当前位置: 仪器信息网 > 行业主题 > >

蛋白质印迹检测

仪器信息网蛋白质印迹检测专题为您提供2024年最新蛋白质印迹检测价格报价、厂家品牌的相关信息, 包括蛋白质印迹检测参数、型号等,不管是国产,还是进口品牌的蛋白质印迹检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质印迹检测相关的耗材配件、试剂标物,还有蛋白质印迹检测相关的最新资讯、资料,以及蛋白质印迹检测相关的解决方案。

蛋白质印迹检测相关的资讯

  • 蛋白质印迹实验具体操作步骤
    蛋白质印迹实验具体操作步骤 蛋白质印迹免疫分析的过程包括蛋白质经凝胶电泳分离后,在电场作用下将凝胶上的蛋白质条带转移到硝酸纤维素膜上,经封闭后再用抗待检蛋白质的抗体 作为探针与之结合,经洗涤后,再将滤膜与二级试剂-放射性标记的或辣根过氧化物酶或碱性磷酸酶 偶联抗免疫球蛋白抗体 结合,进一步洗涤后,通过放射自显影或原位酶反应来确定抗原-抗体-抗抗体复合物在滤膜上的位置和丰度。 【蛋白质印迹实验所需试剂】 1.IgG 标准品 2.羊抗人辣根过氧化物酶(HRP)标记的IgG 抗体 3.转移buffer:Tris 3.03g,Gly14.4g,甲醇200ml,加三蒸水至 1000ml充分溶解,4℃冰箱贮存。 4.Tris buffer(TBS):Tris 2.42g,NaCl 29.2g,溶于600ml三蒸水,再用1N HCl调至pH7.5,然后补加三蒸水至1000ml. 5.漂洗液(TTBS):TBS液500ml,加 Tween20 250ul. 6.封闭液:5%脱脂奶粉。 7.抗体buffer:1.5g BSA溶于50ml TTBS. 8.显色液DAB(3.3-diaminobenzidine,3.3-二氨基联苯胺)配制:5mg DAB溶于10ml 柠檬酸buffer(0.01mol/L 柠檬酸2.6ml,0.02 mol/L Na2HPO4 17.39ml),加30% H2O2 10 &mu l(临用时现配)。 9.脱色液:甲醇250ml,冰醋酸100ml,加蒸馏 水至1000ml. 10.氨基黑染色液(0.1%氨基黑 -10B):0.2g 氨基黑-10B 溶于200ml 脱色液中,充分搅拌溶解,滤纸 过滤。 【蛋白质印迹实验操作步骤】 一、样品的SDS -聚丙烯酰胺凝胶电泳 按实验四操作步骤进行。加样时,注意在同一块胶上按顺序做一份重复点样,以备电泳结束时,一份用于免疫鉴定,一份用于蛋白染色显带,以利相互对比,分析实验结果。 二、转移印迹 1.转移前准备:将滤纸,硝酸纤维素膜(NC)剪成与胶同样大小,NC膜浸入蒸馏 水中 10-20min 后浸入转移buffer中平衡30min . 2.凝胶平衡:将电泳后的SDS -PAGE胶板置于转移buffer 中平衡 30-60min. 3.按图操作:逐层铺平,各层之间勿留有气泡和皱折。 4.开始转移,连接正负极,盖好盖子,接上电源,恒流 0.8mA/cm,室温下转移1h,转移后的凝胶再用氨基黑10B染色液染色20min ,然后脱色检测转移效果。 三、免疫染色 1.转移后的NC膜于5%脱脂奶粉中封闭,4℃过夜。 2.TBS洗膜1-2次,10min/次。 3.加HRP标记的抗体,室温1h . 4.TBS 洗3次,10min/次。 5.NC膜再转入DAB显色液中,置暗处反应,待显色反应达到最佳程度时,立即用三蒸水洗涤终止反应。
  • 新品上市——iBind蛋白印迹处理仪
    您是不是整天都在忙着做western blot? 你是不是感觉就像照顾婴儿一样小心翼翼的处理你的blot?步骤太多,你是不是经常忘记做了哪一步了?尽管如此,却还是经常得不到理想的实验结果。 如今,western blotting革命再次开启新的篇章。iBind蛋白印迹处理系统采用独特的SLF(sequential lateral flow)技术,打破传统手动方法的各种障碍,帮助您获得更佳的实验结果。 性能更优&mdash &mdash 相比手动方法,Western灵敏度更高,背景更低,大大节省抗体用量 自动化操作&mdash &mdash 加入试剂后就可以走开,自动化完成包括封闭、一抗孵育、二抗孵育和清洗等步骤 速度更快&mdash &mdash 将冗长的十几小时的操作流程缩短至2.5小时,无需过夜 无需电源或电池&mdash &mdash 小巧轻便,节省空间 了解更多,请登录 http://www.lifetechnologies.com/ibind 订购信息: 产品 规格 货号 iBind&trade 蛋白质印迹设备 1 device SLF1000 iBind&trade 卡片 10 cards SLF1010 iBind&trade 溶液试剂盒 1 Kit SLF1020 Novex® AP小鼠化学发光检测试剂盒 1 Kit SLF1021 Novex® AP兔化学发光检测试剂盒 1 Kit SLF1022 iBind&trade 蛋白质印迹起始套装 1 套 SLF1000S iBind&trade 蛋白质印迹设备4台 4 devices SLF10004PK Novex® ECL化学发光底物试剂盒 1 Kit WP20005 Novex® 山羊抗兔 (H+L),交叉吸附,HRP* 1 mg A16072 Novex® 山羊抗小鼠 (H+L),交叉吸附,HRP* 1 mg A16104 观看视频,请点击 http://v.youku.com/v_show/id_XNjA1MjY4MDEy.html
  • 中科院大化所张丽华:捕捉蛋白质变化的蛛丝马迹
    张丽华  申请发明专利50余项,其中30余项获得授权,7项获得实施转化,主持或参加的科研项目共20余项。作为国家重大科学研究计划的首席科学家,中国科学院大连化学物理研究所研究员张丽华是名副其实的高产“大户”。  她带领课题组深耕“蛋白质定性和定量新方法和相关技术研究”,为发现与生命活动密切相关的重要蛋白质提供了关键技术支撑,并将发展的新材料、新方法应用于肝癌等重大疾病的研究。  从蛋白质入手  在如今这个“谈癌色变”的年代,每年中国有300万新增癌症患者,有220万人因癌症而死亡。国际癌症研究机构预计,至2030年中国每年癌症患者将达到500万人,因此而死亡的人数达到350万人。  当前,癌症患者求医时大多处于中晚期,病人的存活率也十分堪忧。相比之下,很多早期癌症患者的治愈率在80%以上,“早发现、早治疗”是最行之有效的方法。  然而,想要在癌症扩散前就作出准确诊断绝非易事。张丽华带领团队从蛋白质下手,捕捉着肿瘤高低转移细胞株中发生变化的蛋白质。作为生命活动的主要执行体,蛋白质承载着重要的信息,其种类繁多、无处不在——催化反应的酶、提供免疫的抗体、跨膜运输的载体统统都是蛋白质。  “以肝癌高低转移细胞株为例,我们利用自己发展的规模化蛋白质定量分析技术,发现高转移细胞株与低转移细胞株之间有100多个蛋白质存在差异表达,其中就有促进和抑制肝癌转移的重要蛋白质。”张丽华说,“只要能调控这些蛋白质的表达,就有希望降低肿瘤细胞的侵润和转移能力,提高患者的生存力。我们将对其中一些重要的蛋白质进行大量临床样本的验证,期待能推出精准的检测试剂盒,有助于医生评估癌症的转移风险。”  但看似简单的检测分析过程背后却充满了挑战,要想将这些与疾病发生发展密切相关的蛋白质从海量的蛋白质中筛选出来,定量的准确度和分析速度的快慢至关重要。  建立分析新方法  酶解是蛋白质组样品预处理中不可或缺的环节。传统在自由溶液中的酶解方法通常需要消耗十几个小时 不仅严重制约分析速度,而且离线的操作会影响定量结果的准确度。张丽华团队提出了扬长避短的解决之道——固定化酶 通过提高单位面积上酶的浓度,既能加快蛋白质的酶解,又能降低酶的自降解几率。  固定化技术必须既让酶“死心塌地”,又不能让蛋白质“恋恋不舍”。为此,过去10年间,张丽华带领的团队没少在固载材料上花心思。“球形的、颗粒的、整体的̷̷各种各样的固载材料和修饰方式都进行了优化和选择。”她介绍道,从十几小时缩短到几秒,就像魔术师对酶施了魔力一样。这项技术通用性极强,不仅提高了蛋白质样品预处理的速度,还解决了国内外众多研究蛋白质的同行的“痛点”——实现与分离鉴定系统的在线联用,显著提高了蛋白质组样品的酶解效率和分析通量。  此外,她带领的团队还取得了一批成果:研制出了新型蛋白质印迹材料、固定化金属亲和色谱材料等,将鉴定灵敏度提高了2~3个数量级 建立了基于质量亏损的准等重标记技术,以及集成化定量分析平台,将蛋白质组相对定量的偏差由40%~50%缩小为10%以内,提高了定量的准确度、精确度和通量。  恩师的引领  如今,张丽华谈起蛋白质来头头是道,谁又能想到她其实并没有生命科学的相关教育背景。张丽华读博士期间主攻环境小分子,是在导师张玉奎院士的建议下转向潜力巨大的生物分析领域的。“作为一种生物大分子,蛋白质的分离分析更具有挑战性。”她说。  从儿时对科学懵懂的梦想,到真正走上科研的道路,张丽华遇到的每一位导师都将严谨的态度和创新的精神传授给她。在张丽华读博士期间,由于她所在的团队重新组建,在急需用人的情况下,导师张玉奎义无反顾地把她送到了国外,在德国DAAD资助下开展博士生联合培养研究,并随后让她继续在日本从事博士后研究。  导师的胸怀,对学生的无私奉献,让张丽华深深感动。回国后,在对学生的培养过程中,她也希望能够秉承恩师的这种精神,给学生创造更好的机会,让他们具有更好的发展空间。  中国科学院大连化学物理研究所、德国国家环境健康研究中心生态化学所、日本德岛大学药学院̷̷一路走来,有恩师们的指引和帮助,有团队成员和学生们的辛勤工作,有研究所创造的优异的科研环境,张丽华坦言自己是幸运的,只希望能在这条路上走得更扎实、更久更远。  “现在我最大的业余爱好就是陪儿子。”张丽华笑称。她会在下班后尽早回家,陪儿子阅读和游戏。她希望在兼顾事业的同时,也能陪伴孩子一同成长。
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量
