当前位置: 仪器信息网 > 行业主题 > >

蛋白质含量分析

仪器信息网蛋白质含量分析专题为您提供2024年最新蛋白质含量分析价格报价、厂家品牌的相关信息, 包括蛋白质含量分析参数、型号等,不管是国产,还是进口品牌的蛋白质含量分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质含量分析相关的耗材配件、试剂标物,还有蛋白质含量分析相关的最新资讯、资料,以及蛋白质含量分析相关的解决方案。

蛋白质含量分析相关的论坛

  • 如何利用近红外光谱分析技术检测发酵产物中的蛋白质含量?

    [font='Times New Roman'][font=宋体]蛋白质是复杂的含氮有机化合物,不同蛋白质的含氮量不同,测定蛋白含量一般采用凯氏定氮法,但该方法操作步骤繁琐,消耗试剂(如浓硫酸、氢氧化钠等),检测时间长。近年来多采用蛋白质分析仪进行测定,但仍需要对样品做复杂的预处理,费时费力。采用[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术[/font][font='Times New Roman'][font=宋体]可缩短检测时间,可快速预测发酵产物中的蛋白质含量,不仅可以避免因为时效性差而引起的目标产物产量不稳定,还可以防止因为外界环境变化引起的蛋白质失活变性。同理,发酵的其他目标产物,如抗生素、维生素、有机酸等,也可以利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]来快速预测目标产物含量。[/font][/font]

  • 关于食品中蛋白质含量测定仪的详细信息

    食品中蛋白质含量测定仪是用于快速、准确地测量食品中蛋白质含量的专业仪器。这种仪器基于各种化学或物理方法,如凯氏定氮法、双缩脲法、考马斯亮蓝法(Bradford法)或紫外分光光度法等,来测定食品中蛋白质的含量。  以下是关于食品中蛋白质含量测定仪的一些详细信息:  工作原理  凯氏定氮法:这是一种经典的蛋白质测定方法。样品中的蛋白质在催化剂的作用下与硫酸共热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即可计算出样品的蛋白质含量。  双缩脲法:在碱性溶液中,双缩脲(尿素加热至180℃左右生成的二聚体)与铜离子形成紫色络合物,该络合物的颜色深浅与蛋白质含量成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。  考马斯亮蓝法(Bradford法):考马斯亮蓝G-250染料在酸性溶液中与蛋白质结合后,在595nm处有最大光吸收,其光吸收值与蛋白质含量成正比。因此,可用于蛋白质的定量测定。  紫外分光光度法:蛋白质中常含有酪氨酸、色氨酸等苯环结构,在280nm的紫外波段有较强的吸收峰,其吸光度与蛋白质含量成正比。这种方法操作简单、快速,但灵敏度较低,只适合测定蛋白质含量较高的样品。  应用领域  食品质量检测:蛋白质是食品中的重要营养成分,其含量是评价食品质量的重要指标之一。食品中蛋白质含量测定仪可用于检测各类食品(如肉类、奶类、蛋类、豆类、谷物等)中的蛋白质含量,为食品质量检测提供数据支持。  食品科学研究:在食品科学研究中,蛋白质含量测定仪可用于分析不同食品原料、加工工艺对蛋白质含量的影响,以及蛋白质在食品加工过程中的变化等。  注意事项  在使用蛋白质含量测定仪进行测试之前,需要仔细阅读产品说明书,了解仪器的使用方法、操作步骤及注意事项。  确保样品准备过程符合标准要求,避免样品污染或损坏导致检测结果不准确。  定期对仪器进行维护和校准,确保检测结果的准确性和可靠性。  在使用过程中注意安全防护措施,避免对人体造成伤害或对环境造成污染。  总之,食品中蛋白质含量测定仪是食品检测领域的重要工具之一,能够快速、准确地测定食品中的蛋白质含量,为食品质量控制和科学研究提供有力支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405151126410832_3840_4214615_3.jpg!w690x690.jpg[/img]

  • 【九点虎分析一】三聚氰胺--如何提高蛋白质的测定含量(理论解释)

