color=#222222]1~20[/color][color=#222222]℃/min [/color][color=#222222] [/color][/td][/tr][tr][td][color=#222222]曲线扫描[/color][/td][td][color=#222222]升温扫描&降温扫描[/color][/td][/tr][tr][td][color=#222222]温度分辨率[/color][/td][td][color=#222222]0.01[/color][color=#222222]℃[/color][/td][/tr][tr][td][color=#222222]温度灵敏度[/color][/td][td][color=#222222]0.01[/color][color=#222222]℃[/color][/td][/tr][tr][td][color=#222222]DSC[/color][color=#222222]灵敏度[/color][/td][td][color=#222222]0.01uW[/color][/td][/tr][tr][td][color=#222222]重复性偏差[/color][/td][td][color=#222222]优于1%[/color][/td][/tr][tr][td][color=#222222]控温方式[/color][/td][td][color=#222222]升温、恒温、降温(全程序自动控制)[/color][/td][/tr][tr][td][color=#222222]炉体结构[/color][/td][td][color=#222222]轻质新型合金炉体[/color][/td][/tr][tr][td][color=#222222]气氛控制[/color][/td][td][color=#222222]仪器自动切换[/color][/td][/tr][tr][td][color=#222222]冷却方式[/color][/td][td][color=#222222]液氮制冷[/color][/td][/tr][tr][td][color=#222222]参数标准: [/color][/td][td][color=#222222]配有标准物质,带有一键校准功能,用户可自行校正温度和热焓[/color][/td][/tr][/table]顺便对上海菁仪化工材料有限公司做个介绍,上海菁仪化工材料有限公司专业生产销售DSC差示扫描量热仪、DTA差热分析仪、TGA热重分析仪等各种热分析仪专用的氧化铝、氧化锆、金属铝、铂金等材质坩埚。坩埚外形尺寸为直径2-100MM、高度2.5-140MM的各种规格,最小壁厚可达到0.1-0.3MM,品种更齐全,坩埚可适配于德国林塞斯Linseis、美国PE、美国TA、德国Netzsch、瑞士Mettler、法国塞塔拉姆Setaram、日本岛津Shimadzu、日本理学Rigaku、日本精工SII、德国布鲁克AXS等公司生产的热分析仪器,并提供来样来图加工定制服务。QQ:2050961678 tel:400-617-6588,17091927173。[img=,281,281]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111520_9751_3360728_3.jpg!w281x281.jpg[/img][img=,280,249]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111520_2837_3360728_3.jpg!w280x249.jpg[/img][img=,281,278]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111520_9784_3360728_3.jpg!w281x278.jpg[/img][img=,283,251]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111520_7898_3360728_3.jpg!w283x251.jpg[/img][img=,277,249]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111520_6852_3360728_3.jpg!w277x249.jpg[/img][img=,285,278]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111520_7264_3360728_3.jpg!w285x278.jpg[/img][img=,301,226]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111521_8757_3360728_3.jpg!w301x226.jpg[/img][img=,301,226]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111521_4331_3360728_3.jpg!w301x226.jpg[/img][img=,301,225]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111521_4168_3360728_3.jpg!w301x225.jpg[/img][img=,299,226]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111521_5837_3360728_3.jpg!w299x226.jpg[/img][img=,301,226]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111521_5314_3360728_3.jpg!w301x226.jpg[/img][img=,300,225]http://ng1.17img.cn/bbsfiles/images/2018/01/201801111521_2794_3360728_3.jpg!w300x225.jpg[/img]

  • 请教各位老师DSC与差热-热重分析仪结果不一致?

    请教各位老师DSC与差热-热重分析仪结果不一致?

    我的样品在升温过程中会脱水,脱水后会形成氧化物,中间可能有相的变化或者结晶。我之前在差热-热重分析仪上面测试了样品,在408℃会有一个结晶峰,在DSC上408℃左右也出现了峰。但是最近我的样品再次用DSC测试时发现408℃的峰消失了,反而在560℃出峰,我推测是不是我样品放久了变质,就新制了一个,发现测出来的也是这种情况。这就跟差热-热重分析结果相矛盾。请问还有什么原因会引起这种情况呢?老师也把DSC做了基线,是对的,还做了个锌在400多度有相变峰,也是出来的,说明机器没问题。DSC是耐驰204F1,用的铝坩埚,打孔,氮气吹扫。升温速率10K/min。第一个图是最近的两个样品DSC第二个图黑线是较早前样品的DSC,圈中为结晶峰第三个图是较早前样品的差热-热重图。http://ng1.17img.cn/bbsfiles/images/2014/07/201407191130_507269_2698172_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407191131_507270_2698172_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407191131_507271_2698172_3.jpg

