当前位置: 仪器信息网 > 行业主题 > >

淬火冷却检测仪

仪器信息网淬火冷却检测仪专题为您提供2024年最新淬火冷却检测仪价格报价、厂家品牌的相关信息, 包括淬火冷却检测仪参数、型号等,不管是国产,还是进口品牌的淬火冷却检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合淬火冷却检测仪相关的耗材配件、试剂标物,还有淬火冷却检测仪相关的最新资讯、资料,以及淬火冷却检测仪相关的解决方案。

淬火冷却检测仪相关的资讯

  • 新能源混合动力和纯电动车油液和冷却液锈蚀检测新仪器——CB10来啦!
    还记得CT10自动防锈性能试验钢棒分级测定仪吗?用于ASTM D665, D7548, GB/T 11143试验的精确评级。现在他的好搭档CB10自动防锈性能试验仪终于面世啦!CB10自动防锈性能试验仪&CT10自动防锈性能试验钢棒分级测定仪主要用于测量油品的防锈性能。在许多情况下水与润滑油混合,会导致零件生锈,为了评定润滑油防锈性能ASTM D665,GB/T 11143应运而生。CB10 & CT10符合ASTM D665和GB/T 11143试验要求。并在基础上扩展了用于NACE TM0172测定石油产品管道中介质腐蚀性的试验方法。CB10&CT10也是新能源混合动力和纯电动车油液和冷却液锈蚀检测有效方案。CB10自动防锈性能试验仪为测试实验提供了更高的测试精度,并且简化了试验准备工作,大量减少了人工操作。CB10可以自动进行样品定位,自动完成实验过程中的注水,同时可预先编程测试程序扩展测试条件,通过触摸屏界面可同时控制2个独立的测试位。使用CB10只需3步,1)将样品倒入烧杯中,2)将装有样品的烧杯放在CB10上,3)选择测试方法并开始测试。整个测试过程中,您无需惦念到达目标温度后加入钢棒,也无需担心忘记加入蒸馏水(或其他水)。CB10搭载1L储水量,以常规试验使用计算,可完成至少16次平行测试,同时配有自动蓄水监测系统,不必再为了是否加水而疑惑。如今有了CB10自动防锈性能试验仪的CT10自动防锈性能试验钢棒分级测定仪如虎添翼。将CB10测试后的钢棒,直接放入CT10中,高精度视觉评级系统为您快速出具精确客观的评级结果,同时可自动上传结果到LIMS系统,包括钢棒的分析图像方便您的后期溯源。CB10&CT10自动防锈性能试验系统给您防锈性能评估实验更方便更准确更省心的测试体验!
  • 钢的淬透性硬度检测 | 乔米尼 | JOMINY
    淬透性硬度检测乔米尼 | Jominy乔米尼 | Jominy硬度检测前言淬透性是衡量淬火能力的一种以试验为依据的指标,指在规定条件下用试样淬透层深度和硬度分布来表征的材料特征,它主要取决于材料的临界淬火冷速的大小。钢材淬透性好与差,常用淬硬层深度来表示。钢材的可淬透性及其稳定性决定了钢材的主要热处理工艺性能。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。影响钢材淬透性的主要因素有:钢材的化学成分、淬火加热温度、冷却介质的特性、冷却的方式方法、零件的外形尺寸以及加热方式等。淬透性乔米尼末端淬火钢的淬透性是由奥氏体在淬火期间分解为铁素体,珠光体、贝氏体以及马氏体的不同冷却速度所决定的。淬透性通常采用顶端淬火试验测定(或称Jominy试验)。1938年,乔米尼(Jominy) 和伯格霍尔德(Boegehold) 首先用渗碳钢做了乔米尼末端淬火试验。不久之后,乔米尼末端淬火试验形成了标准,即1S0642、ASTM A255 和 SAE J406,我国是GB225,即“钢的淬透性末端淬火试验法”。顶端淬火时冷却速度由淬火端沿试棒逐渐减小,组织和硬度随之相应地变化,由此得到的硬度变化曲线称为淬透性曲线或Jominy曲线。试验圆棒的尺寸通常是:直径25mm,长 100mm, 一端带有法兰。有时根据需要,试验圆棒的尺寸会有所改变。乔米尼硬度的测定和准备试样准备在平行于试样轴线方向上磨制出两个相互平行的平面,磨削深度应为0.4mm~0.5mm。磨制硬度测试平面时,应采用能供充足冷却液的细砂轮进行加工,以防止任何可能的加热而引起试样组织发生变化。硬度检测应采取措施以保证在测试硬度期间试样和支座之间良好的刚性周定。硬度计上试样的移动装置应能准确对准硬度测试平面的中心线,并使压痕位置精度在土0.1mm以内。硬度压痕点应沿平面的中心线分布。可用GB/T4340.1的维氏硬度HV30测量结果来代替HRC硬度测试。应保证在第一个平面上的硬度压痕的凸起边缘不会影响第二个平面的测试。硬度测量点为绘制表示硬度变化曲线的有两种检测法:1)通常测量离开淬火端面1.5mm、3mm、5mm、7mm、9mm、11mm、13mm、15mm前8个测量点和以后间距为5mm的硬度值(如上图所示)。淬透性的表示方法
  • 勤翔推出冷却CCD荧光及化学发光成像系统
    ClinxChemiScope系列荧光及化学发光成像系统是一款同时适用于荧光成像分析及化学发光成像分析的仪器。系统选用高分辨率数字冷却CCD相机结合高通透镜头系统,使其能够捕获到信号极其微弱的荧光及化学发光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。激发光源及滤光片可根据用户的不同需求进行定制,扩大了荧光/化学发光成像的应用范围,是目前用于生命科学领域中功能性最强、性价比最高的研究工具之一。 随着生物科研的日益广泛和深入,客户对荧光及化学发光分析的检测仪器的需求愈来愈多,要求也越来越高。针对目前国内高端化学发光成像系统基本依赖进口的现状,我们自主研发生产了高性价比的ChemiScope系列荧光及化学发光成像系统,无疑为我们中国的生物科研人员提供了更好的选择。
  • NO拆卸!只需两步,FLIR ONE Pro高效排查汽车发动机冷却液故障
    FLIR红外热像仪可协助汽车故障的诊断上次小菲为大家分享了汽修专家叶工诊断鼓风机供电线路虚接问题详情戳这里:实地案例|汽修工程师,如何化解难以察觉的“小问题”?今天小菲再来跟大家分享一下叶工使用FLIR ONE Pro手机红外热像仪查找发动机冷却液温度过高的过程吧~故障初诊:冷却大循环不良一辆2005款现代伊兰特车,搭载G4GA发动机,累计行驶里程约为24.3万km。车主反映,该车行驶中组合仪表上的发动机冷却液温度表会指示到红色刻度线,怀疑发动机冷却液温度过高,于是进厂检修。接车后试车,发现组合仪表上的发动机冷却液温度表确实会指示到红色刻度线。用故障检测仪检测,无相关故障代码存储:读取发动机数据流,发现发动机冷却液温度为99℃,偏高。故障伊兰特车发动机数据流(截屏)打开发动机室盖,发现散热风扇高速运转;检查冷却液液位,处于正常范围;用手感觉散热风扇的出风情况,出风量正常,但出风温度较低,推断冷却系统大循环不良。查看维修资料得知,该车冷却系统结构与下图所示基本一致,由此推断导致该车冷却系统大循环不良的原因有:节温器损坏(无法打开)、散热器堵塞、冷却液泵损坏(轴承松旷、叶片破损等)。冷却系统结构对比温度差,发现故障点用FLIR红外热成像仪测量散热器进液管、散热器出液管和小循环回液管的温度,发现散热器进液管温度为67℃,散热器出液管温度为23.8℃,小循环回液管温度为46.8℃。对比散热器出液管和进液管的温度可知,冷却系统无法大循环,猜测原因可能为节温器没有打开,但小循环回液管中的冷却液是不受节温器控制的,为什么温度也过低呢?分析可知,冷却系统小循环也不正常,导致节温器处的冷却液温度过低,使节温器无法打开。故障伊兰特车散热器进液管、散热器出液管和小循环回液管的温度为验证冷却系统小循环的情况,用FLIR红外热成像仪测量暖风热交换器进液管和出液管的温度,发现暖风热交换器进液管的温度为32.4℃,出液管的温度为30.7℃,由此说明冷却系统确实也无小循环。诊断至此,推断导致冷却系统没有大循环和小循环的原因为冷却液泵损坏。故障伊兰特车暖风热交换器进液管和出液管的温度拆检冷却液泵,发现冷却液泵的叶片已完全腐蚀,确认故障是由此引起的。更换上新的冷却液泵后试车,组合仪表上的发动机冷却液温度表指示正常:再次测量散热器进液管、散热器出液管和小循环回液管的温度(此时节温器没有打开),小循环回液管的温度为77.7℃,说明冷却系统小循环恢复正常。正常伊兰特车散热器进液管、散热器出液管和小循环回液管的温度再次测量暖风热交换器进液管和出液管的温度,进液管的温度为72.9℃,出液管的温度为65.3℃,恢复正常,故障排除。正常伊兰特车暖风热交换器进液管和出液管的温度FLIR热像仪:让故障定位更简单回顾整个诊断过程,在懂得该车冷却系统循环原理的情况下,只需要用FLIR红外热成像仪测量2个区域内冷却液管的温度,便锁定了故障点,避免了拆检甚至误换节温器,省时省力非常简单,大大提高了维修效率。在本次汽修诊断过程中使用的是FLIR ONE Pro手机红外热像仪,这款热像仪小巧轻便,配合智能手机即插即用,非常方便!它能够测量介于-20°至400°C之间的温度,热灵敏度可检测到70mk的温差,支持最多3个点温仪和最多6个温度感兴趣区域,可应用在我们的日常工作生活中,比如检查电气面板、查找暖通空调故障、检测房屋水损问题等。
  • 超冷原子云制冷有望带来新的精密检测设备
    瑞士巴塞尔大学物理学家开发出一种新的制冷技术,用超冷原子气体作制冷剂,把一种膜振动冷却到绝对零度以上1摄氏度之内。这一技术可用于给量子机械系统制冷,有望让量子物理实验系统变得更大,并带来新的精密检测设备。相关论文发表在最近的《自然· 纳米技术》杂志上。   超冷原子气体是目前最冷的物质之一,是用激光束把原子陷落到一个真空室内,使它们运动得越来越慢,由此温度达到绝对零度以上不足百万分之一摄氏度。在这种温度下,原子服从量子物理法则:它们就像一个个小波包那样来回运动,能同时处在多个位置并互相叠加。目前已有许多技术利用了这些特征,如原子钟及其他精密检测仪器。   在新研究中,巴塞尔大学物理系教授菲利普· 图特莱恩领导的研究小组就是用这种超冷气体作为制冷剂,把一块1毫米见方的振动膜冷却到绝对零度以上不足1摄氏度。据物理学家组织网近日报道,该膜是一块50纳米厚的氮化硅膜,上下振动就像一面小鼓的鼓皮。这种机械振动是永远不会完全静止的,它表现了一种热振动,取决于膜的温度。   由于原子极微小,迄今造出的最大原子云也只有几十亿个超冷原子组成,比一粒沙子包含的粒子数还少,所以原子云制冷的力量极为有限。   &ldquo 这里的诀窍是,希望膜以何种模式振动,就把原子的全部制冷力量都集中到这种振动模式上。&rdquo 研究小组成员安德里亚· 乔克尔说,原子和膜之间的相互作用由激光束引起,&ldquo 激光对膜和原子产生了压力,膜的振动改变了光对原子的压力,反之亦然。&rdquo 激光能跨越几米远的距离传递制冷效应,所以原子云无需直接与膜接触。这种连接作用还可以通过两面镜子组成的光学共振器放大,膜在两面镜子之间,就像三明治。在本实验中,虽然薄膜包含的原子数是原子云的10亿倍,研究人员还是观察到了很强的制冷效应。   以往科学家只是理论上提出,可以用光来连接超冷原子和机械振荡。本研究是世界上首次在实验中实现了这一系统,并用它来给振荡物体制冷。研究人员指出,如果进一步改进该技术,还可能把膜振动制冷到量子力学基态。   对研究人员来说,用原子冷却膜只是第一步。图特莱恩说:&ldquo 与光致作用相结合,能很好地控制原子的量子性质,这为量子膜控开辟了新的可能。&rdquo 人们有可能用相对宏观的机械系统来做量子物理实验,以前所未有的精确度检测膜振动,反过来开发出针对微小力和质量的新型传感。
  • 四川大学Science,解锁可持续能源冷却的新前景!