    乳品中蛋白质的测定一般是采用GB/T5413.1-1997和GB/T5009.5-2003的方法进行测定的。这两种方法类似,都是基于凯氏定氮法。凯氏定氮法由Kjeltec于1833年首先提出,目前广泛应用于乳品和饲料中蛋白质的测定。 1 原理 样品经消化后,蛋白质中的氮转化为氨并与硫酸结合生成硫酸铵,然后加碱蒸馏,使氨蒸出,用硼酸吸收后用盐酸标准溶液滴定,根据盐酸标准溶液的消耗量,计算出氮的量,乘以换算系数,即为蛋白质含量。 三聚氰胺在消化过程中,转化为硫酸铵,然后在滴定过程中消耗标准盐酸,但是在最后带入计算的时候换算成了蛋白质的含量。 2 测量方法 准确称取一定量的样品(称准至0。001g)移入消化管中,添加催化剂3.9g(其中K2SO4 3.9g,CuSO4.5H2O 0.4g),加入12ml浓硫酸盖上涤气盖放置过夜。次日上凯氏消化炉,设定温度200℃,时间1h,慢消化完毕升高温度至420℃,时间2h,至液体变为蓝绿色透明,继续保持微沸30min。消化完毕,冷却15~20min,上仪器测定测定。 分析程序为凯氏1,程序设定如下:接受液液为30ml,蒸馏水为80ml,碱液为50ml。测定:将已消化好的样品消化管直接放入自动定氮仪上按仪器的要求进行蒸馏测定,同时做空白实验。整个测定过程,蒸馏、滴定、数字处理及结果打印全部自动进行。 3 结果计算 蛋白质含量(%)=[C×(V1-V0)×0.0140×F]/m×100式中:C—盐酸标准溶液的浓度,mol/L [color=#DC143C][size=4]V1—滴定样品吸收液时消耗盐酸标准溶液的体积,mL [/size][/color]V0—滴定空白吸收液时消耗盐酸标准溶液的体积,mL F—蛋白质系数,饲料中F=6.25 M氮—氮的摩尔质量,0.0140kg/mol m—样品质量,g。 关键就在这里,三聚氰胺也消耗了标准盐酸,所以就会在计算过程中转换成蛋白质的含量。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=108622]5009[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=108623]5413[/url][color=#DC143C][size=4](九点虎分析系列仅代表个人观点,如有雷同,实属巧合)[/size][/color]

  • 【分享】紫外吸收法测蛋白质含量

    蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。1.280nm的光吸收法因蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。测定时,将待测蛋白质溶液倒入石英比色皿中,用配制蛋白质溶液的溶剂(水或缓冲液)作空白对照,在紫外分光度计上直接读取280nm的吸光度值A280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比色皿,盛有浓度为1mg/ml的蛋白质溶液时,A280约为1.0左右。由此可立即计算出蛋白质的大致浓度。许多蛋白质在一定浓度和一定波长下的光吸收值(A1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与(A1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值A1%1cm,λ称为百分吸收系数或比吸收系数。蛋白质浓度= (A280´10 )/ A1%1cm,280nm (mg/ml)(Q 1%浓度»10mg/ml)

  • 【讨论】便携式近红外定量检测酶力肽的蛋白质含量的模型建立及问题

    最近使用新买的便携式近红外设备,对酶力肽进行了蛋白质的湿化学方法检测,然后对样品光谱进行采集,通过定量分析模型的建立、优化,尝试对样品进行回归测定。蛋白质采用凯氏定氮法,按同一标准,粉碎蛋白有一定差异的样品(同一粉碎机、粉碎时间),测定出样品蛋白质含量的真值:70-90%(主要是含水量不同造成的差异)。光谱采集分粉碎样品和原始样品两种类型,分别建模。结果:总体不错。但有几个问题需要大家注意。1. 粒度对模型和检测结果影响非常大,一定要粉碎一致。不同粒度下建立的模型检测结果误差很大,尤其是未粉碎的,误差更大。粉碎的样品结果一致性很好2.由于采用漫发射光谱,光源直接贴近样品照射,同一位点进行定量检测时如果不移动,每次的检测结果都会变化,但按绝对值增大约1%的幅度增加。我感觉可能与长期一直照射的情况下,样品内部温度发生变化导致水分发生移动,或漫反射的能量加强导致检测结果不稳定。但哪个是主要原因呢???

  • 【讨论】蛋白质含量测定的方法汇总及其相关论文[不断更新中...]

    [size=4]蛋白质含量测定的方法[/size][color=#DC143C]一、微量凯氏(Kjeldahl)定氮法[/color] 含氮有机物与浓硫酸共热,即分解产生氨(消化),氨又与硫酸作用,变成硫酸铵。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: H2NCH2COOH+ 3H2SO4 2CO2 + 3SO2 +4H2O +NH3 (1) 2NH3 + H2SO4 (NH4)2SO4 (2) (NH4)2SO4 + 2NaOH 2H2O +Na2SO4 + 2NH3 (3) 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。[color=#DC143C][size=4]论文:14楼 杜马斯燃烧法与凯氏法测定饲料含氮量的比较研究15楼 用凯氏法和杜马斯法测定植物样品中的全氮16楼 乳及乳制品中蛋白质测定应注意的事项探讨17楼 杜马斯燃烧定氮法在农产品品质检测中的应用18楼 凯氏定氮法测定牛奶中蛋白质的不确定度分析19楼 消化时间对总氮测定结果的影响20楼 奶粉中蛋白质样品消化方法的改进21楼 凯氏定氮法测定食品中蛋白质的不确定度分析22楼 催化剂与浓硫酸组成比例对凯氏定氮消化时间的影响23楼 饲料酵母蛋白含量测定结果的分析24楼 微波消解—凯氏定氮法测定食品中蛋白质的方法研究25楼 Loery法和Bradford法测定玻璃酸钠中蛋白质含量的比较26楼 应用 Primacs SN总氮 蛋白质分析仪测定食品中的蛋白质[/size][/color]

