当前位置: 仪器信息网 > 行业主题 > >

传热系数检测仪

仪器信息网传热系数检测仪专题为您提供2024年最新传热系数检测仪价格报价、厂家品牌的相关信息, 包括传热系数检测仪参数、型号等,不管是国产,还是进口品牌的传热系数检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合传热系数检测仪相关的耗材配件、试剂标物,还有传热系数检测仪相关的最新资讯、资料,以及传热系数检测仪相关的解决方案。

传热系数检测仪相关的论坛

  • 真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    [b][color=#cc0000]摘要[/color][/b]:常用的真空隔热材料主要包括真空玻璃和真空绝热板(VIP),针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上提出了一种新型的动态热流法测试技术,介绍了一种便携式探头结构的快速在线检测技术方案。[color=#cc0000][b]关键词[/b][/color]:真空玻璃、真空绝热板、传热系数、导热系数、U值、在线检测[hr/][b][color=#cc0000]1. 引言[/color][/b] 隔热材料(或保温材料)的热传递主要有对流换热、接触导热和辐射传热三种途径,前两种途径都需要传热介质。在真空环境下,由于气压的降低,气体密度随之降低,气体分子平均自由程将增大,气体分子间和气体分子与真空容器壁的碰撞频率和强度相对减弱,从而使得真空环境阻止了对流和接触这两种传热形式的发生,由此达到隔热效果。如果在真空环境的内壁上涂覆低辐射系数涂层,还可以阻止辐射传热实现绝热效果。 在传统隔热材料中,热辐射占热传递中的20~30%,接触材料占热传递中的5~10%,而隔热材料中气体的对流换热则占剩余的约65~75%。因而,隔热材料中减少这些热传递途径中最重要的一环就是空气传递热量,即通过将隔热系统抽成真空来减少热量传递,目前这种真空型隔热材料比较成熟的产品主要有真空玻璃和真空绝热板两类: (1)真空玻璃(Vacuum Glazing)是一种玻璃深加工产品,是基于保温瓶原理制作而成。真空玻璃的结构与中空玻璃相似,其不同之处在于真空玻璃空腔内的气体非常稀薄,几乎接近0.1 Pa的真空。真空玻璃是将两片平板玻璃四周密闭起来,将其间隙抽成真空并密封排气孔,两片玻璃之间的间隙为0.1~0.2 mm,真空玻璃的两片一般至少有一片是涂覆低辐射系数涂层的低辐射玻璃(Low-E玻璃),由此可将通过真空玻璃的导热、对流和辐射方式散失的热量降到最低。 (2)真空绝热板(Vacuum Insulation Panel——VIP)是由轻质芯材与专用复合阻气膜通过抽真空封装技术复合制成,其内部真空度约为10 Pa能有效地避免气体对流引起的热传递,可大幅度提高绝热效果。 真空隔热材料可广泛应用于建筑节能墙体和门窗、冷链冷藏设备、温室、太阳能和空调型运输工具等领域。在业内评价真空隔热材料一般采用两个技术参数,一个是传热系数(Wm-2K-1),另一个是导热系数(Wm-1K-1),业内也会将传热系数用K值或U值来定义。通常对于真空玻璃采用传热系数K值来评估,对于真空绝热板采用导热系数进行评估。 传热系数和导热系数测试技术是真空隔热材料的关键技术之一,相应的测试技术至少要实现两个功能,第一是需要检测证明真空隔热材料确实含有隔热功能的真空,第二是因为真空空间内存在支撑物和残留气体的导热传热以及辐射传热,有必要检测验证真空隔热材料的传热理论模型,并了解这些不同传热形式之间的相互作用方式。目前常规测试技术一般为成熟的稳态技术,主要包括保护热板法、保护热流计法和保护热箱法。尽管这三种常规方法可以从计量和质量层面可以对真空隔热材料进行准确的测试评价,但它们存在的明显劣势则是要求制作标准尺寸样品和测试周期漫长,无法用于大批量制造生产过程中逐件产品质量的在线检测,因此需要解决真空隔热材料的在线检测技术。 在线检测技术的目的是在真空隔热材料的生产制造过程中,实时验证每个真空隔热材料产品的质量都在规定范围内。在在线检测过程中,因为可以与标准合格产品或样品进行比较,在线检测并不一定需要绝对准确,重要的是生产过程中能保证检测工序可以快速进行,并且检测仪器具有很好的测量重复性。在线检测技术的另外一个目的是可以证明真空绝热材料产品在实际安装过程和使用条件下还能长期保持相应的真空度,即对处于生命周期内的真空隔热材料产品进行实时检测或监测。 针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上介绍了一种便携式快速的新型在线检测技术方案。[b][color=#cc0000]2. 在线检测真空隔热材料热性能的技术挑战[/color][/b] 真空隔热材料的最大特点就是具有超低的传热系数和导热系数,如果再考虑实现在线检测,这就给测量真空隔热材料热性能带来了以下几方面的严峻挑战: (1)所谓在线检测,就是要求采用很小面积尺寸的探头对板状真空隔热材料进行实时检测,同时又因为真空隔热材料的传热系数和导热系数极低,致使只有很少热流能够流经隔热材料。这就意味着在线检测只能检测很小面积的真空隔热材料,而且检测探头还需具有非常高的探测分辨率才能检测到此小面积上的热流变化(毫瓦量级)。 (2)真空隔热材料并非是均质材料,真空隔热部分一般被外部高导热材料(如玻璃或复合铝膜等)夹持在中间,真空隔热部分和外部高导热材料的导热系数相差五个数量级以上,因此在检测过程中非常容易产生沿隔热材料板材表面流动的寄生热损,在检测表面上形成面内温度梯度,这就对小面积在线监测提出了非常高的技术要求。 (3)既然是在线检测,就要求在线检测作为一道流水作业工序,能在真空隔热材料生产线上对每件产品进行实时快速检测,单件产品检测时间小于1分钟,最好能实现10~30秒这样的快速检测能力。 由此可见,真空隔热材料热性能测试对在线检测提出了两个层面的要求,一个层面是具备快速在线检测和判断产品质量是否合格的能力,这就要求在线检测仪器既要具有高分辨率和快速检测能力,还需具备很好的测量重复性。另一个层面是要实现高准确度的测量,准确测量出产品的传热系数和导热系数,与防护热箱法等标准方法测试结果相比要在允许偏差范围内。[b][color=#cc0000]3. 国内外测试方法研究[/color][/b] 面对上述真空隔热材料热性能在线检测的技术挑战,国内外开展了大量研究和探索。下面将对国内外的研究报道进行汇总,并对各种检测方法的优缺点进行讨论。[color=#cc0000]3.1. 稳态法:小面积保护热板法3.1.1. 澳大利亚Collins团队的研究工作[/color] 保护热板法是一种经典的板式样品材料热阻和导热系数稳态测试方法,对被测样品有严格的尺寸要求,样品尺寸一般都大于300×300 mm2的测试面积,而且测试周期至少4个小时以上,同时隔热性能越好则测试时间越长。但由于保护热板法是一种绝对测量方法,测试准确度高,因此常被用来作为标准测试仪器和计量溯源测试仪器,计量机构和检测认证机构通常都会配备这种保护热板法仪器以及相同原理的更大样品尺寸的保护热箱法设备来对真空玻璃和真空绝热板进行质量评估。 澳大利亚Collins团队基于经典的保护热板法开发了一种小面积尺寸的保护热板法用于真空玻璃热性能的测试和研究,其测量原理如图3-1所示。一个小的热导体,这里称为测量块,被放置在被测样品一侧并具有良好的热接触,测量块的所有其它侧面被一个保持恒定温度的等温防护装置包围,该热防护装置也与被测样品保持良好的热接触,由此使测量块上的热量只能在样品方向上传递而周围的热损近乎为零。被测样品的另一侧保持在恒定的低温下,热流从热防护装置流经样品到对面的冷板,热量也从热防护装置流到测量块,测量块热流通过样品流到冷板。 [align=center][img=,600,369]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191121404416_7563_3384_3.png!w600x369.jpg[/img] [/align][align=center][color=#cc0000]图3-1 小面积防护热板法测量装置结构示意图[/color][/align] 测量块与热保护装置之间的温差由嵌在这些元件中的温度传感器进行检测。测量块中的热量由内部电加热器产生并同时升高测量块温度,当测量块温度正好等于热保护装置温度时,这两个部件之间不会发生热流,在这个零温差条件下测量块中所产生的所有能量都流经样品形成所谓的一维热流。按照稳态一维热流傅立叶传热定律,利用测量块的已知面积,最终可以得到样品传热系数的绝对测量值。 澳大利亚Collins团队专门开发了小面积形式的保护热板法测试仪器用于测量真空玻璃中不同的热流传递过程,这些仪器可用来识别真空空间中由于辐射和气体传导而对热传递的单独贡献,其中就包括通过支撑柱进行的热传导。为了做到这一点,测量块所选择的尺寸很小,测量块截面积约为1 cm2,周围保护装置的面积约为100 cm2。由于测量是小面积和真空绝热样品,此仪器必须能够检测非常小的热量变化。 与保护热板法测量装置一样,小面积保护热板法测试仪器研制过程中的关键技术是最大限度减少测量块热损到可忽略的水平,并证明这种热损确实被有效消除。为了验证此测试仪器的热损确实被有效消除,需要测量的微小热量需要检测测量块和热保护装置之间极小温差。分别采用了两种真空玻璃进行了测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),图3-2显示了小面积保护热板法测试仪器所获得的典型实验数据。[align=center][img=,600,514]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124054860_7131_3384_3.png!w600x514.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 小型保护热板法测试仪器获得的典型数据[/color][/align] 为了进行精确的绝对测量,必须使用已知传热系数的样品来校准测量块的有效面积。两片未涂覆玻璃片之间的真空空间为这种校准测量提供了非常方便的样品,因为这种玻璃表面之间的辐射传热速率可以从这种玻璃已知的红外光学中计算得到非常高的准确度。 有限元模型分析可以用于确定玻璃薄板等温外表面上每个支撑柱所引起的热流横向扩散程度,这些数据可用于确定与单个支撑柱相关联的热流比例,这时的测量块的中心线与支撑柱轴线距离不远,而且支撑柱与测量块的圆形区域相交。如果要忽略掉流经支撑柱热流的影响,从这些结果可以计算出与测量块相交的支撑柱需要远离测量块的距离。对于正常尺寸的支撑柱阵列(支撑柱间距约20~30 mm),如果测量块位于支撑柱阵列单元的中心位置,那么支撑柱对热流的测量仍然有一个很小但明显的贡献。为了使得测量忽略掉支撑柱热流的影响,悉尼大学在真空玻璃研究项目中采用了一些缺少一个支撑柱或无支撑柱区域直径约50 mm的真空玻璃样品,用这些样品做的测量为通过真空玻璃的辐射和气体热传递提供了非常准确的信息。 流经单个支撑柱的热流扩散建模分析结果也可以用来计算当测量块直接位于支撑柱上方时此热流在测量值中所占比例,通过减少辐射和气体传导引起的已知热流,可以确定流经支撑柱本身的热流速率,这些测量都已经被用来验证流经单个支撑柱的热流理论模型。在某些情况下在真空玻璃中使用了粗糙表面的支撑柱,这时的测量也可以用来提供关于这些支撑柱热流减少的定量信息,因为支撑柱表面和玻璃板之间的热接触不完整。 综上所述,澳大利亚Collins团队详细研究了在采用保护热板法仪器测量流经真空玻璃热流量,并对小面积保护热板法仪器操作和标定有影响的几个小效应进行了深入研究,由此证明小面积保护热板法装置是一个非常强大的工具来验证通过真空玻璃的热辐射和通过支撑柱热传导的理论模型,该仪器也被用来证明这两个热流过程之间的相互作用足够小而可以被忽略。同时,这种小面积尺寸的保护热板法也可以用于研究真空玻璃内部真空的稳定性及对真空玻璃寿命周期内的性能进行评价。 然而,因为这种小面积保护热板法通常需要大约1小时来进行一次完整测量,此外由于有必要保持热保护装置的温度在一个非常精确的恒定值,并且在室温或室温附近只能使用这个装置来测量样品,这种保护热板法测试仪器的使用实际上仅限于实验室研究用,无法应用于真空玻璃的在线监测。[color=#cc0000]3.1.2. 北京新立基公司研究工作[/color] 北京新立基公司的唐健正老师曾是澳大利亚Collins团队的成员之一,回国后针对真空玻璃的传热系数测试开展了大量研究,基于上述小面积尺寸保护热板法原理研制了精密热导仪和快速热导仪两种热导仪,建立了建材行业“真空玻璃”的传热系数测试标准方法。其中精密热导仪的量程为0~10 Wm-2K-1,标称精度高达0.1 Wm-2K-1,测量时间为30 min,体积小,重量小于15 Kg。快速热导仪量程为0~25 Wm-2K-1,标称精度为0.2 Wm-2K-1,测量时间小于5 min,同样具有体积小、重量轻的特点。与精密热导仪不同的是,其测量精度略低,但测量时间短。 精密热导仪的特点是精度高,能够鉴别出真空度是否达标,但必须有足够的热测量时间。而快速热导测量仪则放宽了精度要求,把测量时间缩短6 倍。这样,在线监测时,后者先把关,把真空度肯定达标的和肯定不达标的筛选出来,把剩下少量的难以判断的由前者作精密判断,这样构成在线热导检测线。 通过对北京新立基公司相关报道的研究,北京新立基公司所研制的热导仪还存在以下不足: (1)随着科学的发展,真空玻璃的传热系数已经小到0.3 Wm-2K-1,如此小的数值就需要精度更高的热导仪才能够测量,这就需要进一步提高热导仪的精度。 (2)热导仪能够测量真空玻璃整体的热导,是支撑物热导、辐射热导和内部真空度共同作用的结果,目前新立基公司研制的热导仪还不能够将这三种热导分别测量。如果能够分别测量出支撑物热导、辐射热导和内部真空度,就可以有目的的改善支撑物材质、改善玻璃表面辐射率或者提高内部真空度。 [color=#cc0000]3.2. 非稳态法3.2.1. 瞬态法[/color] 为了提高真空玻璃在线测试能力,澳大利亚Collins团队提出了一种瞬态测试方法,其测量原理如图3-3所示。温度传感器附着在真空玻璃样品的一侧,通常位于支撑柱阵列单元的中心位置,在真空玻璃板的另一侧放置一个与玻璃板热接触良好内部镶有电加热器和温度传感器的小面积(约10 cm2)导热板。[align=center] [img=,600,287]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124330000_7261_3384_3.png!w600x287.jpg[/img][/align][align=center][color=#cc0000]图3-3[/color][color=#cc0000] 真空玻璃瞬态法测试原理图[/color][/align] 整个样品的初始温度恒定和均匀,并且记录几分钟温度传感器的输出以证实温度确实恒定。然后将已知数量的电功率加载到电加热器上,使电加热器快速升温,升温幅度通常为20~30℃。玻璃板的内表面产生的温差导致热量流经真空夹层,与电加热器相对的样品一侧温度会缓慢增加,该温度的初始速率测量结合真空玻璃热容(由玻璃厚度、比热和密度的乘积给出)和台阶温度升高的幅度,可以得出温度传感器周围区域样品的传热系数。 同样采用了两种真空玻璃进行了瞬态法测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),所有玻璃片厚度都为3 mm,图3-4显示了用瞬态技术获得的典型实验数据。[align=center][img=,600,499]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124513950_3062_3384_3.png!w600x499.jpg[/img] [/align][align=center][color=#cc0000]图3-4[/color][color=#cc0000] 用瞬态技术获得的典型数据[/color][/align] 如果真空玻璃样品冷面上的温度传感器位于支撑柱阵列单元的中心点,则在台阶式升温后的最初几分钟内,几乎所测的温度缓慢变化都是由于真空夹层内的热辐射和气体传导所造成,流经附近支撑柱上的热量需要很长时间才能到达温度传感器,因为它必须沿试样的冷面横向扩散到玻璃片上。这就使得这项技术可以用来测量玻璃的辐射和气体传热系数,并认为热流通过支撑柱的贡献微不足道,即使是标准支撑柱阵列(支撑柱间距约20~30 mm)的真空玻璃也是如此。 瞬态技术也可用于测量高温下真空玻璃样品的传热系数,因此这种技术在真空玻璃长期存储在室温以上时可能导致真空降解的机制研究方面被证明非常有用,该技术已被用来检测真空玻璃在高温老化过程中会释放出大量气体,而当冷却到室温后玻璃表面会发生气体再吸收现象。质谱仪实验表明,在这样的条件下释放出来的气体几乎完全是水蒸气。已证明在制造过程的抽真空阶段充分烘烤真空玻璃可以消除这些真空玻璃数十年使用寿命中的任何显著热释气现象。 瞬态技术不是真空玻璃传热系数的绝对测量方法,所获得的数据必须与样品冷面上的玻璃片热容以及步进温度的增加幅度相结合才能给出热流流经真空玻璃的传热系数。理想情况下,在这个计算中应使用随时间变化的有限元模型分析过程,因为导热板热量需要大量时间通过玻璃板热面来扩散,这就会使得冷面温度的上升初期具有相应的延迟。当采用有限元分析瞬态法时,测量玻璃板冷面温度随时间变化给出了与其他方法吻合很好的传热系数数据。这样,通过测量已知传热系数的相同几何尺寸样品来对瞬态法进行校准就非常简单,即在瞬态法测试过程中,在经历指定时间后(如2分钟)可将被测玻璃冷面温度的总变化与已知样品中获得的相似数据进行比较。 用瞬态法所检测得到的数据具有很好的重复性,此外该技术易于使用、可自动化和可校准,实际测量时间相当短——一般为几分钟。因此,该方法非常适合于真空玻璃批生产中的质量保证测试。瞬态法的缺点是样品温度在测量开始之前必须非常稳定,因此有必要在测量前将样品储存在稳定环境条件下一段时间。[color=#cc0000]3.2.2. 动态冷却法[/color] 为了进一步提高真空玻璃在线测试能力,澳大利亚Collins团队还提出了一种高温动态冷却测试方法,其测量原理如图3-5所示。在冷却法中被测真空玻璃整个样品最初处于高温,然后在被测样品的一侧放置并接触第二块已知传热系数的真空玻璃标准样品形成绝热边界条件,这个标准样品的起始温度可能是高温或是室温,将直径约0.1 mm的细丝热电偶放置在这两个真空玻璃样品的接触面之间。该组件中两块真空玻璃接触面之间的小间隙确保它们有良好的热接触,从而使她们的温度相当迅速的趋于均衡,室温空气在此组件中的两块真空玻璃外表面吹过。与这种强制对流所对应的传热系数相当高,因此两个样品的外玻璃片温度很快就会相对接近室温。从真空玻璃内部玻璃板流出的热量会以两个独立的流动方向分别流经两个样品的绝热真空空间到外部玻璃片,然后再经外部玻璃片流到空气中,因此内玻璃片温度会随着被试样品和标准样品的传热系数以相应速度而缓慢降低。[align=center][img=,600,322]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191125181660_9521_3384_3.png!w600x322.jpg[/img] [/align][align=center][color=#cc0000]图3-5[/color][color=#cc0000] 瞬态法测试中所采用的仪器示意图[/color][/align] 由于标准样品的传热系数已知,因此可以计算被测样品的传热系数。对于由3 mm厚玻璃片制成真空玻璃被测样品和标准样品,图3-6显示了用冷却法获得的真空玻璃中心处的测试结果。对于这些数据,两个样品在测量开始之前都处于高温。外玻璃片温度的初始降低速率可用于确定与这些玻璃板材外表面传热有关的传热系数与流动空气的关系,接触内玻璃板的热量损失率受此外部传热系数的影响,但相对于样品本身的玻璃-玻璃传热系数这个影响程度较小,在较长时间内两个外玻璃板之间的温差与流经各样品的不同热流速率有关。