    【科学背景】随着全球气候变化日益加剧,寻找可持续的热管理策略成为当务之急。传统的石油化学衍生冷却材料由于吸收太阳光而面临效率挑战,这促使科学家们寻求新的解决方案。被动辐射冷却技术作为一种潜在的可持续策略引起了广泛关注,它利用材料本身的特性将内部热量辐射到更冷的外部环境,同时反射太阳辐射,无需外部能源输入即可实现自给自足的冷却效果。然而,现有的石油化学衍生冷却材料往往由于吸收太阳光而效率低下,这导致环境中的温度升高,从而减弱了其冷却效果。为解决这一问题,四川大学赵海波教授、王玉忠院士等人合作,研究开发了具有本征荧光特性的生物质气凝胶。这种新型材料利用DNA和明胶在有序分层结构中的聚集,通过荧光和磷光效应实现了在可见光区域的超过100%的太阳反射率。具体来说,这种气凝胶在0.4至0.8微米的波长范围内,展示了104.0%的太阳加权反射率,从而有效地降低了日照条件下的环境温度高达16.0°C。相关研究成果在“Science”期刊上发表了题为“A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling”的最新论文。研究团队通过水焊接的高效大规模生产方法,成功地实现了这种气凝胶的生产,并且展示了其在修复性、可回收性和生物降解性方面的优异表现,从而完善了整个材料的环保生命周期。这项研究不仅开辟了生物质荧光材料在辐射冷却领域的新应用,还为设计下一代可持续冷却材料提供了一种创新的思路和技术路径。【科学亮点】(1)实验首次发现了DNA和明胶聚集形成有序分层气凝胶,通过荧光和磷光效应实现了在可见光区域超过100%的太阳加权反射率。这一发现标志着在冷却材料领域的创新突破,为开发高效能、环保的冷却材料奠定了基础。(2)实验结果显示,该生物质气凝胶在高强度太阳辐射下能够显著降低环境温度长达16.0°C。这种高效的冷却效果归因于其优异的太阳反射特性,使其成为应对全球气候变化和能源消耗挑战的有力工具。(3)此外,通过水焊接方法高效生产的气凝胶表现出色的可修复性、可回收性和生物降解性,完整体现了环保意识的生命周期管理。这一特性使得生物质荧光材料成为设计下一代可持续冷却解决方案的重要组成部分。【科学图文】图1: 本征光致发光生物质气凝胶板示意图。图2. GE-DNA气凝胶的结构和形貌。图3. GE-DNA 气凝胶的可修复性、可回收性和生物降解性。图4. GE-DNA气凝胶的冷却机理和性能。【科学结论】本文开发出一种基于荧光诱导的生物质辐射冷却策略,旨在解决传统石油化学衍生冷却材料在吸收太阳光能方面的效率挑战。通过利用DNA和明胶(GE)构建的有序多层结构,作者实现了在可见光区域超过100%的反射率,特别适用于白天辐射冷却。此方法不仅优化了太阳光谱的反射性能,还通过荧光和磷光效应显著提高了冷却效果,将环境温度降低了16.0°C。通过水辅助制备技术,作者成功实现了这种气凝胶的大规模生产,生产出具有各向异性结构的气凝胶板,确保了其在光学上的均匀性和稳定性。这种完全由生物质原料制成的气凝胶不仅具有高修复性、可回收性和生物降解性,而且在其整个使用寿命中对环境没有负面影响。这一创新不仅为未来的能效高和可持续发展提供了新的材料选择,还为减少碳排放和能源消耗提供了重要的科学基础和技术路线。参考文献:Jian-Wen Ma et al. ,A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling.Science385,68-74(2024).DOI:10.1126/science.adn5694https://www.science.org/doi/10.1126/science.adn5694
  • 事关电动汽车!国标《机动车冷却液 第2部分:电动汽车冷却液》征求意见
    11月15日,根据国家标准化管理委员会标准制修订计划,交通运输部已组织完成了《机动车冷却液 第2部分:电动汽车冷却液》国家标准的征求意见稿,并公开征求意见。截止时间为2024年1月14日。本标准是GB 29743《机动车冷却液》系列标准的第2部分,其中第1部分GB 29743.1-2022《机动车冷却液 第1部分:燃油汽车发动机冷却液》已于2022年发布。本标准由交通运输部公路科学研究所牵头起草,参与起草的单位还有中公高远(北京)汽车检测技术有限公司、宁德时代新能源科技股份有限公司、统一石油化工有限公司等。电动车冷却液是新能源汽车用量最大的一种工作液体,实现电池热管理系统的温控目标;作为新兴产品,国内外标准尚无相关内容。电动车冷却液标准的建立,对促进我国电动汽车产业健康发展具有重要意义。本标准规定了电动汽车冷却液的产品分类、技术要求和试验方法、检验规则,以及标志、包装、运输和贮存等要求,适用于纯电动汽车动力电池热管理系统中,以乙二醇为防冻剂原料调配而成的电动汽车用冷却液的生产、检验和使用。本标准规定的技术要求包含三方面的内容,分别为通用要求、理化性能要求和使用性能要求。具体指标如下表。通用要求外观颜色气味理化性能要求密度(20.0℃)冰点(原液和50%体积稀释液)沸点(原液和50%体积稀释液)pH值(原液和50%体积稀释液)灰分水分氯含量硫酸盐含量硼含量储备碱度对汽车有机涂料的影响使用性能要求电导率(25.0℃)静态腐蚀(80℃±2℃,336h±2h)循环台架腐蚀(80℃±2℃,1064h±2h)橡胶材料兼容性(80℃±2℃,168h±2h)泡沫倾向(30℃±1℃及80℃±1℃)高温稳定性(135℃±1℃,168h±2h)储存稳定性(60℃±2℃,336h±2h)耐硬水稳定性(90℃±2℃,336h±2h)沉淀物体积标准附件还规定了电车冷却液电导率、静态腐蚀、循环台架腐蚀试验方法以及电车冷却液与橡胶材料兼容性试验方法。详细内容见附件。本标准是强制性国家标准,且为首次制定,填补了电动车冷却液相关领域标准的空白。附件:编制说明_机动车冷却液 第2部分:电动汽车冷却液.pdf征求意见稿_机动车冷却液 第2部分:电动汽车冷却液.pdf
  • 如何为旋转蒸发仪选择合适的冷却循环系统?
    为您的蒸馏实验选择合适的冷却方法,对于整个系统的性能、经济性和效率的影响是超乎想象的。作为蒸馏过程的必需阶段,目前大家常用的冷凝方式主要包括:使用干冰冷凝器、配备或自行搭建冷却循环体系,以及使用自来水进行蒸汽的冷却。但在大多数情况下,需要选购冷却循环系统来做配套设备。冷却循环系统在运行时,通过其制冷系统将加注在水箱中的冷却液冷却,由内置的循环泵将冷却液泵入冷凝器,吸收冷凝器内蒸汽的热量,以达到冷凝的效果,最后将温度升高的冷却液再次回流到水箱进行降温,如此循环交换冷却,实现为旋转蒸发系统提供均一稳定的冷凝温度,同时有效避免使用自来水时可能发生的季节性温度波动。而且作为理想、环保的替代自来水冷却的方法,也有助于实验室节约用水。在您选购合适的冷却循环系统时,需要考虑的重要因素包括:1、最低冷凝温度和相应的制冷能力2、泵压3、泵速4、合适的配件01最低冷凝温度和相应的制冷能力冷却循环系统的最低温度需要等于或低于旋蒸冷凝器以理想速率冷凝溶剂蒸汽的温度。该温度由溶剂的沸点决定。在进行冷却循环系统温度选择和设定时,一般建议遵从“20法则”,即加热锅温度和蒸汽温度、蒸汽温度和冷凝器温度之间各设置20°C的温差。比如,将加热锅温度设置为60°C,调整系统的真空设置以产生40°C的溶剂蒸汽,并在 20℃下进行冷凝操作。所以,溶剂蒸汽温度比加热锅温度低 20℃,冷凝器温度比蒸汽温度低20℃。冷却循环系统通常在 20°C或常温时具有最大的冷却能力,即理想状态下的最大制冷功率参数。随着设置温度越低,设备能实现的制冷能力随之降低。所以实验过程中并非设置的温度越低,冷凝效果越好。这也是为什么实验过程中将冷却循环系统温度设置到最低水平实现的并不一定是理想冷凝效率,因为冷却循环系统的制冷效果需要综合考虑温度和制冷能力两项参数。通过查看产品规格,您会发现针对不同温度下,冷却循环系统有相对应的不同冷却能力。如果需要冷凝器在比较低的温度下工作,就需要深入了解较低温下冷却循环系统的冷却能力。如果旋转蒸发仪需要蒸馏多种溶剂,那么就要根据所需的最低冷凝温度来选择冷却循环系统的功率。如果您的冷却循环系统在其设定温度下功率不足,意味着在实际蒸馏中冷却液将无法达到设定的温度,从而无法提供足够的热传导效应,对蒸汽进行有效冷凝。不能被及时冷却的蒸汽会被吸入真空泵,增加泵组件的磨损并缩短其使用寿命。它甚至可能浸泡泵,造成无法挽回的损坏。另外,如果您的冷却循环系统有过温警报,设置过低的温度可能会导致设备报警并关闭,蒸馏实验中断。02泵压另一个需要考虑的重要因素是冷却循环系统的循环泵泵压范围。冷却循环系统的泵压通常在10-15 psi(0.67-1.03bar)的范围内。如果泵压过低,一旦旋转蒸发仪与冷却循环系统存在一定的高度差(如冷却循环系统置于实验台下方)就会导致冷却液无法在冷凝器中有效循环。如果泵压过高,冷凝器内部因为冷却液压力过大造成破裂的风险就会急剧增加。Heidolph玻璃冷凝器内部最高承受压力为2bar,适度提升了适用范围。所以在选购冷却循环系统时,需要先确认该设备的压力范围以及旋转蒸发仪冷凝器的工作压力范围。一般来讲,大多数离心泵的最大压力为10 psi(0.67bar),从而使其适合与玻璃冷凝器一起使用。另一方面,容积泵和涡轮泵往往具有更高的输出压力,因此更需要重点关注其泵压范围,从而避免因使用相应的冷却循环系统增加玻璃冷凝器破裂的风险或泵压不足导致冷却液无法有效循环。03泵流量冷却循环系统的泵流量会影响冷却液在冷凝器中的停留时间。流速越低,冷却液在冷凝器中停留的时间就越长。随着温度升高,蒸汽和冷却液之间的热传递效率降低。在这种情况下,会增加溶剂蒸气冷凝不充分的风险。虽然目前大多数冷却循环系统的流量相对于其冷却功率而言都足够,但还是需要注意这一点。04合适的配件:冷却液和加强型冷却水管路根据您的应用对温度范围的需求,选择合适的冷却液。如果您需要更低的温度,建议使用乙醇或乙二醇混合物。虽然乙醇直到117.3℃才会冻结,但它的高度易燃性具有一定风险。将其用作冷却液时应格外小心。Kryo 30冷却液是含有抑制剂的单乙二醇和水的混合物,工作温度范围-30到+90°C,燃点约120 °C,是大多数冷却循环水浴匹配旋转蒸发仪的理想选择。选择的冷却水管路应与所使用的冷却液的化学相容性、应用的温度范围以及额定压力相匹配。未能选择正确的管路将导致管路立即或在长时间使用的情况下发生爆裂。如果您在低温下运行,则可使用保温套以减少因为环境温度影响而造成的热损失。加强型冷却水管路(P/N: 591-38000-00-0),内径Ø 8mm,工作温度范围&minus 20到60°C,是连接冷却循环系统与旋转蒸发仪的推荐选择之一。冷却循环系统选购指南Hei-CHILL Pro系列冷却循环系统具备强大的制冷能力,即使使用高极性容积,也能快速达到设定的温度并保持稳定,运行噪音低,可适用于广泛应用。优化的泵送能力,可放置在试验台下运行。配备RS 232接口,可通过海道尔夫控制型旋转蒸发仪集成控制。针对不同的蒸发应用,我们为您提供多种冷却循环系统,以满足您的个性化需求。基本说明1为了保护玻璃冷凝器,冷却循环系统的最大泵压不得超过2 bar(包括压力峰值)2为了获得理想的蒸馏速度,建议遵守四分之三原则:即在冷凝器高度的四分之三处及以下,蒸汽应被有效凝结,形成液滴并作为冷凝物排出,尽量避免蒸汽达到冷凝器的上部四分之一处,因无法及时被冷却导致蒸汽被真空泵吸入,从而影响泵的使用性能3玻璃冷凝器的顶部应始终保持有效的低温状态,以避免蒸汽被吸入真空泵END关于HeidolphHeidolph集团是创新型实验室前处理设备的制造厂商。磁力搅拌器、顶置式搅拌器、台式旋转蒸发仪、工业大型旋转蒸发仪、蠕动泵、混匀器、恒温摇床等相关产品构成了Heidolph实验室设备的产品线。集团总部位于德国南部的纽伦堡附近的施瓦巴赫市。作为Heidolph集团全资子公司,海道尔夫仪器设备(上海)有限公司于2019年正式成立,旨在为中国用户提供更为直接、更快速的服务。如需更多详细信息请致电400-021-7800或邮件sales@heidolph-instruments.cn,我们将竭诚为您服务。