    【山东云唐*新品推荐YT-Z12T】云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量→点击此处进入客服在线咨询优惠专区。山东云唐专业厂家自主研发生产农药残留检测、食品安全检测、植物生理等仪器仪表,品质保障,价格实惠,售后无忧,欢迎新老客户来电咨询!山东云唐智能让诚信为高质量发展护航,我们将努力提供更卓越的产品质量和更人性化的售后服务给广大客户,为社会创造更大的价值。云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量  随着科技的不断发展,食品蛋白质检测仪在食品安全检测领域发挥着越来越重要的作用。其中,对于奶粉中蛋白质含量的快速准确检测,食品蛋白质检测仪更是扮演着至关重要的角色。本文将详细介绍食品蛋白质检测仪的工作原理、优势及其在奶粉蛋白质含量检测中的应用。  食品蛋白质检测仪在奶粉蛋白质含量检测中具有显著的优势。首先,它大大提高了检测效率。相较于传统的检测方法,如Kjeldahl法、Lowry法等,食品蛋白质检测仪能够在短时间内完成大量样品的检测,从而满足现代化生产线上对奶粉质量监控的需求。其次,仪器具有高度的准确性。通过精确的光电测量和荧光检测技术,食品蛋白质检测仪能够确保测量结果的准确性,避免因人为因素或操作不当导致的误差。此外,食品蛋白质检测仪还具有操作简便、自动化程度高等特点,使得检测过程更加便捷高效。  在奶粉蛋白质含量检测中,食品蛋白质检测仪的应用具有重要意义。奶粉作为婴儿成长发育的重要营养来源,其蛋白质含量直接影响到婴儿的健康状况。因此,对奶粉中蛋白质含量的准确检测显得尤为重要。食品蛋白质检测仪能够快速、准确地检测出奶粉中的蛋白质含量,为奶粉生产厂家提供及时、可靠的质量监控手段。同时,对于消费者而言,了解奶粉中蛋白质的含量有助于他们选择合适的奶粉产品,为婴儿的健康成长提供保障。  此外,食品蛋白质检测仪还可以用于奶粉生产过程中的质量控制。在奶粉生产过程中,通过定期对原料、半成品和成品的蛋白质含量进行检测,可以及时发现生产过程中的问题,采取有效措施进行调整和改进,确保奶粉产品质量的稳定性和可靠性。同时,食品蛋白质检测仪还可以用于奶粉产品的批次管理和追溯,确保产品的质量和安全可追溯。  总之,食品蛋白质检测仪在奶粉蛋白质含量检测中发挥着重要作用。它不仅能够提高检测效率和准确性,为奶粉生产厂家提供及时、可靠的质量监控手段,还能为消费者选择合适的奶粉产品提供有力支持。随着科技的不断进步和食品安全意识的提高,食品蛋白质检测仪将在食品安全检测领域发挥更加重要的作用,为保障人们的饮食安全贡献力量。
  • 蛋白质分子检测技术取得突破
    据德国卡塞尔大学网站报道,近日,该校科学家研制的一种带磁场的微型传感器获得突破,样机在年内即能完成。该传感器通过遥控牵引磁化纳米生物分子,可将检测液中极少量的蛋白质分子检测出来。该技术有望革新医疗诊断方式,其中利用磁性纳米粒子运送生物分子的方法已申请了专利。   一般情况下,病人体内某些蛋白质组分会“泄露”病情,因此,医生有时可以通过检测体液中的某些蛋白质来及时确诊疾病。不过,由于有的疾病,例如阿尔茨海默氏症(老年痴呆症),其在血液中只含有少量这种蛋白,进行血液检查时蛋白质不一定能够到达传感器表面,所以往往需要用含较多这种蛋白的脊髓液来检查。而穿刺抽取脊髓液不仅需要麻醉,还给患者带来了手术的风险。   现在,德国卡塞尔大学物理研究所和多学科纳米结构科学与技术研究中心(CINSaT)阿诺埃雷斯曼博士领导的科研小组提出一个新的传感器概念,通过遥控牵引磁化纳米生物分子,可将血液中极少量的特定蛋白质分子检测出来,从而通过正常的血液分析取代脊髓液检查。   科学家们首先在表面覆盖受体分子的磁性纳米粒子的帮助下,从检测液体中捕捉特定的蛋白质分子。为此,磁性纳米粒子在回旋磁力场作用下穿过检测液体,并因此产生一个分子漩涡,这在一定程度上起了“搅拌器”的作用。随后,捕获了生物分子的纳米粒子会被磁力场牵引至可识别磁性粒子的传感器上。这个回旋磁力场通过部分磁化材料制成的水平堆积纳米层来产生。科学家们还克服了结构上的障碍,找到了避免纳米粒子通常在检测液体中会相互吸引而产生凝聚的方法。   研究人员认为,除了在医学诊断上的作用,该新型粒子运输概念还可在化学工业中得到应用,可能会迅速给医疗诊断和生物技术带来革命性影响。
  • 单个蛋白质分子检测技术取得新突破
    中国科学技术大学研究人员领衔的一个团队最近利用钻石中的一种特殊结构做探针,首次在室内温度空气条件下获得单个蛋白质分子的磁共振谱。该成果使利用基于钻石的高分辨率纳米磁共振成像诊断成为可能。   这一发现5日发表在新一期美国《科学》杂志上。负责该研究的中国科学技术大学教授杜江峰说,通用的磁共振技术已被广泛用于基础研究和医学应用等多个领域,但其研究对象通常为数十亿个分子,单个分子独特的信息无法观测。基于钻石的新型磁共振技术在继承传统磁共振优势的同时,将研究对象推进到单个分子,成像分辨率由毫米级提升至纳米级,但其主要难点是源自单分子的信号太弱。   为此,杜江峰的团队利用碳-12富集的钻石为载体,注入氮离子使其产生一种名为&ldquo 氮-空位点缺陷&rdquo 的结构,并使该结构发挥探针作用,在纳米尺度上靠近被探测的蛋白质。此外,他们利用一种名为&ldquo 多聚赖氨酸&rdquo 的物质保护蛋白质,确保其在研究过程中的稳定性。   研究人员选取了细胞分裂中的一种重要蛋白质MAD2为研究对象。经过两年多的努力和逾百次尝试,最终他们成功在室内温度及空气条件下首次获取了单个蛋白质分子的磁共振谱,并通过谱形分析,获取了其动力学性质。   关于这项技术的用途,杜江峰表示,最直接的用途是在不影响蛋白质性质的前提下检测其结构和动力学性质,直接在细胞膜上或细胞内研究蛋白质分子,&ldquo 这对生命科学研究来说有极大吸引力&rdquo 。   总之,该技术拓宽了单个分子领域的研究范围,在分析化学、结构生物学、高分子、磁性材料等领域具有重要应用前景和实用价值。以此为基础,结合扫描探针、高梯度磁场等技术,未来可将该探测技术用于生命及材料领域的单个分子成像、结构解析、动力学监测,甚至直接深入细胞内部进行微观磁共振研究,为获得科学新发现孕育可能。   《科学》杂志的审稿人评价该工作是&ldquo 单个蛋白质分子检测的突破性成果&rdquo ,开启了利用&ldquo 氮-空位点缺陷&rdquo 进一步研究&ldquo 自旋标记&rdquo 蛋白质的可能,有重要应用前景。参与这项研究的还有来自中国科学院强磁场科学中心和德国斯图加特大学的研究人员。   原文检索:Single-protein spin resonance spectroscopy under ambient conditions
  • 多种不同蛋白质检测可用肉眼完成
    p style=" TEXT-ALIGN: center" img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/25452d8d-5c44-49d3-96f1-7743a7eb2248.jpg" / /p p   日前,江苏科技大学蚕业研究所马琳博士的光诱导的自组装机理在传感器阵列中的应用研究取得了重要进展。该研究利用光诱导的碲化镉(CdTe)量子点的自组装现象,同时完成了10种蛋白质的可视化识别区分。相关研究成果以封面论文形式发表在英国皇家化学学会期刊《材料化学杂志B》上。 /p p   研究人员以两种不同发射波长的碲化镉量子点为传感单元,基于光引发的自组装原理,构建了多通道荧光传感器阵列,根据碲化镉量子点荧光颜色及强度的变化,实现了10种不同种类蛋白质的同步可视化区分检测。该传感器阵列构建简单,不需要昂贵的专业仪器或技术人员,在一台单一激发波长的紫外灯辅助下,即可肉眼完成蛋白质的识别检测,省时,省钱,提高工效,非常适用于经济欠发达地区。 /p p   该传感器同样可以识别变性后的10种蛋白质与人尿液中的8种蛋白质,证明其在大分子空间构象识别及医学临床检测中具有一定应用前景。此外,这项研发成果还可以实现多种生化物质的同步快速检测,可以运用到糖类、金属离子等的检测中。 /p p /p
  • 蛋白质分析仪的检测精度与影响因素
    蛋白质分析仪一种用于定量测定蛋白质含量的仪器,广泛应用于生物医学研究、药物开发和临床诊断等领域。检测精度是衡量蛋白质分析仪性能的重要指标,影响检测精度的因素有很多,本文将详细探讨这些因素及其对检测精度的影响。  一、检测精度的基本概念  检测精度是指仪器在测量过程中,测量值与真实值的一致程度。精度越高,说明测量结果越接近真实值。检测精度通常用相对误差、误差和标准偏差等指标来衡量。  二、影响检测精度的主要因素  1.仪器性能  -蛋白质分析仪的性能直接影响其检测精度。仪器的分辨率、灵敏度、线性范围和稳定性等参数对其精度有重要影响。高质量的仪器通常具有更高的检测精度。  2.操作规范  -操作规范与否对检测精度有很大影响。操作人员需严格按照仪器的操作规程进行操作,确保每一个步骤都符合要求,避免因操作不当引起的误差。  3.样品准备  -样品的准备工作,如样品的采集、处理和储存等,对检测精度也有重要影响。样品的代表性、纯净度和稳定性等因素都会影响较终的检测结果。  4.环境条件  -环境条件,如温度、湿度、气压和振动等,对检测精度有显著影响。仪器在不同的环境条件下可能表现出不同的性能,因此需要在适宜的环境下使用仪器,以确保检测精度。  5.校准与标定  -定期校准与标定是确保仪器检测精度的重要措施。通过校准,可以消除仪器在使用过程中由于漂移、老化等因素引起的误差,确保测量结果的准确性。  6.仪器维护  -仪器的日常维护与保养对检测精度也有重要影响。定期清洁、检查和更换仪器的易损部件,可以延长仪器的使用寿命,保持其良好的工作状态,从而提高检测精度。   三、提高检测精度的方法  1.选择高性能的仪器  -根据具体的检测需求,选择性能优良、精度高的仪器,以确保检测结果的准确性。  2.严格遵循操作规程  -操作人员需经过专业培训,掌握仪器的操作要领,严格按照操作规程进行操作,避免因操作不当引起的误差。  3.规范样品准备  -样品的采集、处理和储存需按照相关标准和规范进行,确保样品的代表性和稳定性,避免因样品问题引起的误差。  4.控制环境条件  -在使用仪器时,尽量选择适宜的环境条件,避免在异常环境下使用仪器,以确保检测精度。  5.定期校准与标定  -定期对仪器进行校准与标定,消除仪器漂移、老化等因素引起的误差,确保仪器的测量精度。  6.加强仪器维护  -定期对仪器进行清洁、检查和维护,确保仪器处于良好的工作状态,延长其使用寿命,提高检测精度。  总之,蛋白质分析仪的检测精度受多种因素的影响,通过科学合理的管理和操作,可以显著提高其检测精度和应用效果。在实际应用中,应根据具体情况,采取有效的措施,确保仪器的较佳性能和应用效果。
