当前位置: 仪器信息网 > 行业主题 > >

超薄液晶升降器

仪器信息网超薄液晶升降器专题为您提供2024年最新超薄液晶升降器价格报价、厂家品牌的相关信息, 包括超薄液晶升降器参数、型号等,不管是国产,还是进口品牌的超薄液晶升降器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超薄液晶升降器相关的耗材配件、试剂标物,还有超薄液晶升降器相关的最新资讯、资料,以及超薄液晶升降器相关的解决方案。

超薄液晶升降器相关的资讯

  • Advanced Materials | 理化所在蓝相液晶超200℃宽温域激光器方面取得新进展
    蓝相液晶(BPLCs)以其独特的周期结构、多刺激响应及实时可重构性等特点而具有优异的光学性能,在传感、显示及防伪等方面有着巨大的应用前景。蓝相液晶由于其带隙窄,光学性能优异可用于低阈值激光器。目前蓝相液晶激光器的研究主要聚焦在外界刺激下(如光、电、热、力等)激光波长的可调节性,而对蓝相激光器工作温度的研究尚且不足。由于BPLCs窄的温度窗口,其相应激光器的工作温域大概在3-4℃。聚合物稳定蓝相(PSBP)体系的采用已经极大拓宽了蓝相液晶的温度窗口至500度,但目前所报道的蓝相激光器的最宽工作温域不超过36 ℃。“蓝相液晶温域”与“蓝相激光工作温域”的大差异可能与所用聚合物稳定蓝相体系不合适的聚合程度(通常大部分体系可聚合液晶组分 图1.含30 wt%可聚合液晶单体DD-PSBPLCs的光学表征。(A)所制备单畴样品在宽激光温域范围微结构的变化图示;(A1)相应的单畴样品光学照片。聚合后单畴DD-PSBPLCs (110)晶面的(B)TEM图,(C)Kossel图及(D)Syn-SAXS图。样品在25-230 ℃的(E)反射光谱,(F)荧光光谱,(G)染料的光致发光衰减曲线及(H)染料不同温度下的发射激光。(I)本工作与文献中蓝相液晶激光器工作温域的比较。 图2.DD-PSBPLCs宽的激光温域及在不同温度下的光学表征。(A,B,C,E)单畴样品,25-230 ℃;(D)多畴样品;25-160 ℃。(A)发射光谱,泵浦能量:1.00 μJ/pulse, 插图:POM 照片。(B)荧光光谱。(C)不同温度下,反射光谱与荧光光谱的相对位置关系。(D)发射光谱,泵浦能量:1.20 μJ/pulse, 插图:POM 照片。(E)R-POM图。DD-PSBPLCs 宽的激光温域源于稳定的聚合物支架体系,在宽的温度范围内提供了稳定的反射带隙及荧光信号。 图3.升降温过程中DD-PSBPLCs的激光阈值及相转化。(A,D,E)单畴样品,温域:25 - 230 °C,(B,F)多畴样品,温域:25 - 160 °C,升降温速率:12 °C/min。(A)单畴样品和(B)多畴样品不同温度下的激光阈值。(C)单畴样品的DSC测试,插图:放大图,氮气氛围下,10 °C/min。(D)单畴样品原位升降温过程中带隙(插图:反射强度)与温度的关系。(E,F)原位降温过程中样品的T-POM图,红色圈:放大图。单/多畴样品均在65 ℃析出,表明未聚合物组分的相变是影响DD-PSBPLCs激光性能的主要原因之一。 图4. DD-PSBPLCs温度变化过程中激光行为可能的解释及原位可逆的激光行为。(A)DD-PSBPLCs激光行为的机理图示,(A1)大部分的BPI晶格牢牢的被聚合物网络锁住且规则分布,除少量未被聚合物网络稳定的胆甾相(Ch相);(A2)在相变前(约70 ℃)体系略微膨胀,且Ch相在达到相变点时消失,转化为BP相;(A3)温度进一步升高,超过相变点(72.5 ℃)时,BPI晶格中的一些LC分子就会跑出来,并以各向同性相(ISO)存在,导致BPI晶格的连续收缩。(B)-(E)单畴DD-PSBPLCs在30-100 ℃过程中原位可逆的激光性能及增强效应。(B)加热过程;(C)冷却过程;(D)激光波长或(E)发射强度与温度的关系,激发功率:1.17 μJ/pulse,升降温速率: 12 °C/min, ΔT=10 °C。(F)x,y,z三个正交方向的发射光谱。(G)单畴样品右/左圆偏振(R/LCP)激射光谱测试。 图5.单畴DD-PSBPLCs加热过程中的原位Kossel表征。(A)原位Kossel图(A1)及其相应的图示(A2),加热速率:12 ℃/min。(B)BPI晶格尺寸及Kossel随温度变化的图示,其中R表示Kossel图中(110)晶面中心圆的半径,红色虚线圆圈表示视野范围。(C)原位升温过程中R及反射中心波长(λ)与温度(T)的关系,实线表示拟合的直线。  原文链接 https://onlinelibrary.wiley.com/doi/10.1002/adma.202206580
  • 成萌伟业发布24位,36位防腐电动升降氮吹仪新品
    一、仪器介绍: 防腐型水浴氮吹仪 防腐型电动升降型水浴氮吹仪采用国际认可的技术,通过将氮气吹入加热的样品表面从而进行样品浓缩,使分析时间缩短,满足了快速检测的需要。该方法省时、操作简单、容易控制,成本低等优点。 本仪器包括底座和支架装置、样品架和气体分配系统。试管通过带弹簧的试管夹和支撑盘来固定位置。每个样品位都可标数字编号;气体通过流量计到达气体分配系统,灵活的引导管将气体导入每个位置的阀和不锈钢针,将气体吹至样品表面,从而使溶剂快速挥发。根据试管大小和溶剂多少,各导气管可独立升降至合适的高度。 圆形防腐涂层水浴温度可调节并可以控制,在室温~99℃的范围内可准确保持恒定水温。二、主要特点:1)提供多种型号:24位、36位、2)尺寸紧凑,占用很少通风橱空间;3)圆周型样品支架可360°旋转,操作者可从正面接触样品,操作方便;4)可容纳样品试管尺寸范围为直径10-29mm、内装液体体积1-50ml;5)适用于试管、锥形瓶、离心管等;6)较大的型号底部装有环型弹簧支撑装置,可方便的升降支架进出;7)使用氮气或空气吹扫样品表面;8)恒温控制,水浴提供温和加热;9)氮气消耗量低,330ml/min/样品;10)带针阀的气体流量计,可控制气体消耗量;11)每个位置上都带有一个针形阀,可分别调节各个位置上的气体流量;12)针:PTFE材质,4英寸*18号(可更换);且配置120mm长的PTFE涂层气针13)主要部件都PTFE涂层,可耐受酸碱,适用于腐蚀性环境。14)采用智能液晶温控器,可定时采用PID技术并可实现超温报警及防干烧功能15)采用无色无味透明日本原装SMC TUS软管,水浴锅/吹扫架采用防腐材料16)双气路,可接氮气源(适用于敏感样品)和空气源(适用于稳定样品)17)自由升降的针型阀管采用进口调节阀每路气流可以单独控制,可以上下升降,使用氮气和空气吹扫样品表面。18)圆形结构,尺寸紧凑,占用最少的通风橱空间,样品盘和吹扫架可以同时360°旋转,防止样品交叉污染,样品盘和吹扫架可以同时升降,方便样品支架进出水浴,操作方便19)圆形恒温水浴,温度液晶显示,可定时,水浴温度:室温~99℃三、技术规格:样品位数CM-24TSCM-36TS仪器尺寸(W×D×H)420x420×850mm420x420×850mm样品支架圆形圆形使用试管范围(标配)10-29mm外Φ10-29mm内Φ10-30mm气体流量15L/min15L/min时间设定范围0 ~ 9999分钟0 ~ 9999分钟气体输出压力范围0.2Mpa0.2Mpa内尺寸(内径×深)Φ400×200mmΦ400×200mm外尺寸(W×D×H)420x420×850mm420x420×850mm功率1000W1000 W温控类型液晶控温液晶控温水浴温度控制范围室温+5℃-99 ℃室温+5℃-99 ℃温度控制精度±0.5℃±0.5 ℃材质PTFEPTFE 创新点:防腐涂层,电动升降功能,气针度防腐涂层, 24位,36位防腐电动升降氮吹仪
  • 成萌伟业发布CM-36S电动升降氮吹仪新品
    产品介绍: 北京成萌伟业科技有限公司研发的CM-36S型圆形水浴氮吹仪采用国际认可的技术,通过将氮气吹入加热的样品表面从而进行样品浓缩,使分析时间缩短,满足了快速检测的需要。该方法省时、操作简单、容易控制,成本低等优点。 本仪器包括底座和支架装置、样品架和气体分配系统。试管通过带弹簧的试管夹和支撑盘来固定位置。每个样品位都有数字编号;气体通过流量计到达气体分配系统,灵活的引导管将气体导入每个位置的阀和不锈钢针,将气体吹至样品表面,从而使溶剂快速挥发。根据试管大小和溶剂多少,各导气管可独立升降至合适的高度。 圆形不锈钢水浴温度可调节并可以控制,在室温~99℃的范围内可准确保持恒定水温。产品特点:1.适用于试管(外圈试管直径10~29mm内圈试管直径10~30mm)、锥形瓶、离心管,样品容量1~50ml2.样品位数36位,弹簧试管夹的样品架固定定位,每个样品位都有数字编号3.自由升降的针型阀管,采用进口调节阀每路气流可以单独控制,可以上下升降,使用氮气和空气吹扫样品表面。4. 圆形结构,尺寸紧凑,占用最少的通风橱空间,样品盘和吹扫架采用电动升降方式,样品盘和吹扫架可以同时升降,方便样品支架进出水浴,操作方便5.标准气针长度为:120mm6.圆形恒温水浴,温度液晶显示,水浴温度:室温~99℃7.所有部件可耐有机溶剂。8.在浓缩有毒溶剂时,整个系统可置于通风柜中9.采用智能液晶温控器,可定时采用PID技术并可实现超温报警及防干烧功能10.采用无色无味透明日本原装SMC TUS软管,水浴锅/吹扫架采用304不锈钢材料11.双气路,可接氮气源(适用于敏感样品)和空气源(适用于稳定样品)性能指标:1.温度范围:室温~99℃(66*45mm液晶显示)2.控温精度 ±0.5℃3.试管尺寸:外(10~29mm)内(10~30mm)4.气体流量:0~15L/Min,内置氮气流量阀5.气体消耗量:330ml/min/样品 (可调节)6.加热方式:恒温水浴7.内胆尺寸:φ40x20cm8.外形尺寸:420x420×850mm应用领域1.农残分析:蔬菜、水果、谷物、植物组织等2.制药药检:中药制药和药检3.环境分析:饮用水、地下水、污染水等4.生物分析:血清、血浆、血液、尿液5.商品检验:检验二恶英、克罗夫特等6.食品饮料:牛奶、酒、液体饮料 基本参数: 型号参数CM-36S温度范围室温+5°C ~ 99°C(66*45mm液晶显示)控温精度≤ 0.5 °C显示精度±0.1 °C温度均匀性@60 °C≤ 0.5 °C升温时间(40-99°C)≤40分钟时间设定范围0~ 9999分钟样品位数36个使用试管范围外Φ10-29mm内Φ10-30mm(液体体积1-50ml)升降行程80mm气体压力0.2Mpa气体流量15L/min气接头外径φ7mm气针长度120mm加热功率(W)1000W熔断器250V 8A Ф5×20工作尺寸Φ400×200mm外形尺寸(mm)(长×宽×高)420x420×850mm重量(kg)25 创新点:此款氮吹仪比老款氮吹仪在升降方面做了改进,采用电动升降的模式,使有些个矮的女实验员在操作的时候提供更方便,更准确的操作,另外新款电动氮吹仪采用的是吹扫盘和样品盘可以升降的模式,可以一目了然的知道样品吹干程度,还有个亮点是,之前手动升降水浴氮吹仪温度只能控制99度,而且新款可以满足99度和150度,对于样品处理来说可以满足不同样品的温度要求,在控温仪表上,采用智能双数显,可定时。在外观设计方便更新颖,设计36位样品处理,填补了在国内有些客户在大批样品处理的空白。而且进口34位氮吹仪价格比较昂贵,所以说国内的氮吹仪性价比上还是比较可观。 CM-36S电动升降氮吹仪
