当前位置: 仪器信息网 > 行业主题 > >

车身大梁校正仪

仪器信息网车身大梁校正仪专题为您提供2024年最新车身大梁校正仪价格报价、厂家品牌的相关信息, 包括车身大梁校正仪参数、型号等,不管是国产,还是进口品牌的车身大梁校正仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合车身大梁校正仪相关的耗材配件、试剂标物,还有车身大梁校正仪相关的最新资讯、资料,以及车身大梁校正仪相关的解决方案。

车身大梁校正仪相关的方案

  • 电镜类产品在汽车行业的应用—车身篇
    在汽车系统中,车身安装在底盘的车架上,其主要部件包括车身壳体、车门等,多为金属构件,扫描电镜多用以车身质量检测、零配件的失效分析和夹杂物分析。
  • 直读光谱分析汽车大梁用钢中的主成分
    岛津PDA系列直读光谱仪检测汽车大梁用钢,除了常规元素外,其所特有的脉冲分布测光法,还可以对大梁钢中的酸溶铝进行定量分析。
  • 780MPa 级重载汽车用大梁钢的工业试制
    以低碳复合添加微合金元素铌和钛为成分设计思路, 综合运用细晶强化、相变强化和析出强化三种强化机制, 在国内某厂 1750 mm 半连续热连轧机组进行了 780 M P a 级大梁钢的工业试制。结果表明, 终轧温度需控制在 780~ 860 ?? , 卷取温度需控制在 450~ 550 ?? 。大梁钢的显微组织为贝氏体和少量的细晶铁素体, 并获得了大量弥散的尺度为 10nm 以下的( N b, T i) C 析出物。大梁钢的屈服强度为 700M Pa, 抗拉强度为780 M P a, 伸长率为 19% 。大梁钢具有良好的低温冲击韧性、冷弯成形性及焊接性能。
  • 间断化学分析仪自动样品空白校正法测定地表水中痕量六价铬
    利用全自动间断化学分析仪测定地表水中六价铬,仪器可以自动进行样品空白校正,无需手动样品前处理过程,自动化程度高,适合大批量样品的测定。
  • 高频塞曼校正法直接测定石脑油中的汞含量-LUMEX
    石脑油(naphtha)是以原油或其他原料加工生产的用于化工原料的轻质油,主要用于裂解制取乙烯、丙烯等产品,是重要的化工原料。石脑油中的汞含量必须控制在一定范围,一旦超标将直接影响乙烯产品品质和操作人员的身体健康,而且会加速管线和设备腐蚀,如发生漏油、漏气情况极易引发火灾。LUMEX石脑油方案符合美国材料协会 ASTM D7622-10(2015) 以及检验检疫标准SN/T 4429.2-2016原油中总汞含量的测定 塞曼校正冷原子吸收光谱法 测定石脑油中的汞含量。两项标准均采用LUMEX塞曼校正测汞技术分析原油中的汞含量。LUMEX公司在欧洲及美国拥有广泛的客户群,康菲石油,壳牌等均是LUMEX产品长期采购客户。塞曼校正技术分析原油及石脑油具有高灵敏、高选择性以及抗干扰性强等特点,能有效去除原油及石脑油中的芳香族伪数据等问题。
  • 盐雾腐蚀试验箱 | 汽车车身铝合金板材复合涂层加速腐蚀试验方法研究
    通过对比各大汽车盐雾腐蚀试验方法对汽车车身铝合金板材复合涂层 加速腐蚀试验进行研究,得出Q-FOG CRH盐雾腐蚀试验箱可以很好的模拟户外汽车腐蚀情况。
  • 质构仪进行砝码校正有何目的和意义?