  • 计量院《高通量蛋白质检测关键技术的研究》项目通过验收
    1月22日,《高通量蛋白质检测关键技术的研究》项目验收鉴定会在中国计量院召开。此次科技基础条件平台项目的验收,得到了科技部、国家质检总局的重视,国家科技部条财司条件处郑健博士,国家质检总局科技司技术发展处姚泽华副处长,计量院段宇宁副院长、科发部及生能环所的相关人员参加了验收会。会议由姚泽华副处长主持,以中国科学院生物物理研究所杨福全研究员为组长的8位专家对该项目进行验收鉴定。   近年来,随着生命科学、食品安全等领域需求的不断涌现,蛋白组学的发展非常迅速,已成为各项相关分析技术的必备手段。一直以来,蛋白质组分析技术的发展受限于蛋白质分离手段的滞后,目前完整蛋白质的分离主要依赖于双向电泳和高效液相色谱,不能满足复杂蛋白质混合物的有效分离 FFE技术(反向加样连续自由流电泳)的出现能较好地解决蛋白质组研究的两大难题:蛋白质组的复杂程度和现有检测手段的低通量。   《高通量蛋白质检测关键技术的研究》课题建立了以FFE分离方法为核心的高通量蛋白质分离检测技术中最为关键的“高稳定度自由流电泳(HSFFE)”装置,为高通量完整蛋白质的酶解、肽段分离和质谱鉴定接口的大规模系统集成奠定了基础,也是我国第一台自主研发的实用大型地基液相制备电泳装置。该装置通过对自适应高压稳定电源、腔体热交换工艺、速率调整机构、应力同步机构等关键技术的完成,实现了高通量蛋白质制备分离 装置的整体技术水平已达到国际先进水平,其中一些技术方法处于国际领先水平,对于改变我国蛋白质组分离长期以来依靠国外技术装备的现状,将发挥重大作用。   科技部条财司郑健博士谈到,科技部一直比较重视科学仪器的自主研发工作,近几年来在科技支撑计划的支持下,我国的科学仪器自主创新已经到了一个新高度。该项目的研究成果改变了我国在蛋白质分离技术研究方面依赖国外进口仪器设备的现状,希望计量院能进一步加强现有产品、现有装置、现有成果的工程化和应用方法的研究。通过大家的共同努力,使下一步我国的仪器创新发展获得更大的进步。   姚泽华副处长祝贺项目组出色完成了任务,他谈到,质检总局面临的许多社会问题是突发的、紧急的,又极具推动力的,如:08年的三聚氰胺,推动了国产仪器液相色谱的发展 09年的H1N1流感,又推动了国产的红外测温仪的发展。而计量院在此方面的研制开发一直是非常及时和有效的。该课题是计量院近年来在科学仪器自主研发方面所取得的又一重要成果。希望计量院能够继续研制出更多具有国际领先水平的国产科学仪器装置,为我国进出口的产品贸易提供良好的支撑,满足国家社会更多更广泛的需求。   该项目的研制成功不仅增强了我国生命科学的系统创新能力,而且具有普及性强、性能价格比高和市场容积率高的优点,尤其是该系统的结构模块化、系统单元相对独立的特点,有效避免了国外仪器设备固有的售后维修困难问题,具有较好的国内和国际市场需求潜力。
  • 计量院高通量蛋白质检测技术获重大突破
    后基因组时代蛋白质组闪亮登场 中国计量院高通量蛋白质检测技术研究取得重大突破   “高通量蛋白质分离检测关键技术研究取得的突破给我们很大鼓舞,但这只是我们大规模系统集成研究的一部分,我们正在着力于系统后续的研究。相信,在不久的将来,这套集成系统将为蛋白质组的分析提供一个完整规范的平台。”谈起不久前通过项目鉴定的《高通量蛋白质分离检测关键技术研究》和取得的成果,中国计量科学研究院生物、能源与环境研究所科学仪器研究室主任刘新志显得踌躇满志。   随着全球性的国际人类基因组计划的初步完成,一个以蛋白质和基因调节为研究重点的后基因组时代已经拉开序幕。蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。伴随人类基因组研究而发展的蛋白质组学则是研究细胞内各种蛋白质的组成及其活动规律的一门新兴学科。后基因组时代,蛋白质组将成为重点研究方向之一,并将有力推动生物产业的持续性高速发展。   “蛋白质组研究是一门极为年轻的科学,从诞生到蓬勃发展也不过七八年历史,我国的研究时间也只有六年而已。但其发展速度非常迅猛,应用范围也非常广泛。”刘新志说。   蛋白质组研究对生命科学、化学分析、食品安全、人类健康等诸多领域都有着重要意义。例如,几乎所有的药物都是通过蛋白质发挥作用,蛋白质组学在药学研究中的应用不仅可直接产生新的药物,更重要的是可减少对新药开发研制的盲目性,大大加速和简化新药研制的过程 通过对疾病不同阶段蛋白质组的研究,还可帮助诊断和防治疾病。目前,蛋白质组学已成功用于肿瘤、糖尿病、艾滋病、关节炎等多种疾病的诊断和治疗。   “蛋白质组研究的核心技术分为两个部分:蛋白质分离技术和蛋白质鉴定技术。实验数据表明,现阶段依赖质谱分析的蛋白质鉴定技术的发展水平远高于蛋白质分离技术的发展水平。但对大分子、复合物、细胞的分离纯化是进行更详尽的生物鉴定和工程化应用所必需的重要步骤,如果不能快速有效地进行蛋白质分离,后续的鉴定也无法进行。所以,蛋白质组研究的瓶颈来自于蛋白质分离技术的限制。”刘新志打了一个比喻:“蛋白质鉴定技术好比一条宽敞的高速路,但通往这条高速路的必经路——蛋白质分离技术就好比一条小胡同,这条小胡同严重影响了车辆的快速通行。”   据介绍,目前蛋白质分离技术主要有两种——双向电泳技术和高效液相色谱技术。“这两种传统技术与生俱来的缺点是很难分解出难溶性蛋白,而且不能分解出不溶性蛋白。要打通这条小胡同,就必须找到一种新的方法、研制一种新的装置,能够有效地分离出难溶性蛋白和不溶性蛋白,并且要实现高通量快速分离。”刘新志介绍。   由中国计量科学研究院完成的《高通量蛋白质检测关键技术的研究》课题在解决蛋白质的快速分离技术方面取得了重大突破。研究建立了以反向加样连续自由流电泳(FFE)分离方法为核心的高通量蛋白质分离检测技术中最为关键的高稳定度自由流电泳(HSFFE)装置。“该装置最显著的特点就是解决了两种传统的分离技术所不能解决的问题——从蛋白混合物中有效地分离出可溶性蛋白、难溶性蛋白、不溶性蛋白,实现了对这三种蛋白的完全分离 其次,装置的通量高,速度快,能够满足蛋白质快速分离鉴定的需要。”刘新志说。   专家认为,该装置是我国第一台自主研发的实用大型地基液相制备电泳装置,主要指标已经达到国际同类装置的技术水平。同时,该课题的实施具有技术上的前瞻性和集成创新性,对蛋白质组学研究提供了关键的技术支撑。具有自主知识产权的这项成果降低了我国在同类仪器设备上对国外技术的依存度,具有较高的实际应用价值。该装置不仅可以为我国的蛋白质组基础研究提供技术支撑,还可以广泛应用于生物产业的生产环节,如生物制药。同时,还能应用于医学临床,如疾病预防和临床监测。正如一位资深的生物学家所说:“其应用范围几乎可以遍及生物学、生物化学和细胞学的各个领域。”   “虽然这套装置本身已经可以作为独立的产品应用于相关领域,但这并不是我们的最终目的。我们的目标是实现以该装置为核心的高通量完整蛋白质分离、酶解消化、肽段分离和质谱鉴定接口的大规模系统集成,以保证蛋白质组的分析可以在一个连续自控的系统中规范化完成。到时候,我们的装置将发挥更大的作用。”刘新志信心十足。
  • 重磅!史上首次定量检测完整的人类蛋白质组
    重磅!史上首次定量检测完整的人类蛋白质组在一项新的研究中,来自瑞士苏黎世联邦理工学院(ETH Zurich)和美国系统生物学研究所等机构的研究人员开发出人类SRMAtlas(Human SRMAtlas),即靶向识别和可重复地定量预测的人类蛋白质组中所有蛋白质的高度特异性质谱检测方法汇编目录,包括许多剪接变异体、非同义突变和翻译后修饰。利用一种被称作选择性反应监控(selected reaction monitoring, SRM)的技术,研究人员利用166174种已被充分了解的化学合成蛋白特征性肽(proteotypic peptide)开发出这些检测方法。相关研究结果发表在2016年7月28日那期Cell期刊上,论文标题为“Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome”。论文第一作者为来自美国系统生物学研究所的Ulrike Kusebauch博士。论文通信作者为来自美国系统生物学研究所的Robert Moritz教授和来自瑞士苏黎世联邦理工学院的Ruedi Aebersold。SRMAtlas资源在http://www.srmatlas.org网站上可以免费获取,将有助于公平地开展重点的、假设驱动的和大型蛋白质组规模的研究。研究人员期待这一资源将极大地加快基于蛋白质的实验室生物学发展从而有助理解疾病转化和健康轨迹,这是因为如今在理论上能够鉴定和定量检测出任何样品中的任何人类蛋白。能够可靠地和可重复性地检测任何组织或细胞类型的人类蛋白质组中的任何一种蛋白在理解系统层次的性质以及正常生理下和患病时的特异性途径方面引发变革。在Moritz教授实验室中,研究团队能够利用SRM方法产生并验证了一种由高度特异性地靶向蛋白质组检测方法组成的汇编目录,而且通过这种广泛获取的、灵敏的和强健的靶向质谱方法SRM,能够定量检测20,277种已被标注的人类蛋白中的99.7%。这种人类SRMAtlas提供明确的检测坐标来确定性地鉴别生物样品中蛋白质特征性的肽。尽管2003年,人们成功地了完成人类基因组计划(Human Genome Project),构建出所有人类基因的目录,但是大多数蛋白质研究仍然聚焦在在绘制出人类基因组图谱之前科学家们研究的蛋白中相对较小的一部分蛋白上。若要超越这种停滞不前的蛋白质-基因组学研究方法,就应需要为几乎每种人类蛋白开发高度特异性的检测方法。利用人类SRMAtlas等资源,测量任何一种人类蛋白质的前景如今变成现实。如今,人类SRMAtlas提供已经过验证的质谱检测方法,这些检测方法是基于一种统一的一致的检测人类蛋白质组中几乎每种蛋白的过程开发出的SRM技术而开发的。这些检测方法可快速地用于系统生物学和生物医学研究中以便高度灵敏地和高度选择性地鉴定和定量检测任何一种人类蛋白,以及指导完整的蛋白质图谱绘制来了解它们的生物学功能。个人化医学奖依赖于分子特征来监控人们的健康状态,提供信号来鉴定健康轨迹发生的变化,以及首先在临床试验随后在临床实践中提供信息来让合适的患者匹配正确的药物。这种人类SRMAtlas计划稳步地将蛋白组学推到前沿,并且为蛋白质组学在癌症登月计划(Cancer Moonshot)中发挥较大的作用添砖加瓦。
