当前位置: 仪器信息网 > 行业主题 > >

纯正弦波逆变器

仪器信息网纯正弦波逆变器专题为您提供2024年最新纯正弦波逆变器价格报价、厂家品牌的相关信息, 包括纯正弦波逆变器参数、型号等,不管是国产,还是进口品牌的纯正弦波逆变器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纯正弦波逆变器相关的耗材配件、试剂标物,还有纯正弦波逆变器相关的最新资讯、资料,以及纯正弦波逆变器相关的解决方案。

纯正弦波逆变器相关的论坛

  • SG3524N构成的逆变器是正弦波还是方波?

    [b][url=http://www.ic37.com/s/SG3524N.html]SG3524N[/url][/b]构成的逆变器是方波 SG3524是开关电源脉宽调制型控制器。[b]SG3524[/b]应用于开关稳压器,变压器耦合的直流变换器,电压倍增器,极性转换器等。[b]SG3524是怎么工作的:[/b]直流电源Vs从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5V基准电压。+5V再送到内部(或外部)电路的其他元器件作为电源。振荡器脚7须外接电容CT,脚6须外接电阻RT。振荡器频率f由外接电阻RT和电容CT决定,f=1.18/RTCT。按照SG3524的工作原理,要得到SPWM波,必须得有一个幅值在1~3.5V,按正弦规律变化的馒头波,将它加到SG35242内部,并与锯齿波比较,就可得到正弦脉宽调制波。SG3524集成电路多种应用电路[b]SG3524[/b]工作电源电压范围8V~35V,采用双列16脚装料封装,引脚功能如下:SG3524集成电路多种应用电路:[img]http://member.ic37.com/uploadfile/mynews/2018-12-11/1df1756c-b4a7-4038-ad5b-8771b4e84d8c.jpg[/img][b]SG3524[/b]集成电路多种应用电路:[img]http://member.ic37.com/uploadfile/mynews/2018-12-11/53a236a2-571f-47fe-b0a6-118d6ffefc3a.jpg[/img]

  • 【分享】在关闭汽车发动机的情况下可以使用车载逆变器吗?

    在关闭汽车发动机的情况下可以使用[b][url=http://www.027bl.com]车载逆变器[/url][/b]吗?在使用250瓦以下小功率电器时,一般的汽车电瓶可在关闭发动机的情况下提供60-120分钟的电力,如果仅使用一台耗电50-60瓦的笔记本电脑,使用时间则要长得多。我们的纯正弦波 [url=javascript:showhide('Product_List.aspx?ID=0404','0404')]车载逆变器[/url] 内设有欠压警示和欠压保护电路,当长时间使用电瓶导致电压下降至一定限度时,欠压保护电路启动,输出电压被切断并报警,以防止发生因为电瓶电压过低而无法启动发动机的事故。因此,用户可以放心地在发动机关闭的状态下使用 [url=javascript:showhide('Product_List.aspx?ID=0404','0404')]车载逆变器[/url] 。

  • 低电压首次通过国网电科院穿越测试的光伏逆变器

    逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器。对于用于并网系统的逆变器,根据有无变压器又可分为变压器型逆变器和无变压器型逆变器。 西门子是全球电子电气工程领域的领先企业,主要业务集中在工业、能源、医疗、基础设施与城市四大业务领域。工业业务领域能够提供全球独一无二的自动化技术、工业控制和驱动技术以及工业软件,能够满足生产企业的所有需求。同时,还能针对客户特有的市场和需求,提供专门的综合定制服务,以使客户获益最大化。 近日,由西门子研发的全新智能型Sinamics S120产品系列集成首次通过该光伏逆变器测试。目前西门子在中国国内采取与系统集成商合作的方式,由西门子提供光伏逆变器的核心元器件,集成商提供整体逆变器的模式推动中国市场的销售。这种商业模式可以大大降低产品价格,并更好地适应中国市场的需求。 根据国家能源局、国家电网公司对光伏电站并网发电的要求,并网发电的光伏逆变器必须具备低电压穿越功能。而国网电科院国家能源太阳能发电研发(实验)中心是在国内唯一具有低电压穿越技术认证资格的机构。因此,光伏逆变器具备低电压穿越能力成为“金太阳认证”后光伏项目招投标的又一道门槛。 两家系统集成商(北京辰源和北京昆兰)均采用了西门子大型传动部的Sinamics S120光伏逆变单元、控制单元及软件作为核心部件。这些核心部件出色的控制技术不仅可以提高系统效率,而且有效地抑制了网侧谐波,让变频器具备完美的低电压穿越能力,从而能够保障系统高效、可靠地并网运行。