[align=center][img=,600,526]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126140880_4604_3384_3.png!w600x526.jpg[/img] [/align][align=center][color=#cc0000]图3-6[/color][color=#cc0000] 动态冷却法测试得到的典型数据[/color][/align] 与瞬态法一样,冷却法不是测量通过真空玻璃热流值的绝对方法,然而该方法的校准可以使用瞬态法中所用到的任何一种技术——通过依赖时间的有限元模型分析,或者更简单地通过对具有已知传热系数的相同几何尺寸标准样品进行测量。由于两块真空玻璃组件中与内部玻璃板指数冷却形式相关的时间常数可能相当大,通常约为60分钟,这种相对缓慢的冷却速率可确保通过支撑柱的热流足够来沿着玻璃板进行扩散,而内部玻璃板的温度横向变化则是相当小。因此,冷却法能形成真空玻璃总传热系数(辐射+气体+支撑柱)的测量。 由此可见,冷却法可能会用于真空玻璃生产线上,特别是刚刚完成了抽真空过程,在那里它们经受高温下的脱气处理,此时的真空玻璃制品通常处于高温状态。与采用其他在线测试技术相比,将冷却法监测集成到真空玻璃生产线的末端可节省大量的时间和劳动力。[color=#cc0000]3.3. 国内外相关在线测试仪器3.3.1. 德国耐驰公司便携式复合玻璃 Ug 值测量仪[/color] 德国耐驰公司基于改进的动态热源法开发了一种瞬态在线测试技术和相应的便携式复合玻璃传热系数测试仪Uglass,如图3-7所示。此测试仪器通过两个带加热功能的温度传感器,根据一维传热差分模型和软件来测量真空玻璃的传热系数。这种测试技术是一种相对比较法,配备了中空玻璃标准样品。由于测试技术的探测器相对较小,可用于实验室检测,也可用于现场评估,对于普通真空玻璃整个测试过程约为10~15分钟,每次测量之间的时间间隔约 10 分钟。 [align=center][img=,600,643]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126433070_5719_3384_3.jpg!w600x643.jpg[/img][/align][align=center][color=#cc0000]图3-7 耐驰公司便携式复合玻璃传热系数测量仪[/color][/align] 如图3-8所示,测试过程中通过抽气泵将探测器真空吸附在被测玻璃两侧。安装完成后,将其中的一侧探测器加热到高于另一侧探测器温度7~8℃范围,并同时检测另一侧探测器温度的变化ΔT。[align=center][img=,600,263]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127021708_286_3384_3.jpg!w600x263.jpg[/img] [/align][align=center][color=#cc0000]图3-8[/color][color=#cc0000] 传热系测量仪安装布置和测量示意图[/color][/align] 通过分析短暂的不同温度变化过程,可测定真空玻璃的传热系数,其中传热系数测量范围为0.5~40 Wm-2K-1,操作温度范围为-10~60℃,探测器加热温度范围为室温~150℃。 采用Uglass测量仪Kim等人在常温常压下对内部不同间隔的中空玻璃进行了测量,如图3-9所示,分别得到了中空玻璃内部和外部的传热系数随间距的变化结果。[align=center][img=,600,357]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127235359_4034_3384_3.jpg!w600x357.jpg[/img] [/align][align=center][color=#cc0000]图3-9 中空玻璃内部和外部传热系数随中空间距的变化测量结果[/color][/align] 从图3-9所示的测试结果可以看出,随着间隔宽度的增加,内部和外部的双层中空玻璃板的传热系数呈线性减小而无视真空玻璃的内部还是外部。由此可见,双层中空玻璃的传热系数不受周围环境的影响,也就是说,没有边框的双层中空玻璃绝热性能,即使在不同环境下也可以解释为具有相同的绝热性能。 除了普通中空玻璃之外,Kim等人还对中空玻璃内部表面涂覆Low-E涂层对绝热性能的影响进行了对比测量,测量结果如图3-10所示。[align=center] [img=,600,386]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127453461_8401_3384_3.jpg!w600x386.jpg[/img][/align][align=center][color=#cc0000]图3-10 带Low-E涂层和无Low-E涂层中空玻璃传热系数随中空间距的变化对比[/color][/align] 从图3-10所示的测试结果可以看出,随着间隔宽度的增加,涂覆了Low-E涂层的中空玻璃传热系数随间距增大而更加快速的减小,随间距减小的斜率为-150.4 ×103 Wm-3K-1,要比无Low-E涂层时随间距减小的斜率-68.8 ×103 Wm-3K-1快了将近2倍多,当中空玻璃内部间距为15 mm左右时,增加Low-E涂层后的传热系数减小了将近一半,由此证明Low-E涂层在中空玻璃和真空玻璃中所起的重要作用。 从耐驰公司的相关报道可以看出,耐驰公式这款传热系数测试仪器整体尺寸偏大,测量覆盖面积将近400×400 mm2,可以满足中空玻璃的传热系数测试。尽管仪器测量精度标称可以达到±0.1 Wm-2K-1,但并没有看到对小于1 Wm-2K-1的真空玻璃传热系数的测试报道,也没有看到对真空绝热材料(VIP)的导热系数测量结果报道。同时十几分钟的测试时间,以及被测样品两侧夹持测试方法根本无法满足真空绝热材料生产过程中的在线质量监测要求。[color=#cc0000]3.3.2. 日本EKO公司导热仪[/color] 为了真正实现真空隔热材料的在线监测,日本EKO公司开发了HC-10快速导热系数测试仪,如图3-11所示。考虑到在线测试,测试仪采用了单端探头这种最佳的探测模式,只需将探测头放在各种被测材料上,可在1分钟内得到导热系数测量结果。[align=center][img=,600,450]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128042740_1715_3384_3.jpg!w600x450.jpg[/img] [/align][align=center][color=#cc0000]图3-11 日本EKO公司HC-10型快速导热系数测试仪[/color][/align] 这种快速导热系数测试仪的测量原理如图3-12所示,首先将探头加热到高于室温的一恒定温度,同时使被测样品处于室温条件下并达到热平衡。然后将探头放置在被测样品表面,如果样品导热系数低,探头上的热量Q将会缓慢的流经样品而散失,相应的探头表面温度快速上升;如果样品导热系数较高,探头上的热量Q将会快速流经样品而散失,相应的探头表面温度缓慢上升。[align=center][color=#cc0000] [img=,600,484]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128201186_3226_3384_3.png!w600x484.jpg[/img][/color][/align][align=center][color=#cc0000]图3-12 HC-10型快速导热系数测试仪基本原理[/color][/align] 由此可见,这种快速导热系数测试仪中探头加热器的热损失大小与样品的导热系数有关,如果使用已知导热系数的标准样品进行校准,则可以实现样品导热系数的自动测量。日本EKO公司开发的HC-10快速导热系数测试仪已用于各种材料的导热系数测量,其中包括真空绝热板(VIP)的导热系数测量,测试仪的主要技术指标为: (1)导热系数测量范围:1~5000 mW/mK (2)测量精度:+/- 5 % (3)样品尺寸:边长150 ~760 mm,厚度5~50 mm (4)测试时间:60秒 专门针对真空绝热板(VIP),基于HC-10快速导热系数测试仪日本EKO公司还开发了多探头形式的在线HC-121 VIP监测仪,如图3-13所示。 HC-121 VIP监测仪主要用于在线监测真空绝热板质量是否合格,即在1分钟内实时检测真空绝热板(VIP)导热系数是否小于规定数值,通过一个主机可以同时连接最多5个探头进行在线监测。[align=center][color=#cc0000] [img=,600,199]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128367430_3462_3384_3.jpg!w600x199.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-13 日本EKO公司HC-121 VIP监测仪[/color][/align] 与HC-10快速导热系数测试仪不同,HC-121 VIP监测仪只能进行相对测量,探测头需要用户自己进行单独校准,用户需要根据VIP材料生产的实际特征来进行使用。HC-121 VIP监测仪的技术指标与HC-10快速导热系数测试仪基本相同,只是导热系数测试范围基本只针对真空绝热板材料,为1~15 mW/mK。 有关日本EKO公司开发的这两种在线监测仪器,我们并没有看到实际应用方面的报道和测试数据,更没有看到在真空玻璃上的测试应用。从测试原理上来看,这两种仪器完全适合均质材料的超低导热系数测试,但对于真空隔热材料这类非均质复合结构材料而言,可能存在以下问题: (1)真空绝热板(VIP)表面一般都包裹一层高导热金属保护热,测试过程的初期探头上的热量会通过表面金属膜快速散失,所得到的温度变化曲线并不一定能完全代表真实的低导热材料测试过程中的温度变化。类似的情况也会发生在使用了真空绝热板的冰箱生产线上的在线质量监测,因为冰箱的隔热结构也是金属材料包裹真空绝热板。 (2)同样,对于真空玻璃而言,也是高导热系数玻璃板与真空绝热层的复合结构,玻璃的导热系数接近1 W/mK,也是远大于真空隔热层的导热系数,测试过程中也会发生类似的问题。[color=#cc0000]3.3.3. 内部真空度测试仪器[/color] 真空隔热材料的一种重要特点就是材料内部是真空,因此在线测试技术中实时监测真空度的变化也是一种在线监测技术手段。 从目前的各种真空隔热材料内部真空度检测技术的发展来看,大多数是谐振式真空传感器,即将事先标定好的MEMS结构的LC微型传感器植入真空隔热材料中,通过外部探测仪器对谐振传感器进行外部激励得到谐振频率与内部真空度的关系数据。 内部真空度测试技术的最大优势是可以在几秒钟内实现对真空隔热材料内部真空度的检测,但最大的问题是要将标定好的传感器植入产品中。[b][color=#cc0000]4. 现有技术总结[/color][/b] 目前国内外常用于表征真空型隔热材料的标准方法,如保护热箱法和大面积保护热板法,主要是用来测量通过真空型隔热材料的热流速率,这两种测试技术都提供了有关真空型隔热材料的整体热流过程的信息。然而它们在测试过程中相对较慢,同时无法对真空隔热材料中不同传热机理而引起的热流分量进行单独评估。 为了对真空型隔热材料局部热流进行测量,以及适应工业生产和工程应用的需要,目前国内外提出了几种特别设计的测试方法: (1)小面积保护热板法测试装置提供了非常精确的流经真空玻璃的局部热流测量,该装置可用于验证由于辐射、气体热传导和通过支撑柱热传导而引起的不同热流过程的理论模型,也证明了该小面积保护热板法测试装置在考核真空玻璃内部长时间真空稳定性方面非常有用,同样这种方法也可以应用于真空绝热板的热性能测试和评估。小面积保护热板法是目前测试精度最高的方法,但这种方法是一种被测样品双面探测结构,测试时间最快也要好几分钟,比较适合实验室研究使用,但还是不能很好的满足在线测试需求。 (2)瞬态法提供了一种测量真空绝热材料传热系数和导热系数的快速方法,该方法可通过测量已知传热系数和导热系数的标准样品对测试装置进行标定。该方法快捷、易于使用并具有很高的测量重复性,并可在较高温度条件下对真空玻璃的气释过程研究中的作用非常明显。目前国外相关测试仪器基本都是基于这种方法,可见这种方法得到了基本认可。尽管采用这种方法有德国耐驰公司的中空玻璃双面测试结构的便携式测试仪器,也有日本EKO公司的真空绝热板单面探头结构的便携式测试仪器,但目的都是为了满足真空绝热材料传热系数和导热系数的在线测试需求,而我们认为单面探头结构更适用于在线测试,这将是今后这方面测试仪器的一个发展方向。 (3)冷却法提供了真空玻璃整体传热系数的测量。虽然这种方法在实践中不一定实用,但在将来可能将其集成到真空玻璃生产过程中,与其他方法相比,冷却法的成本和时间可能会有很大节省。[color=#cc0000][b]5. 上海依阳公司在线快速检测技术[/b][/color] 上海依阳实业有限公司基于瞬态法,提出了一种新型快速测试方法——动态热流法。动态热流法与日本EKO公司导热仪的测量原理类似,也是采用单面探头结构形式,但不同于日本EKO公司导热仪是测量加热器表面的温度变化,新型测试方法测量的是比温度变化更灵敏的热流密度变化,如图5-1所示为分别测量正常和非正常真空绝热板时的热流密度随时间变化曲线对比。 在动态热流法测量的初期,单面测量探头处于以恒定温度,探头未接触被测样品(真空玻璃或真空绝热板)之前,热流密度测量值较低。但将探头与被测样品表面接触后,探头上的热量经真空绝热材料表面(玻璃或金属保护膜)而迅速散失,材料表面的高导热材料表面的作用而产生较大的热流密度,即使得测量的初期热流密度测量值迅速升高。[align=center][color=#cc0000] [img=,600,433]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128571173_5310_3384_3.png!w600x433.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-1 正常和非正常真空绝热材料热流密度随时间变化测量曲线[/color][/align] 随着探头与样品表面接触时间的增大,流经表面材料的热流受到内部绝热层的阻隔,测量的热流密度会逐渐降低,从而反映出绝热层的低导热特性。由此可知,热流密度曲线降低的速率可以作为衡量样品绝热性能的测量指标,即如果被测样品处于正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“正常绝热状态”那样,向较低的热流密度值进行收敛;如果被测样品处于非正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“非正常绝热状态”那样,向较高的热流密度值进行收敛。 通过上述热流密度变化曲线可以看出,这种动态热流法可以很好的解决真空绝热材料表面高导热层对测试所带来的影响,解决了日本EKO公司在线监测仪器所存在的不足,绝热材料表面的高导热层只会使得初期的热流密度升到很大幅度,并不真正影响热流密度下降速率随内部绝热性能的变化。 动态热流法的整个测试时间主要取决于绝热材料表面的材质和厚度而定,对于普通真空绝热板的测试,测试时间一般为10~15秒;对于普通真空玻璃测试,测试时间一般为20~30秒,这样的测试速度已经完全可以满足在线测试需求。 动态热流法测试得到的热流密度并不能直接用来得到被测样品的导热系数,但因为导热系数与热流密度是线性关系,可以通过测量多个已知导热系数的标准样品来建立导热系数与热流密度的校准曲线,如图5-2所示。此校准曲线存储在测试仪器内,由此根据这种关系曲线通过热流密度测量值可以得到相应的导热系数和传热系数。[align=center][color=#cc0000] [img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191129342020_253_3384_3.png!w600x363.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-2 校准测试曲线[/color][/align] 校准用标准样品的制作基于真空绝热材料内部真空度与传热系数和导热系数的关系,标准样品可以是固定厚度的真空绝热材料,通过精确控制材料内部真空度并采用保护热板法或保护热箱法等仪器进行测量,得到标准样品不同真空度下所对应的传热系数和导热系数关系曲线,这样在采用标准样品进行动态热流法探头校准时,只要调节真空度就可以得到不同的传热系数和导热系数。 动态热流法作为一种高灵敏测试方法,可以用来快速的在线检测和判断真空绝热材料是否具有正常范围内的传热系数和导热系数,可以在30秒时间内检查真空绝热材料是否正常工作。另外,由于动态热流法测量装置是小型单面探头结构,实际测量操作时只需将探头与被测绝热材料表面接触,测试完毕后探头脱离绝热材料,通过机械结构很容易实现自动化测试,完全可以应用到真空绝热材料生产流水线上进行自动化实时监测。同时,动态热流法的检测探头非常小巧,可以实现一台主机配备多个探头对多个绝热材料的同时监测,而且还可以实现不同方向和位置上的测量,如探头放置在冰箱的顶部和侧面监测冰箱内部不同部位真空绝热板是否工作正常,监测窗体上已直立安装的真空玻璃是否工作正常。由于标准绝热材料样品由真空度的精确控制来确定,从而保证了动态热流法探头可以非常方便的进行定期校准。[b][color=#cc0000]6. 参考文献[/color][/b](1)Collins R E,Davis C A,Dey C J,et al. Measurement of local heat flow in flat evacuated glazing. International Journal of Heat & Mass Transfer,1993, 36(10):2553-2563.(2)Simko T M, Elmahdy A H, Collins R E. Determination of the overall heat transmission coefficient (U value) of vacuum glazing. Ashrae Transactions, 1999.(3)张金维, 王立国. 真空玻璃在线测量技术// 2013全国玻璃科学技术年会论文集. 2013.(4)唐健正. 真空玻璃传热系数的计算// 2006中国玻璃行业年会暨技术研讨会. 2006.(5)唐健正, 朱亚勇, 卫正纯. 真空玻璃传热系数相关参数的测量// 2007'中国玻璃行业年会暨技术研讨会(6)中华人民共和国建材行业标准,JC/T 1079-2008,真空玻璃(7) Turner G M, Collins R E. Measurement of heat flow through vacuum glazing at elevated temperature. International Journal of Heat & Mass Transfer, 1997, 40(6):1437-1446.(8) Ng N, Collins R E, So L. Thermal conductance measurement on vacuum glazing. International Journal of Heat and Mass Transfer 49 (2006) 4877-4885.(9) Kim I, Frenzl A, Kim T, et al. Determination of Thermal Transmittance of Insulated Double Low-E Glazing Panel Using Portable Uglass, Measuring Technique. International Journal of Thermophysics, 2018, 39(1):19.

