当前位置: 仪器信息网 > 行业主题 > >

大气臭氧检测仪

仪器信息网大气臭氧检测仪专题为您提供2024年最新大气臭氧检测仪价格报价、厂家品牌的相关信息, 包括大气臭氧检测仪参数、型号等,不管是国产,还是进口品牌的大气臭氧检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大气臭氧检测仪相关的耗材配件、试剂标物,还有大气臭氧检测仪相关的最新资讯、资料,以及大气臭氧检测仪相关的解决方案。

大气臭氧检测仪相关的资讯

  • 臭氧浓度检测仪:守护环境健康的科技哨兵
    在当今社会,随着工业化进程的加速和城市化水平的不断提升,空气质量成为了公众日益关注的焦点。其中,臭氧作为一种重要的空气污染物,其浓度变化直接影响着人类健康与生态环境的安全。因此,臭氧浓度检测仪作为监测空气质量的重要工具,正扮演着越来越重要的角色,成为守护我们环境健康的科技哨兵。  臭氧的双重性  臭氧,化学式为O₃ ,是一种由三个氧原子组成的强氧化性气体。在平流层中,臭氧层能够吸收太阳辐射中的紫外线,保护地球生物免受其害,是地球的天然保护伞。然而,在地面附近的对流层中,过高的臭氧浓度则成为一种有害污染物,能够引发一系列环境问题及健康危害,如刺激呼吸道、影响植物生长、降低大气能见度等。  臭氧浓度检测仪的重要性  鉴于臭氧的双重性质及其在环境中的复杂影响,准确、及时地监测臭氧浓度变得尤为重要。臭氧浓度检测仪应运而生,它利用先进的传感器技术和数据处理算法,能够实时、精确地测量空气中臭氧的浓度,为环境保护、气象观测、公共卫生等领域提供关键数据支持。  技术原理与应用  臭氧浓度检测仪通常采用电化学法、紫外吸收法或差分吸收光谱法等技术原理进行测量。电化学法通过臭氧与电极材料发生电化学反应产生电流或电势变化来检测臭氧浓度;紫外吸收法则利用臭氧对特定波长紫外光的吸收特性进行测量;而差分吸收光谱法则通过测量光在通过臭氧前后的光谱变化来计算其浓度。  这些检测仪广泛应用于城市空气质量监测站、工业园区环境监测、交通尾气排放检测、农业气象观测站等多个领域。它们不仅能够帮助环保部门及时掌握空气质量状况,制定有效的污染防治措施,还能为科研机构提供宝贵的研究数据,推动环境科学的发展。  面临的挑战与未来展望  尽管臭氧浓度检测仪在环境监测中发挥着重要作用,但其发展仍面临一些挑战。一方面,随着环境污染问题的日益复杂,对检测仪的精度、稳定性和抗干扰能力提出了更高的要求;另一方面,随着物联网、大数据等技术的快速发展,如何实现检测仪的智能化、网络化,提高监测数据的实时性和利用率,也是未来发展的重要方向。  展望未来,臭氧浓度检测仪将继续向高精度、高稳定性、智能化、网络化方向发展。同时,随着人们环保意识的不断提高和科技的持续进步,我们有理由相信,臭氧浓度检测仪将在守护环境健康、推动绿色发展方面发挥更加重要的作用。  总体而言,臭氧浓度检测仪作为现代环境监测体系中的重要组成部分,正以其独特的优势和技术特点,为我们提供着准确、及时的空气质量信息,成为守护我们环境健康的科技哨兵。
  • 臭氧层破坏“元凶”监测仪器已初步研发并应用
    《碳排放权交易管理暂行条例》将于今年5月正式实施,其中明确了将消耗臭氧层物质(ODS)替代物氢氟碳化物(HFCs)等,纳入温室气体碳排放权交易管理。近日,由华纳创新(北京)科技有限公司牵头的《高灵敏度臭氧层消耗物质连续检测分析仪》项目启动暨实施方案论证会在北京举办。来自复旦大学、北京大学、生态环境部华南环境科学研究所、中国计量科学研究院等国内在ODS和含氟温室气体相关领域的研究、开发、监测、应用团队,作为项目参与方参加了此次会议。  ODS主要用于制冷剂、发泡剂、清洗剂、灭火剂等产品,在地球南极,已出现了因臭氧层被ODS持续破坏而形成的臭氧洞。为保护臭氧层、加强对ODS的管控,我国于1991年签署了《关于消耗臭氧层物质的蒙特利尔议定书》,分阶段推进ODS的淘汰、削减和管控。2021年,我国接受了议定书的《基加利修正案》,进一步对HFCs这种人工合成的强效温室气体展开管控。  “准确定量大气中ODS及含氟温室气体的浓度水平、变化特征及影响因素,对评估全球尺度的臭氧损耗、气候变化及其区域贡献和影响具有重要科学意义。”作为项目推荐单位,北京市自然科学基金委员会办公室联合基金二部主任郭凤桐介绍,ODS的观测是世界级难题,项目团队前期已初步研发了具有自主知识产权的ODS监测仪器,项目牵头单位生产的天霁ODS监测仪已经应用在环境、气象及高校的野外站点和实验室。该项目将在此基础上进一步突破,研发出高精度、高灵敏度、连续分析仪和高灵敏度ODS快速质谱分析仪,并在国际上率先实现产业化。  北京大学环境科学与工程学院教授胡建信说,ODS监测设备的研发、迭代与商用意义重大。绝大多数ODS也是温室气体。在全球保护臭氧层的共同努力下,淘汰ODS直接减少大量温室气体排放,减缓气候升温幅度约0.5℃。  在论证会上,项目负责人、复旦大学大气与海洋科学系研究员、联合国《蒙特利尔议定书》科学评估委员会成员姚波作了项目实施方案汇报。该项目下设5个课题,包括连续检测方法研究和样机研制、检测分析仪整机工程化和产业化、快速质谱分析仪研制与产业化等。
  • HPE1900臭氧分析仪助力精监测看不见的大气污染!
    我们都知道的臭氧层位于大气中的高处,在地球周围形成一道保护屏障,让地球上的生物免受太阳有害紫外线的伤害。然而,地面的臭氧却完全不是这么一回事。这类臭氧通常不直接排放,而是由氮氧化物(NOx)和挥发性有机化合物(VOC)在阳光下的化学反应形成。地面臭氧大多来自汽车、发电厂、工业锅炉、炼油厂和化工厂排放的污染,甚至可能来自油漆、清洁剂、溶剂等。因此,与农村地区相比,城市中心附近的地面臭氧水平往往最top。 由于地面臭氧存在我们呼吸的空气中,可能以不同的形式和程度对人类健康产生伤害。近期随着各地气温的升高,又到了臭氧污染高发的季节。据统计,近5年以来夏季(5至9月)期间我国臭氧平均浓度约为150微克/立方米左右,超标天数比例平均为11.1%,主要体现为轻度污染。 150微克/立方米的臭氧浓度约等同于75 ppb,因此大气中臭氧浓度变化精测控对分析仪的精度有很高的要求。宁波海尔欣光电科技有限公司的HPE1900系列高精度臭氧分析仪,采用国际上广泛采用的紫外线吸收法,依据比尔-郎伯定律和臭氧在波长254nm处的紫外吸收谱线,既可以实现0 - 300ppm量程的高浓度工业过程分析,又可以实现0 - 500ppb量程的低浓度大气环境分析,最\优分辨率可达0.1 ppb。 HPE1900技术参数测量范围0-1/10/100 ppm可选分辨率最小可达0.1 ppb反应时间(T95)40sec @ 500ppb准确度读值±1% @100ppb-100 ppm采样流量1.0 - 1.5 L/min(含pump)外观尺寸250×200×62 (mm) (长×宽×高)重量1.5 kg (含臭氧过滤器)电源DC 12 V, 1.5A max.@100-240VAC 50/60Hz操作温度范围0~40 ℃(适用环境范围)操作压力范围700~780 mmHg 基于我司在痕量气体测控的长期积累,宁波海尔欣光电科技有限公司已经与地方环境监测单位展开合作,从HPE1900优异的测量性能作为起点,助力国家精监测看不见的臭氧污染!若您有相关需求,欢迎与我们的销售团队联系!
  • 天跃环保甲醛臭氧检测仪中标湖南省卫生厅项目
    采购单位:湖南省卫生厅 中标产品名称:甲醛检测仪、臭氧检测仪 中标产品型号:TY-9500(HCHO)、TY-9500(O3) 中标产品数量:95台、123台
  • 荏原开发了一种可用于半导体产线的无汞臭氧监测仪
    荏原株式会社宣布,已开发出2种环保型无汞臭氧监测仪。该公司开发、设计、制造和维护正确使用臭氧所需的臭氧监测仪,以及结合了预处理系统和臭氧监测仪的臭氧浓度测量设备,以便在各种条件下进行精确测量。 它被用于许多领域,例如供水和污水处理设施的先进处理工艺以及半导体工厂的制造工艺。 为了应对社会对环境的日益关注,新开发的产品组的特点是采用UV-LED作为光源,在实现无汞使用的同时,实现高精度测量。第一类新产品是EG-3100系列,这是一款用于水和污水处理设施的高精度臭氧监测仪,它不含汞,并采用公司独特的发光校正技术,实现了与低压汞灯相同的精度。 除了提供涵盖水净化过程中臭氧处理中所有气体测量点的产品阵容外,该公司还实现了高精度和高分辨率,因此可以应用于研发应用。第二种是EG-690,这是一款用于半导体制造工艺的在线臭氧监测仪,与EG-3100系列一样,不含汞,并达到与低压汞灯产品相同的精度。 此外,它具有占地面积小的特点,可以在线安装在半导体制造工艺(生产线)的臭氧气体管道中,适用于设备嵌入。EG-3100 系列和 EG-690 的订单计划于 2024 年 4 月开始。
  • 饮用水臭氧消毒后,如何检测臭氧的残余量?