  • 传热学第三类正规工况正弦波温度发生器的解决方案

    传热学第三类正规工况正弦波温度发生器的解决方案

    [size=16px][color=#339999]摘要:在传热学第三类边界条件下进行的热物性测试方法中,如Angstrom法、ISO 22007-3温度波法和ISO 22007-6温度调节比较法,会要求边界温度严格按照正弦波形式进行变化,但采用正弦波加热电流方式的现有技术很难实现准确稳定的正弦温度波输出,且给测量带来较大的随机误差。为此本文提出了相应的解决方案,方案的核心是采用具有远程设定点功能的PID控制器,并配套外置正弦波信号发生器或过程校验仪,通过不断改变PID控制器设定值来实现正弦温度波的准确输出。[/color][/size][align=center][size=16px][img=热波法导热系数测试中的正弦波温度控制解决方案,550,386]https://ng1.17img.cn/bbsfiles/images/2023/03/202303140940316764_4110_3221506_3.jpg!w690x485.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在一些导热系数或热扩散系数的热物理性能测试方法中,常会用到第三类正规热工况的边界条件,即边界温度按照相对恒定的平均值以正弦波周期规律变化。在实际应用中,采用这种第三类正规工况的测试方法主要有以下几种:[/size][size=16px] (1)经典的Angstrom法。[/size][size=16px] (2)ISO 22007-3-2008 :塑料 导热系数和热扩散系数的测定 第3部分 温度波分析法。[/size][size=16px] (3)ISO 22007-6-2014:塑料 导热系数和热扩散系数的测定 第6部分 采用温度调制技术的比较法用于低导热系数测量。[/size][size=16px] Angstrom法是一种经典的稳态测试方法,如图1所示,对线状或薄片状样品的一端进行周期性加热和冷却形成温度正弦波形式的温度波,并以一维热流方式进行传递。在达到稳态后通过样品上两个位置的温度波形关系,可根据测量公式得到样品长度或面内方向的热扩散系数。[/size][align=center][size=16px][color=#339999][b][img=Angstrom法原理图,550,410]https://ng1.17img.cn/bbsfiles/images/2023/03/202303140943064205_5246_3221506_3.jpg!w690x515.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 Angstrom法原理图[/b][/color][/size][/align][size=16px] ISO 22007-3温度波分析法也是一种稳态热扩散系数测试方法,如图2所示,在一维热传导模型中,薄样品夹持在两块半无限大厚度的背板之间。当在样品的前表面生成一个正弦温度波时,温度波将沿着样品厚度方向传播,并在样品的背面被检测到。通过所检测的样品前后两表面的温度波形关系,可根据测量公式得到样品厚度方向的热扩散系数。[/size][align=center][size=16px][color=#339999][b][img=ISO 22007-3温度波分析法原理图,550,300]https://ng1.17img.cn/bbsfiles/images/2023/03/202303140949566551_1344_3221506_3.jpg!w690x377.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 ISO 22007-3温度波分析法原理图[/b][/color][/size][/align][size=16px] ISO 22007-6温度调制比较法同样是一种稳态测试方法,如图3所示,其测量原理是采用具有一定厚度且热物性参数已知的探测材料与半无限大的样品材料进行对比测量。同样,也是通过所检测的样品前后两表面的温度或热流波形关系,可根据测量公式得到样品厚度方向的导热系数。[/size][size=16px][/size][align=center][size=14px][img=,400,413]https://ng1.17img.cn/bbsfiles/images/2023/03/202303140953560634_9437_3221506_3.jpg!w664x686.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图3 ISO 22007-6 温度调制比较法原理图[/b][/color][/size][/align][size=16px] 从上述三种不同的测试方法可以看出,其共性都是需要加载正弦波形式的温度变化,并在满足稳态一维热流的条件下进行线材、膜材和板材的热扩散系数和导热系数测试,而此正弦波温度实验条件的实现则是这些方法准确测量的关键技术。[/size][size=16px] 正弦波温度这一实验条件实际上是上述测试方法的重要边界条件,正弦波温度的波形准确性和稳定性决定了这些测试方法的测量精度,如何形成准确和稳定的正弦波温度具有很大的技术难度,还未见得相关的研究报道。目前常用的比较简陋的正弦波温度实现方法有以下两种:[/size][size=16px] (1)采用正弦波形式的加热电流来使得加热温度也具有正弦波形式,但这种纯电流加热形式只能在较高温度下实现,以在高温下利用自然(或强制)冷却降温来形成正弦波温度,由此所形成的温度波形存在很大的畸形和不规则性。[/size][size=16px] (2)采用具有加热和制冷功能的TEC半导体制冷技术进行温度交变控制,虽然输出的温度波形具有很好的一致性和稳定性,但同样存在较大的畸形和不规则性,很难实现正弦温度波输出。[/size][size=16px] 由此可见,目前的正弦波温度的形成存在很大问题,这是造成上述测试方法存在较大误差的主要原因。为了解决这些问题,实现正弦温度波的准确稳定输出,本文提出了以下解决方案。[/size][b][size=18px][color=#339999]2. 解决方案[/color][/size][/b][size=16px] 分析正弦波温度形成的机理以及现有技术存在的问题,若想实现准确、稳定、可任意设定和调节的正弦波温度输出,需要解决以下三方面的问题:[/size][size=16px] (1)直接对温度进行控制,能按照所设定幅度和频率变化直接输出正弦形式的温度波。[/size][size=16px] (2)对于具有自然冷却和强制冷却(如水冷和风冷)的热环境,由于冷却功率基本为恒定值,这就需要具备正弦波温度输出过程中的反馈控制,能根据设定的正弦温度波曲线以及反馈信号自动调节加热功率,使输出的温度变化与设定曲线一致。[/size][size=16px] (3)对于具有主动加热和制冷能力的热环境,如TEC半导体制冷器,同样需要具备正弦波温度输出过程中的反馈控制,能根据设定的正弦温度波曲线以及反馈信号自动调节加热和制冷功率,使输出的温度变化与设定曲线一致。[/size][size=16px] 针对上述三方面的问题,我们提出的解决方案包括以下几项技术内容:[/size][size=16px] (1)采用具有PID自动调节功能的闭环控制技术和相关仪器,能根据设定波形和测量得到的温度或热流传感器信号进行反馈控制,同时具有PID参数自整定能力。[/size][size=16px] (2)PID自动调节技术和相关仪器除了具备单通道调节功能以实现纯加热控制之外,还采用了双通道调节技术以能对加热和制冷进行独立控制,以实现对TEC半导体制冷器进行控制。[/size][size=16px] (3)关键技术是采用了具有外部设定点功能的PID调节器,即PID调节器能接收外部任意波形信号作为设定值,使得PID调节器能始终按照随时间快速变化的设定值(如正弦波)进行控制而形成准确和稳定的正弦温度波。 [/size][size=16px] (4)为配合具有外部设定点功能的PID控制器,还配套了一个函数信号发生器,以外置形式为PID控制器提供和传输所需的正弦波信号。[/size][size=16px] (5)对于PID控制器和外置函数信号发生器,配套有相应的计算机软件,可通过上位机以通讯方式操作软件进行各种参数设置和运行操作。[/size][size=16px] 具有上述技术内容的解决方案如图4所示,其相关部分的详细内容如下。[/size][align=center][size=16px][img=正弦波温度发生器结构示意图,690,248]https://ng1.17img.cn/bbsfiles/images/2023/03/202303140945326913_2524_3221506_3.jpg!w690x248.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图4 正弦波温度发生器结构示意图[/b][/color][/size][/align][size=16px][color=#339999][b]2.1 具有远程设定点功能的PID控制器[/b][/color][/size][size=16px] 解决方案中所用的VPC 2021-1系列PID控制器,是一种符合上述1、2和3条技术要求的同时具有内部设定值和外部远程设定值功能的PID控制器,可通过软件或外部开关进行内部和远程设置值功能之间的切换,通过此远程设定值功能使得PID控制器的能力更加强大。[/size][size=16px] 这种具有远程设定点功能的PID控制器配置有两个输入通道,第一主输入通道作为测量被控对象的传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。[/size][size=16px] 与两个输入通道相对应的有两个输出通道,如果仅用第一输出通道则仅能单独实现加热功能,而如果同时采用两个输出通道分别作用于TEC半导体制冷片,则通道1作为加热的正向控制,通道2作为制冷的反向控制,由此可实现加热和制冷的自动控制。[/size][size=16px] 需要注意的是,远程设定点功能只能在单点设定控制模式下有效,即具有远程设定模式的高精度PID控制器不具备内部设定值的可编程程序控制功能,只能进行内部设定值的单点控制和外部设定值控制。当然,外部设置值控制也基本相当于一种周期信号的程序控制。[/size][size=16px][color=#339999][b]2.2 函数信号发生器[/b][/color][/size][size=16px] 对于函数信号发生器的配置,除了需要具备正弦波信号输出功能之外,还满足以下要求:[/size][size=16px] (1)对于采用热电偶作为温度传感器的温控系统,可直接采用普通的函数信号发生器即可,只是需要将发生器输出的电压值转换为相应的热电偶测温所对应的热电势。[/size][size=16px] (2)对于采用热电阻作为温度传感器的温控系统,同样需要将信号发生器的电阻输出值转换为相应的热电阻测温所对应的电阻值,一般可选择用于热电阻校准的过程校验仪。[/size][size=16px][color=#339999][b]2.3 接线、参数设置和操作[/b][/color][/size][size=16px] 在如图4所示的正弦温度波发生器中,主输入通道连接温度传感器,辅助输入通道连接函数信号发生器或过程校验仪,两路输出通道分别连接双向电源驱动器,电源驱动器连接TEC半导体制冷片。由此传感器、电源驱动器、PID调节器和TEC半导体制冷片组成标准的闭环控制回路,由此实现各种参数的正弦波形式的温度变化输出。[/size][size=16px] 完成上述外部接线后,在进行正弦温度波控制输出之前,需要对PID控制器的辅助输入通道相关参数进行设置,需要满足以下几方面要求:[/size][size=16px] (1) 接入辅助输入通道的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2) 辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3) 显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1) 内部参数激活方式:在PID控制器中,设置辅助输入通道的功能为“远程SV”。[/size][size=16px] (2)外部开关切换激活方式:如图4所示可连接一个外部开关进行切换来选择远程设定点功能。同时,还需在PID控制器中设置辅助输入通道的功能为 “禁止”,然后设置外部开关量输入功能DI1为“遥控设定”。通过这种外部开关量输入功能的设置,就可以采用开关实现远程设定点和本地设定点之间的切换,开关闭合时为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决正弦波温度输出中存在的问题,而且使用简便和门槛较低,无需再进行复杂的程序编写。[/size][size=16px] 另外,本解决方案还配备了相应的计算机软件,采用具有标准MODBUS协议的RS485通讯,通过计算机运行软件可非常方便的远程运行PID控制器以及进行控制器的各种参数设置,同时还可以采集、存储和曲线形式显示PID控制器的过程参数。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【气相百问 2 】基线成正弦波状,是什么原因造成的?

    【气相百问 2 】基线成正弦波状,是什么原因造成的?