  • 新突破:纳米孔技术检测蛋白质 可能用于疾病诊断
    对通过纳米孔的DNA进行测序,可提供长的读长,单分子的读数,并且能够避免昂贵的荧光标记和费时的扩增步骤。那么,纳米孔方法能为蛋白质研究做什么呢?  虽然肉眼看不见,但是这种最新的分子生物学技术是强大的。纳米孔的直径约4纳米,是一层人造膜上产生的一个纳米孔,使研究人员能够收集一系列测量,对通过这些可渗透的开口的分子进行结构分析。  纳米孔以前用于DNA测序或识别与DNA结合的转录因子,通过检测在每个碱基周围流动的水溶液的水流变化,揭示穿过这个孔的遗传物质的秘密。现在,随着已确立起来的DNA分析,宾夕法尼亚大学的一个研究小组将目光投向了蛋白质。他们新开发了一种方法,于九月二十二日发表在国际纳米科学技术领域权威刊物《ACSNano》。  本文共同作者JefferySaven指出:“我们的方法超过了目前电子学的限制。”  研究小组所面临的一个挑战是,纳米孔的开口小于许多蛋白质分子的直径,他们采用固态纳米孔的稳定性,修改开口,以容纳较大的蛋白质。Saven说:“纳米孔设备的制备和蛋白质易位的测量,确实是具有挑战性的。”  一旦他们最终制备了合适的纳米孔,该研究小组就检测了蛋白质GCN4-p1,因为这个蛋白质以二聚体和单体的形式出现。纳米孔可成功地区分单体——通常有一个非持久性的结构,和二聚体——由螺旋线圈构成。  有了纳米孔,研究人员可以在蛋白质更倾向于自然运转的环境中,观察到没有发生改变的蛋白质。这种方法也不需要大量的蛋白质。鉴于这些优点,纳米孔对于表征和确认蛋白质的大小很有价值。纳米孔技术最终可能应用于疾病的诊断,也应用于个别病人的样本,因为很多疾病与蛋白质的折叠和结合有关。
  • 大会报告:蛋白质组学技术的最新研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   近年来蛋白质组学发展迅速,其相应的方法学研究也取得了巨大的进步,一系列新技术融入了的蛋白质组学技术当中,极大的促进了这门学科的发展。在本届大会上,中国科学院北京基因组研究所的刘斯奇研究员、复旦大学的张祥民教授、中国科学院大连化学物理研究所张丽华研究员等专家的报告介绍了许多应用到蛋白质组学之中的新技术、新方法,本文作简要概述:   报告题目:基于质谱的线粒体GST蛋白质组定性和定量分析   报告人:中国科学院北京基因组研究所的刘斯奇研究员 刘斯奇研究员   刘斯奇研究员在报告中首次提出了“线粒体GSTs蛋白质组”的概念,系统地研究了属肝线粒体中的GSTs。可采用亲和色谱法及SDS-PAGE富集GST蛋白,使用MALDI Tof/Tof MS 和LC tandem MS/MS鉴别蛋白。研究结果表明,属肝线粒体中存在5种GSTs,分别为GSTA3, GSTM1, GSTP1, GSTK1 以及GSTZ1。   为了对线粒体GSTs的相对丰度进行定量分析,其采用了质谱结合免疫印迹的综合分析方法:利用质谱对GSTs进行定性分析时,根据质谱谱图的多反应监测(MRM)推断GSTs结构 使用重组的GST蛋白作为标准物,建立了蛋白浓缩物的线性回归方程和胰蛋白酶GST多肽的MS/MS强度,同时,通过校准估算出了鼠肝线粒体中的GSTs含量。通过对特定GSTs抗体的强度识别,使用免疫印迹对GSTs进行了定量分析 获得了GST重组蛋白的5种单克隆抗体,将其用于GST浓度校准和免疫印迹强度分析 通过免疫印迹分析获得的定性分析结果基本与MRM数据获得的结果一致。   报告题目:蛋白质水平的色谱分离与生物质谱鉴定新方法研究   报告人:复旦大学张祥民教授 张祥民教授   张祥民教授在报告中表示,蛋白质的分离鉴定有更多困难。一方面,蛋白质分子量大,结构与构型上的变化导致分离效率下降,对色谱填料的孔径、分布与非特异性吸附等因素有更高要求 另一方面,蛋白质鉴定需要先进行酶解以得到质谱鉴定信息。   在报告中,他给出了较好的解决方法,通过对液相色谱分离系统的优化,在实际蛋白质样品考察优化了系统的分离性能,构建了液相色谱分离蛋白质鉴定方法与平台。研制了蛋白水平富集预柱,并将其应用于蛋白质捕集。在离子交换色谱柱和反向色谱优化选择上,实现了蛋白质分析所需的高分辨分离。色谱分离组分点样至靶板上,利用发展的快速酶解技术完成蛋白质酶解,再通过MALDI-TOFTOFMS或LC-LTQMS进行蛋白质鉴定。该方法使得蛋白质的理论分离能力达到5000个以上,蛋白质组分能够得到浓度信息,质谱鉴定可以同时利用肽指纹图谱PMFs信息和串级序列信息,使得蛋白质鉴定的可靠性大为提高。   报告题目:基于离子液体的新型膜蛋白质组预处理及分离鉴定技术   报告人:中国科学院大连化学物理研究所张丽华研究员 张丽华研究员   膜蛋白质存在于细胞内环境、细胞与细胞外环境的界面,对执行细胞内外物质交换、信息转换、细胞识别、代谢调节、免疫应答等功能起着重要作用。深入开展膜蛋白质组学研究对于揭示细胞功能、寻找药物靶点以及研制癌症治疗药物等具有重要意义。然而,由于膜蛋白质具有疏水性强、溶解性差、易沉淀、难酶解、含量低等特点,因此在采用通常用于可溶性蛋白质组分离鉴定的方法对膜蛋白质组进行研究时遇到了很大的挑战。   张丽华研究员在报告中指出,要提高膜蛋白质组的分析能力,必须发展可显著改善膜蛋白质组溶解性,又不影响后续分离鉴定的新方法。她在近期研究工作中,采用离子液体作为膜蛋白质组的增溶剂,并结合纳升二维液相色谱-质谱联用系统,对鼠脑和人肝内质网提取的膜蛋白质进行了分析。结果表明,离子液体不仅可以提高膜蛋白的溶解性,而且不用影响后续酶解过程中酶的活性。此外,在样品进入质谱鉴定前,易于在除盐步骤去除,不会影响质谱鉴定。与其他膜蛋白质组研究中常用的增溶剂相比,离子液体在膜蛋白质组样品预处理中表现出明显的优势。
  • 我国科学家设计新探针可实现对蛋白质N-端组学深度富集检测
    2月29日,中国科学院上海药物研究所研究员黄河、柳红合作,研究设计合成了一种含有吡啶甲醛片段的可断裂分子探针2PCA-Probe,可实现对蛋白质N-端的深度富集检测。相关研究发表于《美国化学会志》。蛋白质水解是一种广泛存在的翻译后修饰方式,在多种生物过程中发挥重要作用。在正常组织中,大多数蛋白酶的活性受到严格调控,而在肿瘤组织中则往往被异常激活,并通过介导免疫逃逸、肿瘤细胞侵袭等多个途径促进肿瘤的发生发展。通过对蛋白质N-端进行系统检测可获得蛋白水解断裂信息,但现有的N-端组学检测方法存在操作复杂、检测深度不高等缺陷,限制了蛋白水解相关研究的进展。研究团队发现,吡啶甲醛片段与N-端氨基酸可以选择性发生环化反应形成咪唑烷酮结构,还可发生羟醛缩合反应,并由此发现该类标记方法生成的新诊断片段。通过该诊断片段信息,可以规避以往此类探针标记时遇到的限制,即无法标记2位氨基酸为脯氨酸的多肽。利用该方法,研究团队对三对结直肠癌组织和癌旁组织的N-端组进行了深度富集检测,共鉴定到了4686种N端多肽。进一步分析显示,肿瘤组织中的蛋白水解过程较癌旁组织更活跃,且肿瘤组织中发生水解的蛋白主要富集在代谢通路和免疫通路,这可能与肿瘤组织的代谢重编程和免疫逃逸过程相关。该研究建立了一种全新的N-端组深度检测方法,为疾病发病机制中的蛋白质水解过程研究提供了有力的新工具。2PCA-Probe探针结构及标记检测流程 图片来源于《美国化学会志》
  • 表面分子印迹聚合物电位型传感器构建成功 实现蛋白分子快速高灵敏电化学检测
    p   发展适合于现场快速检测海洋生物大分子及海洋细菌的生物传感器技术,对于及时快速地开展海洋环境监测和评价具有重要意义。目前,对生物大分子的检测,一般采用酶联免疫法、生物化学测试法、聚合酶链式反应法等技术 对全细胞的检测,则通常需要通过细胞培养实验来完成。然而,上述方法存在仪器复杂、设备昂贵、检测耗时长等缺点,仅适用于实验室分析。 /p p   在海洋环境中,贻贝可通过其足丝分泌贻贝粘蛋白,该蛋白具有优越的粘滞性和良好的生物相容性。近期,中国科学院烟台海岸带研究所研究员秦伟课题组利用聚多巴胺类仿贻贝粘蛋白材料,成功构建了表面分子印迹聚合物电位型传感器,实现了对蛋白质分子及细胞体的高灵敏、高选择、快速电化学检测。他们采用基于仿贻贝粘蛋白的表面分子印迹技术,在电位型传感器表面原位构建了生物分子选择性识别印迹层 利用表面分子印迹层与待测生物分子之间的高选择性识别作用,实现了样品中生物分子在传感器表面的高选择性分离与富集 利用聚离子作为指示离子,指示富集前后传感器膜界面的电位变化,从而实现了对蛋白质分子及细胞体的免标记电化学检测(如下图)。该方法有效解决了电化学生物传感器难以实现免标记分析的难题,有望应用于海洋病毒及海洋致病菌的现场快速检测中。 /p p   相关研究成果已于近日发表在化学期刊《德国应用化学》(Rongning Liang, Jiawang Ding, Shengshuai Gao, Wei Qin*. Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species. Angew. Chem. Int. Ed., 2017, 56, doi: 10.1002/anie.201701892)。此外,秦伟课题组也于近期在该期刊发表了关于电化学生物传感研究的其它成果(Angew. Chem. Int. Ed., 2016, 55, 13033–13037)。 /p p style=" text-align: center " img width=" 600" height=" 495" title=" W020170526571669789953.jpg" style=" width: 600px height: 495px " src=" http://img1.17img.cn/17img/images/201705/insimg/dfa6e65f-ceeb-4ed3-8f15-be9f33a61853.jpg" border=" 0" vspace=" 0" hspace=" 0" / & nbsp p /p p & nbsp 基于海洋贻贝粘蛋白的仿生电化学生物传感器检测原理 /p p /p p /p /p