  • 【原创】蛋白质含量de测定

    蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。

  • 食品中蛋白质含量测定仪优点有哪些

    食品中蛋白质含量测定仪的优点主要体现在以下几个方面:  检测速度快:能够在短时间内完成大量样品的检测,大大提高了检测效率,使食品生产厂家能够快速获取检测结果,及时调整生产策略。  操作简单:仪器操作简单易用,用户只需按照说明书进行操作即可完成检测,无需复杂的操作步骤和专业技能,降低了操作难度。  准确度高:采用先进的检测技术,如光谱技术、化学分析方法等,能够确保测量结果的准确性和可靠性,为食品生产厂家提供准确的数据支持。  应用广泛:适用于各类食品中蛋白质含量的检测,如乳制品、肉制品、豆制品等,满足了不同食品生产厂家的检测需求。  安全性高:使用食品中蛋白质含量测定仪可以避免直接接触样品,降低了交叉感染的风险,保障了检测人员的安全。  智能化程度高:一些先进的食品中蛋白质含量测定仪还采用了安卓智能操作系统,具有网线连接、Wi-Fi联网上传、GPRS无线远传等功能,可以快速上传数据,实现远程监控和管理。  稳定性强:仪器具有稳定的工作性能和较长的使用寿命,保证了长期使用的可靠性。  综上所述,食品中蛋白质含量测定仪具有检测速度快、操作简单、准确度高、应用广泛、安全性高、智能化程度高和稳定性强等优点,为食品生产和质量控制提供了有力的支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405151149314403_9648_4214615_3.jpg!w690x690.jpg[/img]

  • 蛋白质检测仪有什么作用

    云唐蛋白质检测仪是一种用于测定食品、生物样品等中蛋白质含量的仪器设备。它在食品科学、生物学、医学和生化等领域具有重要作用,以下是其主要作用:  食品质量控制: 在食品工业中,蛋白质是食品的主要组分之一,其含量影响着食品的口感、质地、营养价值等。蛋白质检测仪可以用于监测食品样品中的蛋白质含量,确保产品的质量稳定性和一致性。  生物学研究: 在生物学研究中,蛋白质是细胞功能和结构的重要组成部分。蛋白质检测仪可以帮助研究人员测定生物样品(如细胞提取物、血清等)中蛋白质含量,从而深入了解细胞的生物学特性和疾病机制。  医学诊断: 在临床医学中,某些疾病的发展可能会导致血清蛋白质含量的改变。蛋白质检测仪可以用于测定血液和尿液中的蛋白质含量,帮助医生进行疾病诊断和监测。  药物研发: 药物研发过程中,蛋白质的定量分析是评估药物效果的重要环节。蛋白质检测仪可以用于分析药物与蛋白质的相互作用,评估药物对蛋白质的影响。  生化实验: 在生化实验室中,蛋白质检测仪常用于定量测定蛋白质样品,用于分析实验数据和评估实验结果的可靠性。  环境监测: 在环境科学领域,蛋白质检测仪可以用于监测水体、土壤等环境中蛋白质的含量,从而评估环境质量。

  • 蛋白质含量测定国标第三法燃烧法

    关于蛋白质含量测定国标GB5009.6-2016中第三法燃烧法的应用1.求该法规定的食品检测的参考文献。2.标准中的蛋白质分析仪是杜马斯定氮仪吗?(来自小白的问号??)3.该法燃烧法与杜马斯燃烧法是不一样的吗?(看到一些文献是另一个标准的杜马斯燃烧法与国标凯氏定氮法的比较)

  • 【资料】蛋白质含量的测定

    蛋白质含量的测定[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=54096]蛋白质含量的测定[/url]