    用PFPD检测器,开机后走基线,基线成正弦波状,检查三种气体,气体流量正常,检查进样口,也正常,关机,检查色谱柱与检测器的连接尺寸,连接尺寸不够,按标准重接色谱柱,基线正常。你遇见过这种情况吗?正弦波状的基线还有什么原因造成的?http://ng1.17img.cn/bbsfiles/images/2013/06/201306182122_446252_1645480_3.jpg相关话题:1、【气相百问 1 】你做过尾吹气的试验吗?http://bbs.instrument.com.cn/shtml/20130618/4800216/2、【气相百问 2 】基线成正弦波状,是什么原因造成的?http://bbs.instrument.com.cn/shtml/20130618/4800317/

  • TEC半导体正弦波温度发生器在热释电系数测试中的应用

    TEC半导体正弦波温度发生器在热释电系数测试中的应用

    [size=16px][color=#ff0000]摘要:针对动态法热释电系数测试中的交变温度控制,特别是针对帕尔贴半导体制冷片正弦波温度控制中存在的稳定性差问题,本文提出了改进的解决方案。解决方案的核心是采用外部设定点技术的双向PID控制器以及外置信号发生器,此方案可很好的实现帕尔贴制冷片正弦波温度的精确控制,保证了热释电系数测量的准确性。依此方案所构成的闭环控制回路可形成独立的温控装置,也可配套集成到上位机控制的中央控制系统。[/color][/size][align=center][size=16px][img=帕尔帖半导体制冷片正弦波温度发生器,550,353]https://ng1.17img.cn/bbsfiles/images/2023/03/202303311156549281_3555_3221506_3.jpg!w690x444.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 热释电系数是表征热释电材料性能的重要参数,代表了热释电材料极化随温度的变化率。按照被测样品的加热方式,热释电系数测试主要分为动态法和静态法两种。[/size][size=16px] (1)动态法是采用调制方法使被测样品的温度发生变化,温度变化形式是正弦波。动态法所加载的变温范围较小,反应的是某一基准温度下的热释电系数。[/size][size=16px] (2)静态法是用连续加热方式使被测样品升温,通过测量热释电电荷与温度关系来求得热释电系数。静态法测量的热释电系数反映的是一个温度范围内的平均响应。[/size][size=16px] 由于动态法是在某一较窄的温度范围内测量热释电系数,所以热释电系数测试常用动态法。[/size][size=16px] 在动态法测量中,样品温度的正弦波调制一般会采用帕尔贴半导体制冷片、黑体辐射和激光等方式,但能产生正弦温度波的最佳调制方式是帕尔贴制冷片,且有温度波生成装置简单和可对较大样品进行温度调制的突出特点。[/size][size=16px] 采用帕尔贴半导体制冷片进行热释电系数测量的典型装置如图1所示[1]。[/size][align=center][size=16px][color=#ff0000][img=01.热释电系数典型测量装置结构示意图,550,306]https://ng1.17img.cn/bbsfiles/images/2023/03/202303311200462046_6083_3221506_3.jpg!w690x384.jpg[/img][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 热释电系数典型测量装置结构示意图[1][/b][/color][/size][/align][size=16px] 与黑体和激光形式的温度调试方法相比,帕尔贴制冷片的温度调制相对比较准确,理论上采用帕尔贴制冷片可以将温度准确控制在某一设定点处上下波动生产正弦温度波,但目前采用帕尔贴半导体制冷片还无法进行完美的控制来产生准确和标准的正弦温度波。[/size][size=16px] 如文献[1]中所报道的热释电系数测量装置,尽管采用了正弦波信号发生器,但信号发生器只能控制帕尔贴制冷片的驱动电流按照正弦波变化,并未真正按照正弦波控制温度变化,如图2所示,因此使得所形成的正弦温度波形很难达到稳定,这主要是装置散热所造成的影响。[/size][align=center][size=16px][img=02.帕尔贴制冷片温度调制测试波形,500,397]https://ng1.17img.cn/bbsfiles/images/2023/03/202303311201113772_3144_3221506_3.jpg!w604x480.jpg[/img][/size][/align][align=center][size=16px][color=#ff0000][b]图2 帕尔贴制冷片温度调制测试波形[1][/b][/color][/size][/align][size=18px][color=#ff0000][b]2. 问题分析[/b][/color][/size][size=16px] 对于帕尔贴半导体制冷片的温度控制,若要实现准确、稳定、可任意设定和调节的正弦波温度输出,需要解决以下两方面的问题:[/size][size=16px] (1)直接对温度进行控制,能按照所设定幅度和频率变化直接输出正弦形式的温度波,即控制器设定值是一个幅度随时间变化的正弦波。[/size][size=16px] (2)需要解决反馈控制问题,即能根据正弦温度波设定曲线以及反馈的温度信号自动调节加热和制冷电流,使输出的温度变化与设定曲线始终一致,由此主动消除系统中的散热以及环境温度变化带来的影响,最终使得所输出的正弦温度波始终长时间保持稳定。[/size][size=18px][color=#ff0000][b]3. 解决方案[/b][/color][/size][size=16px] 针对上述热释电系数测试中存在的正弦波温度控制问题,特别是为了解决帕尔贴半导体制冷片输出准确和稳定的正弦温度波难题,本文提出了如图3所示的解决方案。[/size][align=center][size=16px][color=#ff0000][b][img=03.帕尔帖正弦波温度发生器结构示意图,690,248]https://ng1.17img.cn/bbsfiles/images/2023/03/202303311201347099_4235_3221506_3.jpg!w690x248.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 帕尔帖正弦波温度发生器结构示意图[/b][/color][/size][/align][size=16px] 图3所示的解决方案包括以下几项技术内容:[/size][size=16px] (1)采用具有PID自动调节功能的闭环控制技术和相关仪器,能根据设定波形和测量得到的温度传感器信号进行反馈控制,同时具有PID参数自整定能力。[/size][size=16px] (2)PID自动调节技术和相关仪器采用了双通道调节和自动切换技术,以能对加热和制冷进行自动控制,实现对TEC半导体制冷器进行正反向控制。[/size][size=16px] (3)关键技术是PID调节器具备外部设定点功能,即PID调节器能接收外部任意波形信号作为设定值,使得PID调节器能始终按照随时间快速变化的设定值(如正弦波)进行控制而形成准确和稳定的正弦温度波。[/size][size=16px] (4)为配合具有外部设定点功能的PID控制器,配套了一个函数信号发生器,以外置形式为PID控制器提供和传输所需的正弦波信号。[/size][size=16px] (5)对于PID控制器和外置函数信号发生器,配套有相应的计算机软件,可通过上位机以通讯方式操作软件进行各种参数设置和运行操作。[/size][size=16px] (6)对于TEC半导体制冷片,配备的双向电源驱动器。驱动器可有不同的功率配置以满足不同加热制冷能力的TEC制冷片要求。双向电源驱动器直接与PID控制器的加热和制冷通道连接。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以彻底解决帕尔贴半导体制冷片正弦波温度输出中存在的问题,而且使用简便和门槛较低。通过外置正弦波信号发生器,无需再进行复杂的设定值程序编写,即可实现正弦温度波的准确和稳定输出。[/size][size=16px] 本解决方案中的高精度PID控制器配备了相应的计算机软件,采用了具有标准MO D B U S协议的RS485通讯,与计算机一起可以组成独立的测控系统,通过计算机运行软件可非常方便的远程运行PID控制器以及进行控制器的各种参数设置,同时还可以采集、存储和曲线形式显示PID控制器的过程参数。[/size][size=16px] 此解决方案的另外一个特点是具有很强的灵活性和拓展性,可通过外置不同传感器和信号发生器实现各种温度和压力波形的准确控制,可连接上位机直接与中央控制器进行集成。[/size][size=18px][color=#ff0000][b]5. 参考文献[/b][/color][/size][size=16px][1] Fedorov K, Ivashchuk O, Karataev P, et al. Application of Thermoelectric Oscillations in a Lithium Niobate Single Crystal for Particle Generation[C]//8th International Beam Instrumentation Conference (IBIC'19), Malm?, Sweden, 08-12 September 2019. JACOW Publishing, Geneva, Switzerland, 2019: 620-623.[/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    [align=center][size=16px] [img=温度调制式差示扫描量热法MTDSC中实现正弦波温度控制的方法,650,411]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241524097587_3670_3221506_3.jpg!w690x437.jpg[/img][/size][/align][size=16px][color=#990000]摘要:在调制温度式差式扫描量热仪(MTDSC)中,关键技术之一是正弦波加热温度的实现,此技术是制约目前国内无法生产MTDSC量热仪的重要障碍,这主要是因为现有的PID温控技术根本无法实现不同幅值和频率正弦波这样复杂的设定值输入。本文将针对此难题提出了相应的解决方案,即采用具有外置设定点功能的特制PID控制器来实现正弦波温度控制。[/color][/size][align=center][size=16px][color=#990000]~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 调制温度式差式扫描量热法(MTDSC)是由差示扫描量热法(DSC)演变而来的一种热分析方法,该方法是对温度程序施加正弦波扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统DSC线性变温基础上叠加一个正弦振荡温度程序,如图1所示,由此可随热容变化同时测量热流量,然后利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。[/size][align=center][size=16px][img=01.调制式差示扫描量热法正弦波温度变化曲线,606,395]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527062808_6964_3221506_3.jpg!w606x395.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图1 调制式差示扫描量热法正弦波温度变化曲线[/b][/color][/size][/align][size=16px] 与DSC(差式扫描量热仪)相比,MTDSC(温度调制式差式扫描量热仪)主要会涉及到两项完全不同的技术,一是正弦波温升变化的实现,二是测量信号的傅里叶变换分析。这两项技术作为MTDSC的核心技术,也是制约目前国内无法生产MTDSC量热仪的重要障碍。特别是在正弦波温度变化控制方面,现有的PID温度控制技术根本无法实现正弦波这样复杂的设定值输入。为此,本文将针对正弦波温度的实现提出相应的解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在温度自动控制方面一般常会使用PID调节器,PID温度调节器的基本原理是根据设定值与被控对象测量值之间的温度偏差,将偏差按比例、积分和微分通过计算后形成控制输出量,对被控对象的温度进行控制。这里的设定值是一种泛指,实际上包括了不随时间变化的固定设定值和随时间变化的设定曲线。对MTDSC量热仪而言,设定曲线则是正弦波和一条斜线的叠加而成的曲线,其中的斜线是需设定的平均升温速率,而正弦波则是需设定幅值和频率的正弦温度波。[/size][size=16px] 由此可见,解决MTDSC温度正弦波控制的关键是PID温度控制器的设定值可以按照所需的正弦波和线性曲线叠加后函数进行设置。为此,本文提出的解决方案具体内容如下:[/size][size=16px] (1)采用具有外置设定点功能的PID控制器,即PID控制器所接收到的外部任意波形信号都可以作为设定值。[/size][size=16px] (2)配套一个函数信号发生器,给PID控制器传输所需的正弦波和线性叠加信号。[/size][size=16px] 依据上述方案内容所确定的PID控制装置及其接线如图2所示,具体内容如下:[/size][align=center][size=16px][img=02.调制温度式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图,690,216]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527309145_3057_3221506_3.jpg!w690x216.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图2 调制式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图[/b][/color][/size][/align][size=16px] (1)具有外置设定点功能的PID控制器[/size][size=16px] 所用的具有外置设定值功能的PID控制器具有两个输入通道,主输入通道作为测量被控对象的温度传感器输入,辅助输入通道用来作为外置设定点输入。与主输入通道所能接收的信号一样,辅助输入通道的外置设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入辅助输入通道作为外置设定点源。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,在程序控制模式下无此功能。[/size][size=16px] (2)函数信号发生器[/size][size=16px] 对于MTDSC而言,相应的传感器测量输出无外乎就是电压和电阻这两类信号输出。因此,为了实现MTDSC的温度以正弦波形式的周期性变化,可以采用各种相应的信号发生器输出相应幅值和频率的正弦波信号和线性信号,对这两路电压信号进行叠加后传送给辅助输入通道。[/size][size=18px][color=#990000][b]3. 控制器的接线、设置和操作[/b][/color][/size][size=16px] 为了正常使用正弦波温度控制装置,还需进行相应的接线、设置和操作。[/size][size=16px] 首先,对于图2所示的正弦波温度PID控制装置,也可以用作常规PID温度控制器。即主输入通道连接温度传感器,主控输出1通道连接温控执行机构,由此传感器、执行机构和PID调节器组成标准的闭环控制回路,由此可以通过内部设定点或设定程序进行PID温度控制。[/size][size=16px] 如果要在MTDSC热分析仪上实施正弦波温度变化的控制,则使用外置设定点功能,此时需要在辅助输入通道接入远程设定点源,即函数信号发生器。[/size][size=16px] 完成外部接线后,在运行使用外置设定值功能之前,需要对PID控制器的辅助输入通道相关参数进行设置,且需要满足以下几方面要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的外置设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,在开始使用外置设定点功能之前,还需要激活外置设定值功能。外置设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1)内部参数激活方式:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)外部开关切换激活:如图2所示可连接一个外部开关进行切换来选择外置设定点功能。同时,还需在PID控制器中,设置辅助输入通道2的功能为 “禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图2中所示的开关实现外置设定点和本地设定点之间的切换,开关闭合时为外置设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种外置设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#990000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决温度调制式差式扫描量热仪(MTDSC)的正弦波温度的控制问题,温控器模块化结构可很容易与MTDSC热分析仪进行集成,无需再研发和配置复杂的控制电路和软件。随机配备的计算机软件可方便的进行控制运行和调试,便于热分析研发工作的开展。[/size][size=16px] 解决方案的另一个优势是所采用的PID温控器具有很高的测控精度,其中24位AD、16位DA、双精度浮点运算和0.01%的最小输出百分比,这可以满足MTDSC高精度温度控制需求。[/size][size=16px] 另外,本解决方案中的控制器还可以进行多种拓展,除可实现被控对象周期性调制波的加载之外,还可非常便于实现第二类和第三类边界条件的精密PID控制,同时还可以实现其他物理量,如真空、压力和张力等的串级控制、分程控制和比值控制等。[/size][align=center]~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】正弦波装基线处理案例之二——来自载气源