  • 差示扫描量热DSC技术简介

    热分析法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=29178]差示扫描量热DSC技术简介[/url]

  • 【原创大赛】差热扫描量热仪用温差传感器国内外现状

    【原创大赛】差热扫描量热仪用温差传感器国内外现状

    1. 前言 热分析方法作为仪器分析方法之一,它与色谱法、光谱法、质谱法、波谱法、能谱法、电子显微镜法等相互并列和互为补充的一种仪器分析方法。 热分析技术是在各种程序温度控制下测量物质的物理性质随温度的变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,由此进一步研究物质的结构和性能之间关系,研究反应规律,指定工艺条件等。 热分析仪器几乎应用在所有行业,热分析仪器厂商众多。国外主要有瑞士梅特勒-托利多、美国TA、德国耐驰、日本岛津、美国珀金埃尔默、法国塞塔拉姆、英国马尔文、德国林赛斯、英国赫尔、日本岛津、日本日立和韩国新科等众多著名热分析仪器厂商和品牌。国内主要有北京恒久、天美科技、南京大展和上海盈诺等少数几家公司。无论从公司的数量、体量、技术水平和产品种类上来说,国内与国外都存在巨大差距。国内热分析仪器市场大部分被国外品牌把持,国产仪器处于市场的低端末梢,绝大部分国产热分析仪器的售价只有国外仪器的一半甚至更低,基本都在五万左右不超过10万,绝大多数都是低价低质仪器。而且因为严重缺少技术研发能力和技术积累,特别是缺少核心技术和核心器件的掌握,国产热分析仪器的市场占有率正在逐步萎缩。2. 温差传感器技术发展概述 热分析仪器测试的基本原理是被测试样在升温、降温或恒温过程中测量被测试样和参比试样上热流的流入或流出量随温度的变化关系。这种代表试样吸热和放热过程所流入和流出的热流量一般都在毫瓦或微瓦量级,这就需要采用温差传感器进行测量,因此温差传感器是热分析测量的核心技术。理想的热分析仪器用温差传感器要求具有高灵敏度、快速响应时间和绝对平直的基线。 温差传感器作为差热分析仪(DTA)、差示扫描量热仪(DSC)、量热仪等多种热分析仪器的核心部件,而这这些热分析仪器由于其用途广泛几乎占有三分之一的热分析仪器市场份额,因此对温差传感器的开发是热分析仪器厂商的研发重点。20世纪70年代末,美国珀金埃尔默公司首次采用微型计算机生产出全计算机自动测控的热分析仪器,自此热分析仪器用温差传感器的技术发展经历了四个技术发展时代: 1980年~1989年:第一代经典温差传感器 1990年~2004年:第二代改进型温差传感器 2005年~2011年:第三代高灵敏度温差传感器 2012年至今:第四代芯片型温差传感器 第三代和第四代传感器都采用了各种形式的多对热电偶温差测量方式,它们的出现不仅仅进一步提高了灵敏度、响应速度和测量准确性,重要的是灵敏度和升降温速度提高后大大拓宽了热分析仪器的应用领域,如制药、医疗、法医学、能源燃料等领域中的微克量级样品的分析。在温差传感器发展的同时,也涌现出其它提高测量准确性方面的技术改进。2.1. 第一代经典温差传感器 如图 2-1所示,第一代经典温差传感器是分别用独立热电偶直接测量和参比物试样温度,那么有效热流可以按照下式计算获得。 http://ng1.17img.cn/bbsfiles/images/2016/09/201609041038_608277_3384_3.gif 式中: Rth表示传感器热阻,ΔTSR 表示试样与参比物之间的温度差, dq/dt表示试样与参比物之间的热流差以及进出试样的热量。 在第一代温差传感器测量公式中,是假设了传感器热阻和试样一侧加热炉与参比物一侧加热炉的热容完全对称和相同(即R=RS=RR和CR=CS),并假设试样与参比物之间的温差近似为0(基线 dΔT/dt≈0)。 这些假设成立的前提是温差传感器要温度均匀,而传感器实际上存在严重的温度梯度,这会导致基线远偏离0使得测量误差较大。http://ng1.17img.cn/bbsfiles/images/2016/09/201609041047_608278_3384_3.gif图 2-1 第一代经典温差传感器示意图 第一代温差传感器基本都是采用一对热电偶形式,如图 2-2所示,利用康铜合金的热电性质使哑铃型康铜片即做试样承载台又做温差测量,目前国内外热分析仪器中大多数温差传感器还是采用这种结构。 http://ng1.17img.cn/bbsfiles/images/2016/09/201609041048_608279_3384_3.gif图 2-2 哑铃型康铜片第一代温差传感器2.2. 第二代改进型温差传感器 如图 2-3所示,在第二代改进型温差传感器中通过增加一个附加位置来进行温度测量,即单点温度 测量。通过这个改进,也可以进行热阻和热容测量,但计算公式则变化为:http://ng1.17img.cn/bbsfiles/images/2016/09/201609041050_608280_3384_3.gif 式中: ΔT表示试样与参比物之间的温度差TS-TR,RS 和RR 、 CS和CR 分别表示试样和参比物的热阻和热容。http://ng1.17img.cn/bbsfiles/images/2016/09/201609041053_608281_3384_3.gif 图 2-3 第二代改进型温差传感器示意图 这个改进后的计算公式也是基于温差传感器的温度均匀,而实际上这个假设只能在等温条件下才能近似满足。由于在不同加热速率时温度梯度变化剧烈,限制了采用数学修正测试误差的可能性。 如图 2-4所示,日本岛津公司生产的热分析仪器配备的就是第二代温差传感器,其中采用三对热电偶相互反向串联后分别放在试样支架底部和参比物支架底部以提高信噪比。http://ng1.17img.cn/bbsfiles/images/2016/09/201609041054_608282_3384_3.gif图 2-4 日立公司第二代改进型温差传感器2.3. 第三代高灵敏度温差传感器 如图 2-5所示,第三代温差传感器是单独测量试样端和参比物端热流。在每个端部都布置了一组环状热电偶测温点,外环热电偶测温点测量的是传感器温度,内环测温点测量的是试样或参比物温度。http://ng1.17img.cn/bbsfiles/images/2016/09/201609041056_608283_3384_3.gif图 2-5 第三代高灵敏温差传感器示意图 这种结构热电偶测温输出可以用下式描述:http://ng1.17img.cn/bbsfiles/images/2016/09/201609041057_608284_3384_3.gif 式中: ΔTS0和ΔTR0分别表示试样与传感器、参比物与传感器之间的温度差。 如果假设温差传感器采用了100对热电偶,相应的N=25,这代表对传感器温度 进行了25次测量。这样第三代温差传感器就不再要求传感器温度具有一定均匀性,与前两代温差传感器相比显著提高了测量准确性。 国际上有多家公司曾致力于第三代温差传感器的,如瑞士梅特勒公司专利US 5033866,美国TA公司专利US 5288147、US 6431747和US 6488406,但这些都由于实现工艺复杂都没有形成最终产品。http://ng1.17img.cn/bbsfiles/i