  • 带你领略ICP-MS的应用前沿——基于ICP-MS的蛋白质定量分析

    带你领略ICP-MS的应用前沿——基于ICP-MS的蛋白质定量分析

    [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]技术是80年代发展起来的新的分析测试技术。它以将ICP的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的最强有力的元素分析、同位素分析和形态分析技术。该技术提供了极低的检出限、极宽的动态线性范围、谱线简单、干扰少、分析精密度高、分析速度快以及可提供同位素信息等分析特性。目前,在[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]技术上面的突破性技术已经越来越少,但在[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICPMS[/color][/url]应用方面却在不断的扩大,比如应用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]对蛋白质进行定量分析。一般来说蛋白质的定量分析主要借助于生物质谱,但是随着生命科学的迅猛发展,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]凭借其诸多优点也开始进入并活跃在蛋白质分析领域。本文就带你走进[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]的应用前沿,领略下基于[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]蛋白质定量分析的几种相关技术。基于[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 的蛋白质定量分析方法主要有以下几种,如下图所示,本文将一一叙述。[color=teal][/color][img=,538,358]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041432166086_2066_1615758_3.png!w538x358.jpg[/img]一、基于金属元素的蛋白质[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]定量技术[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]对蛋白的定量主要是通过测定金属元素的含量,再根据每种蛋白质所含金属的计量比,计算出蛋白质的绝对量。有文献利用65Cu作为稀释剂,采用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]同位素稀释法法对含铜的蛋白进行绝对定量。[img=,578,314]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041433401796_21_1615758_3.png!w578x314.jpg[/img]二、基于硒元素的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]蛋白质定量技术硒在体内主要通过硒蛋白发挥作用,人体血液中96%~98%的硒是和蛋白质结合的,一般以硒代半胱氨酸(Sec)、硒代甲硫氨酸的形式结合在蛋白质中。同位素稀释质谱[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 定量法利用标记77Se 的硒代甲硫氨酸作为稀释剂,通过测定硒代甲硫氨酸77Se 和80Se 的丰度比从而进行定量。[img=,664,306]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041446313436_7795_1615758_3.png!w664x306.jpg[/img]三、基于硫元素的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]蛋白质定量技术在[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 可以测量的所有元素中,硫是最适合作为蛋白质定量分析的内标元素.这是由于S 是蛋白质中一种常见的元素,S 原子多以共价键稳定地存在于蛋白质分子中.蛋白质有两种氨基酸,即蛋氨酸和半胱氨酸含有硫元素。如果某种蛋白质已经由生物质谱鉴定,或者这种蛋白质分子的氨基酸序列和其中含有的S 原子数已知,那么就可以通过[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 直接测定半胱氨酸或甲硫氨酸中硫的含量实现蛋白质的绝对定量。[img=,664,269]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041449050956_1648_1615758_3.png!w664x269.jpg[/img]四、基于磷元素[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 测定的蛋白质定量技术磷是生物体中最重要的元素之一。磷酸化过程是调节蛋白质活性的重要过程,揭示蛋白质磷酸化修饰发生规律是理解生物体复杂多样的生物进程的一个重要前提。磷酸化蛋白在样本中含量低且动态范围广、蛋白质磷酸化水平不均一、磷酸化修饰类型多,这些特点决定了对磷酸化蛋白的研究具有挑战性。蛋白质分子中磷的测定可以对蛋白质的磷酸化状态提供重要信息。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 对元素的测定与分析物的结构无关,只与分析物中元素的含量有关,因此[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 不仅能够鉴定蛋白质中磷的存在,而且可准确测定蛋白质的磷酸化程度。[img=,563,296]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041449182306_4389_1615758_3.png!w563x296.jpg[/img]五、基于元素标记的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]蛋白质定量技术稀土金属元素的化学物理性质非常相近,在液相上能共金属元素的化学物理性质非常相近,在液相上能共洗脱。与硫、磷等元素相比,稀土金属元素在[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 中质谱响应更强,受到的同量异位素干扰较少,更容易检测。因此,利用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 检测蛋白质标记的稀土金属从而进行蛋白质定量的方法具有很大的应用前景。将标记元素引入蛋白质的方法主要有两种:通过共价键直接将杂原子与特定氨基酸结合;通过配位化合物引入金属元素。标记时既可以标记蛋白质或肽的主链(N或C端) ,也可以标记其中的氨基酸(Cys、Met、Lys 等)。主要有碘、汞、稀土等。[img=,639,345]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041451025126_6783_1615758_3.png!w639x345.jpg[/img][img=,615,352]http://ng1.17img.cn/bbsfiles/images/2018/04/201804041451027144_9325_1615758_3.png!w615x352.jpg[/img][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 作为元素的分析手段, 需要ESI-MS、MALDI-TOF 等生物质谱提供蛋白质结构信息,将元素定量分析的无机质谱和蛋白质结构分析的生物质谱有机地结合。基于分离技术的发展和其他质谱技术的辅助,蛋白质的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 定量技术在生物样本的蛋白质定量和蛋白质组学研究中会具有潜在广泛的应用价值。

  • 【分享】蛋白质含量测定法

    【分享】蛋白质含量测定法

    蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812221438_125589_1600687_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812221439_125590_1600687_3.jpg[/img]值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。