    【原创大赛】正弦波装基线处理案例之二——来自载气源

    正弦波装基线处理案例之二——来自载气源 概述:仔细观察,使用多种听觉、视觉等多种感官。故障状态:有一台Shimadzu的GC-2014 气相色谱仪,带有TCD检测器,基线出现正弦波状态的波动。周期大约30s左右,扰动幅度大约100uV。使用GDX-502填充柱。柱温40度。进样口100度,检测器100度,电流100mA。使用高纯氢气钢瓶作为气源。Labsolution色谱数据工作站。基线扰动的状态如下图所示:http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668410_1604036_3.png该型号的色谱仪载气控制部分采用了电子自动流量控制(AFC)的方式,询问用户得知仪器安装时间较短,使用率不太高。仔细观察工作站上载气流量和压力的显示,发现流量和压力存在有周期性的脉动现象。鉴于是新安装色谱仪器,况且用户使用率不高,不应该存在污染等问题损害AFC动作。仪器硬件故障的可能性也不是很大。因为是TCD检测器,系统只使用了氢气作为系统载气。最终还是怀疑载气是否不稳定。仔细观察一下用户氢气钢瓶的二次减压表指针,指针没有波动的现象。不太死心,把耳朵贴在了减压阀上,这次听到了不稳定的、声音忽大忽小的放气声音。(减压阀开启后,根据流量和阀本身的不同,可以顶到丝丝的放气声音,这个声音应该是比较稳定,声强不变化的。)更换掉减压阀,故障解除。小结:出现基线周期性的脉动,首先要考察气源。