    质构仪进行砝码校准有何目的和意义?质构仪的核心部件就是力量感应元,进行砝码校准,可以使力量感应元更加精准,测试操作更加标准,测试结果更加可信。如果进行砝码验证?各式标准砝码,依照不同的力量感应元,选择适合的砝码。标准砝码需要定期送认证机构校准,具备校正报告,进行测试时由合格工程师及客户代表共同验证,并在双方所认可的档上逐一核对并签署所测得的各项结果。误差小于 0.5% 。
  • 采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质
    本文采用岛津Nexera LC-40高效液相色谱仪,建立了加校正因子的主成分自身对照法测定马来酸依那普利片有关物质的方法。该方法中,依那普利及其有关物质在0.1-50.0 mg/L线性范围内,线性相关性良好,相关系数均大于0.999;依那普利及其有关物质保留时间RSD%为0.06~0.24%,峰面积RSD%为0.03~1.28 %,稳定性良好;依那普利拉(杂质Ⅰ)、依那普利双酮(杂质Ⅱ)校正因子分别为0.85和0.94,加校正因子的主成分自身对照法和不加校正因子的主成分自身对照法测得结果无显著性差异。实验结果表明,该方法能快速准确地测定马来酸依那普利片的有关物质。
  • 徕卡M125C 汽车车身以及汽车部件焊接熔深检测方案
    徕卡M125C 汽车车身以及汽车部件焊接熔深检测方案一、汽车焊焊接熔深的定义汽车焊焊接熔深是指焊接接头的焊缝和母材之间的熔合区域深度。熔深是焊接焊接性能的重要指标之一。二、汽车焊焊接熔深的测量方法汽车二保焊焊接熔深的测量方法通常采用金相显微镜法或金相切割法。其中,金相显微镜测量法是通过显微镜观察试样经过切割、打磨、腐蚀等处理后的截面形貌,根据分界线的长度来确定熔深。金相切割法则是将试样切割成一定长度的薄片,用显微镜观察试样中心处的熔深,精度更高。三、汽车焊焊接熔深的符号表示汽车焊焊接熔深的符号表示为“a”,单位为毫米(mm)。在绘制焊接图时,箭头所指示的方向即为熔深方向,箭头两侧的a分别表示母材和焊缝的熔深。四、汽车焊焊接熔深的要求和限制国家标准《汽车焊接工艺规程》(QC/T 70-2015)规定了汽车焊焊接熔深的要求和限制。根据标准规定,汽车焊焊接熔深应满足以下要求:1.焊接熔深的尺寸应符合设计要求,不能太小也不能太大。2.焊接熔深的界限应清晰、明确,不得有锈蚀、气泡、裂纹等缺陷。3.熔深的分布应均匀,不应出现局部过深或过浅的现象。综上所述,汽车焊焊接熔深是衡量焊接接头质量的重要指标,标准化的测量方法和符号表示有助于确保焊接连接的质量和安全性。符合国家标准对汽车焊焊接熔深的相关要求和限制,能够有效地提高焊接接头的质量和可靠性。
  • 环境水样品的三维数据校正功能
    荧光分光光度计F-7100 的软件FL Solutions4.2(英文版 rev.9~)新增三维数据校正功能。包括三维荧光光谱的空白扣除功能,以及内滤效应校正功能(由于激发光和荧光的吸收导致荧光减弱的内滤效应现象)可应对环境水的检测要求。此次实验采用荧光和吸收通用支架通过切换样品的测定位置,获得荧光和吸收光谱从而进行三维荧光光谱的空白扣除以及内滤效应校正。
  • ICPMS-2030元素间校正(IEC)法分析蒙脱石散中砷含量
    分析样品时使用8 L/min的等离子体气流量工作,较大程度节省氩气消耗;可以使用工业氩气进行样品的分析。岛津智能化的ICP-MS软件的IEC校正功能可以很好的应对双电荷离子干扰等问题。
  • 采用合成基质校正方法以 ICP-MS 测定血液中的微量汞元素
    在过去十年中,对电感耦合等离子体质谱最重要的改良之一在于引入碰撞/反应池 (CRC) 去除多原子干扰。但使用 CRC-ICP-MS 精确测定血液或尿液等复杂基质中的某些金属元素仍面临诸多挑战。NIST 曾发布使用同位素稀释质谱 (IDMS) 测定未知基质中铅含量的方法。IDMS 因其排除了血液的基质效应,被认为是用于分析血液中金属含量的最精确方法 [2, 3]。但 IDMS 方法相对昂贵,并且不能用于测定如锰、砷等单一同位素元素。作为替代,可以使用内标法根据 ISTD 响应变化适当校正分析物响应来补偿基质效应。但是,与同位素稀释不同,因不同基质中 ISTD 的电离行为不同,校准标样和血液溶液中化学组分的差异仍会造成分析误差。在本简报中,我们论证了通过将校准标样的离子强度与血液样品相匹配( 基质匹配),排除内标技术中的误差,并得到和 IDMS 精度相当的结果。我们目前的方法采用正丁醇、NH4OH、H4EDTA 和 Triton X-100 溶液,加入 ISTD 作为血液稀释液。该稀释液是非常好的血液溶剂。另外,我们在相同的溶液中加入氯化钠和氯化钙进行基质匹配,制备校准标样。进行基质匹配时,使用合成基质比广泛应用的全血在操作上更为简便,可信度也更高。