  • 【原创大赛】SKALAR连续流动分析仪测定乳制品中蛋白质含量

    【原创大赛】SKALAR连续流动分析仪测定乳制品中蛋白质含量

    蛋白质是生命的基础 , 人体的重要组成成分。它不仅是一种重要的供能物质 , 更主要的作用是促进生长发育和新陈代谢。但婴幼儿过量的摄入蛋白质会增加 肾脏的负担,因此蛋白质的摄入要根据营养状况、生长发育要求达到供求平衡 。乳及乳制品是婴幼儿摄取蛋白质的主要来源, 安徽阜阳 “毒奶粉 ”事件就是因为婴幼儿食用了蛋白质含量极低的劣质奶粉 ,所以对乳及乳制品中蛋白质含量的监控极为重要. 目前我国测定乳及乳制品中蛋白质的方法主要为凯氏定氮滴定法、凯氏定氮比色法, 但是这两种方法繁琐、费时。连续流动分析法测定乳及乳制品中蛋白质含量,对于批量样品,该方法具有很大的优势,不但简便快捷、而且准确度和灵敏度度也有很大的提高。1.实验部分1. 1 仪器与原理SAN+ +四通道连续流动分析仪 (荷兰SKALAR公司)蛋白质分析模块。原理:自 动测定蛋白质基于改良后的贝特勒反应即经过相互分离后对氨进行分析。消化后 的样品用酸式盐溶液稀释定容,铵盐通过与水杨酸钠反应氯化为一氯化胺, 通过氧化和氧化偶合后形成绿色配合物,反应是以硝普钠为催化剂,次氯酸钠溶液被用于提供氯, 在波长630 nm处检测。1. 2样品前处理准确吸取 液态奶 (或称取固 态奶 ), 同时准备空白样 分别置于 250 mlVELP消化管中 , 加入以1: 10混匀的 CuSO4和K2SO4混合催化剂, 再加入20 ml浓 H2SO4,于蛋白质自动消化仪中消化,最后消化至蓝绿色, 冷却至室温后用蒸馏水定容至100 ml。1.3试剂和标准的配置酸性氯化钠溶液: 称取100 g氯化钠用800 ml水溶解[

  • 【讨论】鸡蛋的蛋白质含量到底有多高?

    [size=4]之前好像在哪看到一个贴,说蛋白的蛋白质含量几乎为100%,也就是说鸡蛋的蛋白全是蛋白质。感觉有点可疑,真的有那么高吗?刚刚百度了一下,上面的数据是蛋白的蛋白质为13%。两个数据差好远哦。不知道有没有坛友们做过?[/size]

  • 【资料】UV紫外吸收法测protein蛋白质含量

    UV紫外吸收法测protein蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。

  • 标准曲线制作—考马斯亮蓝法测蛋白质含量

    一、标准曲线一般用分光光度法测物质的含量,先要制作标准曲线,然后根据标准曲线查出所测物质的含量。因此,制作标准曲线是生物检测分析的一项基本技术。二、蛋白质含量测定方法 1. 凯氏定氮法2. 双缩脲法3. Folin-酚试剂法4. 紫外吸收法5. 考马斯亮蓝法三、考马斯亮蓝法测定蛋白质含量—标准曲线制作 (一)试剂: 1. 考马斯亮蓝试剂:考马斯亮蓝G—250 100 mg溶于50 ml 95%乙醇,加入100 ml 85% H3 PO4 ,雍蒸馏水稀释至1000 ml,滤纸过滤。最终试剂中含0.01%(W/V)考马斯亮蓝G—250,4.7%(W/V)乙醇,8.5%(W/V)H3 PO4 。2. 标准蛋白质溶液:纯的牛血清血蛋白,预先经微量凯氏定氮法测定蛋白氮含量,根据其纯度同0.15 mol/LNaCl配制成100 ug/ml蛋白溶液。(二)器材: 1. 722S型分光光度计使用及原理。2. 移液管使用。(三)标准曲线制作: 1. 试管编号0123456100ug/ml标准蛋白(ml)0.00.10.20.30.40.50.60.15mol/L NaCl (ml)10.90.80.70.60.50.4考马斯亮蓝试剂 (ml)5555555摇匀,1h内以1号管为空白对照,在595nm处比色A595nm2. 以A595nm 为纵坐标,标准蛋白含量为横坐标(六个点为10ug、20 ug、30 ug、40 ug、50 ug、60 ug),在坐标轴上绘制标准曲线。(1)利用标准曲线查出回归方程。(2)用公式计算回归方程。(3)或用origin作图 ,测出回归线性方程。即A595nm =a×X( )+6;一般相关系数应过0.999以上,至少2个9以上。(4)绘图时近两使点在一条直线上,在直线上的点应该在直线两侧。(四)蛋白质含量的测定: 样品即所测蛋白质含量样品(含量应处理在所测范围内),依照操作步骤1操作,测出样品的A595nm ,然后利用标准曲线或回归方程求出样品蛋白质含量。一般被测样品的A595nm 值在0.1—0.05之间,所以上述样品如果A595nm 值太大,可以稀释后再测A595nm值,然后再计算。(五)注意事项: 1. 玻璃仪器要洗涤干净。2. 取量要准确。3. 玻璃仪器要干燥,避免温度变化。4. 对照:用被测物质以外的物质作空白对照。蛋白质含量测定实验难度系数 0共 0 人点评打分实验材料结晶牛血清清蛋白 g—球蛋白试剂(盒)Na2CO3酒石酸钾钠蒸馏水硫酸铜钨酸钠钼酸钠磷酸硫酸锂液体溴NaOH酚酞仪器耗材可见光分光光度计旋涡混合器秒表[url=http://www.biomart.cn/equipm