  • 【求助】ECD 基线 正弦波

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](菲尼根公司)ECD灵敏度下降,洗收集极后,400度烘烤。为了监视基线情况,监视设到1300分钟。第二天来看,前2个小时基线波动正常(毛刺),后面基线全部都是正弦波了?波高1mv,不正常啊。高手分析解决好吗?附图为网上的,我的和这类似。

  • 气相ECD检测器空走出现正弦波

    空走的时候走的程序升温,前几分钟还好,突然就正弦波了,很规律,这是漏气了吗[img]https://ng1.17img.cn/bbsfiles/images/2019/07/201907031501318516_7001_3529351_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/07/201907031501345019_7788_3529351_3.png[/img]

  • 什么是半正弦波

    振动试验台,这样条件的波形是什么样的,[table][tr][td] [align=center][font=宋体]脉冲波形[/font][/align] [/td][td] [align=center][font=宋体]半正弦波[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]峰值加速度[/font][/align] [/td][td] [align=center][font='Arial',sans-serif]15g[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]脉冲持续时间[/font][/align] [/td][td] [align=center][font='Arial',sans-serif]11ms[/font][/align] [/td][/tr][/table]

  • 锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    [size=16px][color=#339999][b]摘要:针对目前锁相红外热成像无损检测中存在被检物温度偏离标准正弦波形式的检测模型,以及被检物温度无法准确控制和快速达到稳定的问题,本文提出了改进解决方案。解决方案的核心是将现有的激励光源开环控制模式改进为闭环控制,具体采用了具有远程设定点功能的PID温度控制器,将现有光源的正弦波功率调制改进为直接的被检物表面温度正弦波调制,由此更符合理论模型,且可使被检物平均温度快速达到稳定而大幅缩短检测时间。[/b][/color][/size][align=center][size=18px][color=#339999][b]~~~~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 如图1所示,锁相红外热成像无损检测技术使用周期性调制热源,对待测物体进行周期加热。若待测物体内部有缺陷,该缺陷对其上方表面温度分布会产生周期性的影响,因此有缺陷和无缺陷地方会产生幅值差和相位差的热特征,这些特征通过红外热像仪成像捕获。采集到的热图序列中存在着各种干扰信号,通过锁相技术可以将微弱的有用信号从众多干扰信号中分离出来,可大幅提高检测的灵敏度。但这种红外锁相或其他光激励热成像法存在以下严重问题:[/size] [align=center][size=18px][color=#339999][b] [img=红外锁相热成像检测原理及其系统,500,611]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442140543_4031_3221506_3.jpg!w622x761.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 红外锁相热成像检测原理及其系统[/b][/color][/size][/align][size=16px] (1)因为现有技术只能对激励热源的加载功率进行正弦波调制,但并不能真正保证被测物体内部的温度变化也是真正的正弦波形式,这使得热像仪获得的热波波形与检测理论模型存在较大偏差,这是目前造成此方法误差的最大原因。[/size][size=16px] (2)目前锁相法调制光源加热被测物体时的温度时间变化曲线如图2所示,要经过较长时间温度才能达到稳定状态,对于较大或较厚物体用时将会更长,其中最大的问题是温度升高多少无法准确控制,只能靠经验或多次试验来确定调制光源的加热功率以实现所希望的温度变化。[/size][align=center][size=18px][color=#339999][b][img=红外锁相法加热过程中的时间-温度变化曲线图,500,379]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442434774_7846_3221506_3.jpg!w472x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 红外锁相法加热过程中的时间-温度变化曲线图[/b][/color][/size][/align][size=16px] 由此可见,目前的红外锁相法还较粗狂,整个控制还是一个开环控制过程,这使得在实际无损检测中边界条件无法准确匹配测试模型,温度变化波形和大小也无法做到准确控制。为了解决这些问题,本文提出了如下一种闭环控制解决方案。[/size][b][size=18px][color=#339999]2. 解决方案[/color][/size][/b][size=16px] 为使被检物体内部的温度变化符合测试模型中正弦波形式的要求,本文提出的解决方案是采用闭环控制加热模式,即在被检物体的表面或内部安装温度传感器,与PID控制器和激励光源组成闭环控制回路,通过正弦波形式的设定点输入,最终将被检物体表面或内部温度准确控制并与正弦波温度设定曲线吻合。整个闭环控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=正弦波温度加热光源控制系统结构示意图,650,387]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443195882_6318_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 正弦波温度加热光源控制系统结构示意图[/b][/color][/size][/align][size=16px] 从图3可以看出,由增加的温度传感器、卤素灯加热光源和控制器组成的闭环控制回路,可以对被检物表面温度进行任意设定点下的精确控制。但为了使表面温度能够严格按照所希望幅值和周期的正弦波形式进行变化,解决方案中采用一种多功能的高级PID控制器VPC2021。此控制器具有外部设定点功能,即通过外接周期信号发生器,可以使VPC2021控制器的温控设定值严格按照信号发生器的输出进行改变,即温控设定值可以设计为一个随时间变化的周期性正弦波。由此可以实现以下两个功能:[/size][size=16px] (1)可任意设定加热正弦波的频率和幅值,以满足不同无损检测对象的需要。[/size][size=16px] (2)可任意设定加热正弦波的平均值大小,由此可实现任意温度下的正弦波热波控制,并能很快达到稳定状态而开始进行无损检测,有效缩短检测时间。[/size][size=16px] VPC2021系列超高精度PID调节器是具有远程设定点功能的控制器,具有两个输入通道,第一主输入通道作为过程传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点也能接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何探测信号只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。在红外锁相法无损检测中使用远程设定值功能时的具体接线如图4所示。[/size][align=center][size=16px][color=#339999][b][img=远程设定点功能使用接线图,690,247]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443467549_5148_3221506_3.jpg!w690x247.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 远程设定点功能使用接线图[/b][/color][/size][/align][size=16px] 在使用远程设定值功能前,需要对控制器辅助输入通道参数进行设置,以满足以下要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活有以下两种方式:[/size][size=16px] (1)仅使用远程设定点,不使用本地设定点:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)可进行远程和本地设定点之间切换:在PID控制器中,设置辅助输入通道2的功能为“禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图4中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合是为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的具有远程设定点功能的PID控制器,结合外置周期信号发生器,可很好实现锁相红外热成像无损检测中的正弦波温度闭环控制,使得被检物体内部的稳态正弦温度波更符合无损检测模型,并使得被检物温度快速达到所希望的测试温度而缩小检测时间,最终可使得锁相红外成为更精密化的无损检测技术。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][b][color=#339999]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align][size=16px][/size]

  • 【分享】正弦波振动式粘度计!

    [size=5]以SV-10/SV-100 正弦波振动式粘度计为例,讲述了粘度的定义,粘度计的种类,振动式与旋转式粘度计的对比。[/size][img]http://simg.instrument.com.cn/bbs/images/brow/em09503.gif[/img]