    一、背景介绍臭氧,化学式为O3,因其类似鱼腥味的臭味而得名。臭氧是一种强氧化剂,具有很强的杀菌消毒、漂白、除味等特性,因此广泛应用于饮用水消毒、食品加工杀菌净化、医疗卫生和家庭消毒等方面,但是过量的臭氧会使水中溴化物绝大部分被氧化成对人体有害的溴酸盐。《生活饮用水卫生标准》GB 5749-2006中,对水质中的臭氧有明确的限值,下面我们将具体介绍臭氧含量检测的标准要求、测试方法、具体测试过程及结果。 二、方法及限值臭氧分析主要有光谱分析和电化学分析。常用检测方法主要为碘量法、靛蓝二磺酸钠分光光度法、紫外吸收法和化学发光法。分光光度法不仅体积小巧,测试性价比高,易于携带保管,比较适合于在农村或县级实验室推广使用。靛蓝二磺酸钠分光光度法是在酸性条件下,臭氧迅速氧化靛蓝,使之褪色,吸光率的下降与臭氧浓度的增加呈线性。 表1臭氧的检测标准及限值标准编号标准名称限值GB 5749-2006GB5749-XXXX征求意见稿生活饮用水卫生标准出厂水和末梢水限值≤0.3mg/L末梢水余量≥0.02mg/L 三、臭氧含量测定1、检测仪器:DGB-480型多参数水质分析仪2、检测试剂:臭氧试剂包:(臭氧)测定试剂(粉剂组分)、(臭氧)测定试剂(溶液组分)3、检测流程及结果:参数方法号方法检出限mg/L测量范围mg/L重复性测量误差臭氧18靛蓝二磺酸钠分光光度法0.020.02-2.002.00%±0.1mg/L图 1 臭氧含量测定流程 图2 臭氧含量测定显色图(从左到右0mg/L、0.4mg/L、1.0mg/L、1.6mg/L和2.0mg/L) 图3 臭氧含量测定曲线图4、结果总结:● 对0mg/L、0.4mg/L、1.0mg/L、1.6mg/L和2.0mg/L的臭氧标准溶液进行检测,测量误差≤0.008mg/L,结果良好。● 采用DGB-480型多参数水质分析仪测定水中臭氧含量,测量方法为国家标准方法。测试仪器体积小巧,配套有臭氧检测试剂,测试方便,测试性价比高。 四、检测仪器介绍DGB-480型多参数水质分析仪,采用8波长光学测量系统和90度光散射浊度检测光路,内置浊度、色度、臭氧、亚硝酸盐氮、尿素、六价铬、总铬、锰、总氮、 硝酸盐氮、硝酸盐、甲醛、水硬度、锌、亚硝酸盐、余氯、总氯、 二氧化氯、高锰酸盐指数、低浓度 CODCr、高浓度 CODCr、镉、 氨氮、铵离子、总磷、总磷酸盐、镍、亚铁离子、铁、亚硫酸盐、 过氧化氢、铝、铅、铜、钙、汞、硼、砷、氟、阴离子洗涤剂、 银、溴酸盐、硫酸盐、钼、铍、钴、钡、氯化物等40多种检测项目和方法,直接调用,测量快速、简便。既可以配套雷磁专用试剂盒检测也可以自制试剂检测,使用灵活。主要应用于生活饮用水、地表水、自来水、污水、游泳池水等水质的现场测定或者实验室分析。
  • 伊创科技携环境空气在线分析仪亮相第三届中国大气臭氧污染防治研讨会
    4月27日,由复旦大学、北京大学、上海市环境科学研究院、暨南大学、中国环境科学学会臭氧污染控制专业委员会联合主办“第三届中国大气臭氧污染防治研讨会”,于上海正式召开。并与“第327 场中国工程科技论坛-大气臭氧污染防治论坛”联合、同期举办。将围绕“碳中和”战略目标下中国臭氧污染协同防控的理论研究、关键技术和管理实践等方面展开研讨,为深入开展臭氧污染治理、推进减污降碳提供理论和技术支撑。中国环境科学学会臭氧污染控制专业委员会全体人员、大气臭氧污染防控相关领域的专家学者、政府管理人员、相关企业技术人员等领域人士参会。伊创科技作为环境空气监测仪器研发生产的厂家,携TiH200环境空气甲醛在线分析仪和GC6010非甲烷总烃在线分析仪亮相会议。 大气臭氧污染呈现上升和蔓延态势,近几年更是多次出现大范围长时间臭氧污染过程,显示我国大气污染已迈入臭氧与PM2.5污染精细化协同管控的新阶段,成为持续提升我国空气质量亟需解决的关键问题之一。2021 年是国家“十四五”规划的开局之年,在“碳达峰、碳中和”战略目标下推进PM2.5和臭氧污染协同控制是深入打好污染防治攻坚战的迫切需求。伊创科技紧贴市场痛点,先后推出:挥发性有机物在线分析仪、亚硝酸在线分析仪、氨气在线分析仪、非甲烷总烃在线分析仪、气体与气溶胶组分在线监测系统等多款产品,并与北京大学开展“环境空气中甲醛含量在线监测方法及装置”项目合作,联合开发甲醛在线分析仪,将高校科研转化为企业的实际生产力,实现产业化生产,造福社会。TiH200环境空气甲醛在线监测仪为基于长光程流通池吸收光谱技术的大气HCHO在线测量系统,是一款集采样、标定、清洗、反应、分析于一体的高精度甲醛监测仪器。产品选择性高,无醛酮干扰,进口器件及创新的分析流路设计和试剂配方,保证重现性可达到1%,预处理装置采用免维护设计,可确保预处理装置维护周期超过半年时间,可编程式软件设计,用户自由配置,以适应各种不同的监测环境,全自动式运行,可实现自动调零、校准、测量、清洗、维护、恢复等智能化功能特点。潜精积思,锲而不舍,伊创科技将继续坚持技术创新,产品创新,坚守产品质量,为我国环境监测事业竭尽全力。
  • 谱育科技 在线式臭氧生成速率监测系统,实现臭氧超标精准管控
    O3生成与其前体物VOCs和NOx呈非线性关系,管控具有复杂性。臭氧生成速率是O3控制策略制定的重要指标,若生成速率大于分解速率,臭氧总量动态平衡会被打破,臭氧总量就会增加。对臭氧生成速率的研究一直备受关注,目前此类研究主要使用模型模拟,具有很大不确定性,也无法进行有效、实时的监测,对臭氧污染的研究工作亟需一种可以对臭氧生成速率和臭氧生成敏感性进行有效定量的检测技术。从“看不见、摸不着”到“可看、可算、可知”谱育EXPEC 2620 臭氧生成速率监测系统➢ 直接测量臭氧净生成速率的连续监测系统 , 能够准确评估区域臭氧的变化趋势;➢ 可以结合大气标准站数据,比较臭氧生成速率变化,准确量化臭氧本地产生和区域传输贡献;➢ 通过前体物引入流动反应管技术,实现在线相对增量反应活性(RIR)分析,准确识别敏感性主控因子;➢ 采用高灵敏度CAPS-NO2直测技术,绘制本地臭氧生成特征网格,精准定位重点污染源头。测量原理基于两个置于室外的相同流动反应管,分别为接受太阳紫外辐射的反应管和隔绝太阳紫外辐射的参照管,通过自动切换不同测量通道,利用腔衰减相移光谱法测量NO2技术得到两个腔室的Ox(O3+NO2)的差值,计算得到大气中臭氧净生成速率(P(O3)net),代表了实际环境大气中的臭氧生成速率与臭氧分解速率之差,反映了臭氧总量积累快慢。优势亮点臭氧生成速率监测系统可以开展哪些工作?准确评估区域臭氧的潜在生成趋势,准确量化臭氧本地产生和区域传输贡献,准确识别敏感性主控因子,理清臭氧生成演化机制,为臭氧污染防治提供直接有效的措施指导。01 在线、快速、直接实时获取臭氧净生成速率02 量化本地生成和区域传输贡献占比03 在线式敏感性分析前体物引入流动反应管技术,可实现自动在线相对增量反应活性(RIR)分析,准确识别臭氧本地生成敏感性主控因子,无需复杂计算和专业人员投入。移动监测通过网格化移动监测,可绘制区域臭氧生成速率热力图,精准判断本地臭氧生成热点,实现精准管控。应用场景丰富,灵活可选站点监测、移动监测两种场景模式可灵活选择凭新而变,从更好到更全大气臭氧及光化学污染源解析解决方案搭载谱育科技自主研发的光化学组分、过程因子监测系统以及臭氧生成速率和大气氧化性监测分析系统,结合全面的数据分析能力,掌握详实的区域复合污染情况数据,实时获得区域内臭氧前体物的排放水平及变化规律,摸清生成臭氧的重点污染物种类和污染来源,为有效改善环境空气质量、打赢蓝天保卫战提供多方面的技术和数据支持。
  • 当马克思主义遇见臭氧检测,史上最牛跨界应用诞生了!
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 分析检测行业的应用文章,通常走的是“高大上”路线,不是这个圈内的人,读起来多半晦涩难懂。突然有一天,当马克思主义遇见臭氧检测,就如同火星撞到地球,史上最牛跨界应用就此诞生,小编也真真是开眼了: /span /p p   近日,北京师范大学水科学研究院程念亮等8人在2017年04期(8月10日)的《环境与可持续发展》期刊上发表了题为《马克思主义在北京市臭氧检测及分析中的应用》的论文。《环境与可持续发展》是环保部环境与经济政策研究中心旗下的刊物。 /p p   论文摘要写道:“本文将马克思主义认识论与北京市大气环境臭氧浓度监测与评价有机结合起来,利用北京及周边地区O3监测数据,结合数值模型,筛选案例综合探讨了2015年8月11至14日一次臭氧重污染过程中O3浓度的分布特征及污染成因。利用马克思主义分析监测中遇到的矛盾及评价经验,并指导臭氧治理实践,深刻揭示了马克思主义对环境质量改善的指导意义,研究结果最终为保障公众健康服务。” /p p   论文得的结论是:“此次O3重污染期间北京市11个监测点位O38h日均浓度最大值为275. 5μg /m³ ,35个监测点位单站最高小时均值达到了534μg /m³ 。空间分布上,臭氧重污染持续时间总体均呈现出南部站& gt 北部站& gt 城区站的特征,中心城区站点臭氧浓度明显地区位于下风向和郊区的八达岭、密云水库、怀柔等监测点位。此次重污染过程中北京市大气氧化性较强。数值模拟显示此次重污染过程中本地光化学污染及区域输送起主导作用,其中臭氧本地生成贡献率在13~15时影响最大。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/4048275d-53be-49e9-b143-fcc1e28570fd.jpg" title=" 微信图片_20170815230338.jpg" / /p p   北京师范大学水科学研究院程念亮等8人在2017年04期(8月10日)的《环境与可持续发展》期刊上发表了题为《马克思主义在北京市臭氧检测及分析中的应用》的论文 /p p   在第一部分“臭氧的检测及评价”,论文写道,“随着人们生活水平的提高、物质的改善及监测仪器的普及,人民的环保意识逐渐增强。物质基础决定上层建筑,人民的认识不断深化。” /p p   2013年,国家发布了新环境空气质量标准(GB3095-2012),更新了臭氧等污染物项目的分析方法。论文写道:“新标准的这些变化都体现了新时期加强大气环境治理的客观需求,是马克思主义认识论的集中体现。” /p p   文章同时强调了臭氧“在天为佛,在地为魔”的矛盾性,即高空臭氧能保护人体健康,近地面臭氧却会造成污染。 /p p   论文认为,建立观测站是“马克思主义认识论中,为充分发掘近地面臭氧浓度的分布规律,充分发挥人的主观能动性”。 /p p   论文还表示:“对于臭氧模拟而言,就是要将模式设置及参数本地化,将符合我国各地区的各种模式化方案本地化,更好的模拟分析本地区各种污染物浓度的变化趋势。在合理的借鉴中发展适合我国各地区的臭氧监测及评价体系。” /p p   在第二部分“北京市臭氧污染案例分析”的结尾,论文强调要用“联系的普遍性和客观性原理”看待这个问题。北京地区的臭氧浓度一方面与前体物有着密切的联系,另一方面气象条件(风温压湿)对其浓度有着十分重要的影响。同时北京周边各区区域传输对北京地区污染物的浓度贡献较大。” /p p   在第三部分“北京市臭氧治理和实践中”,论文用马克思主义实践和认识观总结了针对2015年抗战胜利70周年大阅兵的减排实践:“这次区域减排实践树立了我们大气污染防治的信息。保障方案中各项技术措施也证明之前的技术累积和结论是正确的。马克思主义告诉我们,实践是认识的基础,对认识的发生和发展起决定作用。” /p p   最后,论文强调了大气污染防治这个民生问题的重要性:“如果这个民生问题不能解决的话,政府的形象、政绩和公信力会大打折扣。马克思主义认为,人民群众是历史的创造者、社会物质财富和精神财富的创造者以及社会变革的决定性力量。” /p p   作者简介显示,第一作者程念亮是北京师范大学水科学研究院和中国环境科学研究院的博士研究生,主要从事大气环境监测、模拟、预报及评估研究。两名通讯作者为与程念亮同单位的在读博士研究生程兵芬和中山大学先进技术研究院、广东旭诚科技有限公司的硕士工程师李红霞。 /p p   该项目受到北京市市委组织部优秀人才培养及总工会创新成果及工作室、国家科技支撑计划、环保公益专项、北京市科技计划、广东省科技型企业发展专项、国家自然科学基金的资助。 /p p   span style=" font-family: 楷体, 楷体_GB2312, SimKai "  面对《马克思主义在北京市臭氧检测及分析中的应用》这样“令人窒息”的论文题目,网友们纷纷留言了: /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "    span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " “万能的马克思主义!” /span /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) "   “我也要写篇论文:马克思主义在人工智能中的应用。” /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) "   “论月球引力与资本主义的产生和发展!” /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) "   ...... br/ /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   除了马克思主义与臭氧检测的“浪漫”相遇,你还见过哪些令人开眼的应用案例?欢迎文末留言评论。 /span /p