  • 【求助】请教:物质的传热系数

    偶现在做一封装料,要求导热性极佳,绝缘性也非常好,所以石墨之类材料是不能用的,打算用金属氧化物,现请教各位,各种金属氧化物的传热系数哪里找?而且材料不能太贵,偶看了好几本传热学,但是里面介绍的东西都一样,排不上用场。偶需要比如氧化铝啊,氧化镁啊,氧化锌啊,氧化铜啊,之类的传热系数,谢谢

  • 热流传感器在评估建筑物墙体保温性能的检测应用

    热流传感器在评估建筑物墙体保温性能的检测应用

    随着建筑能耗占社会总能耗的比例不断增加,建筑节能工作的开展显得越来越迫切。建筑围护结构的节能承担着建筑节能很大的比例,是建筑节能的重点。传热系数是建筑围护结构的一个重要的热工参数,准确测量建筑围护结构传热系数既是准确分析围护结构保温隔热性能的前提,又是正确评价建筑节能效果和节能改造的基础。[img=,579,334]https://ng1.17img.cn/bbsfiles/images/2018/11/201811200951181804_1814_3332482_3.jpg!w579x334.jpg[/img]分析建筑传热的原理和研究方法的基础上釆用热流计法现场检测一办公建筑外墙传热系数,将墙体的传热系数理论计算值与实测值进行对比分析,分析两者之间的差异以及产生差异的原因:使用算术平均法和动态分析法对实测数据进行处理,分析两者的适用性:研究测点位置、测试温差对墙体传热系数的影响,得出以下结论:(1)测点位置距热桥的距离为2个墙体壁厚吋,墙体的导热处于维稳态或准稳态传热状态(2)当墙体传热系数较大时,可以适当降低检测温差,其检测结果仍具有较好的吻合度。通过实测不同风速下的墙体热流密度、壁面温度及空气温度计算实测条件下墙体外表面的对流换热系数,有利于墙体传热系数的准确。目前墙体传热系数的检测方法主要有热流计法、热箱法、和控温箱-热流计法,即,另外常功率平面热源法和红外热像仪法作为检测领域的先进手段也常用于建筑墙体传热系数的检测。这些检测方法都具有各自的特点,但同时也存在一定的问题和弊端。本文详细介绍其中的热流计法现场检测传热系数的常用方法。我国的现行检测标准《居住建筑节能检测标准》(JGJ132-209)推荐热流计法为现场检测围护结构传热系数的首选检测方法,经过国内外几十年的应用,热流计法已经被广泛接受。热流计法是利用墙体内外表面的温差与通过墙体的热流量之间的对应关系进行传热系数的测定,其基本的理论是建立在傅里叶定律的基础上,认为墙体是各向同性、连续的介质并处于一维稳态传热过程。测量通过被测墙体的电压E,同时测出墙体内壁面温度72及外壁面温度T,即可根据公式(2-1) (2-2)计算出被测墙体的导热热阻和传热系数。单面热流计法:单面热流计法即常规的热流计法,其具体操作方法为:在被测部位内壁表面布置热流传感器,在热流传感器周围布置温度传感器,在外壁表面对应的位置上布置温度传感器,将热流传感器和温度传感器同时连接到数据采集仪上进行数据采集,对数据处理即可得到所测位置的热阻值和传热系数。双面热流计法:双面热流计法是一种改进的热流计法,是由王珍吾等人提出的。一方面, 墙体实际的传热过程为非稳态传热,由于温度波的延迟效应,在同一时刻所测得的热流值和温度值在时间上是不吻合的,另一方面,由于墙体的蓄热作用,同一时刻由内表面进入墙体内部的热流值与墙体内部流出外表面的热流是不一致的。采用双面热流计法可以有效降低这两个因素对检测的影响1不同于单面热流计法仅在墙体内表面测量热流量,双面热流计法是在墙体内外表面相应的位置均布置热流传感器,同时测定墙体内外表面的热流,并用所测得的内外表面的热流的加权平均值作为通过墙体的热流值。[img=,394,383]https://ng1.17img.cn/bbsfiles/images/2018/11/201811200951331614_9206_3332482_3.jpg!w394x383.jpg[/img]最后就由工采网小编给大家介绍两款进口热流传感器,那就是从日本进口的热流传感器 - MF180和热流传感器 - MF180M这两款质量突出的热流传感器。这两款热流传感器适合材料内部的热流的直接测,也适合制冷剂的辐射流的测量 。测试原理 有三种热传导模式:热传导,热辐射和热流。如果热流传感器安置在材料的表面,它将测试这三种模式热 的总和。如果传感器安置在材料的内部,它直接测试由热传导产生的热传输。用热电偶测试温度的不同,穿过的热流能被直接测。