  • 哈希仪器为世博主题馆中央空调循环冷却水处理助力
    世博会主题馆是上海世博会永久性建筑、“一轴四馆”中的重要场馆之一,被喻为“世博会的客厅”。在世博会结束后,主题馆将转为国际一流的标准展览场馆,并于2011年开始对外进行市场化运作。 主题馆中央空调循环冷却水处理采用AOP技术。该项技术经上海同济大学建筑设计研究院推荐,并通过了世博集团委托上海市合同能源管理专业委员会组织业内顶级专家进行的严格评审。目前相关设备已安装调试到位,树立了该技术在公共场馆应用的高端样板。 在世博主题馆中央空调循环冷却水处理中,哈希公司在线水质分析仪器产品应用其中,重点检测PH、电导、硬度、碱度等指标,确保中央空调系统运行正常。 同时,哈希公司也积极参与世博会相关项目。哈希公司为负责向世博会提供直饮水的南市水厂改造项目提供了全部的水质分析仪表,包括原水水质监测,过程监测及出水水质监测,为水厂监测和控制提供准确稳定灵敏的水质数据,致力为世博会的水质安全提供保障。 1972年哈希公司伴随着尼克松总统的访华以中国政府采购的形式进驻中国至今,哈希产品在中国已经有超过30年的成功应用。哈希公司在中国参与了许多国家重点项目,包括节能减排项目,环保应急监测项目,饮用水安全监测项目,以及污水处理项目等。在举世瞩目的北京奥运会上,哈希公司产品被大量应用在奥运场馆及相关配套设施水处理系统中,提供从饮用水安全保障、污水处理、中水回用、雨水综合处理等领域的水质监测预警方案。
  • 润滑油和冷却液系列讲座 之课题一: 冷轧油
    LUM邀请您参加2021年9月14日至17日润滑油和冷却液系列的在线研讨会。本次活动的课题将帮助您更好的了解润滑油以及冷却液的特性,从而帮助您优化并改进您产品的配方。本次课题的在线研讨会都是独立的,您需要单独注册每一个课题。润滑油和冷却液之课题一: 冷轧油课题一将重点讨论润滑剂在冷轧油中的应用。通过案例分析,阐述LUM专利STEP® 技术是如何表征颗粒,液滴以及分散性的特征。如需详细了解,请注册并在线聆听LUM专家的分享。主讲人:Dr. Arnoal Uhl ( LUM 全球技术销售负责人)会议持续时间:60分钟会议语言:英语会议时间:2021年9月14日15:00 (北京时间)报名方法:扫描下方”二维码”填写报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。如有问题,请联系 event@lum-gmbh.de
  • 冷却循环水机性能优越是高效的实验助手
    现代实验室对于精密实验和科研工作提出了更高的要求,而一款功能强大的冷却循环水机成为实验室不可或缺的利器。这种先进设备以其独特的设计和多项强大功能受到了广泛关注,以下是冷却循环水机的几项卓越特点:1. 先进的操作界面: 冷却循环水机采用彩色液晶显示和轻触式按键,为用户提供直观、易懂的操作界面。轻松的设置和监控实验参数使得使用变得非常方便,即便是初学者也能迅速上手。2. 宽敞的浴槽设计: 设备配置了大容量开口浴槽,不仅适应各类实验需求,而且设计合理,方便日常清洗和维护。这样的设计既提高了实验效率,也延长了设备的使用寿命。3. 多层次的报警系统: 为了更好地保障实验的顺利进行,冷却循环水机集成了多种报警接口,包括水位报警、水流报警以及超温报警。及时准确地报警,让用户能够在实验过程中更好地掌握局势,防范异常情况的发生。4. 静音制冷系统: 制冷系统采用进口压缩机和后进风侧出风设计,有效降低噪音水平。这样的设计保证了实验环境的安静,有助于研究人员更加专注于实验工作,提高实验效率。5. 精准的恒温控制: 动态恒温控制系统以及智能PID精确控温技术使得冷却循环水机的温度控制更为精准,温度波动极小,确保实验的准确性和稳定性。6. 强大的循环系统: 配备高性能进口循环泵,循环流量大,压力可调,能够保证长时间连续工作。水流自动检测装置更是提供了额外的安全保障,方便外部循环关闭和堵塞时自动切换到内循环。7. 水质保障: 冷却循环水机采用全不锈钢水路和内置过滤装置,确保水质洁净,为实验提供了可靠的保障。在科研实验领域,冷却循环水机凭借其先进的技术和卓越的性能成为实验室的得力助手,为科学家们提供了高效、便捷的实验条件,推动着实验室工作的不断创新与进步。
  • 新无损检测技术:磁巴克豪森噪声技术国内外研究现状
    p   磁巴克豪森噪声(Magnetic Barkhausen Noise,MBN)技术作为一种新的无损检测技术,可实现对铁磁性材料早期性能退化及微损伤的检测和评估,能够在材料使用早期确定材料表面应力状态、疲劳损伤状况及微观组织变化特性,从而能够及早发现材料早期损伤的部位,为重要设备或构件的安全评价和剩余寿命评估提供可靠依据。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201607/insimg/8512b097-7a8a-4cfc-93a1-05e223c0f2f0.jpg" title=" 640.webp.jpg" / /p p style=" text-align: center " MBN检测装置框图 /p p   span style=" color: rgb(255, 0, 0) "   strong 1. 国外研究现状 /strong /span /p p   目前已有多国的研究人员开展了MBN技术的研究,如德国弗劳恩霍夫研究所、英国纽卡斯尔大学、牛津大学、美国爱荷华州立大学、芬兰Stresstech公司、坦普雷科技大学、巴西圣保罗大学、伊朗马什哈德菲尔多西大学以及印度科技大学等。 /p p   国际上对于MBN效应的研究及应用主要集中在应力检测、疲劳状态分析、硬度检测、微观组织分析、晶粒度测量及表面热处理工艺评价等方面,并提出了许多改善MBN信号的处理方法。 /p p    strong (1)材料应力检测 /strong /p p   材料所受应力主要有两大方面: /p p   一是外界加载应力,涵盖压应力与拉应力、单向应力与周期应力、低应力和超限应力等 /p p   二是材料内部残余内应力,包括残余拉应力和残余压应力等。 /p p   对于外加应力,英国的M. Blaow等研究人员在探究铁磁性材料受外力加载弯曲过程中的MBN信号变化时,指出应力会影响材料的磁化能力,改变MBN信号的波峰幅值和波峰位置,并且指出拉应力下的MBN信号多为单峰信号,而压应力下的MBN信号会出现多个峰值。2014年,德国的M.S. Amiri等研究人员指出应力的各向异性和晶体的各向异性对材料的磁化起决定性作用,在铁磁性材料的易磁化轴方向上,应力对MBN信号的影响大于其他方向,并通过磁致伸缩曲线和磁化曲线进行了验证说明。 /p p   对于材料内部的残余应力,目前已有较多的研究成果。如印度的M. Vashista长期研究材料表面残余应力和MBN信号的关系,并指出材料在弹性范围内,MBN磁响应信号与残余应力成正相关的关系。 /p p    strong (2)疲劳状态检测 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201607/insimg/d4675d39-fa9e-403a-ac32-e3ebfd429b27.jpg" title=" 640.webp (1).jpg" / /p p style=" text-align: center " 金属疲劳过程中产生的缺陷 /p p   目前非常急需铁磁性材料疲劳状态的全生命周期无损检测和评估技术,特别是针对疲劳裂纹形成前和形成初期的检测技术,而MBN技术为解决这一问题提供了有效的理论支撑和技术支持。目前疲劳过程中的MBN信号变化的研究主要集中在位错密度的增加、滑移带的形成、裂纹的萌生等微观结构的变化,以及缺陷数目、畴壁与MBN峰值电压的相互作用等方面。 /p p   金属在循环载荷的作用下,MBN信号变化显著,为了探究循环载荷和单向载荷对MBN信号影响的区别,2004年英国的V.Moorthy研究了En36钢在超限应力(最大达1700MPa)循环作用下的MBN信号特性,指出与单向载荷相比,高应力下的循环载荷会增加材料的位错密度,会使MBN信号峰值减小,加速材料疲劳。 /p p   对于部分非磁性的金属材料,利用MBN技术也可进行疲劳检测。2005年,Vincent等研究人员将MBN技术用于304L奥氏体不锈钢低周疲劳的检测,由于不具有磁性的& amp #947 铁在冷轧及循环载荷作用下会产生形变,诱导马氏体产生,所以研究人员提出了& amp #945 ’-马氏体内应力计算的复合模型,通过MBN技术可以测得马氏体体积分数,评估非铁磁性奥氏体不锈钢的疲劳损伤特性。 /p p    strong (3)金属微观组织和晶粒度分析 /strong /p p   关于金属内元素化学成分对MBN信号的影响,巴西的M.F.Campos等研究人员于2011年重点研究了合金钢中镍含量对材料硬度和MBN信号幅值的影响,总结出镍含量少的合金磁畴更易发生偏转。英国的V.Moorthy在2014年比较了碳含量不同(含碳量分别为0.20%和0.41%)钢的MBN信号的差异,并对试件进行了金相组织分析,指出碳含量的变化只会影响波峰的位置,对波峰的高度影响不大,还指出低频激励下的碳钢MBN信号存在两个波峰,而高频激励时只有一个波峰。 /p p   材料中的相含量(如马氏体、铁素体等)不同会影响MBN信号。2014年,伊朗的S. Ghanei详细研究了双相钢中马氏体含量和MBN信号峰值的关系,得出马氏体含量的增大会使MBN信号峰值增大的结论。VINCENT A等研究人员通过研究奥氏体和马氏体相互转换前后MBN信号的差异,来判断材料中的马氏体含量。 /p p   在晶粒度方面,S. Ghanei等研究人员于2014年分析了铁素体-马氏体双相钢中晶粒各向异性、晶体边界等微观结构对MBN信号的影响,指出晶粒尺寸的减小会使晶界密度增大,导致MBN信号增加。