  • 走、测、绘、管四位一体 雪迪龙大气VOCs溯源走航 助力城市打好臭氧污染治理攻坚战
    p strong   一、行业背景 /strong /p p   挥发性有机物(VOCs)来源广泛,是臭氧和二次有机气溶胶(SOA)的重要前驱物,其中一些组分因对人体健康存在潜在威胁,进而越来越受到的国家关注。《“十三五”挥发性有机物污染防治工作方案》、《挥发性有机物无组织排放控制标准》等文件的相继发布也对VOCs监测提出了更高的要求。 /p p   相比于传统固定式VOCs监测过程繁琐、分析周期长,走航监测可以快速采集区域内VOCs组分,实现边行驶、边监测、边反馈,短时间内完成多组分混合气体的分析监测,快速建立区域大气VOCs污染时空“画像”,锁定重点污染源,为建立臭氧的精细化管控和大气污染防治工作的精准施策提供科学有力的技术支撑。《2020年挥发性有机物治理攻坚方案》更是明确要求运用VOCs走航监测监侦手段,提高执法能力和效率,特别是在石化、化工类园区分析企业VOCs组分构成、识别特征物质、推动建立监测预警监控体系方面要求开展走航监测。 /p p strong   二、大气VOCs溯源走航监测解决方案 /strong /p p   雪迪龙大气VOCs溯源走航监测解决方案针对当前环境突出问题,对走航车进行科学合理的改装及设备配置,配备可秒级出数的核心设备PTR-TOF质子转移反应飞行时间质谱仪,结合大气VOCs溯源走航监测平台及大气VOCs溯源走航监测服务,实现城市环境空气VOCs组分溯源走航监测、污染调查与臭氧成因分析、国控站/敏感点/污染源等点位周边环境大气VOCs溯源走航监测等。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/7f00cf35-920b-4867-9c7a-68e4dc660330.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em " 2.1 大气VOCs溯源走航监测车   /p p style=" text-indent: 2em " 雪迪龙PTR-TOF质子转移反应飞行时间质谱仪是通过将质子转移离子源和飞行时间质谱结合在一起,能对痕量挥发性有机物(VOCs/SVOCs)实现在线监测的新兴技术,可在数秒内对pptv量级的VOCs/SVOCs进行定性定量,具有响应速度快、无需前处理、灵敏度高和检出限低等优点,非常适合作为核心设备置放于走航车上进行VOCs溯源。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/339cf5a1-b21a-49e7-8eb9-741401ae11e1.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong PTR-TOF 质子转移反应飞行时间质谱仪 /strong /span /p p strong 设备特点: /strong /p p style=" text-indent: 2em " 1.高灵敏度,检出限低至pptv量级,可检测痕量污染物; /p p style=" text-indent: 2em " 2.响应速度快,可在一秒内快速甄别污染物; /p p style=" text-indent: 2em " 3.无需前处理、灵敏度高、检出限低; /p p style=" text-indent: 2em " 4.高质量分辨率(FWHM≥4000M/ΔM),准确识别化学组分; /p p style=" text-indent: 2em " 5.高质量精度和稳定性,综合质量精度优于0.0025amu,减少误判; /p p   MCS-900V 大气VOCs溯源走航监测基于机动车平台与质子转移反应飞行时间质谱监测等快速分析技术,可在走航过程中快速分析环境空气中存在的PAMS、TO15、OVOCs、硫醇、有机胺、有机酸等组分,结合臭氧、氮氧化物监测技术可进一步分析臭氧成因与二次气溶胶生成潜势,也可根据客户要求定制监测车配置与监测因子。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/dc3083c5-a647-4073-a530-f6270f24431c.jpg" title=" 3.png" alt=" 3.png" / /p p strong 产品特点: /strong /p p style=" text-indent: 2em " 1. 齐全的配置:结合质谱、色谱、光学、传感器等多种先进的分析技术,可满足走航与驻车等多种应用需求; /p p style=" text-indent: 2em " 2. 广泛的监测:质子转移反应飞行时间质谱仪可秒级分析上百种VOCs组分,高效侦察高污染区域; /p p style=" text-indent: 2em " 3. 强大的分析:基于功能强大的走航数据分析平台,在臭氧前驱物监测数据基础上可进行臭氧成因分析、臭氧生成潜势分析、甄别臭氧控制的关键前驱物、计算二次有机气溶胶生成潜势,甄别二次有机气溶胶控制的关键前驱物; /p p   2.2 大气VOCs溯源走航监测平台 /p p   雪迪龙大气VOCs溯源走航监测平台包括车载分析软件、数据接收存储系统、GIS、展示系统、数据深度分析模型、大数据分析系统(根据实现目标配置)等,可进行实时/历史走航轨迹分析、VOCs组分分析、污染特征指纹识别及来源分析、臭氧敏感性分析、臭氧生成潜势分析、二次有机气溶胶生成潜势分析、气象研判分析等。可将VOCs、空气站、恶臭、微型站等异源数据展示在一张图上。 /p p strong 污染特征指纹识别及来源分析: /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/95d0c30f-fed4-4097-821e-9949be5b07f5.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center " 生成指纹图谱 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/24a35b64-eb86-4155-be14-7b4539078ea1.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: center " 建立指纹谱库 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8ab74edc-3652-4003-9a60-34e0c2491b89.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 指纹图谱相似度比对 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/254f57e2-9076-4a19-9bd6-10b7e2d5873d.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 分析可能污染来源 /p p strong 数据可视化 /strong /p p style=" text-indent: 2em " 1. 2D/3DGIS地图展示,可实现实时数据、历史数据的查询、显示,快速直观了解区域VOCs空间分布。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/a2863f66-b564-45a3-99eb-d511d4cc6e3a.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-indent: 2em " 2. 实时展示TOP10重点污染因子,快速掌握区域的VOCs排放物种特征。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/410dc62f-1899-4092-a602-b96f7fcf508a.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-indent: 2em " 3. 实时上传、实时分析VOCs组分种类、浓度时间序列、总浓度分类占比。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/771f34dd-003e-4c9c-bcbc-d3a42109769f.jpg" title=" 10.png" alt=" 10.png" / /p p strong 数据深度加工 /strong /p p style=" text-align: left text-indent: 2em " 1.& nbsp 臭氧生成潜势分析:分组分计算臭氧生成潜势,甄别O sub 3 /sub 控制的关键前驱物; /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/b510e7fa-56e8-4feb-b2bb-c6c5bcdde43b.jpg" title=" 11.png" alt=" 11.png" / /p p style=" text-indent: 2em " 2. 二次有机气溶胶生成潜势分析:分组分计算二次有机气溶胶生成潜势,甄别二次有机气溶胶控制的关键前驱物。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/97532600-cb92-4950-8c79-3d3b55d5704b.jpg" title=" 12.png" alt=" 12.png" / /p p   2.3 大气VOCs溯源走航监测服务 /p p   大气VOCs溯源走航监测服务针对用户的不同需求,推出可灵活定制的服务方式,包括监测参数、时长、频次、数据分析深度,均可按需定制。用户无需在固定资产入库或设备维护等事务上花费精力,也无备品备件耗材等额外支出。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/44729aca-50e6-4ba0-8379-edb65d0fa61c.jpg" title=" 13.png" alt=" 13.png" / /p p strong 服务特点 /strong /p p style=" text-indent: 2em " 1. 对区域VOCs排放实况进行连续监测、记录、可视化动态展示,快速掌握区域VOCs实时动态变化; /p p style=" text-indent: 2em " 2. 快速锁定问题区域、问题行业、问题企业,进行污染溯源、靶向监管; /p p style=" text-indent: 2em " 3. 能快速全面掌握区域VOCs排放现状、对政府治污科学决策、明确分工、高效监管提供科学依据; /p p style=" text-indent: 2em " 4. 对问题区域、问题企业持续监管、随机抽查,为政府对相关部门、涉污企业状况的评估提供数据支持。 /p p strong 服务报告 /strong /p p style=" text-indent: 2em " 1. VOCs走航监测结果及空间分布; /p p style=" text-indent: 2em " 2. 区域VOCs特征组分分析; /p p style=" text-indent: 2em " 3. 