  • 路面太阳辐射反射系数检测仪

    路面太阳辐射反射系数检测仪

    路面太阳辐射反射系数检测仪太阳辐射反射系数检测仪是在水平表面上从2π球面度立体角中接收到的太阳直接辐射和太阳散射辐射之和(短波),即太阳直接辐射的垂直分量和水平面上接受到的散射辐射总量,业务上通常用太阳辐射反射系数检测仪来进行观测。根据安装状态不同,太阳辐射反射系数检测仪可分别测量太阳总辐射、反射辐射,或借助遮光装置测量散射辐射。对于太阳辐射反射系数检测仪传感器的选择主要有以下三点:一、能否达到既定的太阳辐射测量精度要求;二、在满足测量精度的情况下,太阳辐射反射系数检测仪尽量使用低功耗的传感器,这是由于系统的设计电源是采用电池供电;三、太阳辐射反射系数检测仪传感器要能满足被测介质和使用环境的特殊要求,例如在高温、低温下的工作情况以及防腐等。[img=太阳辐射反射系数检测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210170914044180_4640_4136176_3.jpg!w690x690.jpg[/img]用于测量太阳和天空辐射,适应很宽的波长范围。太阳辐射反射系数检测仪为可以借助不同牌号的有色光学玻璃制作的半球形外进行不同宽波段太阳辐射的测量。太阳辐射反射系数检测仪由一个组合热电堆电路组成,可以很好的抵抗机械震动和打击。太阳辐射反射系数检测仪的接收器上有一层黑漆,底部为一个半球形玻璃项罩。玻璃半球使用的是测量用玻璃,其对于0.305pm-2.8pm的波长具有非常好的透光性,而且能量传输非常的均一。太阳辐射反射系数检测仪根据黑色涂料吸收太阳辐射产生热效应的温升值来确定辐射强度。温升值采用热电堆测得。[img=太阳辐射反射系数检测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210170914391157_1723_4136176_3.jpg!w690x690.jpg[/img]

  • 【分享】JGJ/T 132-2009居住建筑节能检测标准(扫描清晰版本)

    [color=#333333][color=#000000] [b]居住建筑节能检测标准(JGJ/T 132-2009)[/b][/color]本标准适用于新建、扩建、改建居住建筑的节能检测。2010-07-01实施。1 总则2 术语和符号 3 基本规定4 室内平均温度5 外围护结构热工缺陷6 外围护结构热桥部位传热系数7 围护结构主体部位传热系数8 外窗窗口气密性能9 外围护结构隔热性能10 外窗外遮阳设施11 室外管网水力平衡度12 补水率13 室外管网热损失率14 锅炉运行效率15 耗电输热比附录[/color]

  • 绿色建筑节能利用率检测装置

    绿色建筑节能利用率检测装置

    绿色建筑节能利用率检测装置绿色建筑节能利用率检测装置实验室与现场检测与常规建筑工程质量检测一样,建筑节能工程的检测分实验室检测和现场检测两大部分。实验室检测是指测试试件在实验室加工完成,相关检测参数均在实验室内测出;而现场检测是指测试对象或试件在施工现场,相关的检测参数在施工现场测出。从建筑节能工程施工质量控制过程来分,绿色建筑节能利用率检测装置建筑节能检测分进场部品构件材料、保温隔热节能系统及组成材料的型式检测(简称型式检测)和现场抽样复查检测(简称复检)以及现场监督检查检测(简称监督检测)。检测是建筑节能部品构件材料、保温隔热节能系统进人建筑工程施工现场的必要条件,进人施工工程现场的企业应具有检测参数齐全的有效检测报告。因建筑工程使用建筑节能部品、构件材料量大,现场施工人员文化程度大多不高,对新的建筑节能新产品和系统均不熟悉,且缺乏相关的实际操作使用经验,故绿色建筑节能利用率检测装置对进人现场的建筑节能部品构件材料、保温隔热节能系统组成材料抽样进行复查抽检非常必要。由于建筑节能工作大量推广时间不长,建筑工程设计、施工和供应等各层面的相关人员对建筑节能技术、能系统产品认识普遍有待提高。[img=绿色建筑节能利用率检测装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160904288601_1063_4136176_3.jpg!w690x690.jpg[/img]绿色建筑节能利用率检测装置建筑节能检测内容包括:1、保温系统主要组成材料性能(导热系数、密度、含水率);2、外墙保温系统性能(传热系数、耐候性、抗风荷载性能、抗冲击性能、粘结强度、外墙节能构造现场实体检验);3、采暖居住建筑节能检验(室内外平均温度检测、围护结构传热系数、热桥内表面温度、建筑物单位采暖耗热量、热工缺陷);4、建筑外门、窗(气密性、保温性能);5、采暖与空调系统节能工程(室内温度、相对湿度、水压、风压、风量、风速、水力平衡度、补水率、热输送效率、空调机组水流量、冷热水总流量、冷却水总流量);6、配电与照明节能工程(平均温度、照明功率密度、低压配电电源、转速);7、监测与控制节能工程(监测与控制节能工程);8、中空玻璃(露点);9、锚栓(锚固力现场拉拔试验)主要仪器设备包括导热系数测定仪、红外线摄像仪、外墙耐候性检测仪、拉拔仪、保温系统测定仪、门窗气密性测定、鼓风门气密性测试系统(建筑物气密性测试系统),仪尘埃粒子计数器等。[img=绿色建筑节能利用率检测装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211160904504822_8610_4136176_3.jpg!w690x690.jpg[/img]

  • 热导池检测器(TCD)使用注意事项

    1、确保热丝不被烧断!在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝可能被烧断,致使检测器报废!关机时要待热导检测器温度降至室温,然后一定要先关仪器电源,最后关载气。任何时候进行有可能切断通过TCD载气流量的操作,都要关闭检测器电源。这是TCD操作必须遵循的规则! 2、载气中含有氧气时,会使热丝寿命缩短,所以有TCD时载气必须彻底除氧。而且不要使用聚四氟乙烯作载气输送管,因为它会渗透氧气。 3、载气种类对TCD的灵敏度影响较大。原则是讲,载气与被测物的传热系数之差越大越好,故氢气或氦气作载气时比氮气作载气时的灵敏度高。当然,要测定氢气时就必须用氮气作载气。

  • 全自动太阳能光热系统性能测试仪器

    全自动太阳能光热系统性能测试仪器

    全自动太阳能光热系统性能测试仪器太阳能光热系统性能测试仪器监测方法1、外墙保温系统外墙保温系统的节能监测主要包括系统耐候性试验、系统抗风载性能试验、系统抗冲击性能试验、抗拉强度试验和传热系数测定试验等。而在当前的建筑节能监测中,主要技术是能够快速准确地测定建筑外围护结构的热工性能,即得出外围护结构的传热系数。传热系数的测定方法主要有热流计法和热箱法两种。热流计是建筑热耗测定中常用仪表,其监测基本原理为:在被测部位至少布置两块热流计,测量通过建筑构件的热量,在热流计的周围和对应的冷表面上各布置4个热电偶测量温度,并直接传输进入微机系统,通过计算可得出传热系数值。而热箱法的工作原理为:在试件两侧的箱体(冷箱和热箱)内,分别建立所需的温度、风速和辐射条件,达到稳定状态后,测量空气温度、试件和箱体内壁的表面温度及输入到计量箱的功率,就可以计算出试件的热传递性质,热箱法不适合于现场监测,适合于外墙、楼板、门窗的热传递系数的实验室测量。目前较先进的方法还有红外线热像仪法。红外线热像仪是集先进的光电技术、红外探测器技术和红外图像处理技术于一身的高科技产品。热像仪测量物体表面温度是一种非接触式、快速的测量仪器,测量物体表面温度分布,能够直观的显示物体表面的温度分布范围。此外还有显示方法多、输出信息量大、可进行数据处理、操作简单、携带方便等优点。[img=太阳能光热系统性能测试仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210070920056230_4359_4136176_3.jpg!w690x690.jpg[/img]2、建筑外门窗试验建筑外门窗的节能监测主要包括保温性和气密性能的监测。门窗是建筑外围护结构中热工性能最薄弱的构件,通过建筑门窗的能耗在整个建筑物能耗中占有相当可观的比例。调查表明,我国北方一些地区的采暖建筑由于采用普通钢门窗,冬季通过外窗的传热与空气渗透耗热量之和,可达全部建筑能耗的50%以上 夏季通过向阳面门窗进入室内的太阳辐射所得的热量,成为空气负荷的主体。外门窗保温性能以传热系数为评定指标。其监测方法为标定热箱法。试件一侧为热箱,模拟采暖建筑冬季室内气候条件,另一侧为冷箱,模拟冬季室外气候条件,在对试件缝隙进行密封处理,试件两侧各自保持稳定的空气温度、气流速度和热辐射条件下,测量热箱中电暖气的发热量,减去通过热箱外壁和试件框的热损失,除以试件面积与两侧空气温差的乘积,即可得出试件的传热系数。外门窗的气密性监测一般可采用压力法,就是利用风机等增压或减压的原理,使建筑外门窗内外之间人为造成压力差,测定在该压力差条件下的空气渗透量。[img=太阳能光热系统性能测试仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210070920334308_3344_4136176_3.jpg!w690x690.jpg[/img]太阳能光热系统性能测试仪器监测技术我国建筑节能监测技术是与建筑节能工作的开展同步发展起来的,太阳能光热系统性能测试仪器具体分为直接监测和间接监测2大类。直接监测是采用能源计量法,即对拟进行监测的建筑物单元提供热源,待稳定后,测试室内外温度,计量热源供应总量。据建筑面积、实测室内外空气温差、实测能源消耗推算标准规定的温差条件下的建筑物单位耗热量。间接法是通过测试建筑物围护结构传热系数和气密性,计算建筑物的耗热量。测试围护结构传热系数通常是设法在被测结构的两侧形成较为稳定的温度场,测试该温度场作用下通过被测结构的热流量,从而获得被测结构的传热系数,实际现场测试围护结构传热系数的方法有热流计法和热箱法。直接法必须在冬季供暖稳定期测试,即使对于北方采暖建筑使用也有一定的局限性,对于夏热冬冷地区,就更加不便应用。间接法虽然理论上基本不受供暖季节的限制,但为了在被测结构两侧获得较为稳定的热流密度,通常也以在冬夏两季测试为宜。

  • 病毒细菌检测仪如何评估检测数据

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  病毒细菌检测仪如何评估检测数据,病毒细菌检测仪评估检测数据的方法涉及多个方面,主要包括数据的准确性、灵敏度、特异性、重复性以及与标准方法的对比等。以下是对这些方面的详细分析:  一、数据的准确性  与传统方法的对比:病毒细菌检测仪的检测结果应当与传统微生物培养方法或其他准确的微生物检测方法具有一致性。这是评估数据准确性的重要标准。通过对比两种方法的结果,可以判断检测仪的准确度。  标准物质检测:使用已知浓度的标准物质(如特定种类的病毒或细菌)进行检测,将检测结果与标准物质的浓度进行对比,以评估检测仪的准确性。  二、灵敏度与特异性  灵敏度:病毒细菌检测仪应能够在低微生物含量下进行可靠的检测。这要求检测仪具有较高的灵敏度,能够检测到微量的微生物。  特异性:检测仪的检测结果应主要受到目标微生物的影响,而不受其他物质的干扰。特异性是评估检测仪在复杂环境中准确识别目标微生物的能力。  三、重复性  多次检测:在相同条件下对同一样本进行多次检测,观察检测结果的稳定性。如果多次检测结果基本一致,说明检测仪的重复性良好。  变异系数:计算多次检测结果的变异系数,以量化检测结果的稳定性。变异系数越小,说明检测仪的重复性越好。  四、检测标准与范围  检测标准:参考相关国家标准或行业标准,如《GB/T 4789.2-2022 食品微生物学检验 菌落总数测定》等,评估检测仪的检测结果是否符合标准要求。  检测范围:了解检测仪的检测范围,确保其在预定范围内进行检测。超出检测范围的结果可能不准确或无法解释。  五、数据分析与解读  数据分析:使用统计软件对检测数据进行处理和分析,如计算平均值、标准差、置信区间等,以量化检测结果的不确定性。  结果解读:根据数据分析结果和检测仪的说明书或操作手册,对检测结果进行解读。注意区分合格、警告和不合格等不同的结果等级。  六、实际应用中的注意事项  样品前处理:确保样品在检测前经过适当的前处理,如稀释、培养等,以提高检测的准确性和灵敏度。  操作规范:遵循检测仪的操作规程和注意事项,确保操作过程规范、准确。  维护保养:定期对检测仪进行维护保养,如清洁、校准等,以保证其性能和稳定性。  综上所述,评估病毒细菌检测仪的检测数据需要从多个方面进行综合考量。在实际应用中,应结合具体情况选择合适的评估方法和标准。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407171141238127_4767_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 超强冷却能力沸腾传热式膜基散热器的低压压力和温度控制解决方案