  • 人工合成蛋白质可快速检测水中有害金属
    日本研究人员最近人工合成一种可发出荧光的蛋白质,能够用来快速检测地下水等水源中是否含有砷、镉和铅等有害金属。这种检测技术成本低,操作简便,研究人员希望一两年内将其实用化。   日本宇都宫大学副教授前田勇宇在国际学术刊物《生物传感器与生物电子学》网络版上发表论文说,他将容易与有害金属结合的“反式作用因子”与绿色荧光蛋白融合,制造出可发出荧光的人工合成蛋白质“GFP-反式作用因子”。   检测时,让这种人工合成蛋白质与地下水等样品混合,然后使其通过特制的多孔平板进行过滤。约15分钟后,用重蒸馏水清除出平板上与有害金属结合的人工合成蛋白质。样品中的有害金属越多,被清除出的人工合成蛋白质也越多,附着在平板上的荧光的程度也越低,反之则越高。具体荧光数值可使用仪器读取,从而检测出样品中有害金属含量。   这种人工合成蛋白质呈粉末状,容易保存,检测装置可随身携带。前田勇宇说:“利用这种检测技术目前只能检测出砷、镉和铅三种金属。希望今后能够进一步检测出其他有害金属,并把检测时间缩短到5分钟左右。”
  • 高通量蛋白质分离检测系统通过验收 有望产业化
    十一五国家科技支撑计划项目《科学仪器设备研制与开发》中 “高通量蛋白质分离检测系统的研制与开发”课题顺利通过验收  7月9日,由国家质检总局科技司和科技部条件与财务司组织验收专家组,对中科院大连化学物理研究所主持承担,北京理工大学、大连依利特分析仪器有限公司参加的十一五国家科技支撑计划项目《科学仪器设备研制与开发》中“高通量蛋白质分离检测系统的研制与开发”课题进行了验收。国家科技部条件与财务司副司长吴学梯、国家质检总局科技司司长侯玲林、大连化物所副所长冯埃生出席了验收会。 验收会现场 课题样机   验收专家组成员包括北京蛋白组学研究中心钱小红研究员(组长)、科技部国家图书文献信息中心吴波尔研究员(副组长)、复旦大学张祥民教授、中国科学院化学研究所陈义研究员、大连理工大学贾凌云教授、大连医科大学王立明教授、科技部国家科技基础条件平台中心张渝英研究员、中科院遗传发育所朱祯研究员、总装军事医学研究所胡文祥研究员、中国特种设备检验研究院高云芳高级会计师、工业与信息产业部电信研究所郭士萍高级会计师、中国科学技术信息研究所吴家喜副研究员。   验收专家组认真、全面地听取了课题的总体执行情况报告、技术研究报告和测试专家组的技术测试报告,审阅了课题验收材料,查看了样机演示。专家组一致认为:该项目研究计划、技术路线和课题设置合理,项目实施和管理规范,经费使用合理,完成了课题合同书的各项任务指标,一致同意通过验收,同时建议国家有关部门继续给予大力支持,实现课题成果的产业化。   验收会后,与会领导、专家以及有关企业负责人针对高通量蛋白质分离检测系统的研制与开发的发展目标、研究方向、产品规模化生产等问题进行了深入探讨,理清了下一步研究思路,明确了后续发展方向,为高通量蛋白质分离检测系统产业化的实现奠定了良好基础。
  • CEM 世界食品博览会推出全新的蛋白质检测系统
    CEM 世界食品博览会推出全新的蛋白质检测系统 &mdash &mdash 蛋白质标签技术比标准方法更准确 (Matthews, North Carolina) CEM公司,创新性微波实验仪器的杰出全球供应商,在芝加哥举办的世界食器展上,很高兴向大家宣布Sprint TM快速蛋白质分析仪的诞生。Sprint TM蛋白质分析仪采用的iTAG TM蛋白质标签技术可以在两分钟内得到准确的测量结果。准确的蛋白质检测结果在食品及宠物食品行业非常重要,这些行业由于一些添加剂中含氮水平估算而导致的错误的蛋白质测量结果。这种错误的测量是由于在面粉和米中添加三聚氰胺而引起。 &ldquo 在全球化资源化和经济发展的时代,好的食品生产商已经意识到保证食品的安全和纯正比以往更为重要&rdquo ,Michael J. Collins, CEM公司CEO说。&ldquo Sprint TM将蛋白质组学应用到食品科学,为公司提供最准确地蛋白质的检测。通过给真正的蛋白质贴上标签,Sprint TM可以进行准地区分,而不会由于氮的干扰而受到欺骗,这在食品科学领域是一项不可思议的重要突破。&rdquo 凯氏定氮法和杜马斯法现在常常用来食品行业中进行蛋白质检测,测量样品中的总氮含量,然后依据氮含量来计算蛋白质含量。如有添加剂,这就会产生一个问题,这些添加剂和污染物产生的蛋白质检测结果高于事实上的蛋白质。Sprint TM的蛋白质标签技术根本不测氮,而是直接找到蛋白质,产生一个准确的蛋白质测量结果。 这个方法已经得到了AOAC和AACC的认证,对食品和添加剂等广大行业非常有用。 这套系统操作简便,自动均匀化样品,添加标签溶剂,轻轻一触键,便可得到检测结果。 除此之外,整套系统相比较凯氏定氮和杜马斯方法更安全、快速、有益于环境。凯氏定氮法要采用硫酸加热到高温,在员工检测过程中,检测完以后处置上都会产生安全和健康问题。 &ldquo CEM的优势在于其优秀的研发能力和强大的研发队伍,尤其在非常重要的实验应用方面提供解决方案&rdquo ,Collins继续说道,&ldquo 我们在成分检测及生物科学方面的专长使得我们在扩大产品线的同时,使我们的知识成一种资本,这种机会并不是很多。从我们目前得到的各行业的反馈来看,这些反馈都是相当积极并令人鼓舞的。&rdquo 真蛋白质测定仪 蛋白质分析仪 详情请浏览我们的中文网页:www.pynnco.com,或英文网站:www.cem.com, 或来电咨询:010-65528800,感谢您对我们CEM的关心和支持。
  • DNA制成迄今最小天线可监测蛋白质运动
    纳米天线工作示意图 图片来源:物理学家组织网  据物理学家组织网2022年1月10日报道,加拿大蒙特利尔大学科学家在最新一期《自然方法》杂志上撰文称,他们利用DNA,制造出了一种5纳米长的天线,这种天线可用于监测蛋白质结构随时间如何变化(当蛋白质发挥生物功能时会产生独特的信号),有望在生物医药等多领域“大显身手”。  该研究资深作者、加拿大生物工程和生物纳米技术研究主席亚历克西斯瓦雷-贝利斯勒说:“近年来,化学家们意识到,DNA可以用于构建各种纳米结构和纳米机器。DNA可以像乐高一样组装,受此启发,我们制造出了这种基于DNA的荧光纳米天线,它可以帮助我们描述蛋白质的功能。”  他解释道:“就像双向无线电既能接收也能发射无线电波一样,我们制造出的荧光纳米天线可以接收一种颜色(波长)的光,并根据它感应到的蛋白质运动,以另一种颜色将光发射回来,通过检测反射光,我们可以了解蛋白质的运动情况。”  研究第一作者、蒙特利尔大学化学博士生斯科特哈伦解释道,使用DNA设计纳米天线的主要优势之一是,DNA相对简单且可编程,可用其制造出不同长度的天线,而且,研究人员很容易让荧光分子与DNA相连,然后将这种荧光纳米天线与生物纳米机器(如酶)相连。  研究人员表示,这种天线有望在生物化学和纳米技术等诸多领域“大显身手”。哈伦说:“我们能在它的帮助下,首次实时检测到碱性磷酸酶的功能,这种酶与癌症和肠道炎症等许多疾病有关。此外,还可以帮助化学家识别有前途的新药,并指导纳米工程师开发更好的纳米机器。”  瓦雷-贝利斯勒强调:“这种纳米天线很容易使用,世界各地的许多实验室可以很方便地利用它们来研究蛋白质,识别新药或开发新的纳米技术。我们计划成立一家初创公司,将这种纳米天线商业化,并将其提供给研究人员和制药行业。”
  • 恒美-食品中蛋白质检测仪减少人工操作-新品
    点击了解更多产品详情→食品中蛋白质检测仪 食品中蛋白质检测仪是一种高效、精确、可靠的检测设备,对奶粉的检测有着重要的帮助。首先,蛋白质检测仪可以准确地测定奶粉中的蛋白质含量,确保奶粉的营养成分符合标准。其次,蛋白质检测仪可以检测奶粉中是否含有过量的添加剂或有害成分,如三聚氰胺等,从而确保奶粉的安全性。 此外,食品中蛋白质检测仪还可以检测奶粉的质量和纯度,确保奶粉的品质符合市场需求和消费者期望。因此,蛋白质检测仪在奶粉生产和质量控制中起着重要的作用,有助于提高奶粉的质量和安全性,保障消费者的健康和权益。 另外,食品中蛋白质检测仪还具有高效、自动化的特点,可以大幅度提高奶粉生产企业的生产效率和生产能力。通过蛋白质检测仪检测奶粉的过程,可以减少人工操作,降低人为误差的发生,提高检测的精度和准确性。此外,蛋白质检测仪还具有数据处理和分析功能,可以对检测结果进行统计和分析,为奶粉生产企业提供更全面、更准确的质量控制数据和方案。因此,蛋白质检测仪在奶粉生产和质量控制中的应用前景广阔,有望成为奶粉生产企业的必备设备和核心技术。
  • 凯氏定氮法检测脱脂奶粉中蛋白质的含量