区域超标及异常点位排查情况; /p p style=" text-indent: 2em " 4. 臭氧及二次气溶胶控制重点组分分析; /p p style=" text-indent: 2em " 5. 污染特征指纹识别及来源分析; /p p style=" text-indent: 2em " 6. 可根据客户需求制定专题报告; /p p style=" text-indent: 0em " strong style=" text-indent: 2em " 三、应用案例 /strong /p p   雪迪龙已经在北京、上海、江西、湖北等多个省市进行了大气VOCs溯源、大气颗粒物溯源等走航监测服务,具有丰富的走航监测服务经验。 /p p strong 某市VOCs污染溯源分析 /strong /p p   通过对城市环境空气VOCs进行走航监测,发现高污染工业园区,对园区进行VOCs走航溯源分析,锁定高排污企业后分析特征组分种类与污染水平,为精准治污提供科学依据。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/eb8e8582-65eb-46b6-ae3c-bc1fb304102d.jpg" title=" 14.png" alt=" 14.png" / /p p strong 某市VOCs走航恶臭溯源监测 /strong /p p   通过对某垃圾填埋场进行异味走航监测,检出122种VOCs组分,其中24种具有明显特征性,经过对填埋场周边走航分析,精准掌握该填埋场对区域环境空气质量的影响,为保障区域生态环境安全提供科学依据。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/b0850972-c7cd-4f6a-b8ce-7ee6c10fe38f.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: right " strong 供稿来源:北京雪迪龙科技股份有限公司 /strong /p
  • 空气监测: 臭氧前体物的野外全自动在线监测
    臭氧前体物的野外全自动在线监测 PerkinElmer 与美国国家环保局(US EPA)成功合作案例---无需液氮、无需人员照看、24小时连续监测、化合物测量范围更宽、更高灵敏度的全自动热脱附-气相色谱臭氧前体物(C2-C12 VOCs)分析解决方案 在美国,1970 年的清洁空气法赋予了环保署(EPA)保护空气清洁和保障公众健康的责任。1990年,在传统的六项环境空气监测指标基础上加入了挥发性有机物(VOCs)的监测。VOCs、羰基类化合物(carbonyls)以及氮氧化物(NOx)是地面臭氧生成的前体物,无论是在城市还是乡村地区,它们都以低至ppb 级别的浓度存在于环境空气中。在美国这些项目的测试是通过光化合物评估监测站(PAMS)来实施的。全球范围内也有一些其他类似机构进行这样的工作。例如,欧洲现在就在遵循联合国欧洲经济局有关控制VOCs 排放的协议。 在我国,即将发布的《环境空气质量标准》中将增设臭氧8小时平均浓度限值,并将该指标纳入空气质量的日常评价。作为臭氧前体物及大气的主要污染物之一---挥发性有机物(VOCs)无疑将在&ldquo 十二五&rdquo 期间倍加重视。2011年12月发布的《国家环境保护&ldquo 十二五&rdquo 规划》中已明确提出要求开展挥发性有机污染物等有毒废气监测,并将对 VOCs 相关重点行业如石化、有机化工、合成材料、化学原料药、塑料、设备涂装、电子元器件、电子电器产品、包装印刷等行业进行重点监管。 PerkinElmer 作为全球著名分析仪器供应商,从1955年率先推出全球第一套商用气相色谱仪以来,已屡创多项业内关键第一,如第一套全自动热脱附分析仪、第一套自动进样器、第一根毛细管色谱柱、第一套FID/NPD检测器、第一套GC/MS等。对于臭氧前体物分析,现可提供从样品前处理到分析结果的整体解决方案 方案特点 完全满足美国环保局(U.S.EPA)《臭氧前体物采样和分析技术支持文件》EPA/600-R-98/161 允许无人操作双柱同时分析 中心切割技术产生平行色谱图增大产出和色谱分离效果 1小时间隔采样 采样与色谱分析同时进行 系统自动校准 完整的数据处理 可选择热脱附系统、气相色谱和数据处理的远程软件控制 无需冷却剂操作 一家供应商提供全部分析方案包 配备中心切割设备及双FID检测器的 Clarus 气相色谱仪 和配备联机进样附件 TurboMatrix 热脱附仪 TotalChrom 和 Turbomatrix 远程控制软件 Swafer 中心切割设备 注:双柱分离5ppb 臭氧前体物(C2-C12 VOCs)标准物质典型色谱分析图 PerkinElmer 典型客户郊外臭氧前体物在线监测监测站照片 请点击查阅相关应用文章
  • 乌鲁木齐市环境监测中心站豪掷1400万采购细颗粒物与臭氧协同控制监测仪器
    近日,财政部发布2022年乌鲁木齐市“十四五”细颗粒物与臭氧协同控制监测网络能力建设(一期)项目招标公告,预算共计1424.85万元,计划采购无机元素分析仪、碳组分OC/EC分析仪、PM2.5组分变化规律分析仪、多通道大气颗粒物采样器等监测仪器。项目详情如下:项目编号:WZCG202201021项目名称:2022年乌鲁木齐市“十四五”细颗粒物与臭氧协同控制监测网络能力建设(一期)预算金额:1424.85万元采购需求:标项序号:WZCG202201021-1标项名称:一标段:无机元素分析仪、碳组分OC/EC分析仪、PM2.5组分变化规律分析仪数量:1批预算金额(元):3050000.00标项序号:WZCG202201021-2标项名称:二标段:多通道大气颗粒物采样器数量:1批预算金额(元):2040000.00标项序号:WZCG202201021-3标项名称:三标段:组分监测耗材(试剂耗材)数量:1批预算金额(元):2008000.00标项序号:WZCG202201021-4标项名称:四标段:在线离子分析仪、PM2.5分析仪(β射线法)数量:1批预算金额(元):1950000.00标项序号:WZCG202201021-5标项名称:五标段:有机碳/元素碳气溶胶分析仪、原子荧光光谱仪、半自动恒湿恒温称重系统数量:1批预算金额(元):1800500.00标项序号:WZCG202201021-6标项名称:六标段:激光雷达及VOC走航服务数量:1项预算金额(元):1500000.00标项序号:WZCG202201021-7标项名称:七标段:组分监测耗材(仪器专用)数量:1批预算金额(元):1100000.00标项序号:WZCG202201021-8标项名称:八标段:颗粒物组分源谱数量:1项预算金额(元):800000.00
  • 夏季臭氧监测及众瑞仪器推荐
    背景当前阶段,我国面临细颗粒物(PM2.5)污染形势依然严峻和臭氧(O3)污染日益凸显的双重压力,特别是在夏季,O3已成为导致部分城市空气质量超标的首要因子,京津冀及周边地区、长三角地区、汾渭平原等重点区域以及苏皖鲁豫交界地区等区域尤为突出,6-9月O3 超标天数占全国70%左右。VOCs是形成O3的重要前体物,主要存在于企业原辅材料或产品中,大部分易燃易爆,部分属于有毒有害物质,加强VOCs治理是现阶段控制O3污染的有效途径,也是帮助企业实现节约资源、提高效益、减少安全隐患的有力手段。本期为你介绍几款众瑞臭氧监测仪器。众瑞仪器推荐
  • 强化臭氧污染防治,广东发文要求完善臭氧和VOCs监测体系
    日前,根据《中共中央 国务院关于深入打好污染防治攻坚战的意见》《广东省大气污染防治条例》《深入打好重污染天气消除、臭氧污染防治和柴油货车污染治理攻坚战行动方案》(环大气【2022】68号),聚焦氮氧化物(NOx)和挥发性有机物(VOCs)协同减排,广东省臭氧污染防治(氮氧化物和挥发性有机物协同减排)实施方案(以下简称《方案》)发布并公开征求意见。《方案》要求到2025年,全省主要大气污染物排放总量完成国家下达目标要求。完成235项固定源NOx减排项目,12641项固定源VOCs减排项目,2006项移动源减排项目,臭氧生成物前体NOx和VOCs持续下降。要对标国内和国际一流水平,加大锅炉、炉窑、发电机组NOx减排力度,加快推进低VOCs原辅材料替代和重点行业及油品储运销VOCs深度治理,加强柴油货车和非道路移动机械等NOx和VOCs排放监管。强化臭氧污染防治科技支撑和技术帮扶,完善臭氧和VOCs监测体系,加强执法监管,切实有效开展臭氧污染防治。作为《方案》主要措施,第一,要求强化固定源NOx减排,在钢铁行业、水泥行业、玻璃行业、垃圾焚烧发电厂、铝压延及钢压延加工业、工业锅炉、低效脱硝设施升级改造七大行业均有相关工作目标及工作要求;第二,要求强化固定源VOCs减排,在石化与化工行业、油品储运销、印刷、家具、制鞋、汽车制造和集装箱制造业、以及以工业涂装、橡胶塑料制品等其他涉VOCs排放的相关行业均有改善工艺、强化VOCs排放治理等相关工作目标及工作要求;第三,要求强化移动源NOx和VOCs协同减排,推进柴油货车污染治理专项行动、燃油蒸发排放控制专项行动、非道路移动机械污染治理专项行动。在检验检测方面,《方案》明确提出,要加强监测监控。加强涉气工业园区、集聚区环境治理监测监控,推动在国家级、省级以及其他环保投诉较多的工业园区、集聚区逐步开展环境VOCs监测,依托现有的、新建的自动环境监测设备,对工业园区、集聚区及周边区域的大气环境治理等加强监测监控预警,建立信息通报机制,及时报告环境质量超标、异常或明显下降等情况,鼓励石化和化工企业高架火炬安装热值仪对火炬气热值进行连续监测,安装流量计对火炬气、调整热值用燃料气、长明灯燃料气,助燃蒸汽/空气流量等进行监测。利用走航监测、无人机飞检等手段,对污染源集中区域的VOCs、NOx、颗粒物等污染物排放水平进行巡检及排查溯源解决问题。利用卫星遥感、视频监控、无人机等先进技术开展露天焚烧全方位、全天候监控。《方案》原文:
  • 臭氧是我国下一步大气污染治理重点 控制VOCs是关键
    p   当前阶段,我国面临细颗粒物(PM2.5)污染形势依然严峻和臭氧(O sub 3 /sub )污染日益凸显的双重压力,特别是在夏季,O sub 3 /sub 已成为导致部分城市空气质量超标的首要因子,京津冀及周边地区、长三角地区、汾渭平原等重点区域、苏皖鲁豫交界地区等区域尤为突出,6-9月O sub 3 /sub 超标天数占全国70%左右。 /p p   VOCs是形成O sub 3 /sub 和PM2.5的重要前体物,在阳光紫外线照射下与大气中的氮氧化物发生化学反应,形成臭氧等二次污染物或强化学活性的中间产物,增加臭氧地表浓度。同时,部分VOCs 本身也具有毒性、异味等性质。这些都会对自然环境和人体健康产生不利影响。因此,控制VOCs成为降低臭氧浓度的关键之一。 /p p   近日,生态环境部印发了《2020年挥发性有机物治理攻坚方案》,旨在通过攻坚行动,使VOCs治理能力显著提升,VOCs排放量明显下降,夏季O3污染得到一定程度遏制。《攻坚方案》中提出要加强大气VOCs组分观测,完善光化学监测网建设,提高数据质量,建立数据共享机制。已开展VOCs监测的城市,要进一步规范采样和监测方法,加强设备运维和数据质控,确保数据真实、准确、可靠。尚未开展VOCs监测的城市,要抓紧加强能力建设,开展相关监测工作。 /p p   据了解,目前国内对于VOCs常用的监测手段主要是实验室手工监测(离线监测)和现场自动监测(在线监测)两种。离线监测是将废气或环境空气中的VOCs 采样后,将样品送回实验室,用气相色谱法或气相色谱质谱联用法进行分析 相对于离线监测,连续自动在线监测的优势是可以提高VOCs 监测的时间分辨率,更好地帮助追踪大气中VOCs物质的大气化学过程。 /p p   针对VOCs检测,赛默飞可提供离线+在线的解决方案。赛默飞VOCs 离线监测方案全方位应对标准列明的117 项VOCs,其中包括PAMS-57 种,TO15-47 种, 醛酮13 种。环境空气中需要监测的PAMS 和TO-15 中共计104 种VOCs,我国目前仍未出台相应的在线监测标准。据了解,目前市面上对这104 种组分在线分析主要有两种解决方案:Deans Switch-FID/MS 解决方案和双通道-FID/MS 解决方案。赛默飞及其合作伙伴能够完整地提供这两种解决方案,均适用于环境大气中VOCs 的在线分析。 /p p   赛默飞部分VOCs产品展示: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/1c9118d6-a988-4b5e-887a-325b1a80dc42.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: center "    a href=" https://www.instrument.com.cn/netshow/SH102130/C375270.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 6000型固定污染源挥发性有机物排放连续监测系统 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e1ee6869-3e53-4c92-a895-5a62e273c0de.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: center "    a href=" https://www.instrument.com.cn/netshow/SH102130/C313825.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 5800-GO便携式VOCs在线分析仪 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/4d8151b3-fe66-4c0d-881a-088f4ea15014.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" font-size: inherit font-weight: normal padding: 0px margin: 0px text-align: center " microsoft=" " white-space:=" " background-color:=" " text-align:=" " a href=" https://www.instrument.com.cn/netshow/SH102130/C313817.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 5800-GM挥发性有机物在线气质联用监测系统 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/310e0876-1549-4cf8-9597-04634ad93624.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center "    a href=" https://www.instrument.com.cn/netshow/SH102130/C313645.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " EV-1000系列挥发性有机物在线监测系统 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/06d91411-70f9-42f0-9eaf-2878619b5867.jpg" title=" 图5.jpg" alt=" 图5.jpg" / /p p style=" text-align: center "    a href=" https://www.instrument.com.cn/netshow/SH102130/C313610.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 5800挥发性有机物(VOCs)监测系统 /span /a /p p   相关链接: /p p    a href=" https://www.instrument.com.cn/news/20191226/519712.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 赛默飞VOCs:离线+在线 全方位应对标准要求 /span /a /p p span style=" color: rgb(0, 112, 192) "    /span span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/netshow/sh100244/news_492129.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " 全国VOCs大会赛默飞在线离线VOCs监测方案齐护航 /a /span /p p    a href=" https://www.instrument.com.cn/netshow/sh100244/news_491630.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 守卫蓝天,赛默飞ISQ 7000 GC-MS在行动 /span /a /p p   更多内容可查看: a href=" https://www.instrument.com.cn/netshow/SH102130/" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/netshow/SH102130/ /span /a /p
  • 空间中心紫外臭氧总量探测仪成功监测雾霾天气
    1月7日至16日和1月28日至31日,我国中东部大部分地区持续出现雾霾天气。由国家空间科学中心自主研制的紫外臭氧总量探测仪利用吸收性气溶胶指数AAI(The Absorbing Aerosol Index)成功对雾霾进行监测。中国气象局正是利用该风云三号气象卫星紫外臭氧总量探测仪实现了对雾霾事件的全过程监测。图1和图2为1月29至30日的雾霾监测情况。   由于雾霾的发生时常伴随着云等亮背景信息,因此利用可见光光学遥感卫星准确的监测雾霾具有较大的困难。风云三号紫外臭氧总量探测仪具有实时、大范围雾霾环境监测能力,相对于地面监测,卫星AAI指数可以监测连续空间分布的雾霾天气及其移动发展趋势,在空间覆盖方面具有优势,为雾霾的空间分布研究提供实时、大范围观测资料。该技术即将被中国气象局纳入雾霾天气业务监测运行系统。   AAI值的大小与大气中对紫外线具有吸收作用的气溶胶含量密切相关。普通云或者冰雪AAI指数很小甚至是负值,而雾霾对紫外具有强烈的吸收作用,AAI指数会明显增大,因此通过AAI可以很好地克服云或冰雪的影响,对雾霾进行监测。 图1 紫外臭氧总量探测仪雾霾监测图像2013年1月29日10:15(北京时)   图2 紫外臭氧总量探测仪雾霾监测图像2013年1月30日10:15(北京时)
  • 人民日报:"隐形"臭氧代替PM2.5成首要大气污染物
    编者按:秋季和冬季,气象条件不利于污染物扩散,是我国中东部地区雾霾频发、重发的季节。然而,夏季大气污染同样不容忽视,它具有不同于秋冬季节的特点,尤其是“隐形杀手”臭氧危害巨大 此外,夏季采取有力措施治理大气污染,就像“冬病夏治”,有助于明显缓解几个月后我们可能遭遇的严重灰霾和污染。从本期起,生态周刊推出夏季大气污染防治系列报道,敬请关注。  进入夏季以来,随着气温不断上升,在很多城市,臭氧代替PM2.5(细颗粒物),成为首要大气污染物。按照2013年颁布执行的《环境空气质量标准》,PM2.5、PM10(可吸入颗粒物)、二氧化硫等6种污染物被纳入常规监测。这几年,6种污染物中只有臭氧浓度在上升,而且2015年臭氧超标天数已经占超标总天数的16.9%。  与雾霾相比,臭氧污染很不显眼,往往隐藏在蓝天白云之下,可这一污染物却是人类健康的“隐形杀手”。  “在天是佛,在地是魔”  5月臭氧成为京津冀、珠三角、长三角首要大气污染物  家住北京朝阳的刘源是户外运动发烧友,对空气质量很关注,不过连日来的空气质量监测结果让他很困惑。“明明是蓝天白云的好天气,感觉空气质量很好,可手机软件却时常提示有污染。”原来,“隐形杀手”臭氧已经成为北京夏季大气污染的主凶。  根据北京市环境保护监测中心的报告,从5月18日开始,臭氧取代PM2.5成为北京大气首要污染物,5月18日,城六区的PM2.5小时浓度为57微克/立方米,而同一时间臭氧浓度达185微克/立方米,已属三级污染。  环境保护部环境规划院大气环境规划部副主任雷宇表示,臭氧超标主要集中在京津冀、长三角、珠三角区域及山东等省,且污染范围呈扩大趋势。臭氧已经成为颗粒物之外,影响空气质量的最主要污染物。  2015年上海107个污染天气中,31%的首要污染物为臭氧。2013年以来,江苏省臭氧浓度连续两年不降反升。  今年6月5日世界环境日前夕发布的《中国环境状况公报》显示,2015年338个城市空气质量超标天数中,以PM2.5、臭氧和PM10为首要污染物的居多,分别占超标天数的66.8%、16.9%和15.0%。环保部最近公布的5月份空气质量数据也显示,无论是京津冀地区,还是珠三角、长三角地区,臭氧都已经成为首要大气污染物。  公众常常混淆“臭氧层”与“臭氧”的区别。自然界的臭氧,大多分布在距地面20公里至50公里的大气中,被称为“臭氧层”。“臭氧是一种带鱼腥味的淡蓝色气体,具有强氧化性,普通人很难察觉到臭氧污染,”国家城市环境污染控制技术研究中心研究员彭应登说,臭氧通常存在于距离地面30公里左右的大气层中,能有效阻挡紫外线,保护人类健康。但是,近地面高浓度的臭氧会刺激和损害眼睛、呼吸系统等黏膜组织,对人体健康产生负面作用。  研究显示,空气中每立方米臭氧含量每增加100微克,人的呼吸功能就会减弱3%。当臭氧达到一定浓度时,可使人呼吸加速、胸闷,如果浓度进一步提高,可引起脉搏加速、疲倦、头痛,在这样的环境中停留1小时,会发生肺气肿,甚至死亡。长期呆在臭氧污染严重的环境中,对皮肤健康也可能有损伤,还可能增加致癌危险。  臭氧污染还会对环境造成损害。比如,会导致植物叶片坏死、脱落,危害生态环境,造成农作物减产等。“在天是佛,在地是魔”,有人这样评价臭氧。  夏秋季节午后1点到4点易超标  臭氧浓度总体夏季高、冬季低,南方城市高于北方  由于臭氧的危害日益明显,我国2012年修订实施的《环境空气质量标准》增加了臭氧控制标准,8小时浓度日平均值一级为100微克/立方米,二级为160微克/立方米。  雷宇介绍,臭氧污染水平的计量之所以采用日最大8小时平均值,也就是一天中最大的连续8小时浓度均值,是因为臭氧对于人体、植物的影响有一个非常明显的阈值,采用24小时平均的话,高浓度的影响会被低浓度掩盖。  近地面的臭氧来自哪里?雷宇表示,石化工业、加油站、汽车尾气等排放的挥发性有机物与氮氧化物,在阳光照射的条件下,发生一系列光化学反应,生成以臭氧为主的光化学烟雾。与此同时,臭氧的生成增加大气氧化性,也会加速二次细颗粒物的生成。尤其在6—9月阳光强烈的夏秋午后,一般是下午1点至4点,温度较高、相对湿度较低时,比较容易发生臭氧超标。此外,雷电等自然现象也会产生臭氧,还有少部分臭氧来自于平流层输入。  研究显示,我国臭氧污染呈现显著的区域分布和季节变化特征,臭氧浓度总体呈现夏季高、冬季低的特征,南方城市臭氧浓度高于北方。  彭应登介绍,臭氧十分不稳定,易分解,在空气中半衰期为16小时左右,而且随着风力的运输,臭氧会输送扩散。臭氧的性质决定了其污染主要有两大特点,一是持续时间一般不会很长,不超过8—10小时 二是通常是城市局部的污染,污染物排放后,一边传输,一边形成臭氧,一般只有部分位于城市中心区的站点及部分近郊区站点,会监测到较高的臭氧浓度值。  “城市和城郊的臭氧浓度通常高于乡村,不过由于风力的输送作用,乡村地区也会受到‘牵连’,有时浓度甚至超过城市。” 彭应登说。  应重点推进PM2.5和臭氧协同治理  戴口罩无法有效防护,午后日照强烈时减少外出  氮氧化物和挥发性有机物排放是形成臭氧污染的罪魁祸首。“十二五”时期,氮氧化物首次被纳入约束性指标,实施总量控制,我国通过对钢铁、水泥等行业进行“脱硝”末端处理,并对重型柴油车加装尾气处理装置、提高排放标准,减少氮氧化物排放及硝酸盐对大气环境的污染。“十三五”时期,挥发性有机物已纳入总量控制范围,这些措施都将对臭氧污染防治起到积极作用。  挥发性有机物防治是难啃的硬骨头,但不少城市已经开展治理,例如,北京将氮氧化物和挥发性有机物列入排放源清单,提高燃油标准 南京重点控制大型客车和重型货车增长 西安对重点工业企业、餐饮企业、加油站、油罐车的治理设施运行加强监管。  雷宇表示,研究表明,在区域层面上,臭氧污染更多受氮氧化物影响,但是在重点城市的城区,臭氧污染更多受挥发性有机物的影响。“臭氧的浓度,与氮氧化物和挥发性有机物之间呈非线性关系,”雷宇说,臭氧前体物在不同的地方比例不同,氮氧化物、挥发性有机物这两种污染物都会有,但必然有一种占相对主导地位。各地要把自己的臭氧形成机制摸清楚,建立排放源清单,这样才能有的放矢。  “臭氧前体物也是二次颗粒物的前体物,臭氧与PM2.5治理应该协同起来综合考虑,综合施治。”雷宇说,只有协同控制,重点推进,才有可能将大气污染的主要矛盾更好地解决。  他说,目前,国家已将石化、有机化工、表面涂装、包装印刷等重点行业纳入约束性指标排放管理,实施挥发性有机物综合整治。此外,不能忽视数量众多的干洗店、印刷厂等“小污染源”的管控,减少机动车排放也需要重点考虑。  臭氧治理是个长期过程,在污染一时难以消除的情况下,公众该如何加强防范,保障自己的健康?“臭氧以气态为主,戴口罩基本无法有效防护,最好的方式是主动防护,也就是避免接触。”彭应登说,在午后日照强烈的时候,要远离马路边、装修污染严重处、化工厂附近等地方,下午减少外出。儿童、老年人以及某些疾病患者对臭氧污染的抵抗力弱,尽量不要在大太阳天外出。此外,室内大量使用打印机、复印机等,也可能产生臭氧污染,这样的房间要保持通风。