    超强冷却能力沸腾传热式膜基散热器的低压压力和温度控制解决方案

    [size=16px][color=#990000][b]摘要:膜辅助相变散热器(MHS)作为一种新型高效冷却技术正逐渐成为研究热点,其中的真空压力和温度控制是有效实施MHS技术的关键因素,为此本文提出了相应的解决方案。解决方案的核心内容是同时为MHS工作液体提供准确的高压压力控制和为MHS沸腾蒸发提供低压真空度控制,另外解决方案还包含了MHS隔膜的渗透性测试方法和测试装置结构,包含了MHS冷却能力和传热系数测量装置。[/b][/color][/size][align=center][size=16px][color=#990000][b]============================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 高功率密电子设备的激增催生了高性能计算及其数据中心的发展,由此带来的需求是开发高性能的散热器。目前,普遍都采用比空气冷却效果更好的水冷和浸没式液冷的单相散热技术,而随着功率密度的快速增加和电子设备的小型化要求更高的冷却效率。当前高效冷却的研究领域之一是具有更高传热系数的相变散热,这样每单位工作流体质量流量可移除更多热量,且可以提高散热面积上的温度均匀性。[/size][size=16px] 目前出现一种膜辅助相变散热器(MHS)技术,其沸腾冷却工作原理如图1所示,水作为冷却过程的工作流体,采用薄膜将液体和蒸汽分离。蒸汽空间压力(P蒸汽)为16kPa,对应于饱和温度55℃。此冷却技术的临界热流极限(CHF)随着传热面积比和液体空间压力(P水压)的增加而增加,据报道在具有3.45的增大面积比的表面上的最大CHF为670W/cm2,获得的传热系数高达1MW/m2K。[/size][align=center][size=16px][color=#990000][b][img=膜辅助散热器压差下渗透膜蒸汽排出冷却原理图,550,167]https://ng1.17img.cn/bbsfiles/images/2023/09/202309201758191124_9322_3221506_3.jpg!w690x210.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 膜辅助散热器压差下渗透膜蒸汽排出冷却原理图[/b][/color][/size][/align][size=16px] 如图1所示,与具有液体入口和两相流出口的传统散热器不同,MHS仅包含一个液体入口,工作液体通过该入口以压力P水压供应到散热面。放置在散热面上方的疏水蒸汽渗透膜允许蒸汽从液体池中排出。[/size][size=16px] MHS这种独特的设计将沸腾的液体限制在散热器内表面,并对气泡产生全方位的压力。随着气泡的足够生长,在加热器内表面和膜之间建立了蒸汽桥,导致膜上的液体接触线减少(由于膜的疏水性),将气泡从加热器表面拉出和排出。由此可见,膜的渗透性和压差决定了蒸汽流过膜的速率,而压差太大则会导致膜破裂,这样使得MHS工作机理及其散热能力的研究评价主要内容是膜渗透性测量装置和膜辅助散热器装置的搭建,其中关键涉及到真空压力和温度的精密控制技术。为此本文针对压力和温度的准确控制提出了完整的解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px][color=#990000][b]2.1 膜渗透性测量装置[/b][/color][/size][size=16px] 薄膜渗透性测量装置如图2所示,测量装置包括测试腔室、调压器、质量流量控制器、压力计、真空计、电动针阀、双通道真空压力控制器和真空泵。测试腔室由不锈钢制成,由上腔室、下腔室和观察窗组成。被测薄膜固定在下室上,测试流体进入上腔室,穿过隔膜流入下部腔室,通过真空泵抽气流出下腔室。[/size][align=center][size=16px][color=#990000][b][img=薄膜渗透性测量装置结构示意图,600,316]https://ng1.17img.cn/bbsfiles/images/2023/09/202309201758468846_1005_3221506_3.jpg!w690x364.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 薄膜渗透性测量装置结构示意图[/b][/color][/size][/align][size=16px] 在每次测试中,通过双通道真空压力控制器,并结合相应的压力传感器和真空度传感器,自动调节腔室入口处的调压器使上腔室恒定在设定压力,自动调节下腔室出口处的电动针阀使下腔室恒定在设定真空度,由此使得被测隔膜两侧达到所需的测试压差,根据压力、真空度、压差和流速可计算得到薄膜的渗透率。[/size][size=16px][color=#990000][b]2.2 膜辅助相变散热器试验装置[/b][/color][/size][size=16px] 膜辅助相变散热器试验装置的作用是用来研究不同散热器微结构、薄膜特性和真空压力等条件下的散热能力以及对传热系数进行测量,整个装置的结构如图3所示。MHS放置在一个不锈钢耐压腔室内,腔室两侧相对的法兰上安装有光学观察窗。[/size][align=center][size=16px][color=#990000][b][img=膜辅助相变散热器试验装置结构示意图,650,359]https://ng1.17img.cn/bbsfiles/images/2023/09/202309201759137821_6145_3221506_3.jpg!w690x382.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 膜辅助相变散热器试验装置结构示意图[/b][/color][/size][/align][size=16px] MHS结构与图1近似,只是在散热面处布置了薄膜加热器和温度传感器,加热器和温度传感器引线连接到腔室外的温度控制器上以控制散热面温度和热流密度。[/size][size=16px] 真空压力控制原理和结构与图2近似,即往腔室内通入高压气体使腔内压力按照设定值进行控制,MHS内的真空度也同样进行自动控制以使内部液体处于饱和条件(如16kPa绝对压力)。[/size][size=16px] 冷却过程中采用去离子水作为工作液体,液体通过腔室内的压力被压入MHS中,从MHS排出的蒸汽流经帕尔贴TEC蒸汽冷却器成为液体后再流回腔室,由此形成工作液体的循环。此蒸汽冷却器采用了专用的TEC控制器进行温度控制。[/size][size=16px] 在实验过程中,首先对MHS内的真空度进行控制,然后通过加热器向MHS散热面供热,同时将腔室内部的工作压力保持恒定,在此压差恒定条件下测量得到相应的冷却温度和热流密度。如果施加的热流以步进或线性方式逐渐增加,直到观察到温度突然升高,那么该温度点时的热流就是此特定压差下的临界热流极限CHF(critical heat flux limit)。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 膜辅助相变散热器(MHS)作为一种新型高效冷却技术正逐渐成为研究热点,本文提出的解决方案为MHS的研究提供了宽范围真空压力和控温精密控制的可能性,为MHS的深入研究和冷却性能考核评价提供了有效的技术支撑。[/size][align=center][b][color=#990000][/color][/b][/align][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 真菌毒素检测仪如何校准

    真菌毒素检测仪如何校准

    [size=16px]  真菌毒素检测仪如何校准  真菌毒素检测仪的校准方法包括以下步骤:  以乙腈中黄曲霉毒素M1溶液标准物质的稀释液为平行样,以真菌毒素快速检测仪测试其荧光值,得到拟合曲线,然后根据测量值计算相关系数。  计算测量重复性。  计算最小检出浓度。  遵循以上步骤,可以有效校准真菌毒素检测仪,确保测量结果的准确性和稳定性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/01/202401180952522156_752_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 纺织检测仪器的概述、发展以及检测过程中耗材

    纺织检测仪器的概述、发展以及检测过程中耗材 全球纺织采购供应链色彩解决方案商——XXX,近几年来,越来越多的顶尖零售商和服装品牌厂家选择XXX作为自己的首选或共选色彩技术提供商。产品涉及行业:塑料、 涂料、 纺织、 汽车、 化妆品、 数码影像、 印前 、印刷、 油墨、 色觉测试、 包装等。 目录1 概述发展1 外观质量检测仪器乌斯特(Uster)条干均匀度仪1 印染织物染色牢度仪1 织物风格检测仪器织物折皱回复角检测仪1 织物表面均一性检测仪1 工艺性质检测仪器纤维长度仪1 纤维细度仪1 静电仪1 摩擦系数测定仪1 卷曲性测定仪1 纱线毛羽仪1 纱线拈度仪1 回潮率检测仪织物面料检测仪器印染色牢度纺织仪器通用纺织检测仪器纺织模拟环境检测仪器 纺织检测耗材展开概述  纺织检测仪器是纺织生产发展的手段,由简单检测工具逐渐发展成为手动的机械式检测仪器,进而发展成为机电结合的现代化测试仪器。 发展   纺织检测仪中国在春秋战国时期除用人的感官评定丝织物质量外,还用五色雉的羽毛作为评定织品染色的色泽标准。从周代起开始用尺测量织物的长度和宽度,并制订出公定标准。随着纺织技术的发展,要求有专门的仪器对产品进行检验,保证产品质量稳定。20世纪以来,纺织企业采用手动机械式仪器检测半制品和成品,一方面检验质量,另一方面成为控制纺织工艺生产正常化和标准化的工具。化学纤维出现以后,要求有更多的检测项目和仪器来反映产品的质量和特性。随着近代电子技术和计算机技术的迅速发展,现代纺织仪器有的采用直接数字显示,有的附有微处理计算系统,直接打印出检测结果的平均数和离散性指标,提高了试验效率,减少了人为误差。纺织检测仪器的种类很多,有机械性质检测仪器、外观质量检测仪器、织物风格检测仪器、物理性质检测仪器和工艺性质检测仪器等类。 外观质量检测仪器  用以检测纱条和印染织物的外观质量。外观质量通常指纱条条干、纱疵、印染织物的布面染色牢度等。检验纱条的条干均匀度和纱疵的方法有目光评比法、称重法和仪器法三种。目光评比法只需要简单的摇黑板仪。称重法使用半自动电子支数天平,能快速称出定长绞纱的支数,并打印出平均支数和支数不匀率。仪器法主要使用乌斯特条干均匀度仪。 乌斯特(Uster)条干均匀度仪  用以测定棉条、粗纱和细纱的条干均匀度(图4 )。仪器是根据纱条通过电容极板间时电容量随纱条线密度变化而改变的原理设计的。这种仪器是40年代瑞士乌斯特公司研制成功的,后来逐步发展出各种型号。其中B型适用于棉、毛、人造棉和麻纱等短纤维纱条,C型适用于化学纤维长丝和合成纤维纱条。早期的仪器能自动记录不匀率曲线,并能积分出纱条的平均差系数。70年代问世的仪器,检测效率较高,并能自动校正零点。80年代的仪器能自动调换管纱,自动调节平均值和自动打印出均方差系数或平均差系数。这种仪器还配有波谱仪,可画出纱条不匀波谱图,借以分析纱条不匀性质和不匀产生的原因;棉结、杂质仪可测定一定长度纱条内按规定大小决定的棉、毛纱线的棉结、杂质数。 印染织物染色牢度仪  用以检测印染织物经日晒、摩擦等作用后褪色的程度。大多是模仿印染织物实际使用情况设计的,有日晒牢度仪、皂洗牢度仪、摩擦牢度仪、升华牢度仪等。染色牢度试验方法随仪器种类而不同。 织物风格检测仪器  检测织物某些物理机械性质来综合评定织物风格的仪器。织物风格广义上指织物在人的触觉和视觉官能上的反应;狭义仅指触觉而言,即通常所称的手感。织物风格也分价值风格和特性风格,价值风格是指服装的美学性和舒适性;特性风格又可分为单因素特性风格(如光滑、丰满、挺括等)和复因素特性风格(如毛型感、丝性感、麻型感等)。织物风格历来都靠手感和目测评定,这种方法现在仍占主要地位。1930年出现用悬臂梁法测定织物试样的弯曲长度和弯曲刚度,以此来表示织物的手感性质。到50年代,美国学者提出用圆形试样通过环圈时的最大牵引力来表示织物手感,从而出现了早期的手感检测仪。这种仪器在试验中试样同时受到弯曲、压缩和表面摩擦的作用,所以测定结果带有综合性质。70年代初日本学者川端季雄提出用织物的纯弯曲性、表面特性(摩擦系数和粗糙度)、拉伸性(包括剪切)、压缩性等综合反映织物风格,并由检测这些性质的仪器组成KES-F系列织物风格仪。用这一系列四种仪器测得16个指标,按织物的不同用途评定挺(刮)、滑(爽)、丰(满)等基本风格值,再输入计算机求出综合风格值。中国已研制出织物风格仪和相应的检测方法,仪器结构简单,性能良好。 织物在实际使用过程中经常受到各种不同外力作用,因而产生折皱、表面疵点和尺寸变化等,这些都同服装形态保持性和表面均一性有密切的关系,属于织物风格范围。检测这些性质的仪器有折皱回复角测定仪、表面均一性测定仪、缩水率测定仪等。 织物折皱回复角检测仪  把织物试样对折施以接近人体重量的压力(150~300克/厘米2),使试样形成折痕,待作用一定时间后去压,使折痕回复。回复角越大,织物抗皱性越好。中国已使用半自动织物折皱弹性测定仪。 织物表面均一性检测仪  织物在服用中常起毛起球和勾丝,这种现象会明显地破坏织物表面的均一性,从而影响织物的表观质量。织物起毛起球仪大致分先起毛后起球和同时起毛起球两种。毛刷式起球仪是先用毛刷摩擦试样起毛,然后再用同种织物或其它标准磨料在软性状态下起球。滚筒式翻滚仪和方箱式翻滚仪是将试样放在箱(或滚筒)中不断加以翻滚并与磨料作用,起毛起球在仪器内一步完成。织物勾丝试验各国较多采用钉锤式勾丝仪,中国除钉锤式外,还有针滚式勾丝仪。 XXX主营产品:标准光源对色灯箱、英国-美国标准光源箱、汽车检测光源、爱色丽X-Rite色差仪、镜头摄像头测试用标准光源、印刷行业用标准光源、电脑测色仪、分光密度仪、色卡、分辨率卡、色温照度计等光学仪器。