    蛋白质是复杂的含氮有机化合物,分子量很大,大部分高达数万至数百万,分子的长链从数纳米至100nm,它们由20种氨基酸通过酰胺键以一定的方式结合,并具有一定的空间结构,所含的主要化学元素为C、H、O、N,在某些蛋白质中还含有P、Cu、Fe、I等元素,但氮的相对丰度基本稳定,是区别于其它有机化合物的主要标志。不同蛋白质的氨基酸构成比例及方式不同,所以各种蛋白质其含氮量也不同。一般蛋白质含氮量平均为16%,即1份氮素相当于6.25份蛋白质,此即蛋白质系数。 意大利VELP凯氏定氮仪在环保节能方面具有性能, 的蒸汽发生器和钛冷凝器,蒸馏滴定同步进行,分析速度快,冷却水用量仅0.5升/分钟,降低能耗从而节约了成本。因此该仪器被广泛应用于各类蛋白质检测的实验研究。 测定脱脂奶粉中蛋白质的含量,对掌握其营养价值和品质的变化,保障人体健康,合理配料,为乳制品深加工提供数据十分重要,此外,蛋白质分解产物对乳制品的色、香、味都有一定作用,所以测定具有深远意义。
  • 科学家用质谱实现大规模标准化蛋白质检测
    日前,由弗雷德哈钦森癌症研究中心(Fred Hutchinson Cancer Research Center)领导的一个国际研究小组证实了大规模、标准化蛋白质检测的可行性,这是验证疾病生物标志物和药物靶点的必要条件。这项刊登在《自然-方法》(Nature Methods)杂志上的最新论文表明,科学家们开发的一种靶向性蛋白质检测方法具有系统地、可靠地检测人类蛋白质组的潜力。   论文主要作者、癌症蛋白质组学专家 Amanda Paulovich 博士和同事们开发的这项技术,可同时准确地检测许多不同样本中成百上千种蛋白质的丰度。来自西雅图、波士顿和韩国等其他地区的实验室重现了人类乳腺癌细胞中 319 种蛋白质的检测结果,证实这种方法可跨越实验室和国界实现标准化。   Paulovich 表示:&ldquo 这种方法有潜力彻底改变我们检测人类蛋白质的方式。利用全球资源对所有人类蛋白质进行标准化定量设立一些新标准,无疑将能提高临床研究的可重现性,其将对转化新型治疗和诊断带来巨大的影响。&rdquo   作为所有生物功能的执行分子机器,蛋白质掌控着早期疾病和疾病进程的信号传导。探求癌症生物标记物&mdash &mdash 细胞中的蛋白质指纹有可能促使开发出一些测试方法,更早期地检测疾病,早在癌症形成之前鉴别出个体的特殊风险,以及更好地指导患者的治疗。然而没有标准化和可重现的方法来检测它们的水平,验证新发现的候选生物标记物是一件不可能的事情。   每个有前景的生物标记物都必须在临床试验中开展进一步的研究,这就要求研究人员能够检测数百到数千个患者样本中每个候选标志物的丰度。由于将任何一种候选标记物转化至临床应用的机率都极其的低,鉴别一种具有临床价值的生物标记物必须对大量的蛋白质进行测试。   Paulovich 表示:&ldquo 现在,你还不能对大多数的人类蛋白质进行大规模检测。在我们完成人类基因组测序,获得DNA分子全目录10多年之后,仍然不能够采用一种标准化定量方法在各种通量模式下对人类蛋白质组开展研究。&rdquo   为了解决这一问题,Paulovich 和同事们利用了一种称作为多反应检测质谱法(MRM-MS)的敏感性靶向蛋白质检测技术。这种质谱法并非是全新的技术,多年来全球的临床实验室利用它来测量药物代谢产物和与先天性代谢缺陷有关的一些小分子。最近,Paulovich和其他研究人员开始利用它来检测人类蛋白质。   采用研究人员开发的这种方法,每天每台仪器能够对最少 20 个临床样本中的 170 种蛋白质进行高度特异性地、精确地、多路定量分析 任何其他的现有技术都没有这种能力。   由于质谱技术是针对性的,这意味着研究人员能够调整设备寻找癌细胞或其他样品类型中特殊的蛋白质亚群,相比于非针对性策略,它可以在更低的水平上检测微量血液样本或活检标本中目的蛋白质的存在。   研究的主要作者、Paulovich 实验室分析化学家 Jacob Kennedy 说:&ldquo 我们的目标是用这一技术来取代当前采用的一些非常老旧的技术。&rdquo   当前,研究人员通常是采用 Western blotting、ELISA 或是免疫组化(IHC)技术来检测临床样本中的蛋白质水平。这些方法往往无法在实验室之间重现结果,从而很难验证适用于临床的候选生物标记物,它们不适用于一次检测大量的蛋白质和样本。   Paulovich 和同事们通过分析乳腺癌细胞生成的 300 多种已知蛋白质验证了他们的技术 研究结果表明,MRM-MS 可以重现及扩展以往采用其他技术进行乳腺癌研究所生成的观察结果。   该研究证实了,MRM-MS 能够以一种标准化方式一次检测许多的蛋白质,为开展国际性的、有组织的研究工作定量人类蛋白质中的每种蛋白奠定了基础。   原文检索:   Jacob J Kennedy,Susan E Abbatiello,Kyunggon Kim,Ping Yan,Jeffrey R Whiteaker,Chenwei Lin,Jun Seok Kim,Yuzheng Zhang,Xianlong Wang,Richard G Ivey,Lei Zhao,Hophil Min,Youngju Lee,Myeong-Hee Yu,Eun Gyeong Yang,Cheolju Lee,Pei Wang,Henry Rodriguez,Youngsoo Kim,Steven A Carr& Amanda G Paulovich. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nature Methods, 08 December 2013 doi:10.1038/nmeth.2763
  • CEM Sprint真蛋白质快速测定仪全国送样检测活动正式启动
    &mdash &mdash 您关心待检物质中的蛋白质成份吗? &mdash &mdash 您需要精确但不依赖氮元素测定的蛋白质测定吗? &mdash &mdash 您需要一个通过AOAC及AACC认可的技术方法吗? CEM公司的Sprint真蛋白质含量测定仪结合生物科学与食品科学技术,进行快速精确的蛋白质测定。该系统使用iTAG专利技术直接区分及测量蛋白质含量(而非氮元素)。Sprint使用的iTAG技术直接标明蛋白质中的氨基。当添加小麦面筋蛋白时不会产生错误结果,加入三聚氰胺时也不会产生错误结果,而目前凯氏定氮法和Dumas定氮法都无法排除非蛋白氮造成的蛋白值虚高。 2008年4月起,CEM即将在全国范内展开Sprint真蛋白质快速测定仪送样检测活动。本活动旨在快速、准确地得到您需要的蛋白质含量结果。 有兴趣的用户都可以参加,只需提前报名并将您的样品寄给我们即可。实验完成后我们会通过电子邮件方式寄送实验报告,所以请您务必留下正确的电子邮件地址。 报名方式:下载报名表格并填写后发电子邮件。实验申请报名表.dochttp://www.pynnco.com/images/pic/2008226162113587.doc 报名Email:sales@pynnco.com 联系人:张小姐 联系电话:010-65528800 报名及寄样截止时间:2008年5月1日 寄样地址:北京市朝阳区吉庆里14号佳汇国际中心A1005
  • 重大突破:史上首次定量检测完整的人类蛋白质组
    在一项新的研究中,来自瑞士苏黎世联邦理工学院(ETH Zurich)和美国系统生物学研究所等机构的研究人员开发出人类SRMAtlas(Human SRMAtlas),即靶向识别和可重复地定量预测的人类蛋白质组中所有蛋白质的高度特异性质谱检测方法汇编目录,包括许多剪接变异体、非同义突变和翻译后修饰。利用一种被称作选择性反应监控(selected reaction monitoring, SRM)的技术,研究人员利用166174种已被充分了解的化学合成蛋白特征性肽(proteotypic peptide)开发出这些检测方法。相关研究结果发表在2016年7月28日那期Cell期刊上,论文标题为“Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome”。论文第一作者为来自美国系统生物学研究所的Ulrike Kusebauch博士。论文通信作者为来自美国系统生物学研究所的Robert Moritz教授和来自瑞士苏黎世联邦理工学院的Ruedi Aebersold。  SRMAtlas资源在http://www.srmatlas.org网站上可以免费获取,将有助于公平地开展重点的、假设驱动的和大型蛋白质组规模的研究。研究人员期待这一资源将极大地加快基于蛋白质的实验室生物学发展从而有助理解疾病转化和健康轨迹,这是因为如今在理论上能够鉴定和定量检测出任何样品中的任何人类蛋白。  能够可靠地和可重复性地检测任何组织或细胞类型的人类蛋白质组中的任何一种蛋白在理解系统层次的性质以及正常生理下和患病时的特异性途径方面引发变革。在Moritz教授实验室中,研究团队能够利用SRM方法产生并验证了一种由高度特异性地靶向蛋白质组检测方法组成的汇编目录,而且通过这种广泛获取的、灵敏的和强健的靶向质谱方法SRM,能够定量检测20,277种已被标注的人类蛋白中的99.7%。这种人类SRMAtlas提供明确的检测坐标来确定性地鉴别生物样品中蛋白质特征性的肽。  尽管2003年,人们成功地了完成人类基因组计划(Human Genome Project),构建出所有人类基因的目录,但是大多数蛋白质研究仍然聚焦在在绘制出人类基因组图谱之前科学家们研究的蛋白中相对较小的一部分蛋白上。若要超越这种停滞不前的蛋白质-基因组学研究方法,就应需要为几乎每种人类蛋白开发高度特异性的检测方法。利用人类SRMAtlas等资源,测量任何一种人类蛋白质的前景如今变成现实。如今,人类SRMAtlas提供已经过验证的质谱检测方法,这些检测方法是基于一种统一的一致的检测人类蛋白质组中几乎每种蛋白的过程开发出的SRM技术而开发的。这些检测方法可快速地用于系统生物学和生物医学研究中以便高度灵敏地和高度选择性地鉴定和定量检测任何一种人类蛋白,以及指导完整的蛋白质图谱绘制来了解它们的生物学功能。  个人化医学奖依赖于分子特征来监控人们的健康状态,提供信号来鉴定健康轨迹发生的变化,以及首先在临床试验随后在临床实践中提供信息来让合适的患者匹配正确的药物。这种人类SRMAtlas计划稳步地将蛋白组学推到前沿,并且为蛋白质组学在癌症登月计划(Cancer Moonshot)中发挥较大的作用添砖加瓦。