  • 新品亮相 | 科学监测,智慧赋能,聚光科技助力臭氧防控、降碳减污
    4月26-28日,第六届大气臭氧污染防治研讨会在青岛顺利召开。会议以“大气氧化性与空气质量持续改善”为主题,众多大气环境监测领域专家学者、研究人员和企业代表共聚一堂,共话新背景下我国空气质量持续改善的挑战与机遇议题,为臭氧污染防治工作建言献策。四大方案 赋能智慧监测与协同管理聚光科技携旗下自主孵化子公司谱育科技应邀赴约本届臭氧污染防治研讨会,聚焦大气臭氧及光化学污染源解析、大气颗粒物污染源解析、大气温室气体监测和环境空气质量达标管控服务4大解决方案精彩亮相。全面展示了聚光科技强大的大气环境监测产品线阵容:从臭氧生成全流程因子监测到大气温室气体“天地空”一体化监测,真正实现“双碳”战略背景下臭氧污染物的精准溯源和协同防控,共同助力打赢大气臭氧污染防治攻坚战。聚光科技展台吸引了众多领导、专家、客户前来参观交流,其解决方案和创新产品获得参展嘉宾的高度肯定和赞誉。新品亮相 助力臭氧污染溯源精准化和管控精细化环境空气含氧类挥发性有机物(OVOCs)自动监测系统、臭氧净生成速率(OPR)连续在线监测系统、环境空气气态亚硝酸自动监测系统、大气PANs在线监测系统和CAPS二氧化氮分析仪等创新前沿产品亮相本次会议,进一步推进公司大气环境监测从业务型监测向科研型机理监测推进,赋能溯源精准化和管控精细化。当选企业常委 持续推进臭氧污染防治纵深化发展4月26日下午,中国环境科学学会臭氧污染控制专业委员会举办了第二届委员大会。会议由张远航院士主持,详细介绍了成立以来的委员会工作介绍,并组织投票选举产生第二届常委委员,聚光科技环境与科学事业部大气行业经理 唐静玥作为公司代表被选举为专委会委员。目前,我国大气污染防治已取得阶段性成效,但以臭氧和PM2.5为主要污染物的大气复合污染仍形势严峻,如何在“双碳”背景下推进臭氧与PM2.5协同治理成为建设“美丽中国”的重点议题,也是聚光科技继续在生态环境监测领域拼搏奋进的重要目标。未来,聚光科技将凝聚更多智慧和力量,砥砺前行,助力大气臭氧污染监测和精细化管控由科学走向实践,共绘美好生态新画卷!微信扫一扫关注该公众号
  • 网络研讨会 | 如何检测环境空气及工业产品中的消耗臭氧层物质
    臭氧层是指距地面 15-50 千米的大气平流层中臭氧浓度相对较高的部分,被誉为“地球生物生存繁衍的保护伞”。但随着制冷剂、发泡剂、喷射剂等化学制品被大量使用,这些制品中含有的大量消耗臭氧层物质(ODS)对臭氧层构成了严重威胁。臭氧层破坏已成为当今国际社会面临的主要环境问题之一,削减消耗臭氧层物质也已成国际社会的共识。中国政府高度重视消减消耗臭氧层物质工作:2019 年初,生态环境部在部分地区环境空气质量监测标准中增加了 10 种消耗臭氧层物质的检测项目;2019年底,生态环境部发布了国家环境保护标准 HJ 1057-2019《组合聚醚中 HCFC-22、CFC-11、HCFC-141b 等消耗臭氧层物质的测定 顶空/气相色谱-质谱法》。针对这两个监测项目,本次讲座将分别介绍安捷伦环境空气中挥发性有机物(VOCs)及消耗臭氧层物质监测的解决方案和工业产品(组合聚醚)中消耗臭氧层物质检测的解决方案。主要内容包括:- 消耗臭氧层物质(ODS)的检测背景- 中国的履约行动和相关检测法规- 安捷伦针对消耗臭氧层物质检测的解决方案- 环境空气中消耗臭氧层物质的检测方案- 工业产品(组合聚醚)中消耗臭氧层物质的检测方案
  • 你(PM2.5)方唱罢我(O3)登场怎么破?大气臭氧探测激光雷达帮你忙
    艳阳高照,碧空如洗,明明天空湛蓝,为何多地出现污染天气?  看看下面这幅中部某市2018年空气质量日历图就明白了,进入夏季后,臭氧会成为影响优良天率的罪魁祸首。夏秋臭氧浓度屡屡超标  随着气温攀升,全国各地陆续入夏。艳阳高照,碧空如洗,也让人心生欣喜,雾霾终于远去,能够享受蓝天白云了。  其实不然,根据监测数据显示,近几日多地出现不同程度的污染,主要污染物为臭氧。显然,颗粒物和臭氧这对影响空气质量的罪魁祸首再次上演了你方唱罢我登场的戏码。2019.05.23 O3小时浓度分布图  臭氧是我国评价空气质量指数的六项指标之一,由于臭氧超标,往往会出现蓝盈盈的“假蓝天”,可以说臭氧是蓝天下的污染。  下图是华北某城市5月份空气质量情况,截至29日,O3为主要污染物的天数有22天,其中12天空气质量为轻度污染或中度污染。华北某城市5月份空气质量日历在天为佛,在地成魔  臭氧“在天为佛,在地成魔”,它本身并不是“污染”,距离地球表面10千米—50千米的臭氧层是我们的保护伞,阻挡紫外线射向地球,对地球生物起到很好的保护作用;而近地面臭氧一旦超标,则会成为无形杀手,危害人体健康。  作为二次污染物,臭氧的形成原因已经非常明确,即氮氧化物(NOx)与挥发性有机物(VOCs)在高温和强光条件下,发生光化学反应,从而形成臭氧。越是光照强、温度高,越容易出现臭氧污染,所以晴空万里并不等于空气质量就一定好。揪出“隐形杀手”  臭氧浓度的分布因时间、地域、空间等存在较大的差异,对于臭氧的探测,不仅需要及时关注地面的浓度变化,更需要探测更大范围内臭氧的空间变化情况,窥得其全貌方能对其产生和消散进行科学研究、有效防治。  大气臭氧探测激光雷达具有系统稳定性强、时间分辨率高、探测盲区低等优势,能够实时、精确地勾勒出不同高度的臭氧浓度变化特征,揪出“隐形杀手”,为臭氧污染防治提供数据信息和科技支撑,减轻臭氧伤害。大气臭氧探测激光雷达  综合分析垂直观测结果和近地面臭氧监测数据,分析臭氧形成机制,确定臭氧污染来源;  掌握臭氧污染的变化规律及时空变化特征,分析污染过程、研究污染特征;  分析臭氧时空分布信息,为开展光化学烟雾和细粒子生成机理研究提供数据基础;  获取臭氧垂直分布及边界层等大气参数信息,构建预警预报体系。经典应用案例
  • 臭氧、灰霾、温室气体监测试点工作阶段总结会议
    2009年12月1日-3日,由中国环境监测总站举办的&ldquo 臭氧、灰霾、温室气体监测试点工作阶段总结会议&rdquo 在福建省武夷山大气背景值监测站召开,全国共14个试点城市参会,南京市环境监测中心站派出陈建江总工和自动室张伟同志参会。会议由总站大气室王瑞斌主任主持,14个城市代表分别介绍了各自城市在臭氧、灰霾、温室气体方面的工作情况,介绍工作经验,讨论存在问题,提出发展建议。会议还讨论了开展京津冀区域、长三角区域、珠三角区域、成渝区域环境空气监测的相关问题,对于各试点城市开展下一步工作具有积极的促进作用。(来自江苏省环境监测中心) 2009年1月6 -8日中国环境监测总站在重庆召开了&ldquo 臭氧、灰霾、温室气体监测试点工作阶段总结会议&rdquo 。参加会议的有中国环境监测总站李国刚副站长、大气室王瑞斌主任,以及承担臭氧、灰霾、温室气体监测试点工作任务的北京市、上海市、天津市、重庆市、沈阳市、青岛市、南京市、深圳市、江苏省、广东省、云南省和武夷山自然保护区环境监测站的代表。会议由王瑞斌主任主持,李国刚副站长做重要讲话,上海市环境监测中心魏海萍、段玉森出席了会议。 各承担试点工作的省、市环境监测站代表汇报了2008年开展臭氧、灰霾和温室气体监测试点工作的情况,分析了试点监测中取得的成果和经验,与会代表认真地讨论了试点工作中存在的问题,就监测指标体系、监测点位、监测技术规范和评价标准,监测仪器设备配置和运行费用等等问题进行了重点讨论并提出了有建设性的建议。总站李国刚副站长要求在认真总结各地试点工作取得经验和成果的基础上,编写试点工作总结报告。(大气室)(来自上海市环境监测中心)
  • 谱育便携 | 致敬高温下的工作者 -- 夏季臭氧监督帮扶 第一弹
    夏季是臭氧污染频发的季节,为科学有效应对臭氧污染,持续改善区域环境空气质量,深入打好蓝天保卫战,谱育科技便携产品应用服务中心在这个酷暑,派出了帮扶小队,头顶烈日,脚踏热土,迎酷暑,战高温,配合多地环保监察部门,对企业进行现场帮扶检查,帮助其实现“在源头上削减产出、在过程中控制释放,在末端环节加强治理”。治理臭氧污染从VOCs入手臭氧生成的重要前提之一是挥发性有机化合物(volatile organic compounds,VOCs)。空气中的VOCs和NOx等气体在紫外光照射和高温条件下,会发生光化学反应,形成臭氧,而夏季紫外线强烈,更为臭氧的大量生成提供了条件。追根溯源,加强VOCs治理是控制臭氧污染的有效途径。第一站配合湖南省某生态环境保护综合行政执法支队进行大气督查帮扶集中培训在湖南某市,为加快解决其在2022年重点区域空气质量改善夏季监督帮扶工作中发现的问题,队伍工程师应邀参加当地政府环保部门组织的集中培训,讲解红外热成像气体泄漏检测仪和手持式FID(氢火焰离子化检测器)的原理、应用场景以及在检查中的作用,并配合环保部门到加油站和企业进行大气督察帮扶。加油站检查在加油站检查时,主要以加油站油气回收系统建设、密闭、操作方式和系统运行状况为重点,利用红外热成像气体泄漏检测仪和手持式FID相结合的方式,重点检查检测卸油口、油气回收口、回收管线、油罐车油气回收系统、耦合阀门等点位油气浓度是否满足《加油站大气污染物排放标准》(GB 20952-2020)要求。检查发现,多个加油站量油井存在油气泄漏,利用红外热成像泄漏检测仪拍摄到了明显的泄漏影像,能够直观地定位泄漏点位,在定位取证的同时,又方便了加油站工作人员进行检修和排查安全隐患的工作。企业检查在检查有组织排放的基础上,加强了对开放式作业场所逸散,以及通过缝隙、通风口、敞开门窗等无组织排放的检查。检查发现,在某工厂的涂装车间,依旧使用VOCs含量高的原料,并且在油漆使用、储存过程中,存在大量的VOCs逸散,手持FID检测到最大浓度超过了10000 ppm,车间内无组织排放严重。反馈当地环保部门某位工作人员说道:“多亏了谱育便携服务中心派来的专业人员,在这么热的天来到现场帮助我们,感谢他们的辛苦付出;也多亏有了这两款设备,可以摒弃以往依靠‘肉眼看、鼻子闻’的传统监测监管手段,把红外热成像气体泄漏检测仪当做我们的‘眼睛’,把手持式FID当做我们的‘鼻子’,在提高监测效率的同时,更大地提升了监测的灵敏度和准确度,真是事半功倍。”帮扶小队无惧酷暑,一往无前,冲在现场第一线,利用专业的技术知识和先进的仪器设备,帮助湖南省某环保部门和企业解决了许多“疑难杂症”,获得一致认可。此站帮扶结束后,队伍收到了对人员和仪器表示双重认可的感谢信。产品介绍EXPEC 1880 红外热成像气体泄漏检测仪► 准确泄漏定位,非接触,远距离操作,更安全► 图像增强模式,能检测到微小泄漏► 通过 WIFI 连接便携式挥发性有毒有害气体分析仪(FID+PID),红外热像仪屏幕可以同时显示FID和PID的检测数据► 通过 WIFI 连接防爆手抄器,红外热像仪图像可远程传输和控制► 具有视频录制和拍照功能,GPS定位,便于监督执法现场取证EXPEC 3050 手持式挥发性有机气体分析仪► 本安防爆+隔爆设计► PID+FID双检测器,满足不同监察场景需求► 主机重量不足2kg,体积小巧,便于携带► 内置防爆电池、储氢合金可现场更换,延长续航时间► 储氢合金使用氢气发生器电解纯水充氢,安全方便写在最后谱育便携致敬所有在酷暑里依然坚守岗位的战士们!这个夏天,“暑”你们最美!Ps:夏季进行室外工作或活动时,一定不要忘记做好防暑降温工作!