  • 【网络会议】:2015年5月28日 DSC(差示扫描量热仪)曲线解析

    【网络会议】:2015年5月28日 DSC(差示扫描量热仪)曲线解析

    【网络会议】:DSC(差示扫描量热仪)曲线解析【讲座时间】:2015年05月28日 14:00【主讲人】:范玲婷(现任梅特勒-托利多热分析仪器部技术应用顾问,长期从事热分析仪器的应用研究工作,有丰富的DSC、TGA等热分析仪器的实践经验。)【会议介绍】 DSC(差示扫描量热仪)作为一种最常用的热分析仪器,在各个行业的基础测试中扮演着重要的角色。 在本次在线技术交流讲座中,我们将讨论一些常见的DSC曲线的分析,并对常见的热效应进行总结,同时会介绍DSC曲线数据处理的技巧和研究方法。 讲座纲要: 1)17种 DSC 升温曲线的解释; 2)DSC 曲线常见热效应的总结,如熔融和结晶的各种情形,单/双向固固转变,伴随失重的转变和台阶式转变等; 3)DSC 等温曲线的解释; 4)DSC 曲线的假象及基线的选择; 5)DSC 曲线的数据处理 6)DSC 测试常用的研究方法,如通过两次升温测试消除热历史,通过升降温分离熔融与玻璃化转变。 -------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年05月28日 12:004、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/14265、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2015/04/201504071009_540886_2507958_3.jpg