  • 【原创大赛】正弦波状态的基线故障 处理案例一则

    【原创大赛】正弦波状态的基线故障    处理案例一则

    基线正弦波故障 处理案例一则 概述:来自气源或者气路控制系统的不稳定,往往是基线正弦状态波动的主要来源。案例1:故障状态:有一台Shimadzu的GC-2014 (美国产)气相色谱仪,出现了基线正弦波状态的扰动,波动幅度大约200uV,波动周期大约40秒。SPL进样口,FID检测器。使用了钢瓶装的高纯氮、高纯氢和空气发生器。柱温100度,进样口220度,检测器250度,色谱柱为Rtx-5 30m*02.5mm*0.25um。Labsolution色谱数据工作站。基线如下图所示:http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668404_1604036_3.png诊断:首先熄灭火焰,观察到基线良好(如谱图中5min以后的状态);考察该仪器安装了两个SPL和FID检测器,另外一路的FID基线良好。综合考虑判定——仪器的电路硬件部分、Labsolution色谱工作站以及电脑系统应该问题不大。(注:熄灭火焰这一步诊断方法,虽然非常简单,但是其实非常实用,可以简单的判定故障位置。)那么气源或者气流控制部分发生问题的可能性就比较大了。该仪器的氢气、空气、尾吹气使用了稳压阀调节控制的方法,于是试着调节了一下各个阀。发现调节氢气的时候,基线扰动的变化较大。然后用改锥柄(包覆橡胶的,比较柔软),轻轻的敲击氢气调节阀的旋钮。连续敲击几次之后,发现基线扰动发生了明显的变化。轻轻敲击阀旋钮部分:http://ng1.17img.cn/bbsfiles/images/2017/10/2016071820094453_01_1604036_3.png基线如下图所示,故障解决。http://ng1.17img.cn/bbsfiles/images/2017/10/2016071820095923_01_1604036_3.png附例:另外有一台GC-14C,有完全相同的现象。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016071820101755_01_1604036_3.png注意观察8min之前的基线,和10min之后的基线做一比较。这次是拍了几下流量控制器盒。http://ng1.17img.cn/bbsfiles/images/2017/10/2016071820103241_01_1604036_3.png小结:怀疑氢气阀内进入杂质导致氢气流量不稳定。考察了一下用户的气路系统,系统中连接了国产的净化管,怀疑是否净化管内有细小颗粒。毕竟阀损坏的可能性是非常小的,虽然现在流行EPC、EFC、AFC、APC,但说起可靠性来,只要阀质量好,阀控制的仪器也是很棒的。

  • 现场采样神器-自己动手做了一台交直流移动电源

    现场采样神器-自己动手做了一台交直流移动电源

    公司现场采样人员想采购一台220V移动电源,用在崂应的3012和3072采样器上,平时都是带着100米的电源线,又麻烦又效率低。想想也是够辛苦的,于是就调研了几家移动电源,价格都在1W左右,挺吓人的。百度搜索了下其原理,其实也挺简单,就是逆变器把蓄电池的直流电转换成交流的220V电源。作为公司的设备管理员,本着能省就省的原则,想着能不能自己制作一款移动电源,在征得上级的同意后,说干就干。花了两周的时间把需要的配件买齐了,又花了一周的时间制作,最后花了一周的时间测试,终于制作完成,在这里给感兴趣的朋友分享一下我的成果。先上一张成品图,有些人是不是很眼熟啊,没错,外壳是拿大气采样器的箱子改造的。http://ng1.17img.cn/bbsfiles/images/2015/12/201512231318_579167_2278236_3.jpg打开箱子,里面是这样的。纯手工制造,有些粗糙,面板上一个电源开关,一个交流电输出开关,一个电量显示屏,一个220V插口,一个5V USB插口和一个充电插口。http://ng1.17img.cn/bbsfiles/images/2015/12/201512231327_579170_2278236_3.jpg当时设计时,想到的是要便于维修,于是在面板上突出了一块,加上了一个提手,只要拆掉面板上的4颗螺丝,一只手就能将整个电源从箱子里提出来。http://ng1.17img.cn/bbsfiles/images/2015/12/201512231320_579168_2278236_3.jpg用万用表测试的正弦波波形非常完美。http://ng1.17img.cn/bbsfiles/images/2015/12/201512231327_579172_2278236_3.jpg再说一下内部的主要配件,电池用的是12V60AH磷酸铁锂锂电池,可以循环充电2000次,花费1000元;逆变器是1000W的纯正弦波逆变器,花费800元,箱子用的是旧的,市场价格大概200元,其他配件和人工不算总共花费2000元,相对于1W仅仅是其1/5的费用,还是蛮划算的。整个移动电源的重量7KG左右,带崂应3012H采样器大概可以跑8-9小时。

  • 光伏逆变器可靠性测试方法

    光伏逆变器可靠性测试方法

    目前光伏发电系统主要有两种类型:并网型和离网型。并网型系统提供的电力直接并入电网,离网型系统提供的电力则不会并入电网,通常是直接用来使用或者存储后使用。随着光伏行业的不断发展,对光伏逆变器的需求越来越多,技术要求也是越来越高。如何对光伏逆变器进行测试,也是一个迫切需要解决的问题。  以践行绿色生产管理,实现“碳中和”改善气候环境变化为背书,实现循环可持续发展战略,太阳能成为重点研究使用的选择,太阳能是21世纪环保也是容易取得的能源之一,相关的太阳能研究与应用产业也加紧脚步的发展进行。太阳能模组光伏逆变器在研究以及生产过程中,制订了相关的可靠度试验与环境试验的规范,以确保太阳能电池模组光伏逆变器可以耐用20~30年以上的时间;并且在户外环境的使用下,确保其发电转换率。  光伏逆变器可以将光伏(PV)太阳能板产生的可变直流电压转换为市电频率交流电(AC)的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。光伏逆变器是光伏阵列系统中重要的系统平衡(BOS)之一,可以配合一般交流供电的设备使用。太阳能逆变器有配合光伏阵列的特殊功能,例如大功率点追踪及孤岛效应保护的机能。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206241625108727_9318_1385_3.jpg!w600x600.jpg[/img][/align]  试验要求:  a.标准测试条件下很大输出功率的衰减不超过实验前的5%  b.裂缝检查(面积不超过10%以上)  c.在元件的边框和电池之间不可形成连续通道的气泡或脱层  温度循环:-40±2°C(10min)←→85±2°C(10min)、温变率小于100°C/h、50cycle(试验后进行湿热试验)  湿热试验:85±2℃/85±5%/1000h  湿冷试验:进行50次温度循环试验