墨西哥的P. Martí nez-Ortizyan等研究人员于2014年研究了晶粒的易磁化轴和MBN信号主峰之间的关系,通过转动试样对其进行360& amp #176 的MBN检测,通过MBN信号能量的不同来确定材料的易磁化轴方向。 /p p   目前对于金属内部化学成分、相含量和晶粒度的研究,大多结合金属材料的金相组织分析进行,虽然得出了MBN信号与相含量相关的定性规律,但是实际工程中通过MBN信号来反向估测相含量的应用或仪器甚少。主要原因在于: /p p   ①MBN信号受多种因素的影响,相含量改变往往伴随着其他影响因素的改变,缺乏通用的定量结论来描述相含量与MBN之间的关系,若单从MBN信号来推测相含量往往精度不高,有失偏颇。 /p p   ②在进行化学成分和含量检测时,往往需要通过和已知含量的标准试样MBN信号进行参考比对,实际工程中获取一致的标准试样难度较大。 /p p    strong (4)材料硬度测量 /strong /p p   为了探究由温度变化引起材料硬度不同对MBN信号的影响,2003年,英国的V.Moorthy等研究人员将En36钢加热至不同温度(192℃~900℃)后进行MBN检测实验。结果表明En36钢的MBN信号对材料温度的变化十分灵敏,材料温度越高,其表面硬度越小,测得的MBN信号幅值越大,实验中可检测到的MBN信号的最大深度为425& amp #956 m。材料热处理后的冷却速率对硬度的影响也较大。2012年,巴西的F.A.Franco等研究人员探究了冷却速率对MBN信号的影响,用顶端淬火的方法设计出材料中不同区域的不同冷却梯度,指出材料冷却速度越快MBN信号越弱。 /p p   国外许多学者都总结得到材料硬度越大MBN信号越弱这一结论,这对于材料硬度测量有很好的指导作用。由于MBN技术只能检测材料表面硬度,而对内部不同的硬度梯度无法进行有效检测,因此无法实现材料内部深度较大区域的硬度检测。 /p p    strong (5)材料表面处理工艺评价 /strong /p p   德国弗劳恩霍夫研究所在金属表面处理和表面残余应力的MBN研究方面有较为显著的成果。2009年利用MBN对不同热处理的合金进行了微残余应力的检测研究,重点比较了室温(20℃)和居里温度(230℃)下残余应力趋于饱和时MBN信号之间的差异,发现材料处于居里温度下的MBN信号远小于室温下的MBN信号。2011年,通过MBN设备对齿轮表面质量进行检测,通过表面(50& amp #956 m内)MBN信号的特征,推断出材料表面硬度和硬化层深度。 /p p   芬兰的Suvi Santa-aho等研究人员近年来将研究方向聚焦在探究铁磁性材料表面激光加工工艺和MBN信号的关系上,分析了硬化钢渗碳层深度、残余应力等表面质量与激光工艺之间的关系,提出了避免材料重淬火和应力饱和的铁磁性材料表面控制热损伤的技术。 /p p   MBN技术是评价材料表面加工工艺的有效方法之一。目前,通过MBN技术进行表面处理工艺的检测已有成熟的商业化设备,已经应用于一些金属零部件的表面加工工艺检测中,如芬兰Stresstech公司的Rollscan 300检测仪可实现对材料表面加工工艺、残余应力的检测。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201607/insimg/ef0dccfa-f27f-4b09-9fa8-ff5b5743963f.jpg" title=" 640.webp (2).jpg" / /p p style=" text-align: center " Rollscan 300表面质量检测仪 /p p   strong   span style=" color: rgb(255, 0, 0) " 2. 国内研究现状 /span /strong /p p   国内对MBN技术的研究始于20世纪80年代中期,近年来开展MBN信号研究的机构主要有南京航空航天大学、北京化工大学、上海交通大学、沈阳工业大学、吉林大学等。 /p p   1988年,原北京钢铁学院的穆向荣等研究人员开展了对双相钢的MBN效应的研究,指出利用MBN技术,可以实现对材料组织结构和组织性能的研究。1994年,华中理工大学的马咸尧等研究人员研究了MBN效应受应力影响的规律,还将MBN技术和磁声发射(MAE)技术进行了对比,指出MBN信号特征依赖于铁磁材料的组织结构和应力状态,拉应力降低了MAE信号强度,而增加了MBN信号强度 压应力可降低MBN信号强度,提出将两效应结合测量,既可提高测量拉应力的灵敏度,又可判别应力的正负值。 /p p   2003年,上海交通大学的陈立功等研究人员开始研制MBN传感器及信号采集处理系统,研究了残余应力和MBN信号的关系,建立了结合虚拟仪器技术的MBN残余应力检测系统,利用该系统进行了铁磁材料热处理后残余应力的分析,指出热处理后的板材MBN强度呈下降趋势。2008年,他们改进了针对各向异性及非均匀残余应力的MBN传感器。 /p p   从20世纪90年代初至今,北京化工大学的祁欣等研究人员持续开展了巴克豪森效应在残余应力检测、硬度和晶粒度分析、相含量的检测及疲劳寿命的预测这四个方面的研究,结果指出:在利用MBN效应进行铁磁性材料内部应力的测量时,激励信号不能过大,否则材料处于饱和磁场中时,会降低MBN信号对内部应力变化的敏感度。2011年,他们设计了抗干扰、输出信号信噪比高的MBN传感器。 /p p   南京航空航天大学的王平等研究人员于2008年开始对MBN现象进行研究。2010年,提出了在高速运行条件下,利用MBN效应,用直流电源作为线圈的激励信号来进行钢轨应力检测。2011年,比较了三角波和正弦波对MBN信号的影响,总结出用三角波作为激励信号时MBN信号的特征值呈现出更好的线性度。2012年,研制了第一代便携式MBN铁轨应力检测仪。2013年,将BP神经网络算法引入了MBN信号处理中,得到应力测量值和真实值的平均误差为1.0618%,检测可靠度较高。2015年,丁松提出了一种名为“偏度skweness”的新的MBN信号特征值评估方法,利用该方法可以获得比均方根电压(RMS)评价法更多的MBN信息。 /p p style=" text-align: right "   节选自《无损检测》2016年第38卷第7期 /p p style=" text-align: right " 本文作者:沈功田,博士,研究员,博士生导师,中国机械工程学会无损检测分会主任委员、中国特种设备检测研究院副院长,主要研究方向为声发射、红外和电磁等无损检测新技术。 /p p br/ /p
  • 陆恒生物发布陆恒总磷总氮检测仪LH-T725新品
    总磷: 操作步骤说明: 1预估水样总磷含量,选择合适量程。2.按照对应量程加入水样和试剂:★水样总磷含量为0-2mg/L时: ①吸取5ml纯净水加入到一支空试剂管中(调零管)、 ②吸取5ml水样加入到另一空试剂管中。 ★水样总磷含量为0-20mg/L时: ①吸取5ml纯净水加入到一支空试剂管中(调零管)。 ②吸取0.5ml水样和4.5ml纯净水加入到另一空试剂管中。 3.向试剂管中各加入一包试剂1,拧紧试剂管盖子,上下用力摇晃约5秒(试剂未完全溶解不影响检测)。 4,将试剂管放入消解仪中,在150°C下消解15分钟。消解完成后,将试剂管取出放在试管架上冷却至80C左右( 手能承受),再次摇匀试剂管中液体。 5.待试剂管冷却至室温后,打开调零管瓶盖,加入1包试剂2,摇晃使其完全溶解,再加入7滴总磷激活剂P,拧紧试剂管盖子,摇晃5秒,放入检测仪中1分钟后,调零。 6.打开待测水样试剂管,加入1包试剂2,摇晃使其完全溶解,再加入7滴总磷激活剂P ,拧紧试剂管盖子,摇晃5秒,放入检测仪,1分钟后,显示检测结果。 注意事项: 1总磷测定时加入激活剂之后,必须在10分钟之内完成检测。 2试剂管表面不能有水渍、划痕、灰尘、指纹等。 3.试剂包装袋属于易撕袋,任何面都可以撕开注意试剂添加顺序。 4.调零试剂管在10分钟内可重复使用。干扰因素: 砷及砷酸盐、硫化物、重金属、亚硝酸盐有干扰作用。总氮: 操作步骤说明: 试剂1取一 包试剂1(1)粉包,溶于5mI试剂1(2)中,完全溶解后即为试剂1 ( 10次用量)。若未完全溶解,可于25~40C水浴加热溶解,2~8C冷藏保存一周内可用。 (危险:配套试剂均有腐蚀性,操作时请佩戴手套,如不慎接触到皮肤,请立即用大量清水冲洗。) 1打开消解仪电源,设定温度为125C,设定时间为30分钟,并进行预热。 2.准备三只空试管,标明A/B/C。 3.向试管A中加入1mL水样,再加入0. 5mL总氮试剂1 ,盖上盖子,上下颠倒混匀5次。 4将试管A插入已加热至125C的消解仪中,盖上盖子,加热消解30min。 5消解结束后,立即将试管A取出,放入15-20C水中冷却5min (冷水液面需高于试管内液面)。6.从冷却后的试管A中取0.25mL消解液加入到试管C中,向试管C中加入2滴试剂2,然后加入0.6mi试剂3,盖上盖子左右摇匀10下,计时5min。用移液器再加入5ml试剂4,加盖上下颠倒混匀5下后于15-30C水浴冷却5min。 7.调零管:向试管B中加入5mL纯净水。 8.将试管B擦拭干净,放入检测仪中,调零。9.将试管C擦拭干净,放入检测仪中,读数。注意事项: 1.试剂1 ( 1)需完全溶解于试剂1 (2)中,2~8C冷藏保存- -周内可用。 2.试剂2需要避光保存,须沿着试管中央处加入,避免沾附管壁。 3.试剂4需要缓慢加入试管,防止溅出。加入试剂4冷却完毕后、测定前勿打开试管盖。 4.试剂管表面不能有水渍、划痕、灰尘、指纹等。创新点:1.整体设计美观,彩色大屏操作,方便快捷。 2.COD检测稳定性可达± 3%,国标范围为正负%5。 3.标配16孔石墨消解仪,可以同时操作不同的项目,节省时间。 陆恒总磷总氮检测仪LH-T725
  • 电泳冷水机的间接冷却方式
    电泳冷水机是对于电泳涂装、电镀生产线、阳极氧化等都是针对于电镀槽里面的电镀溶液来冷却。电泳冷水机冷却方式有两种,直接冷却与间接冷却。下面讲解下电泳冷水机间接冷却的制冷原理:冷却塔底盆里的水通过水泵输送到冷水机的冷凝器,对冷水机的冷凝器进行降温。再流回冷却塔内喷淋而下时通过冷却塔顶上的风扇对水进行了降温,再流回冷却塔底盆,就这样周而复始的运行。冷水机的冷凝器散热同时里面的冷媒液化,再流入水箱内的蒸发器进行蒸发,而蒸发时要吸收热量,从而就对水箱里的水进行了降温,降温后的水通过水泵输送到热交换器(中间隔开,一边水,一边硫酸,),再通过热传递的过程就对硫酸进行了降温,就这样一个循环过程。田枫冷水机的优势在于安装方便,使用寿命相对比直接冷冻的长,酸碱不易腐蚀冷水机。这种冷水机一般换热器为板换的密闭的。 文章原创:上海田枫实业有限公司 www.tfsye.com上海田枫实业有限公司,专业生产各类制冷设备,包括层析冷柜,冻干机,冷水机,超低温冰箱,恒温槽等,一流的专业,一流的服务,上海田枫是您的最佳选择!