  • 差示扫描量热法(DSC)在胶粘剂和涂料行业的应用

    差示扫描量热法(DSC)是在程序控温条件下,测量在升温、降温或恒温过程中输入到试样和参比物的热流量差或功率差与温度或时间的关系。提供物理、化学变化过程中有关的吸热、放热、热容变化等定量或定性的信息。 动态零位平衡原理:样品与参比物温度,不论样品是吸热还是放热,两者的温度差都趋向零。DSC测定的是维持样品与参比物处于相同温度所需要的能量差,反映了样品热焓的变化。 差示扫描量热法(DSC)广泛应用于塑料、橡胶、涂料、胶粘剂、医药、石油化工等不同领域,主要用于高分子材料的定性、定量分析,包括测试熔点、玻璃化转变温度、结晶度、熔融热、结晶热、纯度、反应动力学参数、比热、相转变温度、不同材料的相容性等。 根据DSC曲线,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、结晶度以及样品纯度等。 各种介绍差示扫描量热法(DSC)原理的文章有很多,大家可以通过各种方法轻易获取。本文主要罗列一下差示扫描量热法(DSC)在胶粘剂和涂料行业的实际应用: 测量固化时间(固化速度):利用等温固化曲线,在特定温度下测定反应放热结束时间。选定固化温度:在程序升温条件下,确定最佳固化温度及固化条件。测量固化反应放热:测定固化反应放热量,可以指导配方设计。了解特定温度下固化反应速率:在ΔH-T曲线上,某点的的斜率可以清晰反映特定温度下的固化反应速率,可以指导配方设计。固化度(固化转化率)的测量:根据某个特定条件下的放热量和总放热量来计算固化度,对于固化体系及固化条件的选择有参考作用。产品质量一致性检验:将相同配方不同批次的产品DSC指纹图谱对比,容易发现产品质量的波动,有利于监控产品的质量。玻璃化转变温度(Tg)的测定:Tg是固化物从玻璃态转变为高弹态的温度。在Tg时,固化物的比热容、热膨胀系数、折光率、自由体积、弹性模量等物理参数都要发生突变,所以在配方设计时要考虑固化物的Tg。差示扫描量热法(DSC)可以根据比热容的变化来测定固化物的Tg点。固化物分解温度的测定:不同配方体现固化物的分解温度不同,差示扫描量热法(DSC)可以方便测试固化物的分解温度,体现固化物的热稳定性。原材料的质量监控:很多原材料的质量问题都能在差示扫描量热法DSC的图谱上反应出来,例如熔点、软化点、结晶度、水分含量、相容性、热分解温度、氧化分解温度等。可以根据材料的特性,利用差示扫描量热法DSC的高分辨率和高灵敏度,设计出多种监控原材料质量的测试方法和内控标准。特别是对于潜伏性固化剂质量的监控,大多数厂家生产的潜伏性固化剂在化学组成和结构上不会提供明确的信息,所以质量监控比较麻烦,我们就可以差示扫描量热法(DSC)在程序升温的条件下观察DSC图谱,根据DSC图谱反应出来的相变、自反应热以及热分解温度等信息来监控潜伏性固化剂的质量。

  • [分享]扫描电镜在失效分析中应用(金属材料)

    资源共享[em01] 扫描电子显微镜在失效分析中的应用 自从1965年12月商品扫描电子显微镜问世以来,扫描电子显微镜得到了极为迅速的发展,是目前应用最成熟、最广泛、最实用的显微分析仪器,它在冶金、生物、地理、化工、农业等各方面均有极为广泛的用途。本文只简要地介绍一下扫描电子显微镜在失效分析中的应用。扫描电子显微镜最大特点是:焦深大,分辨率高,放大倍数变化范围广,对试验样品要求底,可直接观察,特别适合对粗糙表面的观察研究。扫描电镜的焦深要比光学显微镜的焦深大数百倍,可以观察粗糙的样品表面清晰细致的三维图象。分辨率是光学显微镜的40倍,配置X射线能谱仪,可直接探测样品表面的微区成分。已经被普遍应用于断口、磨损及腐蚀表面分析,特别适合做产品失效分析工作,因为人们可以首先在低倍下找好所感兴趣的区域,然后再调到高倍进行仔细观察分析,非常实用方便。

  • dsc差示扫描量热仪测试原理和优势

    dsc差示扫描量热仪测试原理和优势

    你们有[b]dsc差示扫描量热仪[/b]吗?dsc测什么?这些问题常常被客户问起,作为dsc差示扫描量热仪的生产厂家,针对客户的常见问题,来详细了解一下。  dsc差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。  dsc差示扫描量热仪选择一种对热稳定的物质作为参比物,将其与样品一起置于DSC可按设定速率升温的电炉中,分别记录参比物的温度以及样品与参比物间的温度差△T,以温差△T对温度T作图就可以得到一条差热分析曲线,这种热分析曲线称为差热谱图,从差热谱图中可分析出试样的比热容和玻璃化转变温度Tg值。[align=center][img=,690,463]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291358573976_8892_3513183_3.jpg!w690x463.jpg[/img][/align]  dsc差示扫描量热仪具备哪些优势?以DSC300差示扫描量热仪为例,介绍其具备性能优势。  1、智能控温系统。可通过软件多段温度设置,实现升温、恒温、降温等,操作方便快捷。  2、全新的炉体结构设计,保温性能好,灵敏度高。  3、仪器的灵敏度可达到0.001mW,测量的准确率大大提升。  4、双向控制系统,可通过仪器界面和软件同时操作,提高了工作效率。  5、7寸彩色触摸屏显示,显示的清晰度高,信息齐全。  6、采用进口芯片,采集电路屏蔽抗干扰处理。

  • 国内差示扫描量热仪(DSC)的技术瓶颈在那里?