  • 牛奶蛋白质分析仪可以用于检测乳蛋白制品嘛

    牛奶蛋白质分析仪可以用于检测乳蛋白制品。以下是详细解释和相关信息:  功能与应用:牛奶蛋白质分析仪是一种专门用于分析牛奶及其制品中蛋白质含量的仪器。它基于先进的生化分析技术,如比色法、光谱法或电化学法等,能够准确、快速地检测样品中的蛋白质含量。  乳蛋白制品的检测:乳蛋白制品,如奶粉、酸奶、奶酪等,其蛋白质含量是产品质量和营养价值的重要指标。牛奶蛋白质分析仪可以有效地检测这些乳蛋白制品中的蛋白质含量,为生产厂家提供准确的质量控制手段。  优点与特点:  准确性高:牛奶蛋白质分析仪具有高灵敏度和高准确性,能够确保测量结果的可靠性。  快速便捷:该仪器操作简单,使用方便,可以快速得出测量结果,提高检测效率。  适用范围广:除了牛奶及其制品外,还可以用于其他含蛋白质样品的检测,如豆类制品、肉制品等。  在乳品工业中的重要性:随着乳品市场的不断扩大和消费者对乳制品质量要求的提高,牛奶蛋白质分析仪在乳品工业中的重要性日益凸显。它可以帮助乳品企业提高产品质量、降低生产成本,同时为消费者提供更加安全、健康的乳制品。  综上所述,牛奶蛋白质分析仪是一种功能强大、应用广泛的检测仪器,完全可以用于检测乳蛋白制品中的蛋白质含量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405271615421543_8284_6238082_3.jpg!w690x690.jpg[/img]

  • 天研|牛奶蛋白质分析仪的原理是什么

    牛奶蛋白质分析仪的原理主要基于光学测量技术,特别是光谱分析法。具体地说,它采用红外光谱法来测量牛奶中乳清蛋白和酪蛋白的含量。首先,将牛奶样品制成透明薄片,然后使用近红外光电传感器和光源对其进行扫描。牛奶中的蛋白质对特定波长的红外光有特定的吸收特性,通过测量这些吸收特性,可以分析出牛奶中蛋白质的种类和含量。此外,仪器会将牛奶光谱与事先建立的标准光谱进行比较,通过复杂的算法处理,从而得出各种蛋白质形态的含量。这种比较和计算过程确保了测量结果的准确性和可靠性。总的来说,牛奶蛋白质分析仪通过光学测量和光谱分析技术,能够快速、准确地测定牛奶中蛋白质的含量和种类,为乳制品生产、质量控制和科学研究提供了有力的支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404291701212298_2595_6238082_3.jpg!w690x690.jpg[/img]

  • 【讨论】紫外分光光度法测定蛋白质含量de问题?

    【讨论】紫外分光光度法测定蛋白质含量de问题?

    实验原理本实验采用紫外分光光度法测定蛋白质含量。蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280 nm附近(不同的蛋白质吸收波长略有差别)。在最大吸收波长处,吸光度与蛋白质溶液的浓度的关系服从朗伯-比耳定律。仪器与试剂紫外-可见分光光度计,比色管,吸量管标准蛋白质溶液:5.00 mg.mL-1溶液,0.9% NaCl溶液,待测蛋白质溶液实验步骤1. 标准曲线的制作 : 用吸量管分别吸取1.0 、1.5、 2.0 、2.5 、3.0 mL 5.00 mg.mL-1标准蛋白质溶液于5只10 mL 比色管中,用0.9% NaCl溶液稀释至刻度,摇匀。用1 cm石英比色皿,以0.9%NaCl溶液为参比,在280 nm处分别测定各标准溶液的吸光度A280,记录所得读数。2. 样品测定: 取待测蛋白质溶液3 mL,按上述方法测定280 nm处的吸光度。平行测定三份。数据处理1. 以蛋白质浓度为横坐标,吸光度为纵坐标绘制标准曲线。2. 根据样品溶液的吸光度,从标准曲线上查出待测蛋白质的浓度。注意事项和问题1. 紫外吸收法与Folin-酚比色法测定蛋白质含量相比,有何缺点及优点?2. 若样品中含有核酸类杂质,应如何校正?[img]http://ng1.17img.cn/bbsfiles/images/2008/04/200804041741_83891_1604910_3.jpg[/img]

  • 考马斯亮蓝法测定蛋白质含量

    用考马斯亮蓝法测定蛋白质含量,发现蛋白质与染色液混合后吸光度值很不稳定,在1h内时间越长,吸光度越来越低,与文献上的越来越高并趋于稳定有所差异,不知道是不是这个原因,做加标回收率很低,求大神指教到底是什么原因会导致这样的情况。