  • 【转帖】建筑节能检测标准及建筑节能检测设备

    随着时代的发展,许多建筑都开始推广建筑节能,那么这些工程需要满足哪些国家要求的建筑节能标准呢?[font=Times New Roman ][/font][font=Times New Roman ]1[/font][font=宋体 ]、墙体节能工程[/font][font=宋体 ]主要验收内容:[/font][font=宋体 ]主体结构基层;保温材料;饰面层灯[/font][font=宋体 ]主控项目:[/font][font=Times New Roman ]4.2.2 [/font][font=宋体 ]墙体节能工程使用的保温隔热材料,其导热系数、密度、抗压强度或压缩强度、燃烧性能应负荷设计要求[/font][font=Times New Roman ]4.2.7 [/font][font=宋体 ]墙体节能工程的施工,应符合下列规定:[/font][font=宋体 ]([/font][font=Times New Roman ]2[/font][font=宋体 ])保温材料昱基层及各构造层之间的粘贴或连接必须牢固。粘贴强度和连接方式应符合设计要求。保温板材与基层的粘贴强度应做现场拉拔试验。[/font][font=宋体 ]([/font][font=Times New Roman ]4[/font][font=宋体 ])当墙体节能工程的保温层采用欲埋或后置锚固件数量、位置、锚固深度和拉拔力应符合设计要求。后置锚固件应进行锚固件应进行锚固力现场拉拔试验。[/font][font=Times New Roman ][/font][font=Times New Roman ]2[/font][font=宋体 ]、幕墙节能工程[/font][font=宋体 ]主要验收内容:[/font][font=宋体 ]主体结构基层;隔热材料;保温材料;隔汽层;幕墙玻璃;单元式幕墙板块;通风换气系统;遮阳设施;冷凝水收集排放系统等[/font][font=宋体 ]主控项目:[/font][font=Times New Roman ]5.2.2 [/font][font=宋体 ]幕墙节能工程使用的保温隔热材料,其导热系数、密度、燃烧性能应符合设计要求。幕墙玻璃的传热系数、遮阳系数、可见光透射比、中空玻璃露点应符合设计要求。[/font][font=Times New Roman ][/font][font=Times New Roman ]3[/font][font=宋体 ]、门窗节能工程[/font][font=宋体 ]主要验收内容:[/font][font=宋体 ]门;窗;玻璃;遮阳设施等[/font][font=宋体 ]主控项目:[/font][font=Times New Roman ]6.2.2 [/font][font=宋体 ]建筑外窗的气密性、保温性能、中空玻璃露点、玻璃遮阳系数和可见光投射比应符合设计要求。[/font][font=Times New Roman ][/font][font=Times New Roman ]4[/font][font=宋体 ]、屋面节能工程[/font][font=宋体 ]主要验收内容:[/font][font=宋体 ]基层;保温隔热层;保护层;防水层;面层等[/font][font=宋体 ]主控项目:[/font][font=Times New Roman ]7.2.2 [/font][font=宋体 ]屋面节能工程使用的保温隔热材料,其导热系数、密度、抗压强度或压缩强度、燃烧性能应符合设计要求。[/font][font=Times New Roman ][/font][font=Times New Roman ]5[/font][font=宋体 ]、地面节能工程[/font][font=宋体 ]主要验收内容:[/font][font=宋体 ]基层;保温层;保护层;面层等[/font][font=宋体 ]主控项目:[/font][font=Times New Roman ]8.2.2 [/font][font=宋体 ]地面节能工程使用的保温材料,其导热系数、密度、抗压强度或压缩强度、燃烧性能应符合设计要求。[/font][color=#ffa500]相对应设备推荐[/color][font=Times New Roman ]1[/font][font=宋体 ]、墙体节能工程[/font][font=宋体 ]①、平板导热仪[/font][font=宋体 ]②、建筑热工多路温度热流检测仪[/font][font=宋体 ]③、建筑保温板材阻燃性检测设备[/font][font=宋体 ]④、建筑饰面砖粘贴强度及锚固件拉拔检测仪[/font][font=宋体 ]⑤、保温材料压缩性及拉伸性测试仪[/font][font=Times New Roman ][/font][font=Times New Roman ]2[/font][font=宋体 ]、幕墙节能工程[/font][font=宋体 ]①、平板导热仪[/font][font=宋体 ]②、建筑保温板材阻燃性检测设备[/font][font=宋体 ]③、建筑玻璃可见光透射比、遮阳系数检定系统[/font][font=宋体 ]④、中空玻璃露点仪[/font][font=Times New Roman ][/font][font=Times New Roman ]3[/font][font=宋体 ]、门窗节能工程[/font][font=宋体 ]①、建筑门窗气密性能现场检测设备[/font][font=宋体 ]②、建筑门窗保温性能检测设备[/font][font=宋体 ]③、中空玻璃露点仪[/font][font=宋体 ]④、建筑玻璃可见光透射比、遮阳系数检定系统[/font][font=Times New Roman ][/font][font=Times New Roman ]4[/font][font=宋体 ]、屋面节能工程[/font][font=宋体 ]①、平板导热仪[/font][font=宋体 ]②、保温材料压缩性能测试仪[/font][font=宋体 ]③、建筑保温板材阻燃性检测设备[/font][font=Times New Roman ][/font][font=Times New Roman ]5[/font][font=宋体 ]、地面节能工程[/font][font=宋体 ]①、平板导热仪[/font][font=宋体 ]②、保温材料压缩性及拉伸性测试仪[/font][font=宋体 ]③、建筑保温板材阻燃性检测设备[/font][font=Times New Roman ][/font]

  • 【原创】JGJ/T 132-2009居住建筑节能检测标准(扫描清晰版本)

    【原创】JGJ/T 132-2009居住建筑节能检测标准(扫描清晰版本)

    [img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008301929_239931_1625938_3.jpg[/img][color=#333333][color=#000000][b]居住建筑节能检测标准(JGJ/T 132-2009)[/b][/color]本标准适用于新建、扩建、改建居住建筑的节能检测。2010-07-01实施。1 总则2 术语和符号 3 基本规定4 室内平均温度5 外围护结构热工缺陷6 外围护结构热桥部位传热系数7 围护结构主体部位传热系数8 外窗窗口气密性能9 外围护结构隔热性能10 外窗外遮阳设施11 室外管网水力平衡度12 补水率13 室外管网热损失率14 锅炉运行效率15 耗电输热比附录[/color]关 键 词:[url=http://www.instrument.com.cn/bbs/s_g_%BC%EC%B2%E2%B1%EA%D7%BC.htm][u][color=#0365bf]检测标准[/color][/u][/url] [url=http://www.instrument.com.cn/bbs/s_g_%C9%A8%C3%E8.htm][u][color=#0365bf]扫描[/color][/u][/url] [url=http://www.instrument.com.cn/bbs/s_g_%B0%E6%B1%BE.htm][u][color=#0365bf]版本[/color][/u][/url] [url=http://www.instrument.com.cn/bbs/s_g_JGJ.htm][u][color=#0365bf]JGJ[/color][/u][/url] [url=http://www.instrument.com.cn/bbs/s_g_%C7%E5%CE%FA.htm][u][color=#0365bf]清晰[/color][/u][/url] [size=6][b]附件:[/b][/size][list][*][img=absMiddle]http://simg.instrument.com.cn/bbs/090922/images/pdf.gif[/img] [url=http://bbs.instrument.com.cn/download.asp?ID=239929]JGJ 132-2009居住建筑节能检测标准.pdf[/url][/list]

  • 食品安全检测仪有哪些特点

    食品安全检测仪有哪些特点

    [size=16px]  食品安全检测仪有哪些特点  食品安全检测仪具有以下特点:  配备多通道光学系统,支持同时启动和单通道分别启动两种检测模式。当测试多个样本时,用户可根据操作熟练程度选择合适的检测模式,最大限度地消除通道间变异系数引起的检测误差。  采用新型一体化仪器结构设计,抗干扰、抗振动,检测精度高,仪器寿命长。  采用超大彩色液晶触摸屏中文显示,人性化操作界面,阅读准确直观。  具备USB接口设计,方便数据存储和移动,可随时直接与电脑连接,实现数据查询、浏览、分析、统计、打印和发布信息。  具有自动化程度高的特点,能够自动诊断系统故障。  食品安全检测仪在食品安全检测的初筛中起着重要作用,是保障人们食品安全的重要设备。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311161131071726_4322_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 真菌毒素快速检测仪可以检测粮食毒素吗

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]真菌毒素快速检测仪可以检测粮食毒素吗[/color][/font]真菌毒素快速检测仪可以检测粮食毒素。该仪器能够检测粮食谷物(如大米、玉米、小麦、大麦、高粱等)及其制品中常见的真菌毒素,如黄曲霉毒素B1、玉米赤霉烯酮、赭曲霉呕吐毒素、伏马毒素、T-2毒素等。真菌毒素检测仪的原理主要是通过检测样品中真菌毒素对特定酶的抑制作用,来确定样品中真菌毒素的含量。常见的检测方法包括免疫测定和色谱分析。免疫测定利用特定真菌毒素与抗体之间的特异性结合反应,通过测量免疫复合物的信号强度来确定真菌毒素的存在和浓度。色谱分析则通过将样品中的真菌毒素分离并进行定量分析。这些检测仪器通常具有多种优点,如操作简单、检测速度快、准确性高等,从而提升了粮食的安全系数,减少了对人和动物的危害。因此,真菌毒素快速检测仪在粮食毒素检测中发挥着重要作用,有助于保障食品安全和公众健康。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403221033134274_5719_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【转帖】国产包装检测仪打入国际市场

    经过近两年的不懈努力,济南兰光机电技术发展有限公司全线包装检测产品踏出国门,不仅开创了国内包装检测设备进军国际市场的先河,而且弥补了我国机电产品出口在该领域的空白。近年来,中国机电产品出口增长迅猛,连续多年稳居全国出口产品榜首,但出口产品技术含量低、附加值低的问题也使中国产品在出口过程中频频遭遇市场准入限制。济南兰光研制生产的包装检测仪器具有较高的技术含量,尤其是在代表包装检测高端技术的阻隔性检测方面,兰光取得了骄人的成绩,近年来推向市场的透气仪、透湿仪等产品均具备国际先进水平,并取得了自主知识产权。2003年开始,兰光检测仪器进军国际市场,仅仅两年的时间,就以完备的性能、可靠的质量赢得国际市场的广泛赞誉,销售网络迅速遍及欧盟、东欧、东南亚等市场。兰光从电子智能拉力机、摩擦系数仪到气体渗透仪等产品全线迈出国门,填补了我国机电产品出口在包装检测仪器领域的空白,同时也代表了中国机电产品生产企业日益重视研发投入,不断提高企业核心竞争力和创新能力的发展趋势。

  • 气体检测仪表的分类

    安徽天康集团从1998年就开始对气体检测仪表进行生产与研发,公司经过10几年的发展,氧化锆氧分析仪已经逐渐的成为成熟产品,具有性能稳定、价格合理、安装方便、测量准确等特点。安徽天康集团氧化锆氧分析仪是一种分体式智能气体监测仪,用于锅炉烟道气或其他燃烧系统烟道气中的含氧测量。但是要求被测气体中不能有甲烷等可燃性气体和酸雾。应用举例:锅炉是一种常用的工业设备,主要给后续装置提供蒸汽负荷。为了保证蒸汽压力稳定,需要对锅炉的燃烧系统进行控制,从节能角度考虑,希望燃烧充分,也就是实现经济燃烧。为了实现经济燃烧,当燃料量改变时,必须相应的改变送风量,使送风量与燃料量相适应。燃料量与送风量燃烧过程的经济与否可以通过剩余空气系数是否来衡量,过剩空气系数通常用烟气的含氧量来间接表示。现有300MW燃煤汽轮发电机由1台燃煤锅炉和1台汽轮机组成,若要检测锅炉烟气的含氧量,应采用哪种分析仪?答:对于氧含量的检测可以用热磁式氧量分析仪和氧化锆氧量分析仪。热磁式氧量分析仪反应速度慢、测量误差大、容易发生测量环室堵塞和热敏元件腐蚀严重特点,所以它应用日渐减少,逐渐被取代。现在多采用氧化锆氧量分析仪,所以这里采用氧化锆氧量分析仪。