  • 政策高频推动!细颗粒物与臭氧协同监测技术引发各方关注
    细颗粒物(PM2.5)是指环境空气中空气动力学当量直径小于等于2.5um的颗粒物,它能较长时间悬浮于空气中。PM2.5粒径小、范围广、活性强,且在大气中的停留时间长,输送距离远,会对人体健康和大气环境质量产生较大影响;臭氧(O3)则是氧气的同素异形体,地表的臭氧会对农作物产生危害,并对人的眼睛和呼吸道有刺激作用,对肺功能也有一定影响。挥发性有机物(VOCs)和氮氧化物(NOX)是臭氧与二次 PM2.5的共同前体物,这说明二者同源共生。“十二五”以来,我国现有生态环境监测网络已从单纯的污染物浓度监测向化学成分监测、二次污染物监测和传输通道监测等方向过渡,做好PM2.5与O3协同控制十分关键。十四五以来,国家进一步发布政策,推动PM2.5与O3协同控制工作。2021年4月,生态环境部发布《细颗粒物和臭氧污染协同防控“一市一策”驻点跟踪研究工作方案》,该方案要求开展城市O3污染成因综合分析及O3主要前体物来源与管控对策研究;提出O3防控“一市一策”解决方案,要求实施重点行业、企业分级分类管理等……PM2.5和O3污染协同防控综合解决方案的制定正式被抬上日程。2021年5月,《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》发布,强调各地方的要加强分级、分类监测;并要求强化监测点部署,如分类开展NMHC自动监测、PM2.5与VOCs组分协同监测、污染源专项监测的能力建设等。地方政策方面,全国黑龙江省、山西省等各省份也积极响应,紧随其后地发布了《细颗粒物与臭氧协同控制监测网络能力建设实施方案》,要求建设大气细颗粒物组分网、非甲烷总烃和挥发性有机物组分监测网、交通污染专项监测网、工业园区污染专项监测网等。关于检测点位的部署,国家已做出细致且具体的要求。即全国地级及以上城市和雄安新区开展非甲烷总烃(NMHC)自动监测;大气污染防治重点城市开展细颗粒物与挥发性有机物(VOCs)组分协同监测;交通、工业园区和排污单位开展污染源专项监测;公路、港口、机场、铁路开展交通污染专项监测。细颗粒物与臭氧的污染问题日益突出,已给人们的生产生活和工作带来了一定的困扰和影响,因此,细颗粒物与臭氧的治理问题必须作为环境治理工作中的重中之重。目前,监测一线的专家对于我国的细颗粒物和臭氧协同监测现状有何看法与建议?科研一线的专家在臭氧和细颗粒物的生成机制等方面有何最新的研究成果?健康专家又将如何详细剖析细颗粒物污染对于人体的影响?7月5日,由仪器信息网主办的“细颗粒物与臭氧协同监测”网络研讨会将于线上开幕,目前会议全日程已出!报名从速》》https://www.instrument.com.cn/webinar/meetings/Fineparticulatematterandozone2023/时间报告题目报告人报告人单位及职位09:30--10:00细颗粒物和臭氧协同监测现状与建议张鹏中国环境监测总站高级工程师10:00--10:30大气氧化性及其与臭氧和二次颗粒物生成关联张宏亮复旦大学教授10:30--11:00大气超细颗粒物组分的同位素溯源初探刘倩中科院生态环境研究中心研究员11:00--11:30PM2.5切割器的现状及检测评价研究进展张国城北京市计量检测科学研究院 正高级工程师14:00--14:30长三角区域PM2.5和O3污染协同防控的观测应用研究楼晟荣上海市环境科学研究院高级工程师14:30--15:00臭氧前体物监测技术进展赵静山西省生态环境监测和应急保障中心 高级工程师15:00--15:30大气中挥发性有机物与细颗粒物、臭氧的相互关系及监测技术的进展尹洧北京市化学工业研究院高级工程师15:30--16:00大气细颗粒物的健康危害影响评估王先良中国疾控中心环境所室内环境与健康监测室主任报名从速:https://www.instrument.com.cn/webinar/meetings/Fineparticulatematterandozone2023/
  • “新”无止境 | 谱育科技OPR在线监测系统,为臭氧污染防控提供新思路
    环境大气中O₃ 污染成因和来源复杂,O₃ 与NOx 和VOCs 呈现高度非线性关系,且气象条件显著影响O₃ 的污染程度、污染范围和持续时间,有效防控O₃ 污染的难度不言而喻。臭氧生成速率(OPR)的研究一直备受关注,目前此类研究主要应用模型模拟,具有较大的不确定性,也无法进行实时、精准的监测,臭氧污染成因的研究亟需一种可以对臭氧生成速率和臭氧生成敏感性进行有效定量的表征技术。臭氧监管从“不确定”走向“精准管控”测量原理基于两个置于室外的相同流动反应管,分别为接受太阳紫外辐射的反应管和隔绝太阳紫外辐射的参照管,通过自动切换不同测量通道,利用腔衰减相移光谱法测量NO2技术得到两个腔室Ox(O3+NO2)的差值,并计算得到大气中臭氧净生成速率(P(O3)net),代表本地实际环境大气中的臭氧生成速率与臭氧分解速率之差,反映臭氧总量积累快慢程度。谱育科技OPR在线监测系统可以开展哪些工作?01固定点监测1.1. 准确量化臭氧本地生成和区域传输贡献净臭氧生成速率直接反应了本地光化学过程的臭氧生成速率,结合当地臭氧浓度进行定量计算,可获得精准量化的臭氧本地生成和区域传输贡献值。1.2.臭氧超标预警预报由于臭氧生成速率相较于臭氧浓度的变化有“前瞻性”,可预判实现臭氧超标预警预报。相较于传统模式预判,预警预报更加精准,可实现90%以上污染天数预报绝对偏差小于20%,能有效应用于臭氧精细化管控。1.3.臭氧污染特征分析和来源解析结合其他光化学组分监测数据,分析臭氧生成速率与臭氧各类前体物等相关参数的相关性,可精准识别臭氧生成贡献的关键前体物。并配合对组分信息开展受体模型分析,可定位敏感组分的来源情况,帮助开展精准臭氧管控。02移动加密监测管控通过搭载高灵敏度快速响应的NO2直测法分析仪,臭氧生成速率监测系统可以实现车载走航观测使用,配合“VOCs+X”走航设备,实现新一代臭氧管控走航模式。2.1.重点区域臭氧生成情况分布通过走航应用,精准绘制重点区域臭氧生成速率热点网格,实现臭氧污染特征区域高精度网格化管理。2.2.臭氧生成前体物敏感性分析通过结合前体物走航,可以分析判断走航过程中各类前体物与臭氧生成速率的相关性,帮助获取臭氧生成的敏感性情况,助力管控过程中臭氧贡献敏感源的精准定位,从而为精细化管控提供科学建议。应用场景丰富,灵活可选环境监测站、超级观测站、实验室O3超标预警机制建立、量化传输比例、大气氧化性研究、O3关键因子和源解析O3生成敏感性分析、流动反应管研究移动走航车O3生成特征地图绘制、精细化管理创不止步 “新”无止境大气臭氧及光化学污染源解析解决方案搭载谱育科技自主研发的光化学组分、过程因子监测系统以及臭氧生成速率和大气氧化性监测分析系统,结合全面的数据分析能力,掌握详实的区域复合污染情况数据,实时获得区域内臭氧前体物的排放水平及变化规律,摸清生成臭氧的重点污染物种类和污染来源,为有效改善环境空气质量、打赢蓝天保卫战提供多方面的技术和数据支持。
  • 300万!江西省生态环境科学研究与规划院臭氧及其前体物挥发性有机物检测及大气污染防治能力建设项目
    项目编号:HSH2022G015项目名称:江西省生态环境科学研究与规划院臭氧及其前体物挥发性有机物检测及大气污染防治能力建设项目采购方式:公开招标预算金额:3000000.00 元最高限价:无采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022B000572314臭氧及其前体物挥发性有机物检测能力建设方案2台544200.00元详见公告附件赣购2022B000572316臭氧及其前体物挥发性有机物检测能力建设方案1套2455800.00元详见公告附件合同履行期限:自合同签订生效后90天内交货并完成安装调试。本项目不接受联合体投标。
  • [论文解读]PNAS: 三种消耗臭氧层的HCFC在大气中意外排放
    本篇论文解读由方雪坤研究团队的杜千娜同学撰写。杜千娜同学:浙江大学环境与资源学院2022级硕士研究生,主要研究方向温室气体HFCs排放反演与清单。第一作者:Martin K. Vollmer通讯作者:Martin K. Vollmer通讯单位:aLaboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 D ̈ ubendorf,Switzerland文章链接:https://doi.org/10.1073/pnas.2010914118论文发表时间:2020年12月01研究亮点1.跟踪监测和报告了大气中存在的意外物质和其来源。2.报告了三种没有确定最终用途的HCFC的排放量和可能的来源。3.认为东亚地区是HCFC-132b(新发现于大气中)和HCFC-133a全球排放的主要来源,量化了HCFC-31的全球排放量。4.认为这些化合物很可能是作为化学生产过程的中间副产品排放出来的。(注:以上为这位同学的论文解读,非论文原作者意思)02研究不足(或未来研究)1.对三类HCFC的使用场景和消费用途及排放来源仍然存在多种假设,无法实际确认。2.对三类HCFC的监测网络仍然没有完善布局,仅从Gosan站对东亚区域的反演可能存在排放敏感性不足,对较远的东亚区域(如中国西部,研究结果中被分配了较大的排放)估计不确定性较大等问题。3.对除HCFC-141b、HCFC-22、HCFC-142b和文章报告的三种HCFC之外的其他HCFC监测和追踪,及其对臭氧层可能造成的损害和潜在影响仍需报告。(注:以上为这位同学的论文解读,非论文原作者意思)全文概要03全球和区域大气测量和模拟对发现和量化环境重要物质的意外排放方面有关键作用。本研究关注受到《蒙特利尔议定书》限制的三种氯氟烃(HCFCs)。基于空气样本和AGAGE站点提供的原位测量,本研究报告了HCFC-132b(新发现于大气中)、HCFC-133a和HCFC-31的全球丰度、趋势和区域增长情况。但目前尚未了解到这些化合物的任何有目的的使用。本研究发现HCFC-132b在大约20年前出现在大气中,并且其全球排放量已增加到2019年的1.1 Gg/yr。基于2016-2019年的高频观测,本研究对东亚地区进行的自上而下排放估算,结果显示东亚HCFC-132b和HCFC-133a排放分别占全球排放量的95%和80%。HCFC-133a排放在该期间达到2.3 Gg/yr,同一时期HCFC-31的全球排放量为0.71 Gg/yr。法国东南部发现的HCFC-132b和HCFC-133a的欧洲排放在该地区的氟碳生产设施2017年初关闭时停止。尽管不能排除未报告的使用,但这三种化合物更有可能作为化学生产过程中的中间副产品而被排放。在早期阶段识别对指导全球和区域环境政策的有效发展至关重要。04背景介绍大气观测传输模拟量化的当地卤代烃排放已成为验证来自活动数据和排放因子的自下而上排放的重要工具。这也可用于检测新物质并得出其新趋势和排放量,从而作为早期预警。《蒙特利尔议定书》管控臭氧消耗物质,包括HCFCs。但是最近发现从大气观测推断出的几种消耗臭氧层物质的排放量下降速度比预期要慢,甚至增加。本研究确定的三种消耗臭氧层物质均为HCFCs,其对臭氧层的危害潜力低于氟氯化碳,过去曾被用作CFCs的临时替代品。本研究报告了新检测到的HCFC-132b,并利用12盒子模型和观测对先前发现的HCFC-133a和HCFC-31的丰度和排放量提供了实质性的更新。并利用反演和Gosan站数据估算了东亚地区HCFC-132b和HCFC-133a的排放量。结果讨论05全球HCFCs的大气分布:HCFC-132b首次在20世纪90年代末出现在北半球大气中,随后迅速增长,到2013年时空气摩尔分数达到0.15 ppt,2016年之前经历短暂的下降,然后再次增加,到2019年底达到0.17 ppt的最高值。南半球的丰度低于北半球的丰度,并在整个记录期间保持较低水平,表明该化合物的排放主要发生在北半球。HCFC-133a在两个半球都呈现出普遍增加的趋势。NH丰度在2007/2008年出现明显逆转,与SH一致。2015-2019年的测量显示,HCFC-133a在NH的下降趋势已经逆转,浓度再次增加到0.5 ppt以上。HCFC-31同样在20世纪90年代末首次可检测到,随后保持十多年的增长。在2012-2015年的大气中出现了下降,随后又出现了强烈增长,并在过去3年中稳定。