    最近与朋友聊天,给告知目前国内厂家生产的差示扫描量热仪(DSC)售价一路狂跌,从前两年的一台5万元人民币以上已经降低到目前的1万多元一台,这个价格可是与国外差示扫描量热仪售价相差太大,但这至少说明几方面问题:(1)国内的差示扫描量热仪属于低端产品,技术上与国外产品有较大差别,十多年来没有得到进一步的升级和提高,技术水平甚至在逐渐拉大。(2)随着技术进步和测试要求的逐步提高,国内热分析仪器的这种发展有逐渐被老外完全占领的趋势。(3)国内外仪器的价格差距越大,说明市场的利润发展空间就越大,国内技术研发的动力就越足。现在总是在各种平台上看到各种各样的营销,很少看到大家来讨论阻碍行业和技术发展的瓶颈是什么?难道就没有瓶颈嘛?这完全不太可能。请大家讨论讨论,国内差示扫描量热仪的技术瓶颈到底在什么地方?目的是为了大家进行技术交流,便于合作去突破技术瓶颈,扩大国内厂家在市场上的份额。

  • 【原创大赛】浅谈DSC 100差示扫描量热法 测量涂膜中的锌粉含量

    浅谈DSC 100差示扫描量热法 测量涂膜中的锌粉含量锌对于钢铁具有优异的防腐保护作用,与其它金属相比,锌有其独特的特点,它比铁轻,有良好的延展性,更重要的是其电化学的活性,锌可以熔融并加工净化成细颗粒的高纯度锌粉,用于防锈漆中成为重要的防锈颜料。当涂膜在受到侵蚀时,锌粉作为阳极先受到腐蚀,基材钢铁为阴极受到保护;同时锌作为牺牲阳极形成的氧化产物,可以对涂层起到一定的封闭作用,加强了涂层对底材的保护。为了确保在富锌涂料中锌粉同钢铁能够紧密结合而起到导电和牺牲阳极的作用,无机富锌涂料中锌粉含量在干膜中的质量分数不低于 74 %,有机富锌涂料不低于77%。用差示扫描量热法测量涂膜中的锌粉含量具有快速简便,涂膜本身对其干扰因素少的特点,因此在测量涂膜中锌粉含量上得到了广泛的应用。实验设备DSC 100差示扫描量热仪;专用固体铝皿;玛瑙研钵;涂膜刮刀;高纯氮气;精密天平。参数设定扫描的温度:锌的熔点为 419 ℃左右,将DSC100 最高温度设置在500度扫描的速率:在 DSC 的测定中,程序升温扫描速率主要对 DSC 曲线的峰温和峰形产生影响。一般来说,当升温扫描速率比较快时,其DSC峰温越高,峰面积变大,峰形也越尖锐。测量涂膜中的锌粉含量如果使用过高的升温扫描速率,会导致涂膜试样内部温度分布不均匀。当超过一定的升温扫描速率时,由于体系不能很快响应,试样反应中的变化全貌不能被精确地记录下来,一般测量涂膜中锌粉含量时的扫描速率为 10 ℃ /min 。基线的校正:仪器在做空白试验时的基线应为一条直线,好的基线是准确计算峰面积的基础。温度的校正在实际的 DSC 测量中要获得精确度高的温度值与峰形的关系曲线,必须用高纯物质的熔点或相变温度进行校验。一般采用的是高纯铟进行温度的校正。量热的校正在 DSC 的测定中,量热的校正是以已知标准纯物质的相变热焓值进行校验的,测量涂膜中的锌粉含量,以标准纯锌( 99.999%)进行校验。标准物纯锌的相变焓值应在 (107.6 ~ 109.3)J/g ,如果仪器测量标准物纯锌的相变焓值在此范围之内,则说明仪器此时的量热扫描系统比较好,此时的测量结果应该比较准确。在每次测量前都要进行纯锌量热校正,并记录该焓值数据,以该焓值数据计算样品中的锌含量。检测步骤样品的制备:用涂膜刮刀小心均匀地刮下涂膜 , 不能刮伤底材 , 防止底材中的铁屑混入涂膜样品中 ,刮下来的涂膜要经过玛瑙研钵研磨,使样品的粒度尽可能地小,这样可以有效地减少因为样品粒度大而产生的过多空间热阻,热阻使试样的熔融温度和熔融热焓偏低,给分析带来误差。样品的称量:将研磨的样品充分搅拌均匀,精确称量样品 (3 ~15)mg 如果样品量过少,降低了测量的灵敏度,样品量过多,不仅使试样内部传热变慢,温度梯度变大,导致峰形扩大,分辨率下降,而且涂膜中的有机物挥发大量的杂质污染炉体,影响仪器的精确度。用药匙将样品均匀地平铺于专用铝皿的底部,尽量增大试样与铝皿底部的接触面积,减少试样在铝皿中的厚度,保证样品在加热过程中均匀受热测试计算:在纯氮的环境下,运行DSC100差示扫描量热仪以及专用软件。以 10 ℃[/fo