  • 【转帖】高温快速消化与国标消化的凯氏定氮法测定蛋白质含量的比较研究

    【转帖】高温快速消化与国标消化的凯氏定氮法测定蛋白质含量的比较研究

    1  方法1.1  实验分组分为2 组:对照组和实验组。两组在测定样本蛋白质含量的过程中,采用不同的消化方法,之后的蒸馏、滴定、计算方法,则完全相同。推荐使用仪器:蛋白质测定仪,半自动定氮仪。1.1.1  对照组:操作严格按照国标规定〔1〕进行。其采用的消化方法为小火碳化消化法:取样品稀释液110 mL 与消化剂及硫酸一起加入定氮瓶内,于瓶口放一漏斗,将瓶以45°角斜支于有小孔的石棉网上加热消化,消化过程要求小火(400 ℃) 碳化3 h 左右。1.1.2  实验组:采用的消化方法是高温消化法:将样品稀释液110 mL 与消化剂一起加入定氮瓶内保持1 000 ℃的高温持续加热,其过程要求保持定氮瓶内液体沸腾,但所产生的蛋白质气泡不溢出瓶口,同时产生的蒸馏水气体在瓶壁遇冷回流,可以将瓶内壁上的蛋白质带回瓶底进行消化,整个消化过程大约1 h。1.2  蛋白质含量检测1.2.1  两组方法的稳定性、准确性比较: 分别对50 g/ L蛋白校准液(上海申索) 及15 份人血白蛋白样品(蛋白含量未知) 进行两种方法的蛋白质含量检测,前者重复15 次。1.2.2  实验组蛋白回收率检测(见表1) :任取2 种含蛋白的样品A、B(蛋白含量未知) ,每种样品分别取3 份各916 mL ,加入50 g/ L 的蛋白标准液0μL 、100μL 、400μL 和分别对应400μL 、300μL 、0μL 的生理盐水,执行4 次重复试验,进行2 种方法的蛋白质含量检测。最后计算回收率。http://ng1.17img.cn/bbsfiles/images/2010/12/201012032149_264269_1641058_3.jpg1.3  统计学分析数据以

  • 蛋白质含量换算系数

    [i]最近我们公司开发了一种产品,里面有大米膨化粉,玉米膨化粉,小米膨化粉,大豆膨化粉等,还有各种氨基酸,要我测蛋白质含量,我不知道该用哪个换算系数,高手指点一下啊!:) [/i]

  • 蛋白质氨基酸残基组成分析以及蛋白预测软件

    http://img.dxycdn.com/trademd/upload/asset/meeting/2013/09/06/A1378379551.jpg 氨基酸是蛋白质的基础组成单位,通过研究蛋白质中氨基酸的性质和组成来预测蛋白质的结构和功能,蛋白质氨基酸残基组成分析主要是通过氨基酸分析仪来完成的,本文推荐了2个基于氨基酸组成进行蛋白质预测软件。基于氨基酸组成的蛋白质预测软件根据组成蛋白质的20种氨基酸的物理和化学性质可以辨析电泳等实验中的未知蛋白质,也可以分析已知蛋白质的物化性质。ExPASy工具包包涵的程序:AACompIdent:与把氨基酸序列在SWISS-PROT库中搜索不同,AACompIdent工具利用未知蛋白的氨基酸组成去确认具有相同组成的已知蛋白。该程序分析时需提交的相关信息包括:蛋白质的氨基酸组成、等电点pI和分子量(如果知道)、正确的物种分类及特别的关键词。此外,用户还需在六种氨基酸“组合”中作出选择,这影响到分析如何进行。例如,某种“组合”会把残基Asp/Asn(D/N)和Gln/Glu(Q/E)组合成 Asx(B)和Glx(Z);或者某种残基会在分析中被完全除去。对数据库中的每一个蛋白序列,算法会对其氨基酸组成与所查询的氨基酸组成的差异打分。由电子邮件返回的结果被组织成三级列表:第一张列表中的蛋白都基于特定的物种分类而不考虑pI和分子量;第二张列表包含了不考虑物种分类、pI和分子量的全体蛋白;第三张列表中的蛋白不但基于特定物种分类,并且将 pI和分子量也考虑在内。虽然计算所得结果各不相同,但零分表明了该序列与提出的组成完全相符。AACompSim:AACompIdent的一个变种,AACompSim提供类似的分析,但与前者以实验所得的氨基酸组成为依据进行搜索不同,后者使用SWISS-PROT中的序列为依据。有报道称,氨基酸组成在物种之间是十分保守的(Cordwell等,1995),并且通过分析氨基酸的组成,研究者能从低于25%序列相似性的蛋白之间发现弱相似性(Hobohm和Sander,1995)。因此,在“传统的”数据库搜索基础上辅以组成分析,能为蛋白质之间关系提供更多见解。PROSEARCH:PROPSEARCH也提供基于氨基酸组成的蛋白质辨识功能。用144种不同的物化性质来分析蛋白质,包括分子量、巨大残基的含量、平均疏水性、平均电荷等,把查询序列的这些属性构成的“查询向量”与SWISS-PROT和PIR中预先计算好的各个已知蛋白质的属性向量进行比较。这个工具能有效的发现同一蛋白质家族的成员。可以通过Web使用这个工具,用户只需输入查询序列本身。分子量搜索(MOWSE)分子量搜索(MolecularWeightSearch,MOWSE)算法利用了通过质谱(MS)技术获得的信息。利用完整蛋白质的分子量及其被特定蛋白酶消化后产物的分子量,一种未知蛋白质能被准确无误地确认,给出由若干实验才能决定的结果。由于未知蛋白无需再全部或部分测序,这一方法显著地减少了实验时间。MOWSE的输入是一个纯文本文件,包含一张实验测定的肽段列表,分子量范围在0.7到4.0Kda之间。计算过程基于在OWL非冗余蛋白质序列库中包含的信息。打分基于在一定分子量范围内蛋白中一个片段分子量出现的次数。输出的结果是得分最佳的30个蛋白的列表,包括它们在OWL中的条目名称、相符肽段序列、和其它统计信息。模拟研究得出在使用5个或更少输入肽段分子量时,准确率为99%。该搜索服务可通过向mowse@daresburg.ac.uk发送电子邮件实现。为获得更多关于查询格式的细节信息,可以相该地址发送电子邮件,并在消息正文中写上“help”这个词。蛋白质氨基酸组成分析用盐酸在110 ℃将蛋白或多肽水解成游离的氨基酸,用氨基酸分析仪测定各氨基酸的含量。采用经典的阳离子交换色谱分离、茚三酮柱后衍生法,对蛋白质水解液及各种游离氨基酸的组分含量进行分析。仪器基本结构同普通HPLC相似,但针对氨基酸分析进行了细节优化(例如氮气保护、惰性管路、在线脱气、洗脱梯度及柱温梯度控制等等)通常细分为两种系统:蛋白水解分析系统(钠盐系统)和游离氨基酸分析系统(锂盐系统),利用不同浓度和pH值的柠檬酸钠或柠檬酸锂进行梯度洗脱。其中钠盐系统一次最多分析约25种氨基酸,速度较快,基线平直度好;锂盐系统一次最多分析约50种氨基酸,速度较慢,基线一般不如钠盐系统好。分析效果:从目前已知的氨基酸分析方法比较来看,除灵敏度(即最低检测限)比HPLC柱前衍生方法稍低以外(HPLC:0.5 pmol;氨基酸分析仪:10 pmol),其他如分离度、重现性、操作简便性、运行成本等方面,都优于其他分析方法。蛋白质氨基酸残基组成分析的主要步骤包括:首先是蛋白被水解为氨基酸,其次是采用离子色谱等方法进行游离的氨基酸含量和组成的分析。总之利用蛋白可以分析氨基酸,利用氨基酸也可以研究蛋白质。