  • 纯牛奶、奶粉蛋白质快速检测仪面世
    新华网长春2月17日电(记者宗巍)由中国计量科学研究院和长春吉大小天鹅仪器有限公司联合自主研发的纯牛奶奶粉蛋白质快速检测仪近日面世,该检测仪能够快速、有效地检测出纯牛奶和奶粉中真实蛋白质的含量。   据介绍,这种检测仪通过特异显色剂与蛋白质氮反应后浓度的变化,测定纯牛奶和奶粉中蛋白质,   它的优点在于检测结果不受三聚氰胺、尿素等非蛋白质氮的干扰,能真实反映出样品中蛋白质的含量。与传统的检测方式相比,它的测定时间也大大缩短,测定一个样品只需10分钟左右。   该仪器适用于乳品质检站、畜牧水产品检测站、出入境检验检疫局、工商、卫生等部门。目前已投放市场,下一步计划将检测范围从奶制品扩大到饲料等领域。
  • 青年才俊上演计算蛋白质组学头脑风暴——记CNCP 2016新技术
    记第四届中国计算蛋白质组学研讨会(CNCP-2016)新技术  仪器信息网讯 2016年8月10日-11日,第四届中国计算蛋白质组学研讨会(CNCP-2016)在中国科学院大连化学物理研究所盛大召开。(相关新闻:第四届中国计算蛋白质组学研讨会(CNCP-2016)在大连开幕)。本届研讨会邀请了26个大会报告,报告嘉宾是来自国内外的计算蛋白组学领域专家和奋战在第一线的青年科研工作者,嘉宾中的绝大多数是首次登上CNCP讲坛。报名参加本届会议的人员首次超过了200人。CNCP2016C参会代表合影张丽华研究员为研讨会致开幕辞  本届会议的开幕式只有简短的5分钟,没有领导讲话,没有任何仪式,充分体现了会议的简洁办会特色。开幕式由中国科学院大连化学物理研究所的张丽华研究员致欢迎词,她提到:“中国计算蛋白质组学研讨会在业界享有很高盛誉。每次会议的演讲嘉宾都是由会议发起者和主办方——中国科学院计算技术研究所贺思敏研究员、北京蛋白质组研究中心徐平研究员、北京生命科学研究所董梦秋研究员等资深学者以及往届会议报告人鼎力推荐的。本次研讨会的26个报告将由来自国内外相关领域的顶级专家和奋战在科研第一线的青年才俊精彩呈现。相信在这两天的会议中,大家不仅能够收获知识,也能收获友谊。”研讨现场  CNCP-2016会议邀请的26个报告多数都是最近一两年的研究成果,部分还没有发表,新技术频繁现身,特别是在交联质谱技术与蛋白质复合体,蛋白质相互作用、翻译后修饰技术、蛋白质鉴定数据处理、定量蛋白质组技术等领域报告较多,下面对这26个报告的内容逐一进行简介总结。  UCI(美国加利福尼亚大学尔湾分校)黄岚博士 报告题目《Developing Cross-Linking Mass Spectrometry (XL-MS) Strategies to Define Interaction and Structural Dynamics of Protein Complexes》  了解蛋白质复合物的相互作用和结构动力学对于揭示病理的分子学细节非常有帮助。交联质谱(XL-MS) 是目前研究大量多亚基蛋白复合物PPIs的重要技术,而精确的肽段鉴别是XL-MS分析一直以来面临的挑战。为了促进这方面的研究,黄岚博士研究组研发了DSSO 及一系列含亚砜(sulfoxide-containing)可分裂质谱交联剂以揭示蛋白质复合物表面相互作用机理。研究者通过这些(MS-cleavable reagents)质谱可分裂试剂在多级串联质谱上建立了实用的XL-MS工作流,快速、准确的鉴别交联肽段去研究体内和体外的PPIs。同时,研究者也研发了新的定量XL-MS途径,用以分析多种生理条件下蛋白质间的相互作用和蛋白质复合体的结构动态变化。据介绍,该课题组最近研发了新的羧基交联剂DHSO主要用来与酸性氨基酸反应,反应中需要DMTMM共同作用。 这样可以得到更广的蛋白相互作用信息。北京生命科学研究所 谭丹博士 报告题目《Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States》  该研究组最近有一项研究工作围绕一种含生物素标签的赖氨酸富集交剂Leiker,谭丹博士在报告中详细展示了课题组的相关研究,研究表明Leiker能够有效改进蛋白质化学交联质谱技术(CXMS)。研究组将以Leiker为交联剂的CXMS用于E.coli全细胞裂解液的分析,发现了3656种相互作用,是之前已有研究方法的10倍。Leiker CXMS比BS3得到的信息要立体很多,能得到更全面的蛋白质相互作用网络。研究者还将Leiker为基础的CXMS用于RNA结合位点鉴定与定量,该方法能够深入揭示蛋白质构象变化。在将Leiker CXMS用于大肠杆菌和秀丽线虫裂解液中的研究中,分别鉴定出3130和893个互补赖氨酸对,并各自发现了677和121种PPIs。Utrecht University (荷兰乌德勒支大学) 刘凡博士 报告题目《Charting the Cellular Interactome by Proteome-Wide Cross-Linking Mass Spectrometry》  据刘凡博士介绍,针对交联数据分析的n-square和交联肽段低效裂解这两大难题,该研究组建立了一种新XL-MS工作流-质谱可分裂交联剂法。该法是一种混合MS2-MS3裂解途径与专用的交联搜索数据库结合的方法。研究者将质谱裂解交联剂DSSO应用于测定每个交联肽段的前体质量,解决了n-square问题。交联裂解前体离子可通过质量差异确定数据的MS3采集方向,这些工作都可以在Oribitrap Fusion 和 Lumos Tribrid质谱上完成。这种采集途径提高了MS3实验的成功率,能够解决低效裂解问题和显著改善数据质量。与先前方法相比,报告中介绍的新方法包含以下三个优势。1)能够完成整体蛋白组数据库的交联鉴别 2)包括多种翻译后修饰的交联鉴别 3)在MS2和 MS3水平都有高质量范围。该研究组将此新XL-MS方法用于多种复杂样本,包括大肠杆菌裂解物、HeLa裂解物、排阻色谱分馏的HeLa细胞核提取物与细胞器。采用这种方法能够从每种样本得到成千上万个交联点。中国科学院计算技术研究所 刘超博士 报告题目《Development of the Cross-Linked Peptides Identificationin Large Scales》  由于检索空间过于庞大,蛋白组范围内交联肽段(双肽)的鉴定一直都是一项挑战。刘超博士和其团队考察了用于大范围交联肽段鉴定的普通搜索工具的应用效果,并开发了一种新的计算软件技术pLink 2.0。此技术比先前技术有三方面的改进:1)提高了双肽中单同位素鉴定的精度 2)由肽段索引升级为离子索引 3)引入机器学习(SVM在线训练)。该团队研究表明,通过使用离子索引pLink2.0检索人类数据库,在一小时以内可以完成5000张谱图的检索。干湿结合方法在人库检索1万张二级谱图仅用时不到2分钟。将pLink 2.0与美国西雅图研究人员研发的Kojak相比较,pLink2.0的分析速度约为Kojak的6倍,在精度方面也有一定优势。pLink2.0支持可碎裂交联,可减少可搜索空间和减少谱图数目。华中师范大学 万翠红博士 报告题目《Mapping Conserved Metazoan Protein Complexes with Biochemical Fractionationand LC/MS/MS》  对多蛋白复合物的了解对于生理进程探索非常重要。然而,对多蛋白复合物种类的分布特别是大规模网状图的发现比较困难。万翠红博士研究组通过高分辨生化分离与定量质谱直接分析了可溶性多蛋白复合物的组成,分析C.elegans、D.melanogaster、M.musculus、S.purpuratus和人类的可溶性细胞提取物。研究组采用以人类为中心的综合计算分析,鉴别出2153种蛋白,并新鉴定出7699种成对相互作用和981种共复合作用。这些相互作用能够反映后生动物生理过程相关的核心生理基础。重建的生理作用网有助于深入了解特殊的分子生物机理以及动物细胞的进化。国家蛋白质科学中心 郑勇博士 报告题目《Scaffold Protein-Mediated Dynamic Assembly of Protein Complexes in Normal and Cancer Cells》  很多细胞表面受体通过催化多组分蛋白复合物的形成开始信号传导过程。这个过程通过与受体结合的scaffold蛋白来传导。然而,目前这种scaffold的生物学基本原理仍不明晰。针对这个问题,郑勇博士研究组通过以IP-MRM为基础的方法,根据Shc1复合信号跟踪其空间和实时变化。研究人员进一步将这种方法与生化和基因技术结合,研究组发现Shc1以特殊的方式对EGF有即时的反应,包括明显的磷酸化和蛋白质相互作用。研究人员成功发现Shc1与一种抑制蛋白产生相互作用,是一种快速绑定蛋白基团能够激活促有丝分裂/存活通路,蛋白复合物围绕Shc1的装配变化在细胞间非常显著。对EGFR/Shc1复合物蛋白组分析能为以pTyr为基础的致肿瘤信号导致的乳腺癌提供诊断依据。暨南大学 张弓博士 报告题目《High-Throughput De Novo Proteome Identification Aided by Translatome Sequencing》  De novo肽段序列鉴定能够避免依赖数据库的检索法的缺点,但由于由于没有背景库,无法评估FDR,且极易受到干扰信号误导,因此长期以来无法应用于复杂样品的大规模鉴定。张弓教授介绍了研究团队研发的利用翻译组测序数据作为蛋白质de novo鉴定质量控制新方法,使肽段de novo鉴定能首次应用在蛋白质组复杂样品的实用化鉴定。研究人员在HCD质谱上应用此方法检测三种肝癌细胞(Hep3B, MHCC97H, MHCCLM3),单次实验鉴定出12000-13000种蛋白质,其灵敏度几乎达到了翻译组测序的水平 而用6种搜库软件鉴定到的真阳性蛋白并集也才7000-8000种。只能用新策略鉴定的4000余蛋白中随机挑选几十个进行MRM验证,几乎都能验证成功。