  • 采用合成基质校正方法以 ICP-MS 测定血液中的微量铅元素
    在过去十年中,对电感耦合等离子体质谱最重要的改良之一在于引入碰撞/反应池 (CRC) 去除多原子干扰。但使用 CRC-ICP-MS 精确测定血液或尿液等复杂基质中的某些金属元素仍面临诸多挑战。NIST 曾发布使用同位素稀释质谱 (IDMS) 测定未知基质中铅含量的方法。IDMS 因其排除了血液的基质效应,被认为是用于分析血液中金属含量的最精确方法 [2, 3]。但 IDMS 方法相对昂贵,并且不能用于测定如锰、砷等单一同位素元素。作为替代,可以使用内标法根据 ISTD 响应变化适当校正分析物响应来补偿基质效应。但是,与同位素稀释不同,因不同基质中 ISTD 的电离行为不同,校准标样和血液溶液中化学组分的差异仍会造成分析误差。在本简报中,我们论证了通过将校准标样的离子强度与血液样品相匹配( 基质匹配),排除内标技术中的误差,并得到和 IDMS 精度相当的结果。我们目前的方法采用正丁醇、NH4OH、H4EDTA 和 Triton X-100 溶液,加入 ISTD 作为血液稀释液。该稀释液是非常好的血液溶剂。另外,我们在相同的溶液中加入氯化钠和氯化钙进行基质匹配,制备校准标样。进行基质匹配时,使用合成基质比广泛应用的全血在操作上更为简便,可信度也更高。
  • 采用合成基质校正方法以 ICP-MS 测定血液中的微量铀元素
    在过去十年中,对电感耦合等离子体质谱最重要的改良之一在于引入碰撞/反应池 (CRC) 去除多原子干扰。但使用 CRC-ICP-MS 精确测定血液或尿液等复杂基质中的某些金属元素仍面临诸多挑战。NIST 曾发布使用同位素稀释质谱 (IDMS) 测定未知基质中铅含量的方法。IDMS 因其排除了血液的基质效应,被认为是用于分析血液中金属含量的最精确方法 [2, 3]。但 IDMS 方法相对昂贵,并且不能用于测定如锰、砷等单一同位素元素。作为替代,可以使用内标法根据 ISTD 响应变化适当校正分析物响应来补偿基质效应。但是,与同位素稀释不同,因不同基质中 ISTD 的电离行为不同,校准标样和血液溶液中化学组分的差异仍会造成分析误差。在本简报中,我们论证了通过将校准标样的离子强度与血液样品相匹配( 基质匹配),排除内标技术中的误差,并得到和 IDMS 精度相当的结果。我们目前的方法采用正丁醇、NH4OH、H4EDTA 和 Triton X-100 溶液,加入 ISTD 作为血液稀释液。该稀释液是非常好的血液溶剂。另外,我们在相同的溶液中加入氯化钠和氯化钙进行基质匹配,制备校准标样。进行基质匹配时,使用合成基质比广泛应用的全血在操作上更为简便,可信度也更高。
  • 采用合成基质校正方法以 ICP-MS 测定血液中的微量锰元素
    在过去十年中,对电感耦合等离子体质谱最重要的改良之一在于引入碰撞/反应池 (CRC) 去除多原子干扰。但使用 CRC-ICP-MS 精确测定血液或尿液等复杂基质中的某些金属元素仍面临诸多挑战。NIST 曾发布使用同位素稀释质谱 (IDMS) 测定未知基质中铅含量的方法。IDMS 因其排除了血液的基质效应,被认为是用于分析血液中金属含量的最精确方法 [2, 3]。但 IDMS 方法相对昂贵,并且不能用于测定如锰、砷等单一同位素元素。作为替代,可以使用内标法根据 ISTD 响应变化适当校正分析物响应来补偿基质效应。但是,与同位素稀释不同,因不同基质中 ISTD 的电离行为不同,校准标样和血液溶液中化学组分的差异仍会造成分析误差。在本简报中,我们论证了通过将校准标样的离子强度与血液样品相匹配( 基质匹配),排除内标技术中的误差,并得到和 IDMS 精度相当的结果。我们目前的方法采用正丁醇、NH4OH、H4EDTA 和 Triton X-100 溶液,加入 ISTD 作为血液稀释液。该稀释液是非常好的血液溶剂。另外,我们在相同的溶液中加入氯化钠和氯化钙进行基质匹配,制备校准标样。进行基质匹配时,使用合成基质比广泛应用的全血在操作上更为简便,可信度也更高。
  • 采用合成基质校正方法以 ICP-MS 测定血液中的微量砷元素