  • 超薄!晶盛机电减薄机实现12英寸30μm晶圆稳定加工
    超薄晶圆因其高集成度、低功耗和卓越性能,已成为当前半导体产业发展的关键材料之一。随着半导体工艺进入2.5D/3D时代,晶圆的厚度不断减薄,对设备精度和工艺控制的要求也越来越高。晶盛机电的研发团队迅速响应市场需求,于近日成功研发出新型WGP12T减薄抛光设备,实现了稳定加工12英寸30μm超薄晶圆的技术突破。这一成就标志着晶盛机电在半导体设备制造领域再次取得重要进展,为中国半导体产业的技术提升和自主可控提供了强有力的支撑。▲ 12英寸30μm超薄晶圆据悉,新型WGP12T设备是在原有设备上进行了多项技术优化和工艺改进,成功使晶圆在设备上能稳定减薄至30μm以下,并确保晶圆表面平整度和粗糙度的高标准。在此过程中,团队成功解决了超薄晶圆减薄加工过程中出现的变形、裂纹和污染等难题,真正实现了30μm超薄晶圆的高效、稳定加工。这一技术突破为公司在全球半导体设备市场的竞争中增添了新的优势。▲ 新型WGP12T减薄抛光设备晶盛机电一直致力于半导体设备的研发与创新,此次行业领先的超薄晶圆加工技术突破,将为我国半导体行业提供更先进、更高效的晶圆加工解决方案。未来,晶盛机电将继续秉持“打造半导体材料装备领先企业,发展绿色智能高科技制造产业”的使命,持续深耕半导体设备领域,以技术创新为动力,不断突破技术壁垒,加速产品创新,为客户提供最前沿、最具竞争力的半导体解决方案,引领行业迈向新未来。
  • 美研究人员发明新型超薄光学透镜 可用于多种仪器
    据美国航空航天局(NASA)官网报道,NASA喷气推进实验室(JPL)与加州理工学院研究人员合作开发了一种超薄光学透镜,通过“元表面”(metasurface)技术实现对光路的控制,可应用于先进显微镜、显示器材、传感器、摄像机等多种仪器,使光学系统集成度大大提高,并使透镜制造方式产生革命性变化。  这种透镜的“元表面”由硅晶阵列组成,单个硅晶的横截面为椭圆形。通过改变硅晶的半径与轴向,可以改变通过光线的相位与偏振性,从而使光路弯曲,实现聚焦。传统的光学系统由多组玻璃镜片组成,每个镜片都要求非常精密的制造工艺 而这一新技术可以采用标准的半导体制造工艺,将厚度仅为微米级的“元表面”相互叠加,即可获得所需的光学系统,可以像半导体芯片一样实现大规模批量化自动制造。  该研究团队正与企业伙伴进行合作,使这一技术进一步商业化。这一项目还获得了美国能源部与国防部高等研究计划局(DARPA)的资助。
  • 德国研制出超薄显微镜
    德国夫琅禾费应用光学与精密工程研究所最近研制出一种厚度仅5.3毫米、分辨率达5微米的超薄显微镜,其未来用途可包括皮肤癌变检查和鉴别文件真伪。   这家研究所日前发表的新闻公报说,达到同样分辨率的传统显微镜要么只能一次观察一片很小的区域,要么就是对观察对象进行多次扫描,最后组合成图像,费时费力。这种新型显微镜可以对火柴盒大小的观察面积一次成像,成像速度快到即使医生手持这种超薄显微镜,其观察到的影像也不会模糊,对于观察皮肤病变非常实用。   达到这种观察效果的奥秘在于该显微镜用于成像的部分由无数紧密排列的微小透镜组成,每个透镜仅对观察对象的局部成像,每个局部的面积只有0.09平方毫米,与此同时显微镜内的软件能将这些微小局部组合成整体图像。这些微小透镜由特殊模具对高分子材料加工制成,可以批量生产,因而成本相对低廉。   目前德国研究人员已研制出这种超薄显微镜的样品,但批量生产至少还需一两年时间。
  • 电镜制样设备新突破 国内首款超薄切片机发布
    10月29日,江苏雷博科学仪器有限公司(以下简称“雷博科仪”)在2022年浙江省X-射线衍射分析与电子显微学学术交流会上发布了其自主研发的高端电镜制样设备---UM10超薄切片机,同时面向大众推出了此设备的2款配套产品GK25玻璃制刀机和SA350减震台。雷博科仪成立于2013年9月,公司地点在江苏省江阴市,是一家致力于高档科研仪器研发及生产的高科技公司。公司主营纳米薄膜制备类设备和电镜周边制样类设备,主要产品有等离子清洗机、匀胶机、显影机、烤胶机、提拉机、涂膜机等相关纳米薄膜制备产品和电解双喷仪、冲孔仪、超薄切片机、玻璃制刀机、包埋聚合箱、离子溅射仪等相关电镜周边制样产品。超薄切片机是公司2019年立项研发的一款电镜制样的设备,主要应用于生物类、高分子、无机非金属、金属等材料的切片。此前国内应用该款设备主要依赖于进口,不仅价格高而且一旦发生售后,周期较长,严重影响科研项目的进度。2022年10月,历经3年多的时间,经过公司研发团队不懈的技术探索,终于取得技术上的突破,完成了首台样机的问世,并顺利通过XX大学超半年以上的使用测试,测试结果比肩进口设备水平,得到行业内专家的肯定,此款设备的问世,将填补国内空白,打破此前超薄切片机严重依赖进口的尴尬局面。UM10超薄切片机视频演示以下是电镜下观察效果(植物细胞)(肌肉组织)UM10超薄切片机,采用的是机械式推进结构,使切片的过程更平稳连续。三目体视显微镜,更便于直接观察结果。为减少外界震动影响切片效果,机台内置减震模组,可以有效的隔绝外界震动。更多数据可参考一下表格▼
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • 每年3倍!宁波激智已成最大液晶光学薄膜厂商
    宁波激智一名员工在新投产的流水线上检验产品质量   宁波激智新材料科技有限公司成立于2007年3月,是一家集光学薄膜和特种薄膜研发、生产、销售为一体的高科技公司,是中国首家TFT-LCD光学膜片生产基地,也是国内唯一一家在TFT-LCD光学膜领域中拥有自主知识产权的企业。宁波激智已就关键核心技术申请了13项国家发明专利,其中7项已授权。   据悉,宁波激智产的BritNit® 系列光学扩散膜、增光膜和反射膜,已经成功进入国际市场,打破了美国、日本和韩国企业对此行业的垄断。宁波激智在国内的主要客户有TCL、海信、长虹、康佳、创维、海尔等国内著名家电企业,而且也成为了冠捷等液晶显示器厂商的主要供应商,并且已经进入三星、LG、夏普、菲利普、苹果等国际大公司的供应链体系。   宁波激智的销售额,2009年为1025万元,2010年为3798万元,2011年为1.01亿元,2012年达到了近3亿元。几乎每年都是前一年三倍的惊人发展速度,使其短短数年间便成为国内最大的液晶光学薄膜生产厂商。宁波激智的成功,再次凸显自主创新和知识产权对高新技术产业发展的重要性。
  • 中国电镜产业链系列走访第9站雷博科仪:聚焦电镜制样技术 实现国产首款超薄切片机突破
    秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于 2018 年启动“国产科学仪器腾飞行动”之“创新 100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,在企业发展的关键时期“帮一把”。五年以来,天时地利人和至,中国电镜产业迎来发展窗口期,国内电镜产业链企业们也纷纷抓住历史机遇,实现生机蓬勃的发展之势。2023 年迎来国产电镜的“全新时代”。此背景下,“创新100”项目组在2023年底走进13家中国电镜产业链代表性企业,邀请电镜专家联合走访,探寻中国电镜产业发展进展,为发展新阶段赋能,也为 2024 年即将在苏州举办的“第三届中国电镜产业化发展论坛”的内容筹备作前期调研。交流现场走访第9站,由浙江大学农生环测试中心副主任洪健研究员、福建电镜学会理事长陈文列、福建医科大学电子显微镜室钟秀容老师、镇江专博检测科技有限公司总经理周卫东、镇江专博检测科技有限公司运营总监杜敏溢、仪器信息网材料物性组执行主编杨厉哲、仪器信息网创新100项目负责人韦东裕、仪器信息网营销服务中心牛群山组成的走访项目组走进江苏雷博科学仪器有限公司(以下简称“雷博科仪”)江阴总部,雷博科仪总经理夏秋华、销售总监贡勇等接待了走访一行人员。——企业发展进展雷博科仪自2013年成立以来,一直专注于薄膜制备产品的研发和生产,包括匀胶机、烤胶机、显影机、涂膜机和等离子清洗机等。随着市场的需求变化,雷博科仪逐渐向电镜制样领域拓展,2015年起开始进军电镜制样领域,推出了首款电解双喷仪。在开发初期,研发团队也遇到了性能方面的问题,经过两三年的产品不断迭代,以及收集客户反馈,如今这款产品在国内已稳居单品第一的位置。之后,在开发新产品的过程中,雷博科仪与浙江大学紧密合作,共同开发了超薄切片机和玻璃制刀机等产品。除核心产品线外,雷博科仪也在积极探索新的产品线。为满足不断增长的市场需求,2020年8月,江苏雷博科仪通过资源整合,将雷博科仪中发展起来的的工业半导体设备业务分拆出来成立了江苏雷博微电子设备有限公司(简称“雷博微电子”)。两家公司使用同一品牌,独立经营不同系列产品。雷博科仪主要针对科研用户,雷博微电子则瞄准工业企业用户。为了满足对高层次人才的引进需求,雷博在无锡也建设了研发中心。而高标准的半导体工业设备则安排在徐州生产基地生产,预计将于今年上半年启用。在市场驱动下,雷博微电子营收在2022年便过亿。夏秋华表示,企业客户的生命周期更明显,雷博微电子之所以能实现快速发展,主要得益于近年来半导体行业的迅猛增长。