  • 【原创大赛】GCMS 正弦波状基线故障的处理

    【原创大赛】GCMS 正弦波状基线故障的处理

    [align=center][url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS 正弦波状基线故障的处理[/align][align=center] [/align]概述:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS采集获得高频率正弦波状的基线,维护电子透镜和预四级杆解决。[align=center]一 故障情况[/align]某用户使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS-QP2010Ultra,运行8年左右。主要开展职业卫生检测和环境检测等项目。其中有水中多环芳烃检测、苯系物、多氯联苯、水和空气中VOSs等项目的检测,仪器进样口外接有OI公司的吹扫捕集进样器OI-4660、国产热解析进样器(中仪宇盛公司产品)和液体自动进样器AOC-20i。仪器使用频率较高,之前未出现较严重的硬件故障,用户对仪器的熟悉程度尚可。故障现象出现的一个半月之前,用户自行做过EI源灯丝的更换和离子源的清洗维护。2018年11月初,用户报修。故障现象为[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS输出基线不良,基线呈现为极为规律的正弦波,如图1所示:[align=center][img=,690,321]https://ng1.17img.cn/bbsfiles/images/2019/07/201907032307171317_7603_1604036_3.jpg!w690x321.jpg[/img] [/align]图1: [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS的TIC基线仪器条件:分析项目 HJ 644-2013 环境空气中挥发性有机物的检测色谱柱 DB-624UI 60m*0.32mm*1.8um程序升温 60度至220度热解析进样方式进样口温度 200度MS 采用FASST采集方式(同时scan+sim)故障现象出现已经有一段时间,用户自行重启过[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS和电脑,未见明显改观,询问用户在使用过程中是否观察到气源、电源、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS各部件温度和流量控制有不稳定现象,用户反应无此现象[align=center]二 故障考察[/align]再次考察碎片离子的质量色谱图,如图2所示:[align=center][img=,690,372]https://ng1.17img.cn/bbsfiles/images/2019/07/201907032307445679_5795_1604036_3.jpg!w690x372.jpg[/img] [/align]图2 碎片离子质量色谱图考察发现碎片离子的MC(质量色谱图)和TIC(总离子流图),发现均呈现出频率较快的正弦波状态,周期大约为0.06min。TIC和MC图,在整个分析过程中基本不存在较大的基线漂移情况。再考察用户调谐报告,未见明显异常。见图3:[align=center][img=,653,589]https://ng1.17img.cn/bbsfiles/images/2019/07/201907032308034487_8485_1604036_3.jpg!w653x589.jpg[/img] [/align]图3 调谐报告然后又考察了用户数据中不同时间点之下的实时MS谱图,发现MS图的总体强度随时间变化也存在较强周期性变化。因为基线表现出较强的周期性,起初怀疑用户的的气源、电源或者接地存在不稳定问题抑或有色谱柱不良问题。建议用户重新插拔所有的电源线、通讯线等电气连接线路。抵达工作现场之前,电话和微信指导用户做了一定的排查,并用盲栓将MS部分封闭,关闭仪器周边同一电源线的其他仪器,运行空白分析,得到相同正弦波状态的基线。则基本可以排除色谱柱(用户并没有采用带有-ms后缀的色谱柱,色谱柱本底流失信号可能相对会比较大)污染或者载气不稳定等问题。[align=center]三 现场诊断[/align]鉴于谱图和用户预判故障实验的状况,怀疑[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS存在硬件故障,可能四级杆或者透镜部分的电器控制有不稳定的问题。于是准备了[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS 的MainCtrl、CPU板、IS contrl、PreAmp板赶往用户。抵达现场后,先测定用户电源电压、线路接触和检查接地,未见明显异常。考虑到用户近期拆解维护过EI源,怀疑可能会存在安装不良或者维护不足等可能(用户这些稍微高级一点的维护操作,经验还是欠缺的),于是决定先做离子源的常规检查。拆解离子源和电子透镜时,发现离子源外观尚可(有一定污染,但是看上去不严重),但透镜污染较为明显,预四级杆也存在污染问题。询问用户,近期也没有做过电子透镜和预四级杆的清洁维护。[align=center]四 故障处理[/align]于是清洗维护了一下电子透镜和预四级杆,同时再次清洗处理离子源并做高温钝化处理。再次开机实验,基线良好,进样用户样品测试,出峰正常。连续运行14小时,未见异常,至此故障解除。一个月后的维修跟踪回访(微信方式),用户亦反应仪器正常。[align=center]五 维修小结[/align]复杂问题可以先做简单处理,检查系统时,如果存在基础性的明显问题,即使预判可能与最终故障关系不大,也应该予以处理和解决。[align=center]六 故障回想和再解析 [/align]一般的,基线周期性极强的扰动,往往与环境中的周期性不稳定因素相关。例如气源压力的脉动、供电线路的波动、附近干扰电器的周期性启停、接地线路的不良、周期性的振动。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS系统污染往往导致灵敏度下降、分辨率不良、基线噪声较大等问题,一般首先会在调谐文件中有反应——FWHM不良、MS峰形不良、检测器电压高、502丰度等问题。此例中污染导致了基线的周期脉动,怀疑是污染干扰了MS各部件之间的良好电接触和绝缘问题。再仔细考察一下用户基线,发现TIC基线电平异常的低,而且每个质量数的扰动幅度接近,这也是一开始有所忽略的方面。

  • 逆变器的替换场效应管型号:FHP740高压MOS管

    逆变器几乎能应用到我们生活中能接触到的一切电子设备中,因为它是将直流电转化为交流电的介体。电子工程设计师都知道,逆变器基本上是由MOS场效应管和电源逆变器构成的,因而场效应管的好坏也决定着逆变器是否能进行电流转换。而在300W/220V方波输出的逆变器电路中,现在使用较多的逆变器型号为10N40,但由于生产成本,产品质量原因等,不少电子厂家还是希望能有一些同质的替换产品。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/6cac7068b3e051325e13be9f636ba067-sz_179415.JPG?x-oss-process=style/xmorient[/img]逆变器的输出功率大小取决于MOS场效应管和电源逆变器的功率相结合,因而场效应管可通过的电流大小也是决定电子设备是否能正常使用的因素之一。为了避免电子产品因为电流电压的原因返修增加维修成本还不利于企业声誉,电子厂家在选择MOS场效应管的时候更应该多方比较其性能。飞虹自主研发的这个FHP740高压MOS管与10N40场效应管性能相差无几,可替换使用。飞虹的FHP740高压MOS管为N沟道增强型高压功率场效应管,除了可代替10N40场效应管使用,还可替换11N40、IRF740型号的场效应管。FHP740主要应用于300W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]FHP740高压MOS管的封装形式为TO-220/TO-220F,脚位排列是GDS,10A, 400V, RDS(on) = 0.55Ω(max) @VGS = 10 V,这个FHP740最大的特点就是低电荷、低反向传输电容开关速度快,低内阻,大功率。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP740高压MOS管,不仅质优价廉,而且还能替代10N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • N沟道增强型高压功率场效应管可提高逆变器工作效率

    不少电子产品的元器件都会有逆变器这么一个部件,而电子工程师都知道逆变器在电子产品中的重要性,而场效应管的质量将影响到逆变器的转换效率、启动速度、安全性能、物理性能、和带负载适应性和稳定性,所以电子厂家都希望采购的场效应管质量过硬。而现在市场上的7N40就是逆变器使用的场效应管之一,但由于成本的原因,厂家也会希望有可以替代的同类型场效应管。逆变器的直流转换是MOS开关管和储能电感组成电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管做开关动作,使得直流电压对电感进行充放电,这样电感的另一端就能得到交流电压。所以如果MOS管质量不过关,无法进行电压变换,就换导致电器故障,电子产品批量出现问题的话会是企业出现负面形象的,所以选择优质的场效应管就很重要了。而飞虹的这个国产FHF730高压MOS管,在性能参数上都可以替代7N40场效应管。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/0a1980a77a3b8ee13893eaf183cb6384-sz_179372.JPG?x-oss-process=style/xmorient[/img]飞虹的FHF730高压MOS管为N沟道增强型高压功率场效应管,FHF730除了可以替代7N40场效应管,还可以替代6N40、IRF730B这两个型号的场效应管,主要应用于150W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动。FHF730高压MOS管的封装形式为TO-220/TO-220F,脚位排列方式为GDS,Vgs(±V)30,VTH(V)2-4,5.5A, 400V, RDS(on) = 1.2Ω(max) @VGS = 10 V,而且FHF730最大的特点就是低电荷、低反向传输电容开关速度快、低电阻。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHF730高压MOS管,不仅质优价廉,而且还能替代7N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • 国产FHP3205低压场效应管可提升逆变器工作效率!

    逆变器的工作原理其实就是通过电压逆变,将直流电转化为交流电的过程。逆变器的工作效率几乎都会影响到电器的正常使用或者使用体验,而其中影响着逆变器工作效率的一个重要元器件就是场效应管。FQP55N10场效应管是目前逆变器元器件里使用得相对较多的场效应管型号之一,但由于成本,销量等原因,不少电器厂家还是希望能有更质优价廉的替换场效应管可供选择。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/3b551f61bc04cc88880d24ff48aff39a-sz_171568.JPG?x-oss-process=style/xmorient[/img]一般来说,逆变器前级电路所采用的场效应管的质量几乎都会影响到逆变器的转换效率、安全性能、物理性能、带负载适应性和稳定性等。因而为了保证产品质量,减少维修成本,避免因为产品质量引起一些不利于厂家经营生产的负面舆论。在采购元件之初,厂家就应该选择一款参数,性能,稳定性都匹配的场效应管。飞虹自主研发的这个FHP3205低压MOS管在转换效率、安全性能等方面都是可以替换FQP55N10场效应管使用的。飞虹的这个FHP3205低压MOS管是N沟道沟槽工艺MOS管,适用于300W/12V输入的逆变器的前级电路。FHP3205低压MOS管除了可以替换FQP55N10场效应管之外,还能替换行业上的SKT55N100AT、150N06、IRF3205、IRF1010E这几个型号的场效应管。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/bdc547069a6ff17c317f6cf8df1ad4d2-sz_144837.jpg?x-oss-process=style/xmorient[/img]FHP3205低压MOS管的封装形式主要为TO-220/TO-252/TO-263,脚位排列序为GDS,Vgs(±V)25,VTH(V)2-4,ID(A)130,BVdss(V)60,Rds(on)(typ)5.5,Rds(on)(max)8,且FHP3205场效应管最大的优势就是可做到低内阻,大电流。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP3205低压MOS管,不仅质优价廉,而且还能替代FQP55N10场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • 串联谐振和并联谐振的区别