  • 肉类新鲜度检测仪@2021源头厂家直发
    肉类新鲜度检测仪@2021源头厂家直发(云唐)mma ministrKatederillerani肉是营养价值很高的食品,同时也非常适于微生物的生长繁殖,在加工,运输.贮藏,销售等过程中,都有被污染的可能,因此,为了确保肉品的质量,必须做好卫生检验工作.大部分人只有在买不到新鲜肉的时候,才会选择冷冻的肉制品。近几年,又出现了一种名为冷却肉的肉制品,那么,热鲜肉、冷冻肉、冷却肉各有什么优缺点,该如何选食呢? 热鲜肉 凌晨宰杀、清早上市销售的鲜肉,一直被认为是最鲜的肉。事实并非如此。刚宰杀不久的动物,其肌肉纤维呈僵直状态,只有经过一定时间的解僵、成熟(称为熟化),氨基酸、肽类等风味物质才能形成,肉的味道才会鲜美。(云唐)肉类新鲜度检测仪为集成一体化食品安全快速检测分析设备,广泛应用于食药监局、卫生部门、学校食堂、农业部门、养殖场、屠宰场、食品肉产品深加工企业、检验检疫部门等单位使用。检测项目:可快速检测病害肉、组胺、挥发性盐基氮,仪器预留其他项目检测程序和端口,根据日后需求可方便的自主增加检测项目。 【适用样品】猪肉、牛肉、羊肉、鱼类等功能介绍:1、安卓智能操作系统,采用更加高效和人性化操作,仪器具有网线连接、wifi联网上传、GPRS无线远传功能,快速上传数据。2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能。3、检测通道:≥12个检测通道,可以同时测试多个样品,每个样品由程序控制分别独立工作,不会互相干扰。 4、显示方式:≥8英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。 5、配备新一代嵌入式热敏打印机,可选择手动打印或者自动打印,检测完成可自动打印检测报告和二维码。 6、光源采用进口超高亮发光二极管,高精度、稳定性强、光源可控、可以关掉不使用的光源,功耗更低。 7、采用USB2.0接口设计,方便数据的存贮和移动,并可随时与计算机直接相连,并且可用计算机控制仪器。实现数据查询、浏览、分析、统计、打印等。 8、仪器带有监管平台。数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理,检测区域食品安全长短期动态,达到食品安全问题预估、预警9、仪器具有品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。10、样品处理简单省力,整体操作快速、安全、便捷。11、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。12、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。13、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。14、仪器具有重新校准、锁定、恢复出厂设置功能。15、支持U盘存储。 结果判定线可修改,对照值标定值可保存,断电不丢失数据。
  • 奔腾冷却液沸点测定仪完成升级
    产业调研网发布的2022-2028年全球与中国石油凝点测定仪行业现状分析及发展趋势预测报告首先介绍了石油凝点测定仪的背景知识,包括石油凝点测定仪的相关概念、分类、应用、产业链结构,国际市场动态分析,国内市场动态分析,宏观经济环境分析及经济形势对石油凝点测定仪行业的影响,石油凝点测定仪行业国家政策及规划分析,石油凝点测定仪产品技术参数,生产工艺技术,产品成本结构等;冷却液沸点测定仪平衡沸点仪符合标准: SH/T0430、SH/T0089,一机多用,它由电子调压器、圆形大功率电炉加热器、沸点烧瓶及冷凝管等组成,仪器上盖板选用不锈钢制成,耐热不变色,圆形加热炉和方便灵活的电子调压配合,使试样在指定时间内轻松沸腾。 仪器要求:上盖板选用不锈钢制成,坚固耐压。技术参数1、输入电压:AC 220V±10% 50HZ 2、输入功率:1.0KW3、调压范围:0~220V4、环境温度:室温25℃左右 5、相对湿度:
  • ATAGO(爱拓)折射计在汽车冷却剂中的应用
    ATAGO(爱拓)迷你数显折射仪,专业防冻液检测更快捷 随着冬季的来临,气温逐渐降低,为使汽车在冬季低温下仍能继续使用,发动机冷却液都加入了一些能够降低水冰点的物质作为防冻剂,保持在低温天气时冷却系统不冻结。据调查,全球50%以上的汽车发动机故障来源于冷却系统!由此可见合理选配防冻液的重要性。防冻液具有防腐蚀,沸点高,防垢,低冰点等优点。添加合适防冻液保证其测冷却系统的工作状态会直接影响车辆的正常运行及车辆的使用寿命。 目前市场上所销售的大部分防冻液是以乙二醇为主要原料的产品,再加入适量的有机或无机盐类来达到防腐防锈的作用。防冻剂是防冻液的主要成分,约占防冻液原液的92 %~98 %,防冻液原液可以根据各地气温的高低,按一定比例与水混合,将冰点控制在适当范围内。各国从50年代以来几乎全部采用乙二醇作为防冻剂。乙二醇是一种无色、透明、稍有甜味和具有吸湿性的粘稠液体,它能以任何比例与水相溶。乙二醇的浓度不同时。冰点亦不同。 乙二醇--水防冻液的冰点同乙二醇质量分数不成线性关系。它的水溶液的冰点并不完全是随浓度的增加而降低,当浓度超过70 %时,冰点反而上升。所以在配制过程中,应从实际出发加以合理选择,以达到防冻性及经济性的要求,进行防冻液配制。在中国江南,一般采用乙二醇质量分数为40 %的配比,而在寒冷的北方,需取乙二醇质量分数50 %左右的配比比较适宜。 ATAGO(爱拓)专业生产制造折光仪70多年,是折光仪和旋光仪的领导者。其产品PAL-91S和PAL-92S迷你数字乙二醇折射计,专业适用于乙二醇溶液的测量,并显示其溶液浓度及冷冻温度。其简单的操作,快捷的显示,稳定的重复性,能更好的帮助我们的用户用户冷冻液的测量(名称:防冻液折射仪),保证汽车的正常运行和使用寿命。 附: 汽车冷却系统 检查保养小知识 使用防冻液应注意以下问题: 1、使用了防冻液的车辆,切勿直接补充自来水,应该加入蒸馏水或去离子水,若实在没有条件,加冷开水也比加自来水好。如果防冻液因泄漏损失,应补充同品牌的防冻液。防冻液应四季使用,夏天使用自来水的方法是不科学的,也是得不偿失的。 2、不同品牌的防冻液所使用的金属缓蚀剂也不相同,因此不同品牌的防冻液不能混用 3、选择防冻液的另一个关键是确保安全性。高级防冻液兼具防腐、防垢、防沸、防冻、防锈等功效,还能对水箱起到很好的保护,一年四季都可使用。优质防冻液外观应清亮透明,并有醒目的颜色,无异味,而一些劣质防冻液根本不具备抗冻及防止开锅功能,有的防冻液虽然冰点及沸点合格,但却有腐蚀性,能把水箱及管路&ldquo 咬&rdquo 的千疮百孔,影响行车。 4、有的防冻液存放一年后,会出现少量絮状沉淀,这种现象多半是添加剂析出造成的,不必扔掉。如果出现大量的颗粒沉淀,表明该防冻液已经变质,不能再使用了。 市面上汽车防冻液10%产品不合格: 日前,吉林省工商局对长春市、吉林市主要商场、批发市场及部分经销商销售的产品进行专项抽查,共抽取汽车防冻液30个批次,其中3个产品不合格,产品抽查合格率为90%。 冰点是衡量防冻液产品合格与否的重要指标。该指标不合格将造成产品在低温时结冻,可能使汽车水箱等系统失效,对汽车造成损害;PH值不合格,有可能对汽车循环水系统产生腐蚀,长时间使用会对汽车造成损害。 如欲了解新产品测量方案,我们将热情提供完整、快速的现场分析试用,请点击这里。 要了解ATAGO(爱拓)科技的信息,请访问:http://www.atago-china.com
  • 工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪
    工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪-翁开尔"安全控制油脂污染情况"清洁度参考指南是针对零部件清洗工艺或设备系统的研发人员、操作人员、生产链负责人以及测量人员。该指南制定目的是促进通过高效监控来保证工艺质量。德国FiT工业协会 (Fachverband industrielle Teilereinigung e.V.)已经认识到,相关行业需要针对油脂污染问题提出切实可行的质量保证及监控建议。基于现有技术,FiT整理了2015年到2018年历年来多个工艺实例、专家及用户经验,并制定了 "安全控制油脂污染情况"的相关参考指南。当今许多工业领域中,尽管厂家使用了最先进的生产技术,采用多道清洗工艺对零部件进行前处理,都不能完全解决零部件表面残留污染物对后续工艺造成影响,如喷涂、粘接、焊接等后续工艺的附着力不够、起泡、虚焊等问题。因此,零部件表面清洁度是产品及工艺质量的关键指标。生产厂家应借助高效精准的清洁度检测技术来测量零部件的清洗工艺和清洗后的污染物残留情况,从而进行有针对性的清洗过程,使零部件具有足够的清洁度来进行后续生产工艺(如焊接、连接、喷涂、粘接等)和检验成品质量。过去,厂家主要只检测颗粒物清洁度,而现在,他们越来越重视油污、油脂、成品油等有机污染物对产品质量的影响作用。膜状污染物往往是无法避免膜状污染物通常是指油污、油脂、防腐剂、涂料、冷却润滑油、切削油、粘接剂和其他生产助剂残留物、手汗和手指纹等。简单来说,膜状污染物可以理解为在零部件表面上呈现为一层薄薄的、非颗粒状的污染物质。油脂、成品油类和类似有机物的合格值制定众所周知,油脂、成品油类和类似有机物的污染物残留会影响后续工艺质量,如造成涂层附着力不良、起泡、虚焊、粘接不牢固等问题。故此,目前大部分相关行业规定了零部件需要达到合格的表面清洁度。当然,零部件表面没有污染物是最好的,但这只是一个理想状态。这种想法使所有生产厂家都认为,零部件表面油脂等污染残留物会影响后续工艺。虽然在生产过程中可以使用不含硅油的生产助剂,但多数工艺还是需要使用含有油脂的生产助剂。在原材料加工工艺中,冷却润滑剂、切削油等必要生产助剂必然含有天然或合成的油脂。因此,在实际生产中必须确定零部件表面清洁度合格值,使零部件拥有足够的清洁度来保证后续工艺质量。如今越来越多的制造工艺和终端应用重视零部件表面油脂、成品油、指纹等污染物质的残留情况,因此零部件制造商和清洗设备老板需要找到合适而高效的表面清洁度检测设备。为了满足不断增长的清洁度检测需求,FiT的《零部件清洗质量保证工艺控制指南》和《清洗工艺规划检查表》可以提供初步操作指导。而参考指南 "安全控制油脂污染情况"全面论述了这个问题。参考指南相关介绍该指南的前言部分给出了相关定义和术语,用于规范语言;随后解释了膜状污染物的出现、来源及其特性和影响。基于某些具体工艺、终端应用和行业,对检测膜状污染物在生产过程中的重要性日益重要进行了说明;在最后部分指出了本指南的适用范围。该指南能协助生产厂家内部研发、建立标准和优化生产和清洗工艺,保证整体工艺质量和最终产品质量重现性。同时也重点总结了零部件的清洗工艺、清洗前的初始状态以及目前适用的清洗化学和清洗工艺的解决方案。只有通过合适的清洁度检测、分析控制技术,才能从根本上获取到经过清洗工艺零部件的表面清洁度或污染程度。为此,它提出了一些最常见的适用检测方法,并特别强调了与应用有关的适用性和局限性。在最后,该文件概述了目前工艺监测的解决方案。实例部分本指南的实例部分将基础知识与零件清洗的典型应用关联起来,并提供解决方案,也给出了实际操作建议,便于厂家系统性设计出符合产品质量标准的清洗工艺,并能正确快速调整工艺参数。此外,该指南还指出了监测清洗工艺活性物质、污染物质以及检测整个生产链的零部件真实情况。除了需要确定油污、成品油等污染物来源和检测零部件表面清洁度,该指南还提出了零部件表面清洁度合格值的确定方法。根据某个典型应用,它介绍了实际使用过程中使用到的测量和分析控制技术,并说明了各种方法的优点和局限性。此外,它还提出了保证零部件表面清洁度合格的最佳处理工艺,便于厂家以合适的清洗工艺来设计和分析零部件。结合上述建议,生产厂家能借助高效表面清洁度检测仪器来快速监控并改善零部件的上下游清洗工艺。金属零部件表面清洁度最佳检测方案德国析塔表面清洁度仪能可靠精准量化零部件表面清洁度,是目前领先的污染物量化检测技术。该仪器采用共焦法原理,通过光源发射出最佳波长的紫外光探测金属表面的污染物,内置的传感器探测荧光强度,荧光强度的大小取决于零部件表面有机物残留情况。借助完整紫外光源与传感器的共同作用,析塔表面清洁度仪能快速准确量化基材表面的污染物含量。该仪器为客户提供便携式和在线式机型,全面满足工厂车间或实验室的快速监测清洁度的工艺要求,以评价清洁工艺质量,最大程度上避免人为主观判断带来的测量误差,显著增加工艺可靠性。可见,德国析塔表面清洁度仪能协助生产厂家直接判断零部件表面清洁度是否达到合格要求,稳定零部件加工过程中的清洗质量、实现量化控制! 翁开尔是德国析塔SITA清洁度仪中国独家代理商,欢迎致电咨询。
  • 凌工科技发布凌工智能型冷却水循环机(LC2500)新品
    一、产品介绍 凌创(LC)系列智能型冷却水循环机可广泛应用于各类精密仪器设备冷却,循环水质结净,换热效率高,循环冷却水恒流或恒压模式可选,自动调节冷却水流量或压力,精确在线显示循环冷却水流量及压力;采用自主研发的智能控制系统,循环冷却水温度、流量或压力控制精度高;可与需冷却设备之间通讯,通讯协议RS485、RS232、Can通讯可选,本地或远程调节循环冷却水温度、流量、压力等参数。二、主要特点智能化控温、控流、控压;采用PID控温,控温精度达±0.1℃;外形美观、操作方便;可远程设置温度、流量、压力等参数;可远程启停设备;可扩展电导率在线检测,实时检测循环水质状态;三、应用领域分析仪器领域:原子吸收光谱仪(AAS)、电感耦合等离子体发射光谱仪(ICP)、电感耦合等离子体质谱仪(ICP-MS)、扫描仪、透射电镜(TEM)、氧氮氢分析仪 实验仪器领域:疲劳试验机、高频熔样机、凯氏定氮仪、索氏提取器、脂肪提取仪、旋转蒸发仪、不锈钢(玻璃)反应釜、发酵罐、回流提取装置、蒸馏冷凝器、电泳仪、手套箱 激光设备领域:激光打标机、激光切割机、激光雕刻机、激光打印机、激光投影仪、激光器 真空设备领域:真空镀膜机(包括真空离子蒸发/磁控溅射/MBE分子束外延/PLD激光溅射沉积)、真空炉、等离子刻蚀机、真空泵(分子泵/扩散泵/旋片泵/罗茨泵/干泵) 机床设备领域:CNC机床电主轴/液压站/润滑站/切削加工液/减速箱、CNC机床伺服电机/直线电机/力矩电机 注塑设备领域:小型注塑机、小型挤出机 包装机械领域:PCB钻孔机、铣边/槽机、贴片机、充磁机创新点:1、冷却水自动恒流、恒压模式可选:流量、压力可以精确自动调节,流量控制精度± 0.2L/min,压力控制精度± 5Kpa; 2、冷却水电导率检测:通过检测冷却水电导率大小自动判断循环水质情况,及时提醒用户更换循环水,提高被冷却仪器的使用寿命和散热效率,使得被冷却设备运行更加安全、稳定; 3、多种通讯协议可选:RS485、RS232、以太网、CAN通讯可选,本地+远程控制冷却水温度、流量、压力及产品故障报警信息; 凌工智能型冷却水循环机(LC2500)