高校用户群体的增长虽然不如企业客户迅速,但高校用户的增长相对稳定,主要因为他们的设备采购经费主要来源于国家,因此增长幅度不会过于显著,也不会出现剧烈波动。这种稳定性决定了两家公司不同的市场定位。尽管如此,雷博科仪近几年的年增长率依然保持在30%以上。——产品技术与市场应用雷博科仪有薄膜制备和电镜制样两大产品线。薄膜制备产品主要应用于钙钛矿、太阳能、有机光电、MEMS、光通讯、化合物半导体等领域,已推出了约35款产品,在国内同类产品中享有很高的品牌知名度。近年来,雷博科仪在电镜制样领域也开始逐渐发力,并取得了巨大突破。2022年,雷博科仪发布了其自主研发的国产首款高端电镜制样设备---UM10超薄切片机,同时面向大众推出了此设备的2款配套产品GK25玻璃制刀机和SA350减震台。其中,UM10超薄切片机控制软件已经获得了软件著作权,还申请了一种纳米级超薄切片仪器的实用新型专利,其他相关发明专利也正在申请中。据介绍,2018年10月,夏秋华在成都电镜年会与洪健研究员就合作研发超薄切片机进行洽谈。事不宜迟,同年11月UM10超薄切片机立项。历时两年,2020年4月一代样机组装完毕,并于次月送到浙江大学大学实验室试验。通过专家的不断反馈和试用,研发团队不断改进产品,UM10一代获得了专家认可。2021年5月,雷博科仪再次携手浙江大学建立产学研合作,共同开发UM10二代,样机于12月通过验证且效果显著。2022年,UM10超薄切片机正式面向市场。上机操作UM10超薄切片机UM10超薄切片机采用的是机械式推进结构,使切片的过程更平稳连续,主要应用于生物类、高分子、无机非金属、金属等材料的切片。其搭载的三目体视显微镜,更便于直接观察结果。为减少外界震动影响切片效果,机台内置减震模组,可以有效的隔绝外界震动。此前国内应用该款设备主要依赖于进口,不仅价格高而且一旦发生售后,周期较长,严重影响科研项目的进度。此款设备的问世,将填补国内空白,打破此前超薄切片机严重依赖进口的尴尬局面。2023年1月,UM10三代机研发开始,预期将于2024年3月发布新机。——国产电镜发展观点企业要长久发展,一定要把产品做好才行——夏秋华表示,团队已经精心研发了四五十款产品,每一款产品都要把它作为艺术品精心打磨,不追求短期的快速盈利和市场转化。对比友商肉眼可见的成本差异,雷博科仪更注重产品的生命周期,要做成电镜制样设备的精品。雷博科仪的愿景就是要打造成中国电镜制样产品的一线品牌。夏秋华强调,企业要长久的发展下去,一定要把产品做好才行。附1:2024年4月,“第三届中国电镜产业化发展论坛”将在苏州举办,现进入论坛内容筹备阶段,为更好解决产业痛点,切实助力产业发展,现向广大网友征集论坛内容建议,欢迎大家积极参与,建议被采用的网友或专家将获得论坛定向邀请函,邀请现场与电镜业界专家、企业精英共议行业发展!扫码填写论坛内容建议或点击链接填写:https://www.wjx.cn/vm/hxJFe0g.aspx# 或直接邮件或电话沟通,邮箱:yanglz@instrument.com.cn ,电话(同微信):15311451191。附2:2023年年底中国电镜产业链系列走访名单走访企业聚束科技惠然科技速普仪器大束科技格微仪器康尔斯特国仪量子祺跃科技雷博科仪屹东光学苏州冠德上海精测纳克微束
  • 领拓聚焦 | 超薄切片机新品发布会暨电镜前处理设备分享会
    2024年4月16日,超薄切片机新品发布会暨电镜前处理设备分享会在领拓仪器培训室和实验室圆满完成。此次活动也是徕卡超薄切片机新品UC Enuitv在国内首次亮相。会议主要分为技术交流与现场实际操作两大部分,上午由徕卡的高级应用工程师包沈源博士进行徕卡超薄切片机新品介绍和徕卡TIC 3X三离子束切割仪与TXP精研一体机产品的应用介绍分享及现场答疑。包沈源博士详细讲解了超薄切片机新品UC Enuity的优势与特点,举例介绍金属、易碎样品、聚合物等样品的超薄切割技术,以及电镜样品前处理全套解决方案,并为现场参会人员解疑答惑。现场互动 下午大家来到领拓仪器的实验室现场直观感受设备,由徕卡的应用工程师王励娟对徕卡超薄切片机新品进行应用讲解。领拓实验室现有20多种国际尖端制样检测设备。参会人员对实验室设备很感兴趣,领拓技术团队就现场参会人员的问题作了详细的解答,并为客户提供完美的应用解决方案,获得了一致好评。 台式扫描电镜CUBE-Ⅱ 三离子束切割仪EM TIC 3X 精研一体机 EM TXP 手自一体磨抛机EcoMet 30 参观实验室 超薄切片由于透射电子显微镜的电子束穿透能力有限,因此需要把待观察的标本切成厚度为100 nm左右的薄片,这种薄片称之为超薄切片。超薄切片机就是用于对样品进行超薄切片的一种制样设备,其可以将切片厚度控制在纳米级,以便电子束能够穿透,用于透射电镜观察。应用范围:生命科学领域:各种动植物组织样品,细胞,细菌等样品的超薄切片。材料科学领域:各种玻璃化温度在常温范围的高分子材料的超薄切片。全新一代超薄切片机 Leica UC Enuity引领技术,超越期待Leica UC Enuity不仅是一款性能卓越的设备,更是一项意义重大的技术革新。进一步提升的控制精度结合自动化模块,使您能够轻松获得高效优质的超薄切片,助您在实验前处理工作中事半功倍。自动化赋能,轻松掌握切片技术Leica UC Enuity 全新上线自动校准和自动修块功能,大大降低常规切片和连续超薄切片技术门槛,让您轻松掌握切片技术,为常规电镜表征和体电子显微学研究赋能。精准靶向,高效利用每一张切片Leica UC Enuity创新性地基于荧光或μCT数据,精准定位样品内部目标区域,为电子显微学实验提供高质量切片,助您深入挖掘样品的分析潜力,提升实验的科学价值。Leica UC Enuity不仅为您带来全新的切片体验,还通过多重防护和人体工程学设计,确保您的工作舒适、稳定和安全。它的高精度和可靠性将为您的实验工作带来便利和保障,让您尽情探索科学的无限可能性!样品前处理设备三离子束切割仪Leica EM TIC 3X可制备横切面和抛光表面,用于扫描电子显微镜 (SEM)、微观结构分析 (EDS、WDS、Auger、EBSD) 和 AFM 科研工作。一次可处理样品多达 3 个, 并可在同一个载物台上进行横切和抛光。工作流程解决方案可安全、高效地将样品传输至后续的制备仪器或分析系统。精研一体机Leica EM TXPLeica EM TXP是一款独特的可对目标区域进行准确定位的表面处理工具,特别适合于SEM,TEM及LM观察之前对样品进行切割、抛光等系列处理。它尤其适合于制备高难度样品,如需要对目标精细定位或需对肉眼难以观察的微小目标进行定点处理。有了 Leica EM TXP,这些工作就可轻松完成。领拓仪器是徕卡LNT的华南、西南授权代理商,领拓仪器为透射电镜/扫描电镜/工业材料样品提供全套样品制备服务。
  • 【大赛通知】第二届“中镜科仪杯”超薄切片大赛通知(第一轮)
    随着电子显微镜(以下简称电镜)技术的飞速发展,超薄切片技术已经成为众多研究领域中重要的实验手段之一。在透射电镜样品制备过程中,超薄切片技术是最基本、最常用的技术。首届超薄切片大赛的成功举办,受到了业内广泛关注,获得了一致好评。为了持续开展技术交流和推广,让全国各电镜实验室的技术人员展示自己的精湛技艺,第二届“中镜科仪杯”超薄切片大赛即将拉开帷幕,欢迎各地、各单位从事超薄切片技术的在职职工、离退休人员和学生积极参加。具体大赛事宜通知如下:一、大赛宗旨:本次大赛以“分享、切磋、传承、创新”为宗旨,目的在于通过大赛加强同行间的技术交流,展现技术人员的风采,提升我国超薄切片的技术水平,尤其是为了实现新一代电镜工作者对于基础工作的重视和对前辈们技艺的传承,在此基础上做好本职工作、实现创新突破。二、大赛主题:探究微观世界,传承切片技艺。三、组织机构:主办单位:中国材料与试验标准化委员会FC98/TC03科学试验装置标准化技术委员会中镜科仪集团承办单位:浙江大学农生环测试中心河南化工技师学院协办单位:徕卡显微系统(上海)贸易有限公司阿姆西(RMC)仪器有限公司北京中科百测技术服务有限公司河南元宇宙仪器有限公司大赛组委会:主任委员:丁明孝委 员:(按姓氏首字母排序)陈明霞、管铮、郭新勇、郝雪梅、洪健、李吉学、申孟芝、孙异临、佟艳春、王华、王仁姚、杨勇骥、张艾敬、祝建大赛评委会:总裁判:杨勇骥评 委:(按姓氏首字母排序)陈明霞、洪健、石洪波、孙异临、杨勇骥、俞彰、祝建四、参赛对象和大赛分组:大赛分为“职工组”和“学生组”1.职工组:在职职工及离退休人员。一等奖1名:奖品价值5000元二等奖2名:奖品价值3000元三等奖3名:奖品价值1000元优秀奖若干名。2.学生组:在校及实习期间学生。一等奖1名:奖品价值3000元二等奖2名:奖品价值2000元三等奖3名:奖品价值1000元优秀奖若干名。五、参赛办法及要求:比赛分预赛和决赛两个阶段。1. 预赛:参赛人员自行拍摄切片简短视频及最后电镜照片,打包发邮件给组委会。提交时要注明操作详细描述(详见附表2)。2. 决赛:经组委会对预赛内容进行审核后,择优入选决赛。决赛过程需要参赛人员到比赛现场进行实际操作,评委进行现场打分,评出各级奖项。现场决赛统一使用徕卡EM UC7或EM UC6超薄切片机。决赛内容包括:手工修块、切片机操作、超薄切片、捞片。选手可自行选用玻璃刀或钻石刀进行切片,玻璃刀现场制备,钻石刀自带。决赛所用设备及其它耗材由承办方和协办方统一提供。为了技术交流和推广,将于决赛期间进行“RMC连续超薄切片演示活动”,欢迎各位老师观摩互动。六、比赛日程:报名时间:即日起至2024年1月31日。预赛时间:截止至2024年3月31日。决赛、颁奖时间:待定。七、决赛地点:杭州市西湖区余杭塘路866号,浙江大学紫金港校区农生环测试中心。八、报名方式与费用:1. 邮件报名(报名表见附表1):edu@emcn.com.cn2. 参赛费用:本次大赛不收取报名费用,决赛时参赛人员须到现场比赛,交通及食宿费自理。3. 联系人:浙江大学农生环测试中心:李云琴 13735465530中镜科仪集团:赵胜蓝13298325853本大赛规则解释权归大赛组委会。中国材料与试验标准化委员会FC98/TC03 科学试验装置标准化技术委员会中镜科仪集团2023年1月8日附表1:第二届“中镜科仪杯”超薄切片大赛报名表.docx附表2:第二届“中镜科仪杯”超薄切片大赛预赛视频要求.docx
  • 总投资2600万元,苏州苏勃将新建汽车零部件检测项目