  • uv法在线检测仪还能在市场上存活多久

    [url=http://zwxl2009.taobao.com/][b][color=#000000][size=4]仪器的基本测量原理[/size][/color][/b][/url][size=4]基于污水中的有机物对紫外线的吸收。工作过程是在流动的样品池中充满要测量的污水,发光光源发出强烈的紫外光通过样品池到达半透反射镜将光束一分为二,一路光(工作光束)直射到光电元件,另一路光(参比光束)照到另一光电元件,工作光束和参比光束的工作波长不同,污水对其光学能量的吸收也不同,在线测量的CODuv值与CODCr值是有差别的,CODuv值只是反映了污水样品中综合污染物对紫外光产生特征吸收的测量值,这个CODuv值必须溯源成CODCr值,才能评价水样被还原性污染物污染的程度。因此,要实现对污水处理厂出水排放口的还原性污染物的污染状况在线监控,就必须将综合性污染物对紫外特征吸收所产生的信号转换成反映CODCr值信号,真正实现对污水排放口所排污水COD受污状况的在线监控。2、应用效果分析从上述六个技术指标的测试结果看,UV法在线COD监测仪监测数据的精密度指标相对标准偏差为0.81%,而根据《水和废水监测分析方法》第四版水质监测实验室质量控制指标[3]中国标重铬酸钾法在250mg/L左右的浓度范围精密度只要求小于10%,虽然方法差异决定了UV法测量精密度大大高于重铬酸钾法,但足可以说明UV法在线COD监测仪的应用能够满足高要求的测量精度。UV法在线COD监测仪在零点和量程漂移上的表现也是比较出色。零点漂移绝对值1.58mg/L,这对于国标重铬酸钾法检出限为5 mg/L的指标优异了2倍多,同样在1000 mg/L浓度测量的量程漂移,也只有1.99%,这也明显优于国标重铬酸钾法在同样浓度范围测量准确度±5%的室内相对误差要求。对UV法在线COD监测仪与国标重铬酸钾法在方法比对上的数据进行分析会发现,对同一个样品检测两次的相对误差,UV法在线COD监测仪都要比国标重铬酸钾法优异一些。由于UV法在线COD监测仪测量示值本身就是用国标重铬酸钾法测量的结果进行校准而来,所以其分析结果相对误差很小,最大相对误差才5.5%。从UV法在线COD监测仪工作原理上看,UV法还具有明显适于应用在线监控的特点。首先UV法的紫外吸收过程在数秒中便可完成,数据处理器具有快速的数据处理速度,加上样品池的冲洗时间,1分钟左右便可完成一个测量过程,这是其它COD测量方法不可比拟的优点;其次UV法双波长测量对水样具有的干扰可以进行补偿测量并在结果中进行扣除,基本上不需要对水样进行预处理;监测过程不用标准物质校准,定期运用国标重铬酸钾法测量的待测样品调校转换系数,实现低费用在线运行。这些鲜明的特点正是在线监控实现的前提条件。3、UV法在线COD监测仪应用的局限性分析虽然UV法在线COD监测仪可以实现快速、准确、经济的在线监控,它的测量工作原理也决定了它致命弱点,使它在应用上受到了很大的限制。一个地区人口、饮食生活习惯具有相对的稳定性,一般的变化不会导致城市生活污水主要污染物基体的改变。而且城市生活污水还具有大水量,水质稳定的鲜明特点。经过生化污水处理工艺处理后水质基体更加稳定,这种稳定的水质条件正是UV法在线COD监测仪的工作要求,从而使它在城市污水处理厂出水COD监控的应用,在各项技术指标上的表现都非常优异。因为UV法在线COD监测仪示值溯源CODCr值的实现是通过待测水样作为标准物质来实现的,也就是说,通过这种待测水样校准的UV法在线COD监测仪只能适宜监控这种待测水样,或者是与这种待测水样基体变化不大的水样,否则的话,通过待测水样调校的转换系数会有差别,水样基体变化越大,其转换系数差别也越大。这是因为不同的水样基体对紫外吸收具有不同的吸收系数,何况COD代表的是多种还原性污染物体现的综合污染指标,不同的水样类型就有不同的还原性污染物类别。工业废水的鲜明特点是,废水排放集中,不仅表现在废水浓度随生产工艺变化而产生较大差异,就是废水中污染物的主要污染物质也会随生产工艺、作业时间的变化而产生较大的变化。通常的工业废水水量相对较少,一旦废水中出现高浓度集中排放时,工业废水的抗浓度冲击能力差,从而容易引起排放水水质变化。这时UV法在线COD监测仪的调校系数已经失效,在线监测仪的示值数据已经不能代表排放水COD的污染状况,从而也会失去在线监控的效用。4 、结论UV法在线COD监测仪在实现对城市污水处理出水快速、准确、经济的在线监控时表现了良好的性能,测试精密度、零点漂移、量程漂移性能指标甚至可以和实验室内COD分析媲美。由于在线监测仪本身示值的定值由国标方法得来,所以在线监测仪和国标方法测试COD的比对结果也呈现出很好的一致性和稳定性,在线得到的数据能够表征污水处理厂出水COD污染物的污染状况。同时分析指出了UV法在线COD监测仪应用的局限性弱点,由于其示值溯源应用待测水样作为标准,使其监控对象也就局限于作为标准的待测水样,承受冲击负荷能力低。基于上述原因,UV法在线COD监测仪将很难承受千变万化的工业污水冲击,使其应用受到明显的限制。需要交流的可以到我小店看看,都是些闲置的配件。有需要的可以联系,价格可以商量[/size]。[url=http://zwxl2009.taobao.com/][b][color=#000000][size=4]http://zwxl2009.taobao.com/[/size][/color][/b][/url]

  • atp荧光检测仪使用误差率高吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  atp荧光检测仪使用误差率高吗,ATP荧光检测仪的使用误差率是否高,需要结合多个因素来评估。以下是对ATP荧光检测仪使用误差率的分析,结合参考文章中的相关数字和信息进行分点表示和归纳:  检测精度:  参考文章1中提到,检测精度为10^-15mol ATP。这意味着该仪器在理论上能够精确到这一水平进行ATP的检测。  然而,实际使用中,由于样本处理、设备状态等多种因素,可能无法达到理论上的最高精度。  误差来源:  参考文章3中提到,样本处理不当、设备问题、检测方法问题和样本本身问题都可能导致检测结果的不准确。  样本处理不当,如污染或保存不当,可能导致ATP含量的误差。  设备问题,如设备故障或操作不当,也可能影响检测结果。  检测方法不正确或操作流程出现错误,同样会导致检测结果不合格。  减少误差的方法:  参考文章4提供了处理ATP荧光检测仪检测信号弱的方法,包括清洁检测仪表面、正确校准设备、更换灵敏元件、优化样品处理步骤等。  这些方法有助于减少误差,提高检测的灵敏度和准确性。  技术参数与误差率:  参考文章5和6提供了更详细的ATP荧光检测仪技术参数,包括检测范围、重复性、存储功能等。  重复性≤±5%(参考文章5)和变异系数≤7.4%(参考文章6)等指标表明仪器在重复测量时的稳定性。  然而,这些技术参数并不直接反映使用误差率,但可以作为评估仪器性能的依据。  归纳:  ATP荧光检测仪的使用误差率取决于多个因素,包括设备本身的性能、操作人员的技能和经验、样本的性质和处理方法等。  遵循正确的操作方法和维护程序,定期进行设备校准和维护,可以有效减少误差,提高检测结果的准确性和可靠性。  综上所述,ATP荧光检测仪的使用误差率并不是固定不变的,而是受到多种因素的影响。通过合理的操作和维护,可以降低误差率,提高检测结果的准确性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405291107210752_5900_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 【推荐讲座】绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案(2017-07-13 14:00 )

    [b]【网络讲座】:绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案 [/b]【讲座时间】:2017-07-13 14:00【主讲人】:娄晏强,PerkinElmer资深技术经理,在分子光谱应用领域具有丰富的经验。对于红外光谱和紫外分光光度计等分子光谱的仪器原理,应用十分熟悉。对于材料表征应用方案具有数十年经验。【会议简介】[color=#333333] 根据2007年发布和实施《建筑节能工程施工质量验收规范》,建筑用幕墙玻璃、门窗玻璃的可见光透射比、遮阳系数、传热系数等光学热学参数列为主控项目。目前以上各参数主要是根据国标GB/T 2680-94、JGJ151-2008或国际标准ISO9050-2003等标准规定的测试条件和计算公式,进行相关的测试和计算。 紧跟以上标准的制定和实施,Perkinelmer公司先后为中国国家建筑材料科学研究院(建设部建筑门窗节能性能标识实验室)、广东省建筑科学研究院、上海建筑科学研究院、深圳市建筑监督检验站、广州市建筑科学研究院、南玻集团、福耀集团等200多家单位提供了从测试硬件到计算软件的一整套测试解决方案,满足准确全面高效的测试要求。 本次主要介绍建筑节能检测领域的法规变化,典型性样品的测试方法和实验的主意事项等[/color]。[b]-------------------------------------------------------------------------------[/b][align=left]1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会:[url=http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666[/url][/align][align=center] [/align]4、报名及参会咨询:QQ群—290101720,扫码入群“材料”[img=,500,280]http://ng1.17img.cn/bbsfiles/images/2017/10/2016051010165495_01_2507958_3.gif[/img]

  • 【推荐讲座】绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案(2017-07-13 14:00 )

    [b]【网络讲座】:绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案 [/b]【讲座时间】:2017-07-13 14:00【主讲人】:娄晏强,PerkinElmer资深技术经理,在分子光谱应用领域具有丰富的经验。对于红外光谱和紫外分光光度计等分子光谱的仪器原理,应用十分熟悉。对于材料表征应用方案具有数十年经验。【会议简介】[color=#333333] 根据2007年发布和实施《建筑节能工程施工质量验收规范》,建筑用幕墙玻璃、门窗玻璃的可见光透射比、遮阳系数、传热系数等光学热学参数列为主控项目。目前以上各参数主要是根据国标GB/T 2680-94、JGJ151-2008或国际标准ISO9050-2003等标准规定的测试条件和计算公式,进行相关的测试和计算。 紧跟以上标准的制定和实施,Perkinelmer公司先后为中国国家建筑材料科学研究院(建设部建筑门窗节能性能标识实验室)、广东省建筑科学研究院、上海建筑科学研究院、深圳市建筑监督检验站、广州市建筑科学研究院、南玻集团、福耀集团等200多家单位提供了从测试硬件到计算软件的一整套测试解决方案,满足准确全面高效的测试要求。 本次主要介绍建筑节能检测领域的法规变化,典型性样品的测试方法和实验的主意事项等[/color]。[b]-------------------------------------------------------------------------------[/b][align=left]1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会:[url=http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666[/url][/align][align=center] [/align]4、报名及参会咨询:QQ群—290101720,扫码入群“材料”[img=,500,280]http://ng1.17img.cn/bbsfiles/images/2017/10/2016051010165495_01_2507958_3.gif[/img]

  • 【推荐讲座】绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案(2017-07-13 14:00 )

    [b]【网络讲座】:绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案 [/b]【讲座时间】:2017-07-13 14:00【主讲人】:娄晏强,PerkinElmer资深技术经理,在分子光谱应用领域具有丰富的经验。对于红外光谱和紫外分光光度计等分子光谱的仪器原理,应用十分熟悉。对于材料表征应用方案具有数十年经验。【会议简介】[color=#333333] 根据2007年发布和实施《建筑节能工程施工质量验收规范》,建筑用幕墙玻璃、门窗玻璃的可见光透射比、遮阳系数、传热系数等光学热学参数列为主控项目。目前以上各参数主要是根据国标GB/T 2680-94、JGJ151-2008或国际标准ISO9050-2003等标准规定的测试条件和计算公式,进行相关的测试和计算。 紧跟以上标准的制定和实施,Perkinelmer公司先后为中国国家建筑材料科学研究院(建设部建筑门窗节能性能标识实验室)、广东省建筑科学研究院、上海建筑科学研究院、深圳市建筑监督检验站、广州市建筑科学研究院、南玻集团、福耀集团等200多家单位提供了从测试硬件到计算软件的一整套测试解决方案,满足准确全面高效的测试要求。 本次主要介绍建筑节能检测领域的法规变化,典型性样品的测试方法和实验的主意事项等[/color]。[b]-------------------------------------------------------------------------------[/b][align=left]1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会:[url=http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666[/url][/align][align=center] [/align]4、报名及参会咨询:QQ群—290101720,扫码入群“材料”[img=,500,280]http://ng1.17img.cn/bbsfiles/images/2017/10/2016051010165495_01_2507958_3.gif[/img]

  • 【推荐讲座】绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案(2017-07-13 14:00 )

    [b]【网络讲座】:绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案 [/b]【讲座时间】:2017-07-13 14:00【主讲人】:娄晏强,PerkinElmer资深技术经理,在分子光谱应用领域具有丰富的经验。对于红外光谱和紫外分光光度计等分子光谱的仪器原理,应用十分熟悉。对于材料表征应用方案具有数十年经验。【会议简介】[color=#333333] 根据2007年发布和实施《建筑节能工程施工质量验收规范》,建筑用幕墙玻璃、门窗玻璃的可见光透射比、遮阳系数、传热系数等光学热学参数列为主控项目。目前以上各参数主要是根据国标GB/T 2680-94、JGJ151-2008或国际标准ISO9050-2003等标准规定的测试条件和计算公式,进行相关的测试和计算。 紧跟以上标准的制定和实施,Perkinelmer公司先后为中国国家建筑材料科学研究院(建设部建筑门窗节能性能标识实验室)、广东省建筑科学研究院、上海建筑科学研究院、深圳市建筑监督检验站、广州市建筑科学研究院、南玻集团、福耀集团等200多家单位提供了从测试硬件到计算软件的一整套测试解决方案,满足准确全面高效的测试要求。 本次主要介绍建筑节能检测领域的法规变化,典型性样品的测试方法和实验的主意事项等[/color]。[b]-------------------------------------------------------------------------------[/b][align=left]1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会:[url=http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666[/url][/align][align=center] [/align]4、报名及参会咨询:QQ群—290101720,扫码入群“材料”[img=,500,280]http://ng1.17img.cn/bbsfiles/images/2017/10/2016051010165495_01_2507958_3.gif[/img]

  • 盟莆安手持式VOC快速检测仪可以测硫化氢氨气吗?

    盟莆安手持式VOC快速检测仪可以测硫化氢氨气吗?

    [font=&][size=18px][color=#333333]请问盟莆安手持式VOC快速检测仪可以用来测 氨气 硫化氢 一氧化碳吗?[/color][/size][/font][size=18px]污水厂打算下池清理,下之前想用VOC检测仪测一下池内的气体。我看了这个设备的气体库是有氨气、硫化氢的,没有一氧化碳。目前的问题是这个CF调不了,我查了这个,大概就是相关系数。标定气体为Isobutylene 不知道我的理解对不对,谢谢各位老师[img=CF 12.7,690,1097]https://ng1.17img.cn/bbsfiles/images/2021/05/202105311745164899_878_5240584_3.png!w690x1097.jpg[/img][/size]

  • 【推荐讲座】绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案(2017-07-13 14:00 )

    [b]【网络讲座】:绿色建筑节能检测方案探讨--与国内国际标准接轨的建筑节能测试方案 [/b]【讲座时间】:2017-07-13 14:00【主讲人】:娄晏强,PerkinElmer资深技术经理,在分子光谱应用领域具有丰富的经验。对于红外光谱和紫外分光光度计等分子光谱的仪器原理,应用十分熟悉。对于材料表征应用方案具有数十年经验。【会议简介】[color=#333333] 根据2007年发布和实施《建筑节能工程施工质量验收规范》,建筑用幕墙玻璃、门窗玻璃的可见光透射比、遮阳系数、传热系数等光学热学参数列为主控项目。目前以上各参数主要是根据国标GB/T 2680-94、JGJ151-2008或国际标准ISO9050-2003等标准规定的测试条件和计算公式,进行相关的测试和计算。 紧跟以上标准的制定和实施,Perkinelmer公司先后为中国国家建筑材料科学研究院(建设部建筑门窗节能性能标识实验室)、广东省建筑科学研究院、上海建筑科学研究院、深圳市建筑监督检验站、广州市建筑科学研究院、南玻集团、福耀集团等200多家单位提供了从测试硬件到计算软件的一整套测试解决方案,满足准确全面高效的测试要求。 本次主要介绍建筑节能检测领域的法规变化,典型性样品的测试方法和实验的主意事项等[/color]。[b]-------------------------------------------------------------------------------[/b][align=left]1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名参会:[url=http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666]http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2666[/url][/align][align=center] [/align]4、报名及参会咨询:QQ群—290101720,扫码入群“材料”[img=,500,280]http://ng1.17img.cn/bbsfiles/images/2017/10/2016051010165495_01_2507958_3.gif[/img]