  • 温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    [align=center][size=16px] [img=温度调制式差示扫描量热法MTDSC中实现正弦波温度控制的方法,650,411]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241524097587_3670_3221506_3.jpg!w690x437.jpg[/img][/size][/align][size=16px][color=#990000]摘要:在调制温度式差式扫描量热仪(MTDSC)中,关键技术之一是正弦波加热温度的实现,此技术是制约目前国内无法生产MTDSC量热仪的重要障碍,这主要是因为现有的PID温控技术根本无法实现不同幅值和频率正弦波这样复杂的设定值输入。本文将针对此难题提出了相应的解决方案,即采用具有外置设定点功能的特制PID控制器来实现正弦波温度控制。[/color][/size][align=center][size=16px][color=#990000]~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 调制温度式差式扫描量热法(MTDSC)是由差示扫描量热法(DSC)演变而来的一种热分析方法,该方法是对温度程序施加正弦波扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统DSC线性变温基础上叠加一个正弦振荡温度程序,如图1所示,由此可随热容变化同时测量热流量,然后利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。[/size][align=center][size=16px][img=01.调制式差示扫描量热法正弦波温度变化曲线,606,395]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527062808_6964_3221506_3.jpg!w606x395.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图1 调制式差示扫描量热法正弦波温度变化曲线[/b][/color][/size][/align][size=16px] 与DSC(差式扫描量热仪)相比,MTDSC(温度调制式差式扫描量热仪)主要会涉及到两项完全不同的技术,一是正弦波温升变化的实现,二是测量信号的傅里叶变换分析。这两项技术作为MTDSC的核心技术,也是制约目前国内无法生产MTDSC量热仪的重要障碍。特别是在正弦波温度变化控制方面,现有的PID温度控制技术根本无法实现正弦波这样复杂的设定值输入。为此,本文将针对正弦波温度的实现提出相应的解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在温度自动控制方面一般常会使用PID调节器,PID温度调节器的基本原理是根据设定值与被控对象测量值之间的温度偏差,将偏差按比例、积分和微分通过计算后形成控制输出量,对被控对象的温度进行控制。这里的设定值是一种泛指,实际上包括了不随时间变化的固定设定值和随时间变化的设定曲线。对MTDSC量热仪而言,设定曲线则是正弦波和一条斜线的叠加而成的曲线,其中的斜线是需设定的平均升温速率,而正弦波则是需设定幅值和频率的正弦温度波。[/size][size=16px] 由此可见,解决MTDSC温度正弦波控制的关键是PID温度控制器的设定值可以按照所需的正弦波和线性曲线叠加后函数进行设置。为此,本文提出的解决方案具体内容如下:[/size][size=16px] (1)采用具有外置设定点功能的PID控制器,即PID控制器所接收到的外部任意波形信号都可以作为设定值。[/size][size=16px] (2)配套一个函数信号发生器,给PID控制器传输所需的正弦波和线性叠加信号。[/size][size=16px] 依据上述方案内容所确定的PID控制装置及其接线如图2所示,具体内容如下:[/size][align=center][size=16px][img=02.调制温度式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图,690,216]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527309145_3057_3221506_3.jpg!w690x216.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图2 调制式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图[/b][/color][/size][/align][size=16px] (1)具有外置设定点功能的PID控制器[/size][size=16px] 所用的具有外置设定值功能的PID控制器具有两个输入通道,主输入通道作为测量被控对象的温度传感器输入,辅助输入通道用来作为外置设定点输入。与主输入通道所能接收的信号一样,辅助输入通道的外置设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入辅助输入通道作为外置设定点源。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,在程序控制模式下无此功能。[/size][size=16px] (2)函数信号发生器[/size][size=16px] 对于MTDSC而言,相应的传感器测量输出无外乎就是电压和电阻这两类信号输出。因此,为了实现MTDSC的温度以正弦波形式的周期性变化,可以采用各种相应的信号发生器输出相应幅值和频率的正弦波信号和线性信号,对这两路电压信号进行叠加后传送给辅助输入通道。[/size][size=18px][color=#990000][b]3. 控制器的接线、设置和操作[/b][/color][/size][size=16px] 为了正常使用正弦波温度控制装置,还需进行相应的接线、设置和操作。[/size][size=16px] 首先,对于图2所示的正弦波温度PID控制装置,也可以用作常规PID温度控制器。即主输入通道连接温度传感器,主控输出1通道连接温控执行机构,由此传感器、执行机构和PID调节器组成标准的闭环控制回路,由此可以通过内部设定点或设定程序进行PID温度控制。[/size][size=16px] 如果要在MTDSC热分析仪上实施正弦波温度变化的控制,则使用外置设定点功能,此时需要在辅助输入通道接入远程设定点源,即函数信号发生器。[/size][size=16px] 完成外部接线后,在运行使用外置设定值功能之前,需要对PID控制器的辅助输入通道相关参数进行设置,且需要满足以下几方面要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的外置设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,在开始使用外置设定点功能之前,还需要激活外置设定值功能。外置设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1)内部参数激活方式:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)外部开关切换激活:如图2所示可连接一个外部开关进行切换来选择外置设定点功能。同时,还需在PID控制器中,设置辅助输入通道2的功能为 “禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图2中所示的开关实现外置设定点和本地设定点之间的切换,开关闭合时为外置设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种外置设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#990000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决温度调制式差式扫描量热仪(MTDSC)的正弦波温度的控制问题,温控器模块化结构可很容易与MTDSC热分析仪进行集成,无需再研发和配置复杂的控制电路和软件。随机配备的计算机软件可方便的进行控制运行和调试,便于热分析研发工作的开展。[/size][size=16px] 解决方案的另一个优势是所采用的PID温控器具有很高的测控精度,其中24位AD、16位DA、双精度浮点运算和0.01%的最小输出百分比,这可以满足MTDSC高精度温度控制需求。[/size][size=16px] 另外,本解决方案中的控制器还可以进行多种拓展,除可实现被控对象周期性调制波的加载之外,还可非常便于实现第二类和第三类边界条件的精密PID控制,同时还可以实现其他物理量,如真空、压力和张力等的串级控制、分程控制和比值控制等。[/size][align=center]~~~~~~~~~~~~~~~~~~~[/align]