  • 蛋白质质谱分析

    PS1利用基质辅助激光解吸电离-飞行时间(MALDI-TOF)技术来表征生物分子。样品溶于固定的底物中形成晶体,用激光脉冲使其离子化,离子被加速后通过飞行管时分离,所有离子均可被检测。系统包括三个组成部件:样品点样制备工作站(SymBiot 1)、生物质谱工作站(Voyager-DE PRO)和自动化分析软件(AutoMS-Fit)。SymBiot1 是一个自动样品处理系统,支持亚微升级微量点样,具有快速省时、重现性好的特点;Voyager-DE PRO是为蛋白质组研究专门设计的自动飞行时间质谱分析系统,配有AB公司之专利—延迟检测技术,具有高分辨率、质荷比宽等特点;AutoMS软件可以批处理方式或实时动态方式检索Protein Prospector蛋白数据库或您指定的蛋白数据库,查询参数可以任意设定,检索结果以Microsoft Access格式分类编号及储存。 PS 1技术平台建立伊始便受到了许多蛋白质课题研究组的关注。中国科学院上海生物化学研究所戚正武院士课题组从猪肝中提取某一活性蛋白组分,该组分理化性质不清楚,天然含量十分低,并无相关文献报道。用HPLC分离以后对活性组分的成分不能确定。上海基康生物技术有限公司运用PS 1系统对HPLC分离后的活性组分作了质谱分析,仅在一个工作日内就精确确定该组分由分子量极为相近的几种蛋白质构成,分子量精确度达到10 ppm。后经HPLC再次细分(洗脱梯度增加了2.5倍),证实了质谱的结论。此活性组分曾滤过1kD分子筛,基康的质谱数据纠正了研究人员过去对该活性组分分子量的误判,为研究人员明确实验方向、优化实验步骤提供了强有力的依据。 PS1除了可以进行生物大分子的精确分子量测定,还可用于蛋白的肽指纹图谱分析(peptide mass fingerprint,PMF),提供相关生物信息学服务,并且还可以利用源后衰变(Post Source Decay,PSD)技术来获得样品的MS/MS数据,以得到一级结构信息。PSD方法通常增加了激发激光的功率,使其超过产生一般肽指纹谱图所需功率的阈值,过剩的能量使前体离子在源内离子化之后发生裂解,产生一系列碎片离子,在反射器的作用下,最终可以得到一张连续的碎片离子图谱。经特定的软件分析后,即可在数据库中检索到肽段的氨基酸序列。利用PSD分析技术,还可以对磷酸化,糖基化等翻译后修饰进行定位分析,同样也可以鉴定产生翻译后修饰肽段的蛋白质。Neville et al.(1997)将这一方法成功的用于磷酸肽的序列分析。作为重要的蛋白质鉴定手段之一,PS1的精确度可以达到10 ppm,灵敏度为fmol,分子量检测范围可达到500 kDa,每天可自动分析40-100个样品,适用于大规模“蛋白质组学”研究。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制