  • 【分享】有毒有害气体检测仪在工业中的应用

    在现实情况中,安全和卫生方面的遇到的气体很多都是有机无机气体的混合物。只是由于各种原因,目前我们对于有毒有害气体的认识还更多地集中于可燃气体、可以引起急性中毒的气体(硫化氢、氰氢酸等)、以及某些常见的有毒气体(一氧化碳)、氧气等检测仪上,因此,本文将首先着重介绍这类检测仪,并综合目前的情况对各类有毒有害(无机/有机)气体检测仪的应用提出建议。 有毒有害气体检测仪的分类和原理: 气体检测仪的关键部件是气体传感器。 气体传感器从原理上可以分为三大类: A) 利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。 B) 利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。 C) 利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。 根据危害,我们将有毒有害气体分为可燃气体和有毒气体两大类。 由于它们性质和危害不同,其检测手段也有所不同。 可燃气体是石油化工等工业场合遇到最多的危险气体,它主要是烷烃等有机气体和某些无机气体:如一氧化碳等。 可燃气体发生爆炸必须具备一定的条件,那就是:一定浓度的可燃气体,一定量的氧气以及足够热量点燃它们的火源,这就是爆炸三要素(如上左图所示的爆炸三角形),缺一不可,也就是说,缺少其中任何一个条件都不会引起火灾和爆炸。 当可燃气体(蒸汽、粉尘)和氧气混合并达到一定浓度时,遇具有一定温度的火源就会发生爆炸。我们把可燃气体遇火源发生爆炸的浓度称为爆炸浓度极限,简称爆炸极限,一般用%表示。实际上,这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围。 如上右图所示的阴影部分。当可燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸。不同的可燃气体的LEL和UEL都各不相同(参见第八期的介绍),这一点在标定仪器时要十分注意。为安全起见,一般我们应当在可燃气体浓度在LEL的10%和20%时发出警报,这里,10%LEL称。作警告警报,而20%LEL称作危险警报。这也就是我们将可燃气体检测仪又称作LEL检测仪的原因。 需要说明的是,LEL检测仪上显示的100%不是可燃气体的浓度达到气体体积的100%,而是达到了LEL的100%,即相当于可燃气体的最低爆炸下限,如果是甲烷,100%LEL=4%体积浓度(VOL).在工作中,以LEL方式测量这些气体的检测仪是我们常见的催化燃烧式检测仪。它的原理是一个双路电桥(一般称作惠斯通电桥)检测单元。在这其中的一个铂金丝电桥上涂有催化燃烧物质,不论何种易燃气体,只要它能够被电极引燃,铂金丝电桥的电阻就会由于温度变化发生改变,这种电阻变化同可燃气体的浓度成一定比例,通过仪器的电路系统和微处理机可以计算出可燃气体的浓度。 直接测量可燃气体的体积浓度的热导式VOL检测器也可以在市场上得到,同时,也已经有了LEL/VOL合二为一的检测器。VOL可燃检测器特别适合于在缺氧(氧气不足)的环境中测量可燃气体的体积(VOL)浓度。 有毒气体既可以存在于生产原料中,如大多数的有机化学物质(VOC),也可能存在于生产过程的各个环节的副产品中,如氨、一氧化碳、硫化氢等等。它们是对工作人员造成危害最大的危险因素。这种危害不仅包括立即的伤害,如身体不适、发病、死亡等等,而且包括对于人体长期的危害,如致残、癌变等等。对于这些有毒有害气体的检测是我们发展中国家应当开始引起充分重视的问题。 表 常见有毒有害气体的TWA(8小时统计权重平均值)、STEL(15分钟短期暴露水平)、IDLH(立即致死量)(ppm)和MAC(车间最大允许浓度)mg/m3。 有毒气体 TWA STEL IDLH MAC 氨气 (NH3) 25 35 500 30 一氧化碳(CO) 25 -- 1500 30 氯气 (Cl2) 0.5 1 30 1 氰化氢 (HCN) 10 4.7 50 0.3 硫化氢(H2S) 10 15 300 10 一氧化氮 (NO) 25 -- 100 -- 二氧化硫(SO2) 2 5 100 15 VOC* 50 100 -- -- 随气体种类不同,其TWA、STEL、IDLH、MAC等值会有一定的不同 目前,对于特定的有毒气体的检测,我们使用最多的是专用气体传感器。它可以包括上面。所列的所有气体传感器,也包括前两章所介绍的光离子化检测仪。其中,检测无机气体最为普遍、技术相对成熟、综合指标最好的方法是定电位电解式方法,也就是我们常说的电化学传感器。 电化学传感器的构成是:将两个反应电极--工作电极和对电极以及一个参比电极放置在特定电解液中(如上图如示),然后在反应电极之间加上足够的电压,使透过涂有重金属催化剂薄膜的待测气体进行氧化还原反应,再通过仪器中的电路系统测量气体电解时产生的电流,然后由其中的微处理器计算出气体的浓度。 目前,可以检测到特定气体的电化学传感器包括:一氧化碳、硫化氢、二氧化硫、一氧化氮、二氧化氮、氨气、氯气、氰氢酸、环氧乙烷、氯化氢等等。 检测VOC检测 器可以使用前章介绍的光离子化检测器。氧气也是在工业环境中,尤其是密闭环境中需要十分注意因素。一般我们将氧气含量超过23.5%称为氧气过量(富氧),此时很容易发生爆炸的危险;而氧气含量低于19.5%为氧气不足(缺氧),此时很容易发生工人窒息、昏迷以至死亡的危险。正常的氧气含量应当在20.9%左右。氧气检测仪也是电化学传感器的一种。 目前在选择有毒有害气体检测仪时的问题: 在我国,由于历史和认识上的原因,我们在选用各类检测仪时存在的问题还比较多,具体体现在: 1) 对可燃气体的检测重于对有毒气体的检测。 2) 对可能引起急性中毒气体的检测重于对可能引起慢性中毒的气体的检测。 由于众多可燃气体泄漏所引起的爆炸事故的血的教训,使人们对于可燃气体检测十分重视,可以讲,任何一个石化、化工厂,绝大多数的危险气体检测仪都是LEL检测仪。但仅配备LEL检测仪对于真正保护工人的安全和健康还是远远不够的。 不可否认的是,大多数的挥发性危险气体都是可燃气体,但是,催化燃烧式的可燃气体检测仪(LEL)并不是对所有的可燃气体检测都是最佳选择。它是专门为检测甲烷设计的,而对其它物质的检测性能比较差。所以,它们可以检测出的除甲烷以外的可燃气体的下限浓度要远远高于它们的允许浓度。 比如:对于苯、氨气等危险有毒气体,单纯使用可燃气体检测仪就是一个十分危险的做法。比如,苯的爆炸下限是1.2%,它在LEL检测仪上的校正系数是2.51,也就是说,苯在一个用甲烷标定的LEL检测仪上的显示的浓度只是其实际浓度的40%!!这样,用LEL可以检测到的苯的最低警报浓度是10%LEL=10%*1.2%*2.51=3.0*10-3,这个浓度同苯的允许浓度5*10-6相比要高近600倍!!。同样,氨在LEL检测仪上得到的警报浓度1.5*10-2也要比其允许浓度2.5*10-5高大约600倍。因此根据所检测气体的不同,选择特定有毒气体检测仪要比单纯选择LEL检测仪更加安全可靠得多。 另外,目前我们对于可以引起急性中毒的气体,比如硫化氢、氰氢酸等的检测较为重视,但对于可以引起慢性中毒的气体,比如芳香烃、醇类等的检测重视不够,其实后者对于工人健康和安全的危害丝毫不逊于可以引起急性中毒的气体!它们可能引起癌变和其它的隐形病症,影响工人的寿命和健康。这种现象的出现,除了认识上的原因以外,以前市场上缺乏合适的、可以检测较低浓度的有机气体检测仪也是一个重要的原因。 随着科学技术水平的发展和人们健康认识的提高,人们已经不满足于仅仅"高高兴兴上班来,平平安安回家去",而是追求着更高的生活质量和生活条件。人们不仅关心着今日的工作,更关心着明天----退休以后的生活。 因此在工业卫生和工业安全工作中要不断地引入新观念、新思路才能不仅要避免眼前的危险发生,而更要注意避免日后悲剧的发生,所有这些,都需要通过法规制定和人们素质的提高得到不断地改善和提高。我们将在下节内容中探讨如何选择和维护各类有毒有害气体传感器。

  • 食品安全检测仪有哪些特点或应用领域

    食品安全检测仪是一种广泛应用于食品质量监测和安全控制的重要工具。其主要特点和应用领域如下:  一、特点:  多通道检测:配备多通道光学系统,支持同时启动和单通道分别启动两种检测模式,适用于不同检测需求,能最大限度地消除通道间变异系数引起的检测误差。  高灵敏度和准确性:采用先进的传感器和检测技术,能够检测到非常低浓度的有害物质和污染物,确保食品的安全性。  快速性:能够在短时间内完成食品样品的检测,相比传统实验室方法,大幅缩短了检测周期,提高了工作效率。  智能化和自动化:一些高端的食品安全检测仪搭载智能操作系统,具备自动校准时间、恒流稳压、光强自动调节校准等功能,操作界面友好,易于使用。同时,能够自动诊断系统故障,提高了操作的便捷性和结果的可靠性。  抗干扰、抗振动:采用新型一体化仪器结构设计,仪器寿命长,能够在各种环境中稳定工作。  人性化操作:具备超大彩色液晶触摸屏中文显示,阅读准确直观,使操作更加简便。  二、应用领域:  食品生产环节:用于原料、半成品、成品的检测,以确保产品质量和安全。  食品流通环节:在超市、餐馆、食堂等场所进行食品检测,确保上市食品的安全性。  实验室研究:作为研究食品中的各种成分和污染物的重要工具。  食品进口和出口检验:检测进口和出口食品的合规性,确保食品符合目的国的安全标准。  餐饮业和食品销售:用于监测原材料和成品食品的质量和安全性,保障消费者的健康。  政府和监管机构:用于监测市场上的食品质量和安全情况,发现不合格食品,采取必要的措施,保障公众的健康和安全。  综上所述,食品安全检测仪因其诸多特点和广泛的应用领域,在食品安全保障工作中发挥着不可或缺的作用。随着技术的不断进步,食品安全检测仪的性能和功能也在不断提升,为食品安全监管和科研工作提供了更加准确、快速和便捷的检测手段。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404251146041306_137_4214615_3.jpg!w690x690.jpg[/img]

  • 农残检测仪的种类有哪些

    农残检测仪的种类繁多,根据其检测的物质种类、检测方法以及应用场景的不同,可以分为多种类型。  首先,根据检测的物质种类,农残检测仪可以分为有机磷农残检测仪、有机氯农残检测仪、氨基甲酸酯农残检测仪、拟除虫菊酯类农残检测仪、除草剂农残检测仪以及农药多残留检测仪等。这些检测仪能够针对不同类型的农药残留进行精准检测。  其次,根据检测方法,农残检测仪又可以分为色谱法检测仪和光谱法检测仪。色谱法检测仪采用色谱技术进行检测,能够对复杂混合物中各组分进行定性和定量分析 而光谱法检测仪则是利用光谱技术对物质进行定性定量分析。  此外,根据应用场景的不同,农残检测仪还可以分为便携式、在线式和实验室式。便携式农残检测仪适用于现场快速检测,方便携带和操作 在线式农残检测仪则适用于连续在线监测,能够实时提供检测数据 而实验室式农残检测仪则适用于实验室内的精准分析,具备更高的灵敏度和稳定性。  除了以上分类,还有一些特殊类型的农残检测仪,如智能型农药残留检测仪。这种仪器集检测、分析、打印等功能于一体,具备智能化的自检功能、自动判断样品是否合格等功能,使检测结果更加直观。  总的来说,农残检测仪的种类多种多样,选择适合的检测仪需要根据具体的应用场景、检测需求以及预算等因素进行综合考虑。同时,为了确保检测结果的准确性和可靠性,使用者应严格按照仪器的使用说明进行操作,并定期进行维护和校准。[img=,690,427]https://ng1.17img.cn/bbsfiles/images/2024/04/202404261726095862_1834_4214615_3.jpg!w690x427.jpg[/img]

  • 蜂蜜纯度检测仪与牛奶检测仪哪个更实用

    蜂蜜纯度检测仪与牛奶检测仪哪个更实用

    [size=16px]  蜂蜜纯度检测仪与牛奶检测仪哪个更实用  蜂蜜纯度检测仪和牛奶检测仪都是用于食品安全检测的仪器,但它们检测的对象和目的有所不同。  蜂蜜纯度检测仪主要用于检测蜂蜜的成分和品质,例如蔗糖、还原糖(葡萄糖和果糖)、羟甲基糠醛、农药残留、兽药残留、重金属等。它可以快速检测蜂蜜中的多种成分和品质,使用简单,操作方便,适用于蜂蜜生产商、食品加工厂、质量监督部门等场所。  牛奶检测仪则主要用于检测乳制品中的营养成分和有害物质,例如蛋白质、脂肪、糖类、抗生素、农药残留等。它可以快速检测乳制品中的多种成分和品质,适用于乳制品生产商、食品加工厂、质量监督部门等场所。  因此,蜂蜜纯度检测仪和牛奶检测仪各有其用途和优势,具体哪个更实用需要根据使用者的需求和实际情况来选择。如果需要检测蜂蜜的成分和品质,那么蜂蜜纯度检测仪更为实用 如果需要检测乳制品的成分和品质,那么牛奶检测仪更为实用。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311290941210907_5659_6098850_3.jpg!w690x690.jpg[/img][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制