  • 梅特勒-托利多邀您参加《DSC差示扫描量热仪曲线解析》免费网络研讨会

    梅特勒-托利多邀您参加《DSC差示扫描量热仪曲线解析》免费网络研讨会

    会议名称:DSC差示扫描量热仪曲线解析http://ng1.17img.cn/bbsfiles/images/2015/04/201504161507_542336_271_3.png会议时间:2015-05-2814:00 开始,持续约2小时 会议主讲人:范玲婷 现任梅特勒-托利多热分析仪器部技术应用顾问,长期从事热分析仪器的应用研究工作,有丰富的DSC、TGA等热分析仪器的实践经验。 会议内容简介: DSC(差示扫描量热仪)作为一种最常用的热分析仪器,在各个行业的基础测试中扮演着重要的角色。 在本次在线技术交流讲座中,我们将讨论一些常见的DSC曲线的分析,并对常见的热效应进行总结,同时会介绍DSC曲线数据处理的技巧和研究方法。http://ng1.17img.cn/bbsfiles/images/2015/04/201504161508_542339_271_3.png本次讲座纲要:1)DSC升温曲线的解释2)DSC曲线常见热效应的总结3)DSC等温曲线的解释4)DSC曲线的假象5)DSC曲线的数据处理6)DSC测试常用的研究方法 环境配置:只要您有电脑、外加一个耳麦就能参加。(需要进行音频交流的用户需准备麦克) 免费报名地址:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1426

  • 差示扫描量热法应用

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=21052]差示扫描量热法(DSC)应用[/url]

  • DSC差示扫描量热仪的基本原理是什么?