    近日,苏州苏勃检测检测技术有限公司公示了苏州苏勃检测技术服务有限公司新建汽车零部件检测项目的建设项目环境影响报告表。信息显示,本项目从事汽车零部件检测,属于检测服务项目,主要为新能源汽车零部件提供技术支持,项目总投资 2600 万元,其中环保投资 60 万元,环保投资占 比 2.3%,建成后年检测1370件。据了解,苏州苏勃检测技术服务有限公司成立于2009年8月,注册地点为苏州工业园区港田路 99 号港田工业坊18号厂房,是集塑料、金属、橡胶等原材料测试,环境力学耐久等可靠性测试,电学EMC测试,技术服务等为一体的综合性第三方检测机构,服务领域涉及汽车部件,电子电器,轨道交通以及军工等。苏州苏勃(STS)是中国合格评定认可委员会CNAS认可的第三方实验室,认可领域广泛涵盖了塑料、 金属、橡胶、油漆、电镀等原材料测试,环境力学耐久等可靠性测试,电学EMC测试以及各大主机厂测试标准。根据企业发展需求,苏州苏勃拟租赁苏州工业园区港田路99号港田工业坊17、18号厂房进行汽车零部件检测。而本次新建项目涉及大量仪器设备,主要设备如下,该项目还披露了各实验室所涉及的工艺流程,如下:1、耐久实验室(耐久试验检测)根据检测任务单中的检测项目,选择合适的试验设备,开展相应的性能测试。测试玻璃升降器、雨刮、遮阳板、座椅、扶手箱、手套箱、安全带、安全带锁扣等常用汽车零部件的使用寿命。测试项目包括玻璃升降器耐久试验、雨刮耐久试验、遮阳板耐久试验、座椅综合耐久试验、扶手箱耐久试验、 屏幕按压耐久试验、手套箱耐久试验、出风口耐久试验、摔门耐久试验、按 压耐久试验、疲劳耐久试验、安全带耐久试验、安全带锁扣耐久试验台、颠簸蠕动试验台等。2、噪声实验室(噪声试验检测)由于车辆噪声问题涉及因素众多,排查解决最有效的手段便是借助试验。汽车零部件噪声试验台能够实现在噪声试验室内对零部件进行振动冲击,通过对试验台输入路谱曲线或设置路谱振动参数,对试验件进行道路模拟振动并激发异响,从而在试验室内进行噪声问题诊断。3、电学实验室(电学试验检测)检测分析:电路原理图是用来表明设备电路工作原理及各电器元件相互关系以及作用的一种表示方式,运用电气原理图的方法和技巧,对于分析电路,排除电路故障是十分重要的;运用汽车设备电源故障模拟器测试样品性能;运用台式数字万用表测试样品上元器件(电阻等),检查有无明显异常的元器件;电容 C,电感 L,电阻 R 是最常用的电子元器件,作为常见的小小的被动器件,影响着电路的参数,也直接牵扯的产品的性能,运用 LCR 数字电桥测定电容 C、电感 L、电阻 R 参数;根据绘制的电路原理图,在板卡输入端通电,使用数字示波器测试输出信号,检测模块各主要功能区域的状态。4、盐雾实验室(盐雾试验检测、环境耐受度试验检测)(1)盐雾试验检测预处理:根据标准规定选取相应尺寸的试样或样块。检测分析:将样品放入调整好温度和喷雾量的盐雾箱内,盐雾箱内为 0.9%的氯化钠溶液,通过喷嘴将雾化的氯化钠溶液均匀喷至样品表面,循环往复,待达到试验时间后取出。用清洁布擦拭样品后,观察表面腐蚀情况或称重计算腐蚀速率。读取数据,出具报告:样品检测分析后计算数据,出具检测报告。(2)环境耐受度试验检测(冷凝水试验箱):和综合实验室中涉及的实验 29 流程相同,此处不再赘述。5、阻燃实验室(阻燃试验检测)该试验项目仅作为实验室能力验证项目每年开展约 7 次(金属材料阻燃2、皮革 3、塑料 2)。前处理:根据相关标准规定截取相应尺寸的试样或样块,将样品放入精密鼓风干燥箱进行干燥处理。 检测分析:样品干燥处理后,放入水平燃烧性测试箱,打开液化石油气钢瓶阀门,启动点火器,待火焰稳定后,移动火焰并使试样底边正好处于火焰中点位置上方,点燃试样后将点火器移开并熄灭火焰,同时打开计时器,记录续燃和阴燃时间。打开试验箱,取出试样,测量损毁长度。读取数据,出具报告:样品检测后分析数据,出具检测报告。(2)塑料灰分实验该试验项目仅作为实验室能力验证项目每年开展约 2 次。检测分析:将测试样品放入高温箱式电阻炉内,设置温度参数(900~1200℃)。当温度达到设定值时,开始计时。试验时间结束后,关闭电源,取出样品进行称重计算。6、综合实验室该实验室涉及的试验有环境耐受度试验检测、力学试验、耐久试验检测、 冲击试验检测、物理试验检测。耐久试验检测和耐久实验室的流程相同,本试验室不再赘述。检测分析:(1)环境耐受度试验检测:本试验检测金属、塑料等材料的环境耐受度。所用设备为喷头工装试验箱、高低温湿热试验箱、恒温恒湿试验箱、淋雨试验箱、浸水试验箱、温度冲击试验箱、车入式环境箱等。模拟特定环境下,样品的耐受程度。试验中设备所用循环水为纯水机制备的纯水,冷水机用于维持恒温恒湿试验箱的温度稳定性。 其中,喷头工装试验箱(密闭箱体中通过喷头喷水或粉尘,测试样品的耐受程度)、高低温湿热试验箱、恒温恒湿试验箱、淋雨试验箱、浸水试验箱、温度冲击试验箱、车入式环境箱等为独立的密闭箱体,在密闭的箱体中通过喷头喷水、粉尘,或控制箱体中温度、湿度,来测试样品的环境耐受程度。试验结束静置一段时间后,打开箱门,取出样品。(2)力学试验检测对领取的待检试样进行尺寸测量,并做好相应的测量记录。根据检测任务单中的检测项目,选择合适的试验设备,测试样品的力学性能。涉及设备为微机控制万能试验机、剥离试验机、应力分析仪、微小型拉压力传感器等。(3)冲击试验检测根据检测任务单中的检测项目,选择合适的试验设备,开展相应的性能测试,测试项目包括耐碎石冲击试验、电子简支梁冲击试验、电子悬臂梁冲击试验、落球冲击试验、气动垂直冲击试验、漆膜冲击试验等。(4)物理试验检测对领取的待检试样进行尺寸测量,并做好相应的测量记录。根据检测任务单中的检测项目,选择合适的试验设备,测试样品的物理性能。涉及设备为热变形,维卡软化点温度测定仪、伺服系统全自动插拔力(引张、压缩)试验机、十字划格试验机、漆膜弹性试验器、全智能型光泽度仪等。读取数据,出具报告:分析计算数据,出具检测报告。7、环境实验室 1:该实验室涉及的试验有环境耐受度试验检测,和综合实验室中涉及的实验流程相同,本试验室不再赘述。环境实验室 3:该实验室涉及的试验有环境耐受度试验检测、力学试验检测,和综合实验室中涉及的实验流程相同,本试验室不再赘述。8、环境实验室 2该实验室涉及的试验有环境耐受度试验检测、老化试验检测。其中,环境耐受度试验检测和综合实验室中涉及的实验流程相同,本试验室不再赘述。检测分析:(1)老化试验检测:所用设备为紫外光加速老化试验箱、氙灯老化试验箱、阳光碳弧老化试验机、紫外碳弧老化试验机。通过模拟自然阳光中的光辐射,对材料进行加速耐候性试验,以获得材料耐候性的结果。读取数据,出具报告:从设备上读取测试结果数据,出具检测报告。9、恒温恒湿房该实验室涉及的试验有耐磨试验检测、力学试验检测、冲击试验检测、 物理试验检测。其中,力学试验检测、冲击试验检测、物理试验检测和综合实验室中涉及的实验流程相同,本试验室不再赘述。本实验室样品检测结束后退回给客户。检测分析:(1)耐磨试验检测:在落砂耐磨试验仪、纸带耐磨试验机、Taber 耐磨试验机、耐磨耐刮擦试验机、耐磨试验机、五指刮擦试验机、摩擦色牢度测试仪上测试样品的耐磨性。读取数据,出具报告:从设备上读取测试结果数据,出具检测报告。10、制样室(金相制样检测)切割:采用切割机、钻铣床将金属材质的样品切割成制样需要的形状。切割机为慢速切割机,通过锯条的上下缓慢拉动进行切割,切割速度较低。 镶嵌:由于样品形状不规则,无法采用金相显微镜观察组织结构,故需将样品进行固定。在金相分析样品制备过程中,观测面在被磨抛前的方向调整一般是常温下使用环氧树脂粉和固化剂对样品方向进行固定,同时镶嵌可以使不规则的样品变成方便手持的形状,从而便于控制磨抛过程,这个样品方向固定和形状规范的过程叫做金相样品的镶嵌。该过程在 18 号厂房 2 楼化学试验间的通风橱中进行。磨抛:在金相试样磨抛机上对样品进行磨抛。全程用自来水冲洗样品进行冷却。检测分析:采用金相显微镜观察组织结构。读取数据,出具报告:根据检测视场,在专业软件及相关标准上读取相关数据,出具检测报告。11、气体腐蚀实验室(气体腐蚀试验检测)该试验用于模拟大气中存在的硫化氢、氯气、二氧化硫、二氧化氮等腐蚀性气体对汽车零部件的腐蚀、破坏程度。预处理:根据标准规定选取相应尺寸的试样及标准腐蚀铜片。检测分析:将样品、标准腐蚀铜片放入气体腐蚀实验箱内,控制湿度、温度,通入适量的测试气体,气体为硫化氢、氯气、二氧化硫、二氧化氮(气 瓶中气体的浓度分别为硫化氢 51.2×10 -6、二氧化氮 1.01×10 -3、氯气 50.2×10 -6、 二氧化硫 1.01×10 -3,其余均为氮气),每次试验只通入一种气体进行气体腐蚀试验。试验结束后,排空测试气体引入自带的氢氧化钠(5%)溶液中净化后在室内无组织排放。读取数据,出具报告:观察样品表面腐蚀情况,出具检测报告。12、材料实验室该实验室涉及的试验有耐久试验检测、耐磨试验检测、臭氧老化试验检测、冲击试验检测、物理试验检测、老化试验检测、环境耐受度试验检测、力学试验检测。其中耐久试验检测和耐久实验室的流程相同;耐磨试验检测和恒温恒湿房的流程相同;老化试验检测和环境实验室 2 的流程相同;冲击试验检测、物理试验检测、环境耐受度试验检测、力学试验检测和综合实验室的流程相同,此处不再赘述。(1)臭氧老化试验检测:前处理:根据标准规定截取样品规定尺寸的样块。检测分析:将样块放入臭氧老化试验箱,老化试验箱工作条件设定为标准大气压(101.3kPa)下臭氧浓度(1±0.01)mg/m3、温度(40±2)℃,时间为(8±0.5)h,查看试样在一定浓度的臭氧作用下的老化性能。本项目臭氧由箱体内的臭氧发生器产生,试验完成后,等老化箱内臭氧浓度显示为 0 时取出样品。13、化学试验间:耐化学试验(均在化学试验间的通风橱中进行)检测分析:根据塑料、皮革、金属、织物、树脂、玻璃等样品材料,选择不同试剂配置成不同浓度的溶液,将配制的溶液涂抹于样品表面,自然晾干后,观察样品外观情况,检测样品的耐化学性能。本试验涉及的化学试剂有:硝酸、丁酮、丙酮、浓硫酸、盐酸、磷酸、硝酸钾、硝酸钠、无水乙醇、清洗剂等。读取数据,出具报告:样品检测分析后计算分析数据,出具检测报告。14、环境实验室(17号一号厂房):该实验室涉及的试验有环境耐受度试验检测,和综合实验室中涉及的实验流程相同,本试验室不再赘述。
  • 仪器表征,科学家评述超薄手性二维材料的最新进展!