  • 薄膜热电冷却器恢复病人幻肢冷感
    一名假肢测试员使用新设备来确定哪一罐可乐最冷。图片来源:约翰斯霍普金斯大学应用物理实验室据最新发表在《自然生物医学工程》杂志上的论文,美国约翰斯霍普金斯大学应用物理实验室研究人员开发了世界上最小、强度最大、速度最快的制冷设备之一——可穿戴式薄膜热电制冷器(TFTEC),并与神经科学家合作,帮助截肢者通过他们的幻肢感知温度。研究人员表示,当一个人失去部分肢体时,残肢内的神经可能会导致其感觉拥有幻肢。恢复温度感觉有实际应用,比如鉴别饮料是冷饮还是热饮,还有可能改善假肢的情感体现。由此,TFTEC应运而生,其速度和强度足以匹配人体快速感知温度变化的能力。现在,截肢者可利用TFTEC告知幻肢的哪个部位能感受到温度。TFTEC只有约1毫米的厚度,重量只有0.05克,类似于一条胶带,可在不到1秒的时间内提供高强度冷却。它的能源效率比当今最常见的热电设备高出两倍,用于制造发光二极管的半导体工具也可轻松制造这种设备。为了测试TFTEC的功效,研究人员绘制了4名截肢者假肢的热感觉图。在寒冷探测任务中,TFTEC在所有参与者的幻肢中都会产生凉爽的感觉,而传统的热电技术只在其中一半的人中做到这一点,且TFTEC的速度快了8倍,强度提高了3倍。此外,TFTEC使用的能源是目前热电设备的一半。这为各种应用提供了新的可能,例如改进假肢、增强现实中的触觉模式以及用于疼痛管理的热疗法。其还具有各种潜在的工业应用,如用于卫星上的能量收集等。
  • 金属材料检测或试验标准汇总
    p    span style=" color: rgb(0, 112, 192) " strong 金属材料化学成分分析 /strong /span /p p   GB/T 222—2006钢的成品化学成分允许偏差 /p p   GB/T 223.X系列钢铁及合金X含量的测定 /p p   GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) /p p   GB/T 4698.X系列海绵钛、钛及钛合金化学分析方法X量的测定 /p p   GB/T 5121.X系列铜及铜合金化学分析方法第X部分:X含量的测定 /p p   GB/T 5678—1985铸造合金光谱分析取样方法 /p p   GBT 6987.X系列铝及铝合金化学分析方法& amp #823& amp #823 /p p   GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 /p p   GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) /p p   GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 /p p   GB/T 13748.X系列镁及镁合金化学分析方法第X部分X含量测定& amp #823& amp #823 /p p    span style=" color: rgb(0, 112, 192) " strong 金属材料物理冶金试验方法 /strong /span /p p   GB/T 224—2008钢的脱碳层深度测定法 /p p   GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) /p p   GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 /p p   GB/T 227—1991工具钢淬透性试验方法 /p p   GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 /p p   GB/T 1979—2001结构钢低倍组织缺陷评级图 /p p   GB/T 1814—1979钢材断口检验法 /p p   GB/T 2971—1982碳素钢和低合金钢断口检验方法 /p p   GB/T 3246.1—2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法 /p p   GB/T 3246.2—2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法 /p p   GB/T 3488—1983硬质合金显微组织的金相测定 /p p   GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 /p p   GB/T 4236—1984钢的硫印检验方法 /p p   GB/T 4296—2004变形镁合金显微组织检验方法 /p p   GB/T 4297—2004变形镁合金低倍组织检验方法 /p p   GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 /p p   GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 /p p   GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法 /p p   GB/T 4462—1984高速工具钢大块碳化物评级图 /p p   GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) /p p   GB/T 5168—2008α-β钛合金高低倍组织检验方法 /p p   GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 /p p   GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 /p p   GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 /p p   GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 /p p   GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 /p p   GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 /p p   GB/T 10851—1989铸造铝合金针孔 /p p   GB/T 10852—1989铸造铝铜合金晶粒度 /p p   GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 /p p   GB/T 13298—2015金属显微组织检验方法 /p p   GB/T 13299—1991钢的显微组织检验方法 /p p   GB/T 13302—1991钢中石墨碳显微评定方法 /p p   GB/T 13305—2008不锈钢中α-相面积含量金相测定法 /p p   GB/T 13320—2007钢质模锻件金相组织评级图及评定方法 /p p   GB/T 13825—2008金属覆盖层黑色金属材料热镀锌单位面积称量法 /p p   GB/T 13912—2002金属覆盖层钢铁制件热浸镀层技术要求及试验方法 /p p   GB/T 14979—1994钢的共晶碳化物不均匀度评定法 /p p   GB/T 15711—1995钢材塔形发纹酸浸检验方法 /p p   GB/T 30823—2014测定工业淬火油冷却性能的镍合金探头试验方法 /p p   GB/T 14999.1—2012高温合金试验方法第1部分:纵向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.2—2012高温合金试验方法第2部分:横向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.3—2012高温合金试验方法第3部分:棒材纵向断口检验 /p p   GB/T 14999.4—2012高温合金试验方法第4部分:轧制高温合金条带晶粒组织和一次碳化物分布测定 /p p   YB/T 4002—2013连铸钢方坯低倍组织缺陷评级图 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料力学性能试验方法 /span /strong /p p   GB/T 228.1—2010金属材料拉伸试验第一部分:室温试验方法 /p p   GB/T 228.2—2015金属材料拉伸试验第2部分:高温试验方法 /p p   GB/T 229—2007金属材料夏比摆锤冲击试验方法 /p p   GB/T 230.1—2009金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺) /p p   GB/T 231.1—2009金属材料布氏硬度试验第1部分:试验方法 /p p   GB/T 232—1999金属材料弯曲试验方法 /p p   GB/T 233—2000金属材料顶锻试验方法 /p p   GB/T 235—2013金属材料薄板和薄带反复弯曲试验方法 /p p   GB/T 238—2013金属材料线材反复弯曲试验方法 /p p   GB/T 239.1—2012金属材料线材第1部分:单向扭转试验方法 /p p   GB/T 239.2—2012金属材料线材第2部分:双向扭转试验方法 /p p   GB/T 241—2007金属管液压试验方法 /p p   GB/T 242—2007金属管扩口试验方法 /p p   GB/T 244—2008金属管弯曲试验方法 /p p   GB/T 245—2008金属管卷边试验方法 /p p   GB/T 246—2007金属管压扁试验方法 /p p   GB/T 1172—1999黑色金属硬度及强度换算值 /p p   GB/T 2038—1991金属材料延性断裂韧度JIC试验方法 /p p   GB/T 2039—2012金属材料单轴拉伸蠕变试验方法 /p p   GB/T 2107—1980金属高温旋转弯曲疲劳试验方法 /p p   GB/T 2358—1994金属材料裂纹尖端张开位移试验方法 /p p   GB/T 2975—1998钢及钢产品力学性能试验取样位置及试样制备 /p p   GB/T 3075—2008金属材料疲劳试验轴向力控制方法 /p p   GB/T 3250—2007铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法 /p p   GB/T 3251—2006铝及铝合金管材压缩试验方法 /p p   GB/T 3252—1982铝及铝合金铆钉线与铆钉剪切试验方法 /p p   GB/T 3771—1983铜合金硬度和强度换算值 /p p   GB/T 4156—2007金属材料薄板和薄带埃里克森杯突试验 /p p   GB/T 4158—1984金属艾氏冲击试验方法 /p p   GB/T 4160—2004钢的应变时效敏感性试验方法(夏比冲击法) /p p   GB/T 4161—2007金属材料平面应变断裂韧度KIC试验方法 /p p   GB/T 4337—2008金属材料疲劳试验旋转弯曲方法 /p p   GB/T 4338—2006金属材料高温拉伸试验方法 /p p   GB/T 4340.1—2009金属材料维氏硬度试验第1部分:试验方法 /p p   GB/T 4340.2—2012金属材料维氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 4340.3—2012金属材料维氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 4341.1—2014金属材料肖氏硬度试验第1部分:试验方法 /p p   GB/T 5027—2007金属材料薄板和薄带塑性应变比(r值)的测定 /p p   GB/T 5028—2008金属材料薄板和薄带拉伸应变硬化指数(n值)的测定 /p p   GB/T 5482—2007金属材料动态撕裂试验方法 /p p   GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法 /p p   GB/T 6400—2007金属材料线材和铆钉剪切试验方法 /p p   GB/T 7314—2005金属材料室温压缩试验方法 /p p   GB/T 7732—2008金属材料表面裂纹拉伸试样断裂韧度试验方法 /p p   GB/T 7733—1987金属旋转弯曲腐蚀疲劳试验方法 /p p   GB/T 10120—2013金属材料拉伸应力松弛试验方法 /p p   GB/T 10128—2007金属材料室温扭转试验方法 /p p   GB/T 10622—1989金属材料滚动接触疲劳试验方法 /p p   GB/T 10623—2008金属材料力学性能试验术语 /p p   GB/T 12347—2008钢丝绳弯曲疲劳试验方法 /p p   GB/T 12443—2007金属材料扭应力疲劳试验方法 /p p   GB/T 12444—2006金属材料磨损试验方法试环-试块滑动磨损试验 /p p   GB/T 12778—2008金属夏比冲击断口测定方法 /p p   GB/T 13239—2006金属材料低温拉伸试验方法 /p p   GB/T 13329—2006金属材料低温拉伸试验方法 /p p   GB/T 14452—1993金属弯曲力学性能试验方法 /p p   GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法 /p p   GB/T 15824—2008热作模具钢热疲劳试验方法 /p p   GB/T 16865—2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法 /p p   GB/T 17104—1997金属管管环拉伸试验方法 /p p   GB/T 17394.1—2014金属材料里氏硬度试验第1部分试验方法 /p p   GB/T 17394.2—2012金属材料里氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 17394.3—2012金属材料里氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 17394.4—2014金属材料里氏硬度试验第4部分硬度值换算表 /p p   GB/T 17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢 /p p   GB/T 17600.2—1998钢的伸长率换算第2部分奥氏体钢 /p p   GB/T 26077—2010金属材料疲劳试验轴向应变控制方法 /p p   GB/T 22315—2008金属材料弹性模量和泊松比试验方法 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料无损检测方法 /span /strong /p p   GB/T 1786—2008锻制圆饼超声波检验方法 /p p   GB/T 2970—2004厚钢板超声波检验方法 /p p   GB/T 3310—1999铜合金棒材超声波探伤方法 /p p   GB/T 4162—2008锻轧钢棒超声检测方法 /p p   GB/T 5097—2005无损检测渗透检测和磁粉检测观察条件 /p p   GB/T 5126—2001铝及铝合金冷拉薄壁管材涡流探伤方法 /p p   GB/T 5193—2007钛及钛合金加工产品超声波探伤方法 /p p   GB/T 5248—2008铜及铜合金无缝管涡流探伤方法 /p p   GB/T 5616—2014无损检测应用导则 /p p   GB/T 5777—2008无缝钢管超声波探伤检验方法 /p p   GB/T 6402—2008钢锻件超声检测方法 /p p   GB/T 6519—2013变形铝、镁合金产品超声波检验方法 /p p   GB/T 7233.1—2009超声波检验第1部分:一般用途铸钢件 /p p   GB/T 7233.2—2010铸钢件超声检测第2部分:高承压铸钢件 /p p   GB/T 7734—2004复合钢板超声波检验 /p p   GB/T 7735—2004钢管涡流探伤检验方法 /p p   GB/T 7736—2008钢的低倍缺陷超声波检验法 /p p   GB/T 8361—2001冷拉圆钢表面超声波探伤方法 /p p   GB/T 8651—2002金属板材超声波探伤方法 /p p   GB/T 8652—1988变形高强度钢超声波检验方法 /p p   GB/T 9443—2007铸钢件渗透检测 /p p   GB/T 9445—2015无损检测人员资格鉴定与认证 /p p   GB/T 10121—2008钢材塔形发纹磁粉检验方法 /p p   GB/T 11259—2015无损检测超声检测用钢参考试块的制作和控制方法 /p p   GB/T 11260—2008圆钢涡流探伤方法 /p p   GB/T 11343—2008无损检测接触式超声斜射检测方法 /p p   GB/T 11345—2013焊缝无损检测超声检测技术、检测等级和评定 /p p   GB/T 11346—1989铝合金铸件X射线照相检验针孔(圆形)分级 /p p   GB/T 12604.1—2005无损检测术语超声检测 /p p   GB/T 12604.2—2005无损检测术语射线照相检测 /p p   GB/T 12604.3—2005无损检测术语渗透检测 /p p   GB/T 12604.5—2008无损检测术语磁粉检测 /p p   GB/T 12604.6—2008无损检测术语涡流检测 /p p   GB/T 12604.7—2014无损检测术语泄漏检测 /p p   GB/T 12604.8—1995无损检测术语中子检测 /p p   GB/T 12604.9—2008无损检测术语红外检测 /p p   GB/T 12604.10—2011无损检测术语磁记忆检测 /p p   GB/T 12604.11—2015无损检测术语X射线数字成像检测 /p p   GB/T 12605—2007无损检测金属管道熔化焊环向对接接头射线照相检测 /p p   GB/T 12966—2008铝合金电导率涡流测试方法 /p p   GB/T 12969.1—2007钛及钛合金管材超声波探伤方法 /p p   GB/T 12969.2—2007钛及钛合金管材涡流探伤方法 /p p   GB/T14480.1—2015无损检测仪器涡流检测设备第1部分:仪器性能和检验 /p p   GB/T 14480.2—2015无损检测仪器涡流检测设备第2部分:探头性能和检验 /p p   GB/T 14480.3—2008无损检测涡流检测设备第3部分系统性能和检验 /p p   GB/T 15822.1—2005无损检测磁粉检测第1部分:总则 /p p   GB/T 15822.2—2005无损检测磁粉检测第2部分检测介质 /p p   GB/T 15822.3—2005无损检测磁粉检测第3部分设备 /p p   GB/T 18694—2002无损检测超声检验探头及其声场的表征 /p p   GB/T 18851.1—2005无损检测渗透检测第1部分总则 /p p   GB/T 18851.2—2008无损检测渗透检测第2部分:渗透材料的检验 /p p   GB/T 18851.3—2008无损检测渗透检测第3部分:参考试块 /p p   GB/T 18851.4—2005无损检测渗透检测第4部分设备 /p p   GB/T 18851.5—2005无损检测渗透检测第5部分验证方法 /p p   GB/T 19799.1—2005无损检测超声检测1号校准试块 /p p   GB/T 19799.2—2005无损检测超声检测2号校准试块 /p p   GB/T 23911—2009无损检测渗透检测用试块 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料腐蚀试验方法 /span /strong /p p   GB/T 1838—2008电镀锡钢板镀锡量试验方法 /p p   GB/T 1839—2008钢产品镀锌层质量试验方法 /p p   GB/T 10123—2001金属和合金的腐蚀基本术语和定义 /p p   GB/T 13303—1991钢的抗氧化性能测定方法 /p p   GBT 15970.X系列金属和合金的腐蚀应力腐蚀试验第X部分 /p p br/ /p
  • 激光冷却造出零下273℃中性等离子体
    p style=" text-indent: 2em text-align: left " 据美国《新闻周刊》网站近日报道,科学家利用激光冷却,创造出温度达到零下273℃的中性等离子体,其比太空深处温度还要低。这一成果发表于《科学》杂志,显示了极端环境下(比如白矮星和木星中央)等离子体的新的可能性。 /p p style=" text-indent: 2em text-align: left " 一般认为,激光可用于加热,但其实也可用于冷却物理系统。在实验中,英国莱斯大学的汤姆· 基利安和同事使用10台不同波长的激光器来冷却中性等离子体。等离子体是在固体、液体和气体之后,物质的第四种它通常在极热的地方(比如太阳内)产生。 /p p style=" text-indent: 2em text-align: left " 研究人员先用一组激光器蒸发锶金属,这些激光器捕获并冷却了一组原子。然后,他们用第二组激光电离这些超冷气体,激光脉冲将这些气体转换成等离子体,这些等离子体迅速膨胀然后消散。 /p p style=" text-indent: 2em text-align: left " 基利安解释说:“如果一个粒子(原子或离子)正在移动,我用一束激光来抵制它的运动,当该粒子从激光束中散射出光子时,就获得了动量来减慢速度。诀窍在于确保光子始终从与粒子运动相反的激光中散出来。” /p p style=" text-indent: 2em text-align: left " 1999年,基利安在美国国家标准与技术研究所进行博士后研究,开创了从激光冷却的气体中创造中性等离子体的电离方法。此后,他一直在寻求让等离子体更冷的方法,最新研究让他20年的追寻成为现实。目前,他们正努力制造更冷的等离子体。 /p p style=" text-indent: 2em text-align: left " 基利安说:“我们将尝试开发新的温度探头来测量更冷的温度。如果能在不让密度变得太低的情况下,将温度降到足够低,该系统将形成结晶等离子体——维格纳晶体,据信白矮星中心的离子以这种状态存在。” /p p style=" text-indent: 2em text-align: left " 基利安表示,当科学家研究出如何冷却原子气体时,就打开了“超冷世界”的大门,这使他们能将原子气体冷却到比绝对零度(零下273.15℃)高出百万分之一摄氏度左右,“在此处,量子力学开始发挥作用”。通过研究超冷等离子体,有望回答有关物质在高密度和低温的极端条件下如何表现的基本问题。 /p
  • 美公司将利用石墨泡沫冷却提高LED性能
    发光二极管点亮光明前程 发光二极管的英文简称为LED,通常它由镓与砷、磷的化合物制成。在接通电源后,其中的电子与空穴复合时能辐射出可见光。人们发现,磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。与小白炽灯泡和氖灯相比,发光二极管的特点包括工作电压很低 工作电流很小 抗冲击和抗震性能好,可靠性高,寿命长 通过调制电流强弱可以方便地调制发光的强弱。基于这些特点,发光二极管在许多光电控制设备中用作光源,在电子设备中用作信号显示器。   冷却可提高发光二极管性能   在大力提倡节约能源的今天,发光二极管作为照明灯越来越受到人们的青睐,其市场在不断扩大。据介绍,上海世博园区内使用了10.5亿颗发光二极管灯泡,世博场馆室内照明光源中约有80%采用发光二极管作为照明光源,相较于普通白炽灯省电达90%左右。专家表示,2010年中国发光二极管销售产值将突破1500亿元人民币,相当于2008年的两倍。   面对广阔的市场需求,人们在努力提高发光二极管照明灯的性能。研究发现,虽然发光二极管工作电压和电流很低,但是它仍然存在着发热问题。发光二极管的温度每降低10华氏度,其发光部件的寿命就能增加一倍,因此冷却对提高发光二极管照明灯的性能十分重要。   新石墨泡沫冷却材料闪亮登场   美国能源部橡树岭国家实验室(ORNL)材料科学和技术部研究人员詹姆斯克勒特发明了一项称为石墨发泡的技术。利用该技术,人们能够获得石墨泡沫(graphite foam)材料。用石墨泡沫帮助冷却发光二极管照明灯,可以更有效地控制其发热,从而延长其寿命并降低价格。此举有望扩大发光二极管照明灯的用户群。   克勒特说:“在(石墨发泡)技术降低发光二极管照明系统、稳定并延长其寿命的同时,该技术能够取代普通照明灯设备的更换和维护开支,每年为城市节约数百万美元。”他希望石墨发泡技术能够为顾客节约开支。   与传统的利用金属铜和金属铝等散热材料相比,新技术制成的石墨泡沫具有多种优点,比如,石墨泡沫导热性高、重量轻和加工容易。这些特点使得石墨泡沫材料拥有更好的设计适应性,成为更轻、更廉价和更高效的发光二极管照明灯冷却材料。   据悉,石墨泡沫具有的特殊石墨晶体结构是形成其良好导热性的关键。晶体结构的“骨架”中充满了气穴,与石墨相比,石墨泡沫的密度只有石墨的25%,因此其重量较轻。石墨泡沫特有的纽带网能够快速地将热源的热量散发掉,因而它是一种理想的冷却材料。   作为首推的节能照明用品,发光二极管照明灯因其耗能低、紧凑和平均寿命长的特点得到了越来越多的利用,其在街道照明和停车场照明等方面的应用需求也在不断提高。   LED北美公司专门为在城市、商业和工业领域的应用提供发光二极管照明灯产品。为不断提高发光二极管照明灯的性能,确保自己在与对手长期的竞争中处于有利地位,日前公司与橡树岭国家实验室签订了石墨发泡技术合作协议,获得了该技术的使用权。公司准备用该技术生产石墨泡沫,并用石墨泡沫以被动式冷却方式帮助发光二极管照明灯部件散热。   LED北美公司设立在橡树岭国家实验室名为“技术2020”的实验孵化基地内,公司和实验室建立起了良好的关系。公司创始人之一安德鲁威廉表示,与橡树岭国家实验室为邻,公司与实验室的研究人员可以更方便地密切合作,以完善石墨泡沫材料与发光二极管照明灯。
  • 得利特研发新品成功上市——A6040冷却液泡沫倾向测定仪
    得利特公司在8月份成功研制出一款新型油品分析仪——A6040冷却液泡沫倾向测定仪,该仪器是得利特自主研发的,该仪器为分体式,包括加热浴和精确的流量计,环保型油浴加热,减少油烟对人体的伤害,高效的热绝缘效果。微处理恒温器及PID控制,数字显示温度,精度0.1℃,Pt100 RTD温度探头。是得利特目前重点推荐产品。得利特(北京)科技有限公司以北京的研发销售中心,吉林、山东的生产加工中心,深圳、浙江、山东、吉林、成都、西安等枢纽城市的服务中心逐步形成完善的研发生产销售服务体系,我们也将能更好的服务全国各地的客户朋友,专注油品检测领域是我们的方向,打造业内品牌是我们的目标,让得利特员工和伙伴与企业共同发展共赢是我们的原则,同时得利特也愿为中国企业油液检测设备润滑管理的进步贡献自己的微薄之力。