    [font=宋体][size=16px]物质在物理变化和化学变化过程中往往会伴随着热效应,放热和吸热现象反映了物质热焓的变化。差示扫描量热仪就是测定在同一受热条件下,测量试样与 参比物之间温差对温度或时间的函数关系。 [/size][/font][align=center][img]https://img63.chem17.com/9/20220513/637880361804243318698.png[/img][/align][font=宋体][size=16px]差示扫描量热法,是在程序控制温度的情况下,测量输出物质与参比物的功率差与温度关系的一种技术。英徕铂差示扫描量热仪为热流型,纵坐标是试样与参比物的热流差,单位为 [/size][/font][font=宋体][size=19px]mw[/size][/font][font=宋体][size=16px]。横坐标是时间(t)或者温度(T),自左向右 为增长(不符合此规定应注明)。 [/size][/font][font=宋体][size=16px]试样与参比物放入坩埚后,按一定的速率升温,如果参比物和试样热容大致相同,就能得到理想的扫描量热分析图。 [/size][/font][font=宋体][size=16px] [img]https://img63.chem17.com/9/20220513/637880361801435300415.png[/img][/size][/font][font=宋体][size=16px]图中 T 是由插在参比物上的热电偶所反映的温度曲线。AH 线反应试样与参比物间的温差曲线。如果试样无热效应发生,那么试样与参比物间△T=0,则出现如曲线上 AB、DE、GH 那样平滑的基线。当有热效应发生而使试样的温度低于参比物,则出现如 BCD [color=red]顶峰[/color]向下的吸热峰。反之,则出现[color=red]顶峰[/color]向上的 EFG 放热峰。 [/size][/font][font=宋体][size=16px]图中峰的数目多少、位置、峰面积、方向、高度、宽度、对称性反映了试样在所测温度范围内所发生的物理变化和化学变化的次数、发生转变的温度范围、热效应的大小和正负。峰的高度、宽度、对称性除与测试条件有关外还与样品变化过程中的动学因素有关,所测得的结果比理想曲线复杂得多。[/size][/font]

  • 【新品扫描】Thermo发布新款尼通 XRF GOLDD分析仪

    全球科学服务领域的领导者赛默飞世尔科技有限公司发布Niton® XL2 GOLDDTM系列手持式X射线荧光光谱(XRF)分析仪(www.thermoscientific.com/niton)。公司还推出了增强版Niton XL3t GOLDD+系列分析仪,该分析仪性能卓越且功能强大,能够符合用户进行高效质检的要求。Thermo Scientific Niton分析仪是理想的元素分析解决方案,适用于合金无损检测,探矿和采矿检测,环境土壤污染检测和消费品和电子元件检测,可在短时间之内达到准确检测结果同时检测数据经过加密以防篡改。赛默飞世尔科技是手持式X射线荧光光谱(XRF)分析仪的全球领先制造商。 Thermo Scientific几何优化大面积电子漂移探测器(GOLDD)技术可提高检测速度,检出下限更低 — 它的检测速度比传统的 Si-PIN 探测器快了10倍,精确度比普通小型硅电子漂移探测器(SDD)高出3倍。这项创新技术可以在没有氦气吹扫和真空辅助的条件下对镁(Mg)、铝(Al)、硅(Si)、磷(P)、硫(S)等轻元素进行检测。GOLDD与先进的Thermo Scientific Niton分析仪的专利电子元件相结合,分析能力获得进一步提升。 凭借Niton XL2 GOLDD和增强版Niton XL3t GOLDD+,我们现在能为航空航天、金属加工、金属铸造和相关行业提供一系列分析仪。也能提供如《2008消费品安全改进法案》(CPSIA)、加利福尼亚州的《第65号提案》和欧洲的EN-71玩具安全标准高效的解决方案。此外目前为止全球矿业公司中已经有超过2000台的Niton分析仪正在恶劣的检测环境中帮助这些矿业公司节省了大部分的矿石分析成本和时间。 http://bimg.instrument.com.cn/show/NewsImags/Image/2010/9/2010090610595315774.jpg http://bimg.instrument.com.cn/show/NewsImags/Image/2010/9/2010090611102870907.jpgNiton XL2 GOLDD Niton XL3 GOLDD+

  • 【分享】同步热分析仪的优点

    同步热分析仪将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。   相比单独的 TG 与/或 DSC 测试,具有如下显著优点:   1.消除称重量、样品均匀性、升温速率一致性、气氛压力与流量差异等因素影响,TG 与 DTA/DSC 曲线对应性更佳。   2.根据某一热效应是否对应质量变化,有助于判别该热效应所对应的物化过程(如区分熔融峰、结晶峰、相变峰与分解峰、氧化峰等)。   3.在反应温度处知道样品的当前实际质量,有利于反应热焓的准确计算。 广泛应用于陶瓷、玻璃、金属/合金、矿物、催化剂、含能材料、塑胶高分子、涂料、医药、食品等各种领域。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制