    【科学背景】二维材料具有超薄形态和极高长宽比,与块体材料相比,它们的性质发生了显著变化,因而在光电子学、自旋电子学、二氧化碳转化、能源存储和气体分离等领域展现出巨大的应用潜力。然而,尽管二维材料在许多方面表现出色,直到最近,全局手性这一特性在二维材料中仍然缺失。手性是一种广泛存在于自然界中的现象,尤其是在分子水平上。手性材料因其在对映选择性识别和催化中的应用,长期以来受到研究者的关注。然而,全局手性,即发生在分子水平以上的手性构象和排列,在二维材料中的实现一直是一个难题。特别是手性二维材料的设计、合成与表征面临着诸多挑战,包括超薄纳米片的分离、稳定性问题以及在二维平面中有效传递和放大手性信号的难度。有鉴于此,上海交通大学化学化工学院董金桥刘燕以及崔勇合作发表了二维材料的最新评述论文。他们发现,研究者们近年来开展了大量的研究,并在手性二维材料的设计与合成方面取得了显著进展。通过化学合成和精确设计,几种不同类型的超薄手性二维晶体得以实现。这些新型手性二维材料在实验上展示了分子尺度的局部手性如何在超薄单晶二维结构中显著传递和放大,从而形成独特的全局手性。【科学亮点】1. 本研究发现超薄手性二维晶体材料表现出独特的物理性质和潜在应用,填补了二维材料中长期缺失的全局手性这一重要特性。2. 论文指出,科学家成功地传递并放大了分子尺度的局部手性,从而在超薄单晶二维结构中实现了显著的全局手性。【科学图文】图1:手性二维2D 金属有机骨架材料metal–organic frameworks,MOFs的局部结构表征。图2:通过共价或非共价组装的手性二维2D纳米片合成和结构表征。图3:手性二维2D 有机-无机混合钙钛矿hybrid organic–inorganic perovskites,HOIP的晶体结构。图 4: 手性二维2D蛋白质的合成和HR-TEM表征。【科学启迪】本文揭示了二维材料领域中的全局手性这一未被充分探索的潜力。尽管二维材料因其超薄形态和极高的长宽比展现出众多独特性能,但全球手性特性长期以来在这些材料中却鲜有踪迹。近期的研究突破通过实现多种超薄手性二维晶体,揭示了全局手性在二维材料中的重要性和应用潜力。文章强调了如何通过精确设计和合成策略,将分子尺度的局部手性有效地传递并放大至整个超薄单晶二维结构中,从而形成显著的全局手性。这种全局手性不仅提升了材料的功能复杂性,还为开发新型手性材料和应用提供了全新的视角。本文的讨论引导我们认识到,在二维材料中探索和应用全局手性,能够拓展现有材料的功能范围,并激发在化学、物理和材料科学等领域中的新兴应用机会。参考文献:Dong, J., Liu, Y. & Cui, Y. Emerging chiral two-dimensional materials. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01595-w
  • 基于SERS技术的新型可穿戴超薄传感器
    目前的可穿戴传感器,已经可以实现在日常条件下跟踪佩戴者的运动和生命体征,例如步数、血压、血氧和心率,并且也已逐渐发展出以非侵入性方式对佩戴者的生物流体(如汗液、唾液、眼泪和尿液)进行原位化学传感(in situ chemical sensing)的技术。但是,传统的可穿戴传感器通常无法在一次测量中同时区分不同的化学物质。如果想要设计成可用于测量多种化学物质,则需要更大的尺寸和非常昂贵的成本。能够检测多种化学分子和生物标志物对及时、准确和全面了解佩戴者复杂的生理和病理状况至关重要。为此,东京大学的研究团队开发出一种基于表面增强拉曼光谱(SERS,Surface-Enhanced Raman Spectroscopy)技术的新型可穿戴超薄传感器。该研究成果发表在6月22日的Advanced Optical Materials杂志,题为“高度可扩展、可穿戴的表面增强拉曼光谱”(Highly Scalable, Wearable Surface-Enhanced Raman Spectroscopy)。拉曼技术对可穿戴生物监测具有重要意义,因为它们拥有无需分子标记即可进行灵敏和多路化学分析的能力。困难在于,生物系统的固有的拉曼信号较为微弱,需要将目标分子结合到合适的底物上,以放大拉曼响应。研究团队选择了黄金作为基底。金是一种已知可有效用作SERS基底的材料,多个研究项目已经研究了在实际SERS平台中使用金属的不同方法。研究团队的灵感来自于制造镀金聚乙烯醇 (PVA) 纳米纤维的最新进展,该纳米纤维用于可长时间佩戴在人体皮肤上的电子传感器。团队成员 Limei Liu 解释,“这些 PVA 装置由涂有金的超细线纺制而成,因此可以毫无问题地附着在皮肤上,因为金不会以任何方式与皮肤发生反应或刺激皮肤。”这种可穿戴传感器由纳米网格状的PVA纤维制成,在纤维上覆盖150纳米的金层,将涂覆的纤维纳米网附着到目标表面(例如人体皮肤),然后用水将 PVA 溶解掉,只留下完整的金纳米网在目标表面。纳米线的尖锐边缘作为局部SERS效应的“热点”(hot spot),研究人员通过减小纳米线的直径来优化单位体积中的热点数量,同时保持足够的机械强度以实现耐磨性。在概念验证试验中,志愿者佩戴该贴片,并暴露在不同的化学物质中,然后用商用785纳米拉曼光谱仪进行检测。实验证明,该系统能够检测尿素和抗坏血酸等生物分子,并识别水中的微塑料污染。还可以检测到常见的滥用药物,以及应用于执法。该系统目前需要外部光源和光谱仪配合使用,但研究人员未来将把半导体纳米激光器和纳米光谱仪通过直接键合的方式,集成到可穿戴式SERS传感器中。助理教授Tinghui Xiao表示:“目前,我们的传感器需要进行微调以检测特定物质,我们希望在未来进一步提高灵敏度和特异性。有了这个,我们认为像血糖监测这样的应用是可能的,非常适合糖尿病患者,甚至可以用于病毒检测。”
  • 得利特技术革新|全自动锥入度测定仪 可测润滑脂及石油脂 电动升降 激光无接触检测
    21世纪初的前十年,是国内传统大型国有石油化工企业人员改革及结构调整的关键时期,在分析检测人员精简、对生产过程监测与控制的要求越来越高、分析检测任务越来越重的大环境下,市场对自动化程度更高、操作更简单、分析结果更稳定的分析仪器的需求也越来越迫切。得利特公司本着科学创新的探究原则,技术人员参与并研发了多种测定仪新品。其中能够适用于润滑脂及石油脂检测的仪器就是全新推出的---A3030自动锥入度测定仪A3030自动锥入度测定仪根据标准GB/T269-91《润滑脂和石油脂锥入度测定法》的要求设计制造的。产品特点:1、电动升降系统,可电子调节升降速度。2、底座调解机构:底盘上设有微调地脚螺丝,面上镶有调平圆水泡。通过调节地脚螺丝可以方便的调节底座台面的水平。3、采用直流低压锁紧装置,安全可靠。技术参数:1、测量范围:0~500 锥入单位2、椎体释放行程:62mm以上3、激光传感器:采用**激光组件4、最小读数:1锥入单位5、计时范围: 5秒-90秒可调节6、计时误差: ≤0.02秒7、重复性: <2+0.03P, P为两个测定结果的算术平均值8、稳定性:Δu≤0.29、控温范围:23摄氏度--60摄氏度10、电源:AC220V±10%,50Hz±2%11、外形尺寸L×B×H (mm): 530×290×360创新点:1、自动检测锥入度值,采用德国**激光传感器,使用激光做无接触检测,大大减轻了人为干扰。2、6寸彩色液晶触摸显示屏,自动检测,存储试验结果。通过以上产品的研发,相信对石油化工企业日益增加的样品分析任务及更加精简的人力物力的现状及发展趋势来说,可以大大提高分析效率,有效及时地满足工艺生产的需要。
  • 半导体情报,科学家开创超薄高κ氧化物的理想平台与2D晶体管集成新方法!
    【科学背景】二维(2D)半导体具有原子级厚度,是潜在的高度缩放晶体管沟道材料,因其能够抑制短沟道效应而成为研究热点。然而,要超越传统的硅基晶体管,需要在2D半导体上开发无瑕的超薄高介电常数(κ)介电材料,以实现高效的栅极控制。然而,由于2D半导体表面没有悬挂键,直接进行原子层沉积(ALD)来沉积介电层存在非均匀成核和电流泄漏的问题,特别是在介电层厚度小于3nm的情况下。为了解决这个问题,科学家们提出了多种界面工程方法,包括等离子预处理和种子层预沉积,但这些方法通常会引入额外的界面电荷散射、较差的热稳定性或整体栅极电容降低等问题。有鉴于此,南开大学材料科学与工程学院张磊,吴金雄等教授提出了一种垂直金属辅助的范德华(vdW)集成方法,这种方法能够在不损伤2D半导体表面的情况下,将高κ介电材料层叠到2D半导体上。研究中开发了一种铋氧化物(Bi2O3)辅助的化学气相沉积(CVD)方法,用于垂直生长钯、铜和金等单晶纳米片,这些纳米片具有原子级平整的表面。通过无聚合物的机械压合方法,这些纳米片可以轻松转移到目标基板上。此外,CVD生长的钯与ALD过程兼容,能够在其上沉积超薄高κ介电材料如Al2O3和HfO2,同时保持其原子级平整表面。通过一步转移过程,研究人员将小于3nm的Al2O3/Pd和HfO2/Pd异质结构堆叠在几层的MoS2或石墨烯上,形成了清洁的vdW界面,没有有机污染或沉积引起的损伤。结果表明,使用2nm厚Al2O3或HfO2介电材料的顶栅MoS2场效应晶体管(FET)展示了约61mV/dec的亚阈值摆幅、0.45V的低工作电压、107的开/关比、10&minus 6A/cm² 的栅极漏电流和~1mV的可忽略滞后。【科学亮点】(1) 实验首次介绍了铋氧化物辅助化学气相沉积(CVD)方法:&bull 首次开发了铋氧化物辅助CVD方法,用于垂直生长单晶金属纳米片,如钯、铜和金,这些纳米片具有原子级平整表面。&bull 创新性地展示了纳米片通过无聚合物机械压合技术轻松转移到目标基板上,这一过程没有引入有机污染物,保持了原子级平整度。(2) 实验通过vdW集成成功实现了亚1nm CEC的2D晶体管的制备:&bull 使用了铋氧化物辅助CVD生长的钯纳米片作为基础,成功实现了超薄高介电常数(高κ)介电材料(如Al2O3和HfO2)的原子层沉积(ALD),保持了介电材料的原子级平整度。&bull 在少层二硫化钼(MoS2)和石墨烯上,通过一步转移过程堆叠了小于3nm厚的Al2O3/Pd和HfO2/Pd异质结构,形成了清洁的vdW界面,避免了常见的沉积损伤和有机污染物的引入。(3) 实验所制备的MoS2顶栅场效应晶体管(FET)展示了亚1nm CEC(0.9nm)的高介电常数(高κ)介电材料(Al2O3或HfO2)的优异性能。具体包括低至0.45V的操作电压、106 A/cm² 的栅极漏电流。【科学图文】图1:垂直生长的单晶金属化学气相沉积chemical vapour deposition,CVD生长、无聚合物转移和表征。图2:垂直生长钯Pd纳米片的原子层沉积atomiclayer deposition,ALD兼容性和范德华van der Waals,vDW集成。图3:以亚3nm Al2O3/Pd作为顶栅介质和电极的MoS2晶体管。图4:以2nm HfO2/Pd作为顶栅介质和电极的MoS2晶体管。【科学结论】本文的科学启迪在于了一种新颖的方法,利用铋氧化物辅助化学气相沉积(CVD)生长垂直单晶二维金属纳米片,并成功将其作为高质量原子层沉积(ALD)氧化物的平台。这一方法不仅解决了传统ALD技术在二维半导体表面上沉积难题,还避免了传统转移技术中介电层厚度过大的问题。通过铋氧化物的引入,实现了在原子级别上对金属表面的垂直生长,从而为超薄介电层的制备提供了一种新途径。此外,本文还通过简化的一步法集成过程,成功在二维半导体上形成了范德华界面,避免了传统转移过程中的有机污染和损伤,确保了介电层的质量和性能。这不仅有助于在极小的电容等效厚度下实现高效的栅极控制,还为制造更高性能的二维场效应晶体管(FET)奠定了基础。原文详情:Zhang, L., Liu, Z., Ai, W. et al. Vertically grown metal nanosheets integrated with atomiclayerdeposited dielectrics for transistors with subnanometre capacitanceequivalent thicknesses. Nat Electron (2024). https://doi.org/10.1038/s41928024012023
  • 物理学家以硅和黄金研制出超薄无畸变镜头
    哈佛大学的科学家们,更准确的说是物理学家们,已经成功研发出一种超薄镜头,厚度仅60纳米,比一张纸更薄,与人类的发丝差不多,更令人震惊的是,这将是完全没有畸变的镜头。   几个世纪以来,成像技术受制于玻璃镜片的发展已是不争的事实,甚至是最新的光纤技术也逃脱不了材料的限制。不过近日,哈佛大学工程与应用物理学的几名高级研究员组成的联合小组试图打破这个传统,他们打算制造一组完全没有畸变的镜头。   这种镜头的原理是在表面覆盖一层液体硅的“黄金天线”——成V型结构,这些天线能够收集光线,短时间存储光线,然后把光线向新的方向发射出去。其优势除了几乎没有体积外,还有一个更重要的特性—没有畸变:   “平面镜头消除了传统广角镜头的光学畸变,例如鱼眼效果。像散和慧差同样也不存在,所以其成像或信号非常准确,也不需要复杂的校正技术。”   首席科学家Francesco Aieta表示,这项技术也许有一天“会用一个平面代替所有光学系统中的镜片”。   如果未来这种技术可以实现量产的话,将大大改善相机在设计过程中的体积和画质均衡的难题。   研究组制造了一个全新的60纳米厚的硅透镜,然后将微小的镀金天线蚀刻在硅的表面。由于整体的结构和尺度都是纳米级别,因此该镜片的结构在规模上要比光线的波长还要薄。而每个镀金天线都是一个微型谐振器,而硅透镜表面的镀金天线又具有不同类型的梯度,因此,当光线进入之后可以有效弯曲。从传统的光学设计而言,便是硅透镜与空气之间发生了相移。在这样的情况下,通过接口结合相位不连续的渐变,理论上可以控制光的反射和折射。光线的反射和折射定律受到了巨大挑战。   如果最终的研究转化为生产力,那么未来也许有一天,它可能替代目前的各种光学产品,从显微镜到望远镜。
  • “穿衣服”的升降调速玻璃反应釜——访郑州长城科工贸有限公司技术工程师张程远