    串联谐振和并联谐振这两种现象是正弦交流电路的一种特定现象,它在电子和通讯工程中得到广泛的应用,但在电力系统中,发生谐振有可能破坏系统的正常工作。接下来分析一下串联谐振和并联谐振这两种谐振到底都有哪些区别。从负载谐振方式划分,可以为并联谐振逆变器和串联谐振逆变器两大类型,下面对这两种类型进行比较:串联谐振回路是用L、R和C串联,并联谐振回路是L、R和C并联。(1)串联谐振逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。当逆变失败时,浪涌电流大,保护困难。并联谐振逆变器的负载电路对电源呈现高阻抗,要求由电流源供电。在逆变失败时,冲击不大,较易保护。(2)串联谐振逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。并联谐振逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。(3)串联谐振逆变器是恒压源供电。并联谐振逆变器是恒流源供电。(4)串联谐振逆变器的工作频率必须低于负载电路的固有振荡频率。并联谐振逆变器的工作频率必须略高于负载电路的固有振荡频率。(5)串联谐振逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率。并联谐振逆变器的功率调节方式,一般只能是改变直流电源电压Ud。(6)串联谐振逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。并联谐振逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。(7)串联谐振逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行。并联谐振逆变器的晶闸管所需承受的电压高,其值随功率因数角φ增大,而迅速增加。 (8)串联谐振逆变器可以自激工作,也可以他激工作。而并联谐振逆变器一般只能工作在自激状态。(9)在串联谐振逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并联谐振逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。(10)串联谐振逆变器起动容易,适用于频繁起动工作的场合;而并联谐振逆变器需附加起动电路,起动较为困难。(11)串联谐振逆变器的感应加热线圈与逆变电源(包括槽路电容器)的距离远时,对输出功率的影响较小。而对并联谐振逆变器来说,感应加热线圈应尽量靠近电源(特别是槽路电容器),否则功率输出和效率都会大幅度降低。并联谐振逆变器和串联谐振逆变器(通称并联或串联变频电源)各有其自己的技术特点和应用领域。从工业加热应用的角度,并联谐振逆变器广泛应用于熔炼、保温、透热、感应加热热处理等各种领域,其功率可以从几千瓦到上万千瓦。串联谐振逆变器广泛应用于熔炼—保温的一拖二炉组以及高Q值高频率的感应加热场合,其功率可以从几千瓦到几千千瓦。目前我国工业上采用的变频电源90%以上属并联谐振变频电源。

  • FHP740高压MOS管替换11N40场效应管使用可保证逆变器稳定性

    逆变器其实和转化器一样,将直流电转变为交流电,是一种电压逆变的过程,而跟逆变器工作效率关联比较大的就是场效应管,所以电子产品生产厂家都知道场效应管的质量在一定程度上也决定着这个电子产品的使用寿命。11N40就是现今逆变器使用的型号之一,但由于质量,价格的等原因,不少厂家还是希望市场上能多一些同质可替换的产品的。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/6cac7068b3e051325e13be9f636ba067-sz_179415.JPG?x-oss-process=style/xmorient[/img]逆变器前级电路所采用的MOS管的质量将影响到逆变器的转换效率、安全性能、物理性能、带负载适应性和稳定性。因而为了保证产品质量,减少维修成本,厂家就更应该选择一款优质的场效应管,而飞虹自主研发的这个FHP740高压MOS管在转换效率、安全性能等方面都是可以替换11N40场效应管使用的。飞虹的FHP740高压MOS管为N沟道增强型高压功率场效应管,除了可代替11N40场效应管使用,还可替换10N40、IRF740型号的场效应管。这个FHP740主要应用于300W/220V方波输出的逆变器电路,DC-AC电源转换器,DC-DC电源转换器,高压H桥PMW马达驱动这些方面。[img]http://img.xiumi.us/xmi/ua/1y1O8/i/654f913f0bc5a09412decfc6553dafbf-sz_100392.png[/img]FHP740高压MOS管的封装形式为TO-220/TO-220F,脚位排列是GDS,10A, 400V, RDS(on) = 0.55Ω(max) @VGS = 10 V,且FHP740具有低电荷、低反向传输电容、开关速度快,低内阻,大功率等特点。广州飞虹电子通过不断的研发新品,逐渐把MOS管产品的使用范围拓展到更多电子领域,希望为电子产品的生产厂家提供强有力的元器件保障。例如这款飞虹的FHP740高压MOS管,不仅质优价廉,而且还能替代11N40场效应管。除提供免费试样外,飞虹可根据客户需求进行量身定制MOS管产品。

  • 详述正弦变频振动试验台的优点

    详述正弦变频振动试验台的优点

    正弦变频振动试验台主要是提供产品在制造、运输以及使用的过程阶段中的振动环境,鉴定产品是否有承受此环境的能力,用于发现早期故障,模拟实际工况考核与结构强度试验,被广泛应用于国防、航空、航天、电子、电器、汽车制造等行业,在我们使用该设备的时候,该设备具有哪些优点呢?一起来了解下吧。  1、生产时,正弦变频振动试验台完全可以一边振动一边来测量,使产品的不良率提早被发现。  2、质量时,设备可以完全分析出每一批产品所产生的不同点与不合格点,而设计时,能分析出破坏点、易不良点。  3、正弦变频振动试验台具有耐久测量的优点,可以让产品耐久使用,使不耐久的组件能提早改进振动功能。  4、设备具有着垂直、水平、连续动作、随机振动、正弦波以及扫频功能可以任意设定真正标准来回扫频。  除上述内容外,正弦变频振动试验台还具有着可程式功能,可以完全任意调整每段任意设定可循环。http://ng1.17img.cn/bbsfiles/images/2017/03/201703311705_01_3081755_3.jpg

  • 【原创】怎样选择逆变器的蓄电池容量

    蓄电池是逆变器系统中非常重要的组成部分。用户在选购蓄电池时,应选择品质好、电量较大的品种,大容量的蓄电池使用时间长,同时能为大功率用电设备的瞬间启动提供足够的电流。对于一些大功率的用电设备,建议蓄电池应为200AH(1000W),功率再大时,最好使用400AH的蓄电池。如何根据使用的电器来确定蓄电池的容量,简单的方法就是将所有用电器的功率,乘以蓄电池每次充电间隔之间的使用时间。计算电器耗电量的单位不外是功率或伏安,下面按每天充一次电为例,具体计算结果如下:负 载 消耗的电量 使用时间(充电之间) 瓦时(功率×使用时间)电视与 115 瓦 3 小时(每天1小时) 345咖啡机 750 瓦 1 小时(每天20分钟) 750微波炉 800 瓦 半小时(每天10分钟) 400合 计 1665 瓦 4.5 小时 1495将瓦时除以10,就可将瓦时转换为安时(在30℃):1495瓦时÷10=149.5安时。对于上述负载,一个150安时的蓄电池就可满足需要。但在这种情况下,蓄电池就将电放尽,而一般蓄电池放电的理想状态为50%,故对于上述负载,用户就需要一个300安时的蓄电池。 蓄电池的电量(安时)越大,供电能力就越强,蓄电池过度放电的可能性就越小。蓄电池的寿命取决于其放电深度,放电深度越大,使用寿命就越短。当负载增加时,蓄电池的电量也应该增加。这样就可能需要使用多块蓄电池。两块蓄电池联接的方法为:将蓄电池的正极与正极、负极与负极联接。这样蓄电池的电量就会增加一倍,而电压与一块蓄电池的电压一样。将不同生产厂商或不同安时的蓄电池联接在一起的做法是不可取的,因为这样会减少蓄电池的使用寿命。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制