    在过去十年中,对电感耦合等离子体质谱最重要的改良之一在于引入碰撞/反应池 (CRC) 去除多原子干扰。但使用 CRC-ICP-MS 精确测定血液或尿液等复杂基质中的某些金属元素仍面临诸多挑战。NIST 曾发布使用同位素稀释质谱 (IDMS) 测定未知基质中铅含量的方法。IDMS 因其排除了血液的基质效应,被认为是用于分析血液中金属含量的最精确方法 [2, 3]。但 IDMS 方法相对昂贵,并且不能用于测定如锰、砷等单一同位素元素。作为替代,可以使用内标法根据 ISTD 响应变化适当校正分析物响应来补偿基质效应。但是,与同位素稀释不同,因不同基质中 ISTD 的电离行为不同,校准标样和血液溶液中化学组分的差异仍会造成分析误差。在本简报中,我们论证了通过将校准标样的离子强度与血液样品相匹配( 基质匹配),排除内标技术中的误差,并得到和 IDMS 精度相当的结果。我们目前的方法采用正丁醇、NH4OH、H4EDTA 和 Triton X-100 溶液,加入 ISTD 作为血液稀释液。该稀释液是非常好的血液溶剂。另外,我们在相同的溶液中加入氯化钠和氯化钙进行基质匹配,制备校准标样。进行基质匹配时,使用合成基质比广泛应用的全血在操作上更为简便,可信度也更高。
  • 采用合成基质校正方法以 ICP-MS 测定血液中的微量镉元素
    在过去十年中,对电感耦合等离子体质谱最重要的改良之一在于引入碰撞/反应池 (CRC) 去除多原子干扰。但使用 CRC-ICP-MS 精确测定血液或尿液等复杂基质中的某些金属元素仍面临诸多挑战。NIST 曾发布使用同位素稀释质谱 (IDMS) 测定未知基质中铅含量的方法。IDMS 因其排除了血液的基质效应,被认为是用于分析血液中金属含量的最精确方法 [2, 3]。但 IDMS 方法相对昂贵,并且不能用于测定如锰、砷等单一同位素元素。作为替代,可以使用内标法根据 ISTD 响应变化适当校正分析物响应来补偿基质效应。但是,与同位素稀释不同,因不同基质中 ISTD 的电离行为不同,校准标样和血液溶液中化学组分的差异仍会造成分析误差。在本简报中,我们论证了通过将校准标样的离子强度与血液样品相匹配( 基质匹配),排除内标技术中的误差,并得到和 IDMS 精度相当的结果。我们目前的方法采用正丁醇、NH4OH、H4EDTA 和 Triton X-100 溶液,加入 ISTD 作为血液稀释液。该稀释液是非常好的血液溶剂。另外,我们在相同的溶液中加入氯化钠和氯化钙进行基质匹配,制备校准标样。进行基质匹配时,使用合成基质比广泛应用的全血在操作上更为简便,可信度也更高。
  • 岛津ICP-MS元素间校正(IEC)评估水样锶双电荷对钙的影响
    使用岛津ICPMS-2030工作站LabSolutions ICPMS元素间校正(IEC)功能评估了水样中锶(Sr)双电荷对钙(Ca)测定的影响。使用IEC校正能有效消除常规水样中锶双电荷的影响。
  • 自吸背景校正石墨炉原子吸收法测定全血中的铅
    血液样品无需前处理,无需在标准溶液中加入健康人血做基体匹配,通过自吸背景校正有效的消除干扰,石墨炉原 子吸收法直接测定了全血中的铅,获得了满意的测试结果。
  • 通过大量挤压比较两种厂牌对虾的质构特性
    产品: 虾饼对虾 目的: 通过大量挤压比较两种厂牌对虾的质构特性通过批量挤压比较两种厂牌虾片的质构特性样品压碎时常常导致时结构的变化样品压碎时常常会到时结构的变化。结果是压碎样品时力值的平均值。如果要优化测试参数,建议第一次测试使用最硬的样品,即可以得到一个最大测量范围,以至确保力量感应元满足以后的所有实验。如果要优化实验参数,建议第一次测试使用最硬的样品,这样就可以得到一个最大硬度值的范围,以至确保力量感应元满足未来的所有样品实验。
  • PerkinElmer:应用中使用纵向塞曼背景校正技术横向加热石墨炉原子吸收光谱测定血清中的铝
    本研究通过使用PinAAcle 900T原子吸收光谱仪,纵向塞曼背景校正技术、横向加热等技术,建立了一种直接测定血清中铝的简单方法。该法样品用量少、样品前处理简单、线性范围广、检出限低,能够满足较大浓度范围的血清样品测试,而且将实验人员与样品接触的几率降到了最低。
  • 应用中使用纵向塞曼背景校正技术横向加热石墨炉原子吸收光谱测定血清中的铝
    本研究通过使用PinAAcle 900T原子吸收光谱仪,纵向塞曼背景校正技术、横向加热等技术,建立了一种直接测定血清中铝的简单方法。该法样品用量少、样品前处理简单、线性范围广、检出限低,能够满足较大浓度范围的血清样品测试,而且将实验人员与样品接触的几率降到了最低。
  • 3D扫描仪:大型房车个性化定制改装方案!