    2021年9月27日,两年一度的行业盛会第十九届北京分析测试学术报告会暨展览会(简称BCEIA2021)在北京中国国际展览中心(天竺新馆)盛大开幕。本届BCEIA继续秉承“分析科学 创造未来”的愿景,围绕“生命 生活 生态——面向绿色未来”的主题开展学术报告会、论坛和仪器展览会。此次BCEIA展会,仪器信息网作为官方战略合作媒体,联合郑州长城科工贸有限公司、北京卓立汉光仪器有限公司、北京清谱科技有限公司、北京橙达仪器有限公司、天津诚轴科技有限公司、尤尼柯(上海)仪器有限公司、上海析维医疗科技有限公司等7家仪器企业(排名不分先后),共同组成了仪器信息网展团。展会期间,郑州长城科工贸有限公司技术工程师张程远接受了仪器信息网的采访。本次展会,郑州长城科工贸有限公司(以下简称长城科工贸)主要展示了温控、玻璃反应釜和旋转蒸发仪等产品。张程远重点介绍了一款升降调速玻璃反应釜(GRL),正如它的名字一样,这款反应釜可升降、可调速,采用的玻璃材质使得操作人员可以直观地看到反应的进程。该产品可用于化学合成、减压蒸馏、常压蒸馏以及低温结晶反应等场景。这款升降调速玻璃反应釜主要有几大特点:采用高硼硅3.3玻璃材质,温度范围可实现-80℃-200℃;机身整体经过喷塑处理;配备直流无刷电机;还可实时显示反应釜内温度值,并可随时调整温度设定值;另外,可通过手轮控制釜体的升降或翻转,方便用户的投料、取料和清洗釜体等操作。对于反应釜的安全操作,张程远给出了几点建议:1.用户在使用过程中,避免有气体产生的反应,尽量让反应釜内保持负压或常压的环境;2.注意反应釜的表面温度,不要随意触碰,防止烫伤或者冻伤。为了更好地保证用户在操作反应釜上的安全性,长城科工贸给整个管路穿上了“衣服”,在接口处也做了防护套,在釜体部分可以配备釜体保温衣,尽可能地保证用户在使用过程中不会因温度因素而受伤。更多详细内容请观看以下视频。
  • IKA推出新型彩盘磁力搅拌器/超薄磁力搅拌器
    2010年, 以创新闻名的IKA 又向中国市场推出三款新品: 新型彩盘磁力搅拌器, 大盘面磁力搅拌器, 及超薄磁力搅拌器.   新型彩盘/大盘面磁力搅拌器是最新改进的小型磁力搅拌器, 与以前相比,   1) 新添加了数字显示功能, 转速达2500RPM.   2) 电子控制电达, 处理量比以前更大: 1升(彩盘), 1.5升(大盘面)   3) 玻璃表面以及热塑性聚酯 TPC-ET 合成材料基座   新型超薄磁力搅拌器,厚度仅12MM. 采用最先进的磁力线圈技术,内部无运动部件,无磨损。为了确保更好的搅拌,每隔30秒自动改变搅拌转向 良好的耐化学腐蚀性能.   三款新品, 设计大方美观, 沿用德国IKA典型的简洁风格, 爽心悦目。 Color Squid 彩盘磁力搅拌器 Big Squid 大盘面磁力搅拌器 Lab disc 超薄磁力搅拌器
  • 新品 | 徕卡推出3D连续超薄切片机
    p   2月15日,徕卡推出新产品ARTOS 3D连续超薄切片机。 br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 368px " src=" https://img1.17img.cn/17img/images/201907/uepic/65e5d42d-0dba-4354-93d1-bbe95d818dcb.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 368" border=" 0" vspace=" 0" / /p p   关注细胞超微结构的您: br/ /p p   还在为只能得到十几张超薄切片而不满吗? /p p   还在为TEM下只能观察到一层切片的细胞结构而劳神吗? /p p   还在为单层贴壁细胞内细胞器之间,病毒和宿主之间的关系而发愁吗? /p p   那么,告诉您一个好消息!徕卡3D连续超薄切片机上市啦! /p p   它可以一次自动切出上百个切面尺寸灵活 (微米到毫米) 的超薄切片。 /p p   内置切片-条带收集系统,可直接转移至SEM内。 /p p   通过序列断层成像,对生物样品超微结构进行纳米级别的三维重建。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 徕卡3D连续超薄切片机(ARTOS 3D)具有以下3个优势: /strong /span /p p    strong 1 快速连续切片和轻松对准SEM成像 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/ba360912-11fd-4f8c-b01a-0b69f1619b6c.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p    strong 2 通过无缝的工作流程,节省高品质切片的制作时间 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/edf00fbc-aefb-408e-b632-cfcfa99a772f.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p    strong 3 可重复且无假象的切片 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/b1006e83-1c47-41b9-b832-ff07e696d746.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p   可选择透明的硅片收集切片,因此 ARTOS 3D 也是 strong 光电联用显微技术 (CLEM) /strong 的理想解决方案。整体的成像解决方案工作流程如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/02d50b2c-131d-4c75-b542-d985403828dc.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p   除此之外,ARTOS 3D 的卓越性能和速度源于 strong EM UC7 技术 /strong ,因此可用于各种样品制备任务。 /p p    strong & gt /strong 由于 EM UC7 的观察系统采用 strong 共心运动方式 /strong ,而刀台以电动方式进行横向和竖向运动且自动接近所选刀段,ARTOS 3D可以制备LM和TEM高品质半薄及超薄切片,并获得进行SEM和 AFM 检测所需的光滑表面。 /p p    strong & gt /strong 将您的 EM UC7 超薄切片机升级为 strong ARTOS 3D 超薄切片机 /strong /p p    strong & gt /strong 短短几分钟即可将 EM UC7 和 ARTOS 3D 超薄切片机转换为配备 strong EM FC7 冷冻箱 /strong 的冷冻超薄切片机 /p
  • 美国麦克仪器助杂化二维超薄结构电催化还原CO2研究取得重要进展
    近日,中国科技大学合肥微尺度物质科学国家实验室谢毅教授和孙永福特任教授课题组在杂化二维超薄结构的合成及应用领域取得重要进展。该课题组设计了一种杂化模型体系用来研究金属表面氧化物对其自身金属电催化性能的影响,该结果以“Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel” 为题发表在Nature上(2016, 529, 68-72, DOI 10.1038/nature16455)。 通过电催化过程将CO2还原成碳氢燃料分子不仅有助于降低CO2的负面影响,而且还可以获得甲烷、甲酸、甲醇等燃料。然而,电还原CO2过程的一个瓶颈是如何将高稳定性的CO2活化,这往往需要非常高的过电位;而过电位的存在不仅浪费大量的能源,还往往导致还原产物选择性的降低。 已有报道显示金属电极通常具有较高的电还原CO2活性,尤为有趣的是通过金属氧化物还原得到的金属比通过其它方法制备的金属催化活性要高,甚至能将CO2的还原电位降低到热力学的最小值。但是金属表面氧化物对其自身金属电还原性能的影响机制还不清楚,这主要是因为以前制备的催化剂中含有大量的微结构如界面、缺陷等,这些微结构的存在很容易掩盖住表面金属氧化物对其自身金属催化性能的影响。 为了揭示金属表面氧化物对其自身金属电还原CO2性能的影响,谢毅教授、孙永福特任教授课题组构建了一种杂化模型材料体系, 即数原子层厚的金属/金属氧化物杂化超薄结构。以六方相Co为例,他们通过配体局限生长的方法制备了4原子层厚的Co/Co氧化物杂化结构。电化学比表面积矫正的Tafel斜率和法拉第转换效率结果揭示出局限在超薄结构中的表面Co原子比块材中的表面Co原子在低的过电位下具有更高的本征催化活性和更高的产物选择性,Co原子层的部分氧化进一步增加了其本征催化活性,进而在只有0.24 V的过电位下于40 h内获得10 mA cm-2的稳定电流和90%的甲酸选择性。本工作展示了金属原子在位于特定的排列方法和氧化价态时,可能具有更高的催化转化活性,即超薄二维结构和金属氧化物的存在提高了催化还原CO2的能力。该工作有助于让研究者重新思考如何获得高效和稳定的CO2电还原催化剂,也对推动电催化还原CO2机理研究具有重要的意义。 文中催化剂的CO2吸附性质是通过美国麦克仪器公司的经典仪器ASAP 2020获得,通过对比四种催化位点下催化剂的CO2吸附性能,有力的佐证了文中论点。全文链接:http://www.nature.com/nature/journal/v529/n7584/pdf/nature16455.pdf。
  • 买多道移液器送液晶显示手动移液器
    RAININ® (瑞宁)&trade 多道移液器深受广大用户的喜爱,不仅能提高您的工作效能,人体工程学设计更能远离手部疲劳。 专利设计为您带来: -- 降低人工活塞推进力和退吸头力 -- 确保各通道吸液和排液的高度一致性 -- 套柄无O形环,退吸头更为省力 -- 有舒适指钩设计,人性化的左/右手操作设计 -- 大大降低手部重复性劳损 活动内容: 凡购买以下指定型号多道移液器一支即送指定型号液晶显示手动移液器一支(市场价3980元) 点击此处在线订购 活动时间: 2009年10月1日 &mdash 2009年11月30日 详情请致电: 4008-878-788 物料号 参加活动型号 量程 17003631 17003632 17003627 17003628 手动8道移液器L8-10 手动8道移液器L8-20 手动12道移液器L12-10 手动12道移液器L12-20 2-20ul 17006820 17006817 手动8道移液器L8-50 手动12道移液器L12-50 5-50ul 17003633 17003629 17001754 17001748 手动8道移液器L8-200 手动12道移液器L12-200 电动8道移液器E8-200 电动12道移液器E12-200 20-200ul 17003634 17003630 17005841 17005839 手动8道移液器L8-300 手动12道移液器L12-300 电动8道移液器E8-300 电动12道移液器E12-300 20-300ul 此活动最终解释权归梅特勒托利多公司所有
  • 上海比朗新型升降式光化学反应仪已经上市 欢迎用户选购
    上海比朗仪器有限公司在多名技术工程师的共同努力下,4月22日已经成功完成升降式光化学反应仪技术升级计划,新型升降式光化学反应仪主要用于研究气态物质(如氮氧化物、硫氧化物、烃类和其它有机物等)和固相表面的光化学变化,也可用于研究浓度较高的水油混合物的光化学变化。   升降式光化学反应仪主要特征:   ●微电脑控制器,光功率连续可调(国内领先)。   ●控制器置有电流表和电压表,便于观察电流和电压变化。   ●微电脑定时器,可分步定时。   ●气体反应器可通入特殊气体。   ●调节升降台高度调节光照强度。   ●反光罩可使样品充分接受光照   升降式光化学反应仪配置:   ★ 主体部分包括反应暗箱。   ★ 光源控制器。   ★ 汞灯:1000W、500W、300W、100W可选。   ★ 氙灯:1000W、500W、300W可选。   ★ 金卤灯:400W、250W可选。   ★ 石英气体反应器、石英固体反应器、石英冷阱。   ★ 升降调节台、反光罩。   上海比朗品牌新型光化学反应仪已经上市,欢迎用户选购。您可以登录我们的商城(www.bilon.cc)或者拨打我们的销售热线电话:021-52965776,我们将竭诚为您服务。   文章链接:上海比朗仪器有限公司 更多光化学反应仪信息http://www.blghx.com
  • 2018年生物电镜超薄切片高级培训班第二轮通知
    p style=" text-align: center "   2018年生物电镜超薄切片高级培训班 /p p style=" text-align: center "   第二轮通知 /p p   为了促进生物电镜行业技术的发展,提高从业人员的技术水平,推动我国电镜技术标准化工作的进程,由中国电子显微镜学会农林电镜专业委员会/生物医学电镜专业委员会联合主办,由河南化工技师学院、徕卡显微系统(上海)贸易有限公司、瑞士戴通公司联合承办的“2018年生物电镜超薄切片高级培训班”于2018年4月17日在河南省开封市举行,现将培训班具体事宜通知如下: /p p   一、培训时间、地点 /p p   时间:2018年4月17日—4月25日 /p p   地点:河南化工技师学院--开封市东京大道与七大街交叉口西 /p p   二、培训对象:具有一定超薄切片经验的技术人员 /p p   三、培训老师 /p table width=" 568" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 183" valign=" top" style=" padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " Dr.Helmut& nbsp Gnaegi /span /p /td td width=" 385" valign=" top" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 瑞士戴通公司总经理、首席应用工程师 /span /p /td /tr tr td width=" 183" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 张艾敬 /span /p /td td width=" 385" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 徕卡生命科学部门应用工程师 /span /p /td /tr tr td width=" 183" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 杨勇骥 /span /p /td td width=" 385" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 中国人民解放军第二军医大学 /span /p /td /tr tr td width=" 183" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 石洪波 /span /p /td td width=" 385" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" line-height: 150% font-family: 宋体 font-size: 16px " 瑞士戴通公司中国区总经理 /span /p /td /tr /tbody /table p   四、培训人数、费用 /p p   本次切片培训班主要培养和选拔国内一流人才,为今后制定规范、培养一流培训师,积淀人才搭建平台。