HCFCs的大气观测和模型重建结果,包括HCFC-132b(A)、HCFC-133a(B)和HCFC-31(C)全球排放量:在过去三种HCFC的全球排放量普遍呈增长趋势,2016-2019年的平均值分别为HCFC-132b:0.97 Gg y&minus 1,HCFC-133a:2.3 Gg y&minus 1,HCFC-31:0.71 Gg y&minus 1。然而,这些HCFC的排放存在较大的相对变化,尤其是对于HCFC-133a。与其他广泛使用的合成卤代碳化合物相比,这种较大的相对变化是不寻常的,并且说明这些排放的主要部分并不源自库存,进一步表明,这些排放并非来自商业用卤代碳化合物中的杂质(通常显示出时间上平滑的排放趋势)。HCFC-132b (A)、HCFC-133a (B)和HCFC-31 (C)的全球和东亚区域排放量东亚区域排放:韩国的Gosan站记录到了HCFC-132b和HCFC-133a的频繁且大量(高达4 ppt)的污染事件,表明存在大量的区域排放。利用观测数据结合反演方法,本研究发现东亚最集中的排放发生在中国东部。HCFC-132b,中国东部的排放量在2016-2019年为0.43至0.53 Gg y&minus 1,平均占全球排放的50%。东亚的总排放量在不确定性范围内占全球排放的95%。反演将东亚的大部分排放归因于中国西部。然而,由于观测站对中国西部的敏感性降低,这些估计值的不确定性要比对中国东部的估计值大得多。对于HCFC-133a,中国东部的排放量平均占全球排放的43%,而东亚的排放量解释了全球排放量的80%。AGAGE站点对HCFC-132b(A)和HCFC-133a(B)进行的高分辨率测量记录中国东部的排放空间分布存在明显差异。HCFC-132b,最强的源区位于中国东北地区(山东和河北南部)。HCFC-133a,最高的排放量出现在上海地区。HCFC-132b和HCFC-133a排放仅集中在这两个地区之一是不寻常的,这两个地区都有强大的氟碳行业,这可能支持三类HCFC的排放与原料/副产品排放有关的猜测。其他研究显示HCFC-31排放首先起源于上海地区,然后扩散到包括中国北方省份在内的地区。中国东部的HCFC-132b(A)和HCFC-133a(B)排放的后验分布西欧的排放源:一些欧洲站点(主要是JFJ和CMN)的HCFC-132b(高达0.5 ppt)和HCFC-133a(高达3.5 ppt)的污染事件较小且高度零星(每年两到三次)。欧洲的HCFC-132b污染事件在2017年初停止,而HCFC-133a的污染事件变得更加少见,这表明区域排放大大减少。2017.4之前,法国东南部的里昂附近存在强烈的HCFC-133a排放,而附近的HCFC-132b排放较弱。之后排放已经停止,可能的解释是2017年第一季度在里昂停止了HFC-134a的生产。HCFC-132b和HCFC-133a在欧洲排放的潜在来源区域A和C代表2014-2017.3,B和D代表2017.4-201906ReferenceVollmer, M. K. et al. Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons. Proceedings of the National Academy of Sciences 118, e2010914118 (2021).方雪坤大气环境和全球变化课题组方雪坤,浙江大学环境与资源学院,博士生导师,国家重大青年人才计划入选者。2014-2019年在美国麻省理工学院担任博士后和研究员。研究领域为臭氧层保护、碳中和、全球环境变化等,特别是全球与区域的消耗臭氧层物质和温室气体的排放溯源及应对研究。以第一作者和通讯作者发表30多篇论文,包括2篇Nature共同一作,IF5=60.9)、2篇Nature Geoscience(一作并通讯,IF5=19.6)、1篇PNAS(通讯,IF5=12.78),篇均影响因子14.0。研究成果被联合国环境规划署(UNEP)和世界气象组织(WMO)《平流层臭氧科学评估》报告(每四年一次)正面引用。担任中国生态环境部《蒙特利尔议定书》履约专家组成员、中国环境科学学会环境规划专业委员会副主任委员、2022年WMO臭氧层评估报告共同作者等。获2021年中国环境科学学会青年科学家奖。
  • 细颗粒物与臭氧协同监测网络研讨会视频回放上线
    由于PM2.5与O3的来源及形成机理复杂,在大气中可以相互影响,其监测工作存在着不小的难度,为加强相关人员对细颗粒物与臭氧的危害影响以及监测技术进展,仪器信息网于7月5日主办了“细颗粒物与臭氧协同监测”网络研讨会,共有8位领域内相关专家在会议中展开了积极地交流讨论。经征求报告嘉宾意见设置视频回放,详情见下表:报告题目报告人单位 职称细颗粒物和臭氧协同监测现状与建议张鹏中国环境监测总站 高级工程师大气氧化性及其与臭氧和二次颗粒物生成关联张宏亮复旦大学 教授大气超细颗粒物组分的同位素溯源初探刘倩中科院生态环境研究中心 研究员【点击查看 】 PM2.5切割器的现状及检测评价研究进展张国城北京市计量检测科学研究院 正高级工程师长三角区域PM2.5和O3污染协同防控的观测应用研究楼晟荣上海市环境科学研究院 高级工程师臭氧前体物监测技术进展赵静山西省生态环境监测和应急保障中心 高级工程师【点击查看】 大气中挥发性有机物与细颗粒物、臭氧的相互关系及监测技术的进展尹洧北京市化学工业研究院 高级工程师 高级工程师大气细颗粒物的健康危害影响评估王先良中国疾控中心环境所室内环境与健康监测室 主任
  • 生态环境部新任部长:臭氧是我国下一步大气污染治理重点
    p   近日,生态环境部部长黄润秋前往浙江、江苏、山东等地进行生态环境保护工作调研,这也是他自4月29日上任后首次公开调研。 /p p   本网整理发现,黄润秋在调研期间前往了浙江三一装备有限公司,徐州重型机械有限公司和家具制造企业集群、山东齐鲁石化、滨州博兴彩钢企业集群以及东营广饶石化企业集群,详细了解了企业VOCs治理情况。他指出,当前我国臭氧生成主要是VOCs控制型的,标杆企业要在VOCs治理方面做好榜样示范,高标准、严要求,紧盯每个环节不放松,切实加强VOCs收集和处理,努力实现源头替代、过程密闭、高效处置。 /p p   黄润秋还表示 strong 臭氧是我国下一步大气污染治理重点 /strong 。从6月份开始,将以京津冀及周边地区、汾渭平原、苏皖鲁豫交界地区、长三角地区、长江中游城市群等区域为重点,按照问题精准、时间精准、区位精准、对象精准、措施精准的原则,对挥发性有机物排放量大、臭氧污染防治压力大、环境空气质量改善目标进展滞后城市,开展夏季臭氧污染防治监督帮扶工作,指导和帮助相关政府、企业落实挥发性有机物治理减排任务。 /p p   6月8日发布的《第二次全国污染源普查公报》中显示,全国大气污染物排放情况为:二氧化硫696.32万吨,氮氧化物1785.22万吨,颗粒物1684.05万吨。生态环境部还对部分行业和部分领域的挥发性有机物排放量进行了调查,全国1017.45万吨。京津冀及周边地区、长三角和汾渭平原是我国大气污染源单位面积排放强度较大的地区,这三个区域也是国家确定的大气污染防治重点区域。由此可见,大气污染治理仍是我国环境生态问题的重点,本次调研部长指出的臭氧治理值得关注! /p
  • 一年中标总金额近4亿!细颗粒物与臭氧市场热度飙升
    大气颗粒物(PM2.5)和臭氧(O3)是我国近年来区域复合型大气污染的两种主要污染物,能够影响城市空气质量、危害公众健康、制约社会经济的可持续发展。大气污染形成机制和来源、天气条件影响以及控制政策相关问题成为近年来全球大气环境领域的研究热点。“十二五”以来,我国现有生态环境监测网络已从单纯的污染物浓度监测向化学成分监测、二次污染物监测和传输通道监测等方向过渡,做好PM2.5与O3协同控制十分关键。十四五以来,国家进一步发布政策,推动PM2.5与O3协同控制工作。《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》强调各地方的要加强分级、分类监测;并要求强化监测点部署,如分类开展NMHC自动监测、PM2.5与VOCs组分协同监测、污染源专项监测的能力建设等。政策推动市场,国家发布各项方案两年后,全国的细颗粒物与臭氧相关市场规模如何?哪些品牌是选购的热点?据不完全统计,某招中标网站上近一年以“细颗粒物与臭氧”为关键词的相关中标信息共计200余条(未去重),远超去年同期40余条(未去重),同比增长约380%。本次统计中,招标单位以各省份、市、县的生态环境局及环境监测站为主,该类招标项目以细颗粒物与臭氧协同监测的环监站建设、交通站建设(包括机场站建设、铁路站建设、公路站建设等)、自动监测站建设为主流;此外,还有部分招标单位为生态环境保护委员会、经济示范园区等。金额方面,据不完全统计,近一年相关标的总金额近4亿元,项目涉及山东、河北、江苏、山西、黑龙江等数省份。中标金额分布方面,山东省中标金额总计11343.78万元,位居所有省份第一;河北省中标金额总计8543.748万元,位居第二;江苏省中标金额总计6909.55万元,位居第三;山西、黑龙江等省份紧随其后。省份-中标金额分布图监测仪器方面,一氧化碳自动监测仪、PM2.5自动监测仪、氮氧化物自动检测仪、二氧化硫自动监测仪、非甲烷总烃自动监测仪、VOC检测仪/TVOC监测仪、臭氧自动监测仪、PM10自动监测仪、黑碳分析仪、挥发性有机物连续监测系统为采购热点。通过数据分析,我们发现相关中标信息中,谱育科技、赛默飞、蓝盾光电、聚光科技、迈特高科、先河环保、禾信仪器、皖仪科技、武汉天虹、峰悦奥瑞、力合科技、华电质控、江苏国技、盈峰科技、崛场、雪迪龙、泽天春来、朋普科技、天瑞仪器、霍普斯等品牌备受招标方青睐。此外,除了具体的环境监测仪器,第三方专家服务类项目、运维类项目也是中标热点。细颗粒物与臭氧的污染问题日益突出,已给人们的生产生活和工作带来了一定的困扰和影响,因此,细颗粒物与臭氧的治理问题必须作为环境治理工作中的重中之重。目前,监测一线的专家对于我国的细颗粒物和臭氧协同监测现状有何看法与建议?科研一线的专家在臭氧和细颗粒物的生成机制等方面有何最新的研究成果?健康专家又将如何详细剖析细颗粒物污染对于人体的影响?7月5日,由仪器信息网主办的“细颗粒物与臭氧协同监测”网络研讨会将于线上开幕,目前会议全日程已出。报名从速:https://www.instrument.com.cn/webinar/meetings/Fineparticulatematterandozone2023/时间报告题目报告人报告人单位及职位09:30--10:00细颗粒物和臭氧协同监测现状与建议张鹏中国环境监测总站 高级工程师10:00--10:30大气氧化性及其与臭氧和二次颗粒物生成关联张宏亮复旦大学教授10:30--11:00大气超细颗粒物组分的同位素溯源初探刘倩中科院生态环境研究中心研究员11:00--11:30PM2.5切割器的现状及检测评价研究进展张国城北京市计量检测科学研究院 正高级工程师14:00--14:30长三角区域PM2.5和O3污染协同防控的观测应用研究楼晟荣上海市环境科学研究院高级工程师14:30--15:00臭氧前体物监测技术进展赵静山西省生态环境监测和应急保障中心 高级工程师15:00--15:30大气中挥发性有机物与细颗粒物、臭氧的相互关系及监测技术的进展尹洧北京市化学工业研究院高级工程师15:30--16:00大气细颗粒物的健康危害影响评估王先良中国疾控中心环境所室内环境与健康监测室主任报名从速:https://www.instrument.com.cn/webinar/meetings/Fineparticulatematterandozone20 23/
  • “大气臭氧分析仪”问卷调研第二批话费奖励已发放!
    p   为更好地了解大气臭氧分析仪市场情况,仪器信息网特组织“大气臭氧分析仪”问卷调研活动,旨在给用户在使用和选购仪器的过程中做出参考。 /p p   截至目前,经仪器信息网对问卷的完整性和真实性经过初步筛选后,第二批获得20元话费奖励的用户名单已出炉!据统计,第二批获得20元话费奖励的用户共计14人,现将获奖者名单公布如下: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/86f5086c-fb01-4823-aa3e-a64403b728a3.jpg" title=" 第二批话费.jpg" alt=" 第二批话费.jpg" / /p p   “大气臭氧分析仪”问卷调研活动已结束,电话调研阶段即将开始,欢迎网友积极参与! /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制