    三维扫描仪不受体积和空间限制,可以随身携带到车身任意位置开展测量,还能实时生成高质量的车身三维数据,指导我们的开发人员更直观、更高效地完成车辆的定制化改装设计工作,大大提高了工作效率,为我们节省了时间和人力成本。
  • 逆反射系数测量仪测试车身反光标识方法
    其主要特性是:模拟机动车夜间行驶在公路上,前照灯照射到道路上的(逆反射材料制作的)标线,经其反射后,被驾驶室内的司机观察到的亮度情况,测量的参数是夜间逆反射亮度系数,即RL值。
  • 通过大量挤压比较迷你苞米花的质构特性
    产品: 迷你苞米花 目的: 通过大量挤压比较迷你苞米花的质构特性通过批量挤压比较迷你苞米花的质构特性(textural qualities) 样品压碎时常常会到时结构的变化样品压碎时常常导致时结构的变化。结果是压碎样品时力值的平均值。在比较此产品的不同厂牌时,如果一个厂牌的产品更厚更重。因此比较薄、轻的样品为了达到19g的重量,其数量数就会更多,于是就会超过实验室的50%。假使如此,我们应该选择更小的样品质量,如14g,来进行测试的样品量。如果要优化测试参数,建议第一次测试使用最硬的样品,即可以得到一个最大测量范围,以至确保力量感应元满足以后的所有实验。如果要优化实验参数,建议第一次测试使用最硬的样品,这样就可以得到一个最大硬度值的范围,以至确保力量感应元满足未来的所有样品实验。
  • 杜伯特洗瓶机针对大量容量瓶清洗解决方案
    为有效保证容量瓶精度,除定期计量校验外,日常实验过程中正确的使用操作和清洁维护必不可少。那么。作为细长颈瓶皿的一大代表,针对大量的容量瓶我们该如何清洗,确保其洁净度呢?
  • 石墨炉原子吸收光谱法搭配氘灯背景校正技术对大米中的铅和镉进行快速消解分析
    欧盟和中国规定粮食中铅和镉的最大允许浓度必须0.2mg/kg(欧洲委员会条例EC 1881/2006 和中国国标GB 2715-2016《卫生标准》)。石墨炉原子吸收光谱法(GFAAS)是一项官方推荐的用于检测各类食物中微量元素的技术(GB/T5009.15-2017、GB/T 5009.12-2017 和EN 14083:2003)。在GFAAS 分析前,通常利用微波消解、压力罐消解、干法灰化、湿法消解等方法对食物样品进行预处理。这些常规消解程序通常操作很复杂且耗时较长(2-4 小时甚至更长)。此外,这些方法需要大量具有腐蚀性和氧化性的试剂,增加了样品污染的可能性,从而导致分析结果不准确。然而,由PerkinElmer 公司开发并验证3 的快速消解能够有效缩短样品制备的时间,同时还能减少强腐蚀性酸和氧化剂的使用并降低样品污染的可能性。
  • 天美:电镜类产品在汽车座椅金属支架上的应用
    在汽车系统中,座椅属于车身系统,大致分为支架、壳体、表面覆饰物等,扫描电镜主要用于缺陷分析和形貌观察。
  • 台式XRF大量样品快速自动测试的解决方案-自动样品转盘
    使用XRF大量检测样品时,可搭配12件样品的自动转盘,不但加快测试时间,同时减少人力需求,不需每次更换样品,也大幅降低了检测者的等待时间。
  • 汽车座椅纺织材料之间的摩擦系数测试与研究
    从汽车工艺来看,座椅面料还具有更加重要的功能。在汽车保有量逐年增长的今天,道路交通事故率也呈逐年上升的趋势,汽车座椅系统作为减少损失的安全部件起到了决定性保护作用。汽车座椅系统,除了包括靠背、头枕、坐垫以及与车身连接的固定部件外,座椅面料也是保证行车安全的不可或缺的因素。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制