为保证培训质量和效果,本次高级培训班人数限定为10人。请报名参加培训班的学员填写回执,并于 2018 年 3 月 1 0日前电邮至zk_15890901833@163.com,由专家评审后确定参培人员。 /p p   培训费用7000元/人,含培训费、材料费。食宿及交通费用自理。住宿标准: 标间440元/间· 天(合住220元/人· 天)。 /p p   五、培训日程 /p table width=" 561" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 32px " td width=" 151" height=" 32" valign=" top" style=" padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent " colspan=" 2" p style=" text-align: center line-height: 150% " span style=" line-height: 150% font-family: 宋体 " 时间 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center line-height: 150% " span style=" line-height: 150% font-family: 宋体 " 安排 /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center line-height: 150% " span style=" line-height: 150% font-family: 宋体 " 备注 /span /p /td /tr tr style=" height: 32px " td width=" 151" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " colspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月17日 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 全天报道 /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " /td /tr tr style=" height: 32px " td width=" 151" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " colspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月18日-20日 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 技术研讨 /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月21日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 全天 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 熟悉设备,水平测试 /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月22日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 超薄切片基础理论(1) /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " rowspan=" 2" /td /tr tr style=" height: 32px " td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 下午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上机练习+面对面答疑 /span /p /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月23日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 超薄切片基础理论(2) /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " rowspan=" 2" /td /tr tr style=" height: 32px " td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 下午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上机练习+面对面答疑 /span /p /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月24日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 超薄切片基础理论(3) /span /p /td td width=" 71" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " rowspan=" 4" /td /tr tr style=" height: 32px " td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 下午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上机练习+面对面答疑 /span /p /td /tr tr style=" height: 32px " td width=" 102" height=" 32" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " rowspan=" 2" p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 4 /span span style=" color: black line-height: 150% font-family: 宋体 " 月25日 /span /p /td td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 上午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 集中答疑+经验交流+颁发证书 /span /p /td /tr tr style=" height: 32px " td width=" 49" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 下午 /span /p /td td width=" 339" height=" 32" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" line-height: 150% " span style=" color: black line-height: 150% font-family: 宋体 " 离会 /span /p /td /tr /tbody /table p   注:本次培训所使用的仪器由徕卡提供,钻石刀由瑞士戴通提供,耗材由中镜科仪提供。 /p p   六、培训证书 /p p   1、本次培训结束时进行结业考核,通过者颁发2018年生物电镜超薄切片高级培训班结业证书,证书由徕卡公司、戴通公司、河南化工技师学院共同认证,三方签字,具有国际权威性。 /p p   2、本次培训结束时进行结业考核,成绩优异并获得“优秀学员”称号的个人,将享受丰厚的个人奖励。考核成绩排名前三的个人,学院颁发“客座讲师”聘书,长期聘用为电镜专业指导教师,并将被邀请为第二届全国超薄切片大赛评委。 /p p   七、联系方式 /p p   河南化工技师学院:张 康,15890901833,zk_15890901833@163.com /p p   徕卡公司:张艾敬,13810143752,aijing.zhang@leica-microsystems.com /p p   戴通公司:石洪波,13907177885,hbshi.cn@gmail.com /p p style=" text-align: right "   中国电子显微镜学会农林电镜专业委员会 /p p style=" text-align: right "   中国电子显微镜学会生物医学电镜专业委员会 /p p style=" text-align: right "   河南省电子显微镜学会 /p p style=" text-align: right "   河南化工技师学院 /p p style=" text-align: right "   2018年3月7日 /p p /p
  • 张弛有度,奥豪斯离心机升降速解析!
    良好的生活节奏可以让人时刻保持良好的状态,合适的离心参数选择也可以让实验结果更可靠。今天让我们来聊聊离心机升降速的选择。什么是离心机升降速?所谓升降速调节,其实是指的运转升到设定速度的加速度和当达到设定转速后降为0的减速度。我们提供0-9档的选择,随着数字的增长我们的加速度或减速度逐渐升高。例如0档我们升到设定转速需要几分钟而9档则只需要十几秒。反之亦然!离心机升降速越快越好?从时间成本来看,如果我们使用最快的加速度和最高的减速度可以大量节省运行时间提高工作效率,绝大多数情况下,我们也推荐这样使用。但不代表所有实验都是如此,这也是为什么我们要设计0-9档调节的原因。细胞提取实验中过高的加速度会导致细胞挤压堆积过紧,细胞挤压破碎,不利于后续实验分离提。 而减速度过大则会出现回混现象,就好比汽车突然急刹车,人和物都会前冲一样。离心完的样品也会再次混合,造成实验分离效果变差,对应一些介质密度相差小的样品或分离度低的样品尤为明显。因此离心过程亦如人生,老子曾云:“和光同尘,与时舒卷“,我们要先了解样品的本质,找到适合样品分离的参数才能得到更好的实验结果。所谓张弛有度 与时舒卷 离心亦如是!
  • 500us(2KHz)高速纯相位液晶空间光调制器(SLM)面世!
    纯相位液晶空间光调制器的液晶响应速度多年以来一直受限于60Hz的数据传输及30-140ms的液晶响应时间限制,无法实现高速的调制,不能满足相控阵扫描,自适应光学等高速调制应用的使用要求。一直以来,纯相位空间光调制器的速度到底可以做到多快?一直备受科研工作者的关注。 美国Meadowlark公司近日推出了高液晶响应速度(2KHz at 532nm)、高光利用效率(98%)、高填充因子(97.2%)、高分辨率(1024x1024)的纯相位液晶空间光调制器。500us(2KHz)高速纯相位液晶空间光调制器(SLM)产品特点:1) 液晶响应速度快:2KHz at 532nmMeadowlark Optics的硅基液晶(LCoS)空间光调制器(SLM)专为纯相位应用而设计,并结合了具有高刷新率的模拟数据寻址。这种组合为用户提供了具有高相位稳定性的最快响应时间(500us fall time)。图1 液晶响应时间 1024 x 1024 SLM非常适合需要高速、高衍射效率、低相位纹波和高功率激光器的应用。客户还可以控制温度设定点,从而在开关速度和相位稳定性之间找到完美的平衡。1024 x 1024 空间光调制器系统包括一个Gen3 x8 PCIe控制器,带有输入和输出触发器以及低延迟图像传输。触发可以在696µs的SLM芯片刷新周期边界上执行,对于需要SLM与外部硬件紧密同步的应用,甚至可以在刷新周期中间执行。该控制器还包括可加载752幅1024x1024(8bit)图片的内部存储器,可以提前加载,然后全速排序,以便在操作期间最大限度地减少PCIe总线上的流量。 2)光利用效率高:Up to 98%Meadowlark公司可提供镀介质镜型号的SLM,填充了像素间的间隙,使液晶空间光调制器的面积填充率达到100%,提高反射率、降低衍射损耗。镀介质镜型的SLM可以在400-1700nm工作波段范围内轻松实现98%(Max)的光利用率,同时降低了激光引起的热效应,提高了SLM的损伤阈值,以满足高功率脉冲激光调制和激光加工等应用需求。图2 镀介电膜的SLM反射率曲线图3 SLM损伤阈值测试 3) 高波前质量(λ/20)许多用于表征和校正像差的算法都基于Zernike多项式。然而,对圆形孔径的依赖不适用于描述正方形或矩形阵列的像差。已经开发了基于SLM的干涉子孔径的替代策略[9],以确保SLM的有效区域上的像差可以被校正到λ/ 40或更好。图4(a/c)未校准的SLM波前(λ/ 7 RMS)(b/d)校准后的SLM波前(λ/ 20 RMS)上海昊量光电作为Meadowlark Optics公司在中国大陆地区独家代理商,为您提供专业的选型以及技术服务。上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站了解更多的液晶空间光调制器产品信息,或直接来电咨询。
  • 新材料创新,科学家实现室温下超薄、透明柔性电路的大面积印刷!