  • 科技难题攻克!我国核能冷却技术的突破
    p   记者近日获悉:中国科学院合肥物质科学研究院核能安全技术研究所项目团队研制的液态金属锂实验回路,在国内首次实现1500K(相当于1227摄氏度)超高温稳定运行1000小时,标志着我国先进核能系统液态金属冷却剂关键技术取得新突破。 /p p   在研制过程中,项目团队攻克了在超高温液态锂工质环境下装置的结构应力协调、浸入式测量与流动稳定性控制等难题。目前,该回路已经开展了系列高温难熔合金在1400K至1500K温区流动锂环境中的抗腐蚀性能研究实验,高温运行性能达到国际领先水平,为超高温液态锂与结构材料的相容性等研究提供了重要实验平台。 /p p   据悉,液态锂或锂合金在核聚变反应堆里面可以作为冷却剂,把反应堆产生的热量导出,它具有工作温度高、导热性能好、密度小等优点。由于液态锂沸点高,系统可常压运行,使用锂等冷却剂可以使反应堆系统实现小型化轻量化,因而是大功率空间反应堆和未来聚变反应堆的主选冷却剂材料。 /p p & nbsp /p
  • 科学仪器小知识:冷却循环水机在塑料,电子工业领域的应用和指导
    冷却循环水机在塑料、电子、超声波清洗、电镀、机械以及其他行业有哪些应用,本篇文章将为您详细陈述:  分析仪器:控制原子吸收石墨炉及石墨管及ICP(ICP-MX)X光管温度,使仪器连续长时间运行,提高分析测试效率;   塑料工业:准确的控制各种塑料加工之模温,缩短啤塑周期,保证产品质量的稳定。用于塑料加工机械成型模具冷却,能够大大提高塑料制品表面光洁度,减少塑料制品表面纹痕和内应力,使产品不缩水、不变形,便于塑料制品的脱模,加速产品定型,从而极大地提高塑料成型机的生产效率   电子工业:稳定电子元件内部在生产线上的分子结构,提高电子元件的合格率   超声波清洗行业,有效地防止昂贵的清洗剂挥发和挥发给人带来的伤害   电镀行业:控制电镀温度,增加镀件的密度和平滑,缩短电镀周期,提高生产效率,改善产品质量   机械工业:控制油压系统压力油温度,稳定油温油压,延长油质使用时间,提高机械润滑的效率,减少磨损   建筑工业:供给混凝土用之冷冻水,使混凝土分子结构适合建筑用途要求,有效地增强混凝土的硬度与韧性   真空镀膜:控制真空镀膜机的温度,以保证镀件的高质量   食品工业:用于食品加工后的高速冷却,使之适应包装要求。另外还有控制发酵食品的温度等   化纤工业: 冷冻干燥空气,保证产品质量   制药工业:主要用于生产车间温度、湿度的控制及生产原料药过程中反应热的带出   化工工业:主要用于化工反应釜(化工换热器)的降温冷却,及时带走因化学反应而产生的巨大热量从而达到降温(冷却)的目的,用以提高产品质量   机床行业:应用于数控机床、坐标镗床、磨床、加工中心、组合机床以及各类精密机床主轴润滑和液压系统传动媒的冷却,能够精确地控制油温,有效地减少机床的热变形,提高机床的加工精度。
  • 润滑油和冷却液之课题三: 如何使用LUM仪器进行分析
    LUM邀请您参加2021年9月14日至17日润滑油和冷却液系列的在线研讨会。本次活动的课题将帮助您更好的了解润滑油以及冷却液的特性,从而帮助您优化并改进您产品的配方。 本次课题的在线研讨会都是独立的,您需要单独注册每一个课题。 润滑油和冷却液之课题三: 如何使用LUM仪器进行分析通过使用LUMiReader ® PSA以及LUMiSizer,对润滑油样品进行静置以及时时的加速实验,实时表征其特征。 课题三主讲人:Sylvain Gressier 会议持续时间:60分钟会议语言:英语会议时间:2021年9月17日20:00 (北京时间)报名方法:扫描下方”二维码”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。
  • 连华独立控温双冷却(COD)智能回流消解仪,新款LH-6F正式上市
    水中COD是目前水质检测的基本指标,在环保监测、科研院所、石油化工、食品酿造、医药卫生、纺织印染、电镀电力等不同行业,都离不开COD水质检测。为满足国家环保政策要求及广大企业采购需求,连华科技推出了全新升级款LH-6F化学需氧量(COD)智能回流消解仪,其多项核心优势可极大提升水质检测效率。符合国标 应用广泛LH-6F化学需氧量(COD)智能回流消解仪完全按照国家新标准《HJ 828-2017水质 化学需氧量的测定 重铬酸盐法》原理设计制造,同时兼顾原国标,适用于各种生活用水和工业废水的检测需求。独立控温 节能环保LH-6F化学需氧量(COD)智能回流消解仪6个加热单元可单独控温,用户可根据每个水样特性自由选择加热温度,可以精确精准调控沸腾温度(系数),保证每个在最佳冷凝状态下,以最低功耗达到最佳沸腾效果。黑晶面板 安全可靠LH-6F化学需氧量(COD)智能回流消解仪面板采用黑晶加热组件,耐高温、耐腐蚀、易清理,在保证美观的同时增加了安全性。仪器左右加后方都有防护板,防止侧方及后方接触到消解瓶烫伤。智能模式 操作简单LH-6F化学需氧量(COD)智能回流消解仪内置智能操作模式,一键自动完成消解冷却过程,智能化程度高。并采用全中文操作提示,符合日常操作习惯,便于操作掌握。双冷系统 省时省力LH-6F化学需氧量(COD)智能回流消解仪采用水冷与风冷相结合的方式,样品消解完冷却时,增加风冷却系统,可快速降低消解瓶温度,方便取出进行后续测试,大大节约了检测时间,具有节能环保的显著优点。人性化设计 便于使用LH-6F化学需氧量(COD)智能回流消解仪相比12F整体降低10cm,现高65cm,降低了高度空间要求,可在大部分通风橱内使用,同时也降低了对操作人员的身高要求,不再是“高不可及”。技术参数企业简介连华科技是一家创新型实体,总部位于北京,在全国16个地区设立分公司及办事处。在近40年的研发与发展过程中,连华科技始终保持水质分析测试领域的核心竞争力,研发出多参数、COD、氨氮、BOD、总磷、总氮、重金属等水质分析仪二十余系列及丰富的专业化配件、试剂,可测定百余项水质指标,已发展成为一家集研发、生产、销售、解决方案服务为一体的复合型企业。 连华科技致力于解决当今人类生存环境所面临的一些重大挑战,同时十分注重用户的需要,积累了环保监测、科研院所、石油化工、食品酿造、医药卫生、纺织印染、电镀电力等不同行业的模型与数据,产出更富效率与价值的解决方案,与20余万家的客户和机构共同发展。连华科技已于2017年入驻京东、天猫等线上商城,满足不同用户的多样化体验。我们始终牢记我们的使命:让人类环境更加美好。
  • 德科学家开发一种磁冷却扫描隧道显微镜:用于量子效应研究!
    仪器信息网讯 扫描隧道显微镜(STM)能够以原子精度捕获材料图像,可用于操纵单个分子或原子。多年来,研究人员一直在使用这类仪器来探索纳米尺度世界。近日, 德国Jülich研究中心(Forschungszentrum Jülich)的物理学家开发了一种新方法,这种方法帮助使用STM来研究量子效应创造了新的可能性。由于该技术方法采用磁冷却,他们的扫描隧道显微镜无需任何移动部件即可工作,并且在低至 30 毫开尔文的极低温度下几乎无振动。该仪器可以帮助研究人员解锁量子材料的特殊特性,这对量子计算机和传感器的发展至关重要。物理学家认为接近绝对零度的温度范围是一个特别令人兴奋的研究领域。热波动降至最低,量子物理定律开始发挥作用,揭示材料的特殊性质。电流自由流动,没有任何阻力。另一个例子是一种称为超流体的现象:单个原子融合成一个集体状态,并在没有摩擦的情况下相互移动。Stefan Tautz 教授(左下)、Taner Esat 博士(左上)和 Ruslan Temirov 教授(右)与Jülich量子显微镜,图片自:Forschungszentrum Jülich / Sascha Kreklau研究和利用量子效应进行量子计算也需要这些极低的温度。全世界以及 Jülich研究中心的研究人员目前正在全速追求这一目标。在某些项目上,量子计算机可能远远优于传统的超级计算机。然而,发展仍处于起步阶段。一个关键的挑战是寻找材料和工艺,使具有稳定量子位的复杂架构成为可能。来自 Jülich 研究中心的 Ruslan Temirov 解释说:“我相信像我们这样的多功能显微镜是完成这项迷人任务的首选工具,因为它能够以多种不同方式在单个原子和分子的水平上对物质进行可视化和操作。”量子物理研究的一个典型对象:在中心,可以看到一个单一的分子,它是通过显微镜尖端分离出来的。在接近绝对零的温度下,没有干扰图像的噪声。图片来源:Forschungszentrum Jülich / Taner Esat, Ruslan Temirov经过多年的工作,他和他的团队为此装备了带有磁冷却的扫描隧道显微镜。 “我们的新显微镜与所有其他显微镜的不同之处类似于电动汽车与内燃机汽车的不同之处,”Jülich 物理学家解释说。到目前为止,研究人员一直依靠一种液体燃料,即两种氦同位素的混合物,将显微镜带到如此低的温度。 “在操作过程中,这种冷却混合物通过细管不断循环,这会导致背景噪音增加,”Temirov 说。另一方面,Jülich 显微镜的冷却装置则是基于绝热退磁过程。这个原理并不新鲜。它在20世纪30年代首次用于在实验室中达到低于 1 开尔文的温度。 Ruslan Temirov 说,对于显微镜的操作,它有几个优点:“通过这种方法,我们可以通过改变通过电磁线圈的电流强度来冷却我们的新显微镜。因此,我们的显微镜没有移动部件,几乎没有振动。”Jülich 科学家是有史以来第一个使用这种技术构建扫描隧道显微镜的人。 “新的冷却技术有几个实际优势。它不仅提高了成像质量,而且简化了整个仪器的操作和整个设置,”研究所主任 Stefan Tautz补充说,由于采用模块化设计,Jülich 量子显微镜也对技术进步保持开放态度,因为可以轻松实施升级。“绝热冷却是扫描隧道显微镜的真正飞跃。优势非常显着,作为下步计划我们现在正在开发商业原型机。”Stefan Tautz 解释说,量子技术是目前许多研究的焦点,这种仪器也势必会吸引许多相关研究学者的关注。这项研究发表在《Review of Scientific Instruments》上,DOI: 10.1063/5.0050532。mK STM 设置的示意图布局,包括 UHV 室、承载 mK 棒的 ADR 低温恒温器和高容量低温泵。 主 UHV 系统,包括负载锁、制备室 1 和 2 以及转移室,通过柔性波纹管连接到低温恒温器。 要将 mK 棒从真空中取出,低温恒温器和 UHV 系统必须在虚线标记的平面上分开。 右下角:插图显示了从 UHV 中提取 mK 棒的过程。 支撑 UHV 系统的框架在垂直于主图平面的方向侧向平移以进行提取。mK 棒的渲染 CAD 模型。 左:mK 棒全长 156.5 厘米。 箭头表示不同温度阶段的位置。 右上角:mK 棒的头部,其机制将其锁定到垂直操纵器,将其加载到低温恒温器中。 用于与温度传感器和 STM 压电元件建立电接触的两个接触板也是可见的。 建立同轴偏置和隧道电流触点的第三个接触板位于背面。 右下角:4K 载物台下方的 mK 棒的图像细节,无需布线。 左图:自制 STM 的分解图。 STM 的顶部通过蓝宝石板与 STM 主体电隔离。 STM 主体包含一个单独的压电管,用于 STM 尖端的粗略和精细运动。 右图:压电管的剖视图,显示粘滑粗调电机。
  • 听绥净说说-选用什么样的水质检测仪比较好
    水是生命来源,人类在生计和生产活动中无法获得水,饮用水质量的优势和劣势与人类健康密切相关。随着社会经济发展、科学进步和提高人民的生活水平,饮用水的质量要求正在增加,饮用水的质量标准正在发展和完善。由于饮用水的质量标准是基于个人的生活习惯、文化、经济条件、科学和技术发展水平、水资源和土地状况。  选用绥净环保的水质检测仪为例,水质检测仪主要检测污水、纯水、海水、渔业水、泳池用水、中水、瓶装纯净水、饮用天然矿泉水、冷却水、农田灌溉水、景观用水、生活饮用水、地下水、锅炉水、地表水、工业用水、试验用水等。那又有哪些指标可以帮助我们分析水样的质量呢?让我们跟着绥净环保来看一下吧!  1、色度:饮用水的色度大于15度时很多人可以感知,30度以上时人们会感到厌恶。标准规定饮用水的色度不能超过15度。  2、浊度:水样光学性质的一种表现词,为了表示水的清澈和浑浊程度,是评价水质良好程度的的指标之一,评价水处理设备的净化效率。也是评价水处理技术状态的重要依据。混浊度的降低意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅提高了消毒杀菌效果,也有利于降低卤化有机物的生成量。  3、臭味:水臭的发生主要是有机物的存在。可能是生物活性增加的表现或工业污染造成的。公共供水的正常气味的变化可能是原水的水质变化或水处理不充分的信号。  4、肉眼可见的物质:主要存在于水中,肉眼可见的粒子或其他浮游物质。  5、残留氯:水加入氯进行消毒,一定时间接触后,是水中残留的氯的量。水中具有持续的杀菌能力,可以防止供水管的自我污染,保证供水水质.  6、化学氧要求量:化学氧化剂氧化水中的有机污染物的必要氧量。化学氧消耗量越高,水中的有机污染物越多。水中的有机污染物主要来源于生活污水或工业废水的排放,动植物腐败分解后从流入水体中产生.  7、细菌总数:来源于水中所含的细菌、空气、土壤、污水、垃圾和动植物的尸体,水中的细菌种类多种多样,其中含有病原菌。中国规定饮用水标准为1ml水中细菌总数不超过10个.  8、总大肠杆菌群:粪便污染指标菌,其中检出的情况可以表示水中是否有粪便污染以及污染程度。在水的净化过程中,消毒处理后,如果总大肠杆菌群指数能够达到饮用水标准的要求,说明其他病原体的病原菌也基本灭绝了。基准是在检测中不超过3个/L.  9、耐热性大肠菌群:比大肠菌群更恰当地使食品的人和动物的粪便污染程度发生反应,是水体粪便污染的指示菌。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制