    【科学背景】金属氧化物薄膜是大多数电子设备中的关键材料,因其在透明导体、气体传感器、半导体、绝缘体和钝化层等应用中的重要性而成为了研究热点。然而,传统的金属氧化物薄膜制备方法通常需要高温和缓慢的真空工艺,这在实际应用中存在制备成本高、生产效率低的问题。此外,传统方法往往会在膜表面留下液体残留物或形成不均匀的薄膜,这对器件的性能和稳定性造成了挑战。为了解决这些问题,美国北卡罗来纳州立大学Michael Dickey教授联合韩国浦项科技大学Unyong Jeong教授合作提出了一种新的方法,通过在室温下利用熔融金属的弯月面在基底上进行打印,来制备大面积均匀的本征氧化物薄膜。该方法利用液体不稳定性使氧化物从金属中轻柔地分离,从而形成无液体残留的均匀薄膜。此外,打印的氧化物薄膜具有金属间层,使其导电性显著提高,并且能够与蒸发的金形成良好的润湿,克服了传统方法中金属岛屿的粘附性差的问题。最终,这种超薄(图4: 超薄透明电极表征。图5: 图案化超薄透明电路线演示。【科学启迪】这项工作展示了一种可靠且连续的方法,可以在室温条件下利用镓液态金属(Ga LM)的脱湿行为打印大面积且均匀的超薄(10 nm)本征氧化物薄膜。这种脱湿诱导的氧化物印刷技术也可以通过改变液态金属的组成来打印铝氧化物(AlOx)和铟氧化物(InOx)。我们的研究发现,刚打印的GaOx具有高导电性,但由于进一步氧化,导电性会逐渐降低为绝缘性。然而,通过在氧化物薄膜上蒸发少量的次级金属(Au或Cu),可以稳定氧化物的导电性。由于刚打印的GaOx具有金属特性,蒸发的金属容易“润湿”薄膜,导致其融入到薄膜中。这些金属装饰的氧化物薄膜具有高度的透明性,且电导率、热学和机械稳定性都很优秀。在室温下跨大面积打印如此薄且耐用的氧化物和导体,应该对创建透明导体、电路以及其他柔性电子器件,以及屏障涂层(20)、光电材料和忆阻器等应用具有重要意义。参考文献:Minsik Kong et al. ,Ambient printing of native oxides for ultrathin transparent flexible circuit boards.Science385,731-737(2024).DOI:10.1126/science.adp3299
  • 山东“毒生姜”污染地下水
    据专家介绍,山东潍坊有些姜农使用的神农丹,主要成分是一种叫涕灭威的剧毒农药,50毫克就可致一个50公斤重的人死亡,所以不能直接用于蔬菜瓜果。涕灭威还有一个特点,就是能够被植物全身吸收。   潍坊当地有姜农介绍,之所以使用神农丹,是因为虫害厉害,不使用生姜会减产“一半”以上。   日前,记者在山东潍坊地区采访时发现,有人明目张胆滥用剧毒农药种植生姜。   姜农把神农丹化肥混合播撒   不久前,记者来到了山东省潍坊市峡山区王家庄街道下辖的农村。正值种植生姜的时节,在西波浪泉村附近的生姜田里,记者看到农户正拿着一个蓝色袋子,往地里撒着一种东西。记者找到农户丢弃的包装袋,发现这是一种叫神农丹的农药。这种神农丹每包1公斤,正面印有“严禁用于蔬菜、瓜果”的大字,背面有骷髅标志和红色“剧毒”字样。种姜时,农户直接把神农丹和化肥一起撒在已经发芽的种姜边上。   在3天的时间里记者走访了峡山区王家庄街道管辖的10多个村庄,发现这里违规使用神农丹的情况比较普遍。田间地头随处可以看到丢弃的神农丹包装袋,姜农们都是成箱成箱地使用神农丹。   不仅违规使用还高频率大剂量   按照农业部规定,神农丹只能用在棉花、烟草、月季、花生、甘薯上。神农丹使用说明书中还特别规定:用于甘薯,仅限河北、山东、河南春天发生严重线虫病时使用 用于花生,仅限于春播。这两种作物生长期较长,实验证明能保证安全。即使如此,在用药量、用药次数、用药方法上也有严格的限制。但这里的农民每亩要用神农丹8公斤至20公斤,是规定用药量的3-6倍。另外,按规定,即使在批准的作物上,在其生长周期里也最多准许使用一次,但这里的姜农要用两次。   神农丹使用说明还标明,在甘薯地里使用时,安全间隔期是150天。安全间隔期是指从最后一次施药到作物中农药残留量降到最大允许残留量所需的时间。而这里的农民不仅在四月份播种时超量使用神农丹,到八月份立秋的时候,还要超量使用一次,这时距离十月收获新姜,只有60天左右的间隔期,远远少于参照甘薯的150天安全间隔期。   “找几斤合格姜就能检测通过”   当地农民对神农丹的危害性都心知肚明,使用过这种剧毒农药的姜,他们自己根本不吃。   这些生姜地里的神农丹到底是哪里来的呢?根据知情人提供的线索,在附近的赵戈镇上,记者找到了一家名为赵戈果树医院的农资店,按照店门口留下的销售手机号码,拨通了电话,说要五箱神农丹,对方说有货。   中国北方最大的姜蒜批发市场设在潍坊安丘市大黑埠村,峡山区紧挨着安丘市,生产的生姜最后都汇集到这里交易。看到记者要农药残留检测报告,一位自称做加工出口姜生意的老板告诉记者,这并不难。因为检测都是自己送样品,只要找几斤合格的姜去检验,就可以拿到农药残留合格的检测报告。   内销姜一年抽查不了几次   据了解,潍坊当地出产的生姜分出口姜和内销姜两种。因为外商对农药残留检测非常严格,所以出口基地的姜都不使用高毒农药。   同属于潍坊市管辖的安丘市生姜种植面积有15万亩左右,其中大多数供出口。和峡山区不同的是,安丘市对高毒农药管理非常严格,每个镇和街道,每个社区,每个村都设有农药监管员和信息员,对农药的经营和使用实现无缝隙监管。   与出口姜的严格管理不同,潍坊其他地区生产的内销姜对农药残留实行的是抽查制度,一年抽查不了几次,无论是做内销姜生意的姜贩还是农户,对这种抽查都不太担心。   危害   致人中毒造成地下水污染   中国农业大学理学院院长周志强教授在接受央视采访时表示,滥用神农丹会造成生姜中农药残留超标,还会对地下水造成污染。农民种姜时使用神农丹,通过不断浇水灌溉,会使得大量的农药成分溶解到地下水中。   2010年有媒体报道,使用过神农丹的黄瓜,曾致安徽13人急性中毒。昨晚,国际食品包装协会秘书长董金狮告诉新京报记者,消费者买到生姜后,如果担心有神农丹残留,可以拿碱水或专门洗果蔬的溶剂浸泡半个小时,以降低毒性。新京报记者 廖爱玲   北京情况   新发地生姜多来自潍坊   目前尚未检出生姜农药残留超标   昨日,记者走访了北京最大的农产品批发市场新发地,询问生姜来源情况。   新发地市场表示,这个时候市场大部分生姜的进货来源是山东潍坊。市场每天都会对蔬菜进行农药残留的抽检。一经发现问题,新发地市场会给产地发函,停止进货。到目前为止,还没有检测出生姜农药残留超标。新发地市场表示,将加强对生姜的检测力度。新京报记者 刘春瑞   进展   神农丹门店经理被拘   发现种植农户使用“神农丹”,将翻耕   4日,山东潍坊市有农户使用剧毒农药“神农丹”进行大姜种植经媒体报道后,山东省连夜派出工作组到潍坊进行现场督导查处。潍坊相关部门也着手对全市“神农丹”农药的销售和使用情况展开彻底调查,对违法违规销售的“神农丹”农药进行集中收缴。   据介绍,潍坊市将对查获的使用“神农丹”种植的大姜、大葱等农作物统一清除、销毁。同时,对各类农药经营户展开拉网式检查,对违法违规销售剧毒农药的经营户坚决依法依规处理,并由各级农业部门牵头,组织专门力量,帮助农民用科学方法解决生姜等农产品生产过程中的病虫害问题。   另外,潍坊市要求辖区内各县市区围绕本地农产品质量安全,立即组织力量展开进一步排查,全力堵塞漏洞提升监管水平。   记者昨晚从潍坊市委宣传部获悉,该市峡山区警方对媒体报道的销售剧毒农药“神农丹”的门店进行了查封,门店经理被依法刑拘。   目前,峡山区组织的由公安、农业、安监、食安办、环保、街道等参与的5支排查队伍,正在全区农药经营户及大姜种植区进行拉网式细密排查。据悉,为彻底消除“神农丹”危害,峡山区排查队伍对各大姜种植区取样送检,一经发现使用“神农丹”,种植农户大姜将全面翻耕,相关工作部门同时启动对土壤的降解、排毒工作。据新华社
  • 科普:高亮度LCD液晶屏如何选择?
    我们来看一下LCD显示屏的内部结构液晶显示屏被广泛用在各种电子设备中,LCD 是液晶显示屏的简称,其结构包括增亮膜、扩散片、导光板、偏光片等。分光光度计是检查光学组件特性的有利工具,今天我们重点介绍LCD中偏光片的评估。LCD中偏光片的作用是产生明亮对比,如上图所示,它位于液晶面板LC的两侧,液晶面板具有各向异性,光通常可以透过,当向LC施加电流时,LC变得各向同性,光线就会被处于交叉状态的偏光片阻止。通过这种对光线的透过和阻挡,调整像素亮度。偏光片评估的实验数据对偏光片的要求是其在交叉状态下应具有较低的透过率,这影响LCD产生暗的能力。在平行状态下具有较高的透过率,这影响LCD产生亮度的能力。本次实验使用日立紫外-可见-近红外分光光度计UH4150搭配偏振样品测量附件、积分球检测器评估液晶显示屏中的偏光片。实验测量了薄膜偏光片的透过率。偏振测量附件偏光片的透过光谱结果表明,在546 nm处,Ys透过率为40.68%,Yp透过率为32.98%,Yc透过率为0.01%。根据公式1计算该薄膜偏光片的偏振度为0.9998,偏振效果好。日立紫外-可见-近红外分光光度计UH4150具有优异的平行光束特征,确保反射率和透过率的准确测定,大型样品仓和多种多样的附件,可以满足LCD中不同组件的评估。UH4150可操作性强,能为您提供高精度的光学系统测定。UH4150公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制