这证明翻译组指导的de novo鉴定效能很高,能鉴定到大量搜索库法无法鉴定到的肽段和蛋白。De novo鉴定的大规模化可引致一系列新的蛋白质组应用。上海生命科学院 李辰博士 报告题目《De Novo Identification and Quantification of Single Amino-Acid Variants in Human Hepatocellular Carcinoma Tissues》  肿瘤蛋白质组-基因组学研究非常关注变异的发现。单核苷酸的多变性(SNPs) 数据库能够给单个氨基酸变体(SAVs)的检测提供依据。李辰博士在报告中介绍了一种在蛋白组水平发现SAVs的新方法。该法基于de novo算法,肽段的可能候选者可被鉴别并与理论蛋白数据库比较。在人类肝癌(HCC)组织中,研究者成功的应用此方法鉴别和定量已知和新的突变蛋白。在肝组织当中,在细胞核内的突变比较低,突变在内质网和线粒体的富集比例较高。这种新方法为病人提供了高通量的定制检测途径,可能为潜在临床生物标志物发现和机理研究提供帮助。中山大学 肖传乐博士 报告题目《Improving Peptide Identification for Tandem Mass Spectrometry by Incorporating Translatomics Informatio》  目前很多数据库检索方法是利用谱学数据而忽略能用于肽段鉴定的生物系统的其他信息。最近,转录物组RNA-seq的界面信息能提高肽段鉴别的灵敏度已经证实。与转录物组信息相比,翻译物组体现出与蛋白质的关系更为紧密,所以其可能对肽段鉴别更有效。在此报告中,肖传乐博士介绍了该研究组设计的高灵敏度肽段鉴定手段IPomics,其以翻译组学信息为主要蛋白鉴定参考。方法得到的推荐蛋白质优先性整合进了新的评分功能。与Mascot和pFind相比,IPomics方法蛋白质鉴定准确度更高,并能够增加整体肽段的鉴定率、谱学信息利用率,并已经利用LC-MS/MS数据集在人类和小鼠蛋白鉴定取得了显著效果。华大基因(BGI-Shenzhen) 闻博 报告题目《Protein Identification and Quantification based on Multiple Search Engines》  闻博在报告中介绍了团队有关以多搜索引擎为基础的蛋白鉴定和定量软件的研究进展。目前,串联质谱技术产生的质谱数据解析率往往不高,不同蛋白质鉴定软件由于谱图预处理、打分算法不同等原因导致对同一个数据的解析结果往往存在一定的互补性。虽然有一些开源的软件可以通过精巧的运算将多个鉴定引擎的鉴定结果整合起来取得与单引擎相比更好的鉴定效果,但由于操作往往较为复杂、下游软件比较缺乏等原因,故没有在蛋白鉴定与定量中推广开来。为了促进多引擎整合方法在蛋白鉴定和定量中的应用,该研究组研发了一种多引擎综合鉴定的开源软件IPeak和同重同位素(如iTRAQ、TMT)标记定量软件IQuant,并将IQuant升级到IQuant2。IQuant2采用精妙的算法和mzIdentML标准,整合多引擎搜索结果进行蛋白质定量。在分析水稻蛋白样品(用Q-Exactive分析)和人细胞系蛋白(用TripleTOF 5600分析)样本时,与单个引擎定量结果相比,IQuant2定量的蛋白能提高28.8%,检测的差异蛋白数量能提高多大40%。多引擎搜索不但能够提高蛋白鉴定效果,也能提高蛋白定量效果。中国科学院水生生物研究所 葛峰博士 报告题目《GAPP: a Proteogenomic Software for Genome Annotation and Global Profiling of Posttranslational Modifications in Prokaryotes》  葛峰博士在前期蓝细菌的蛋白基因组学研究工作的基础上,开发了一种用于原核生物的基因组注释和翻译后修饰全局发现的蛋白基因组分析软件GAPP。该软件最大的特点就是简单高效,具备初步生物信息学知识的研究者就能应用该软件进行原核生物的蛋白基因组数据的深度分析,利用该软件可以高效完成原核生物的全蛋白质组解析和翻译后修饰的全局发现的工作,该软件的开发和应用将有助于原核生物的基因组的精准鉴定,并有望成为原核生物基因组注释的一项标准流程。今后研究组还将根据用户的要求和体验继续对该软件进一步升级。复旦大学 周峰博士 报告题目《Genome-Wide Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis in Human Hematopoiesis》  蛋白质组学样品分析需要高分辨分离平台,周峰博士研究组搭建了一种长色谱柱三维蛋白组学定量分析平台(GWPQ), 整套系统完全在线和实现操作自动化。研究者将在此平台建立的蛋白质组学方法与Ribosome profiling相比较,水平相当,在分析模型样品时有80%的重叠。研究者还用此方法开展了人体造血相关细胞的研究,二代测序与应用该平台的蛋白质组方法重叠率达到92%。研究团队利用此方法比较了人体最重要的造血干细胞和红细胞发育中14502个基因蛋白表达变化和17127个基因mRNA表达变化。mTORC1信号极大的促进了红细胞进化中线粒体蛋白的翻译,线粒体和mTORC1的遗传和药理学干扰削弱了体内和体外的红细胞生成。该研究支持了线粒体理论机理,可能与线粒体疾病和老化相关的血液缺陷有关。研究者用模式生物小鼠实验验证了线粒体在血红细胞发育中起到关键作用,找到了全新控制血红细胞发育的通路。Johns Hopkins University(美国约翰霍普金斯大学) 张会博士 报告题目《Comprehensive Analyses of Glycoproteins》  已有不少实验证明,糖蛋白的变化与很多疾病相关。张会博士介绍了糖蛋白的生物合成、结构和功能以及分析糖蛋白的最新方法。糖蛋白的分析是蛋白质分析中最复杂的一种。研究者常把糖和蛋白分开分析,如已有的SPEG(固相提取糖基位点肽)法。该研究组建立了N-糖蛋白数据库,该库可用于检索已鉴定蛋白、通过精确质量数检索候选肽段、鉴定糖蛋白源等。该研究组最近还建立了分析N-linked糖链,糖基化位点,糖基化位点特异糖链,及O-linked糖链分析方法和软件,并探索了用糖基化酶推测多糖的方法。中国科学院大连化学物理研究所 于龙博士 报告题目《Isolation and Structural Analysisof N-Linked Glycansby Using Two-dimensional Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy》  糖蛋白糖链的纯化合物对糖链的结构分析、精准检测以及功能研究都具有十分重要的意义。然而,目前糖链纯化合物仍处于严重匮乏的状态。来自大连化物所的于龙博士介绍了该团队根据自身优势,采用纯化制备方法来获取N-糖链纯化合物并对其结构进行解析的相关研究进展。研究者首先介绍了糖链的结构特点并对其分离分析中存在的难点问题进行了阐述。针对这些难点问题,研究者结合课题组的材料优势,构建了以二维亲水作用色谱分离体系为核心的糖链纯化制备流程,该流程包括糖蛋白糖链的释放、富集、二维分离、质谱表征以及核磁结构分析等技术单元。在二维色谱分离体系中,第一维度主要根据糖链的羟基数量而实现不同聚合度糖链的分离,第二维度主要用于同分异构体的分离。由于串联质谱技术并不能得到糖链准确的结构信息,因此,研究者目前正在探索核磁共振技术进行准确结构的分析。以现有的糖链纯化合物为基础,研究者接下来将分别在功能、结构和定量三方面开展相关研究以拓展糖链样品库的应用。青岛大学 李磊博士 报告题目《Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder》  酪氨酸磷酸化网络应用在蛋白组学中不容忽视,如何找到pY尤为重要,但之前方法需要大量抗体才能富集pY。为解决业内这一问题,李磊博士研究组做了不少相关研究,团队研发的Superbinder(超亲体)易于制备,能够有效减轻实验室经济负担。研究者合成了pTyr1和pTyr2两个肽段,比较了SH2 superbinder法与其他几种方法的效果,又增加了Ti4+IMAX的去噪功能,证明其能有效富集pY。与抗体相比,src和grb2超亲体都能有效发现更多pTyr位点。研究者还应用superbinder富集方法进行了Tyr 磷酸化蛋白组学研究。如探索人细胞磷酸化蛋白不同功能分类和Tyrosine kinase (TK)的生物活性等。该项研究是与中科院大连化学物理研究所邹汉法团队、加拿大西安大略大学李顺成团队多方合作完成的。University of Minnesota (美国明尼苏达大学) 陈悦博士 报告题目《Discovery and Characterization of Short-chain Lysine Acylations with Mass Spectrometry and Quantitative Proteomics》  赖氨酸是细胞内蛋白质翻译后修饰的重要靶点。最近,除了赖氨酸乙酰化以外还有一些短链酰基化修饰逐渐被发现。在陈悦博士的早期研究工作中,他从细致的质谱分析中发现了组蛋白赖氨酸丙酰化和丁酰化,两种新的短链酰基化修饰。进一步的研究表明,这两类短链酰基化修饰都是广泛存在的,并可以被特定的酶所调控。最近最新的研究表明赖氨酸丁酰化在Bromo domain识别和精子发育过程中起到重要的调控作用。为了进一步探索质谱信息中隐藏的其他新的修饰,研究者设计了PTMap软件,用来分析非限定性搜索,得到了一些可靠的新蛋白质修饰鉴定,包括琥珀酰化,巴豆酰化,羟基丁酰化等。在定量研究方面,该团队比较关心蛋白质修饰丰度,因为普遍使用的相对定量的分析方法对解释蛋白质修饰的生物学意义有一定的局限性,但是质谱分析得到的离子峰强度并不能直接比较来计算蛋白质修饰的丰度。研究者针对此问题开发了稳定同位素标记为主的新的蛋白质修饰丰度定量方法,可以直接比较离子峰强度,通缩计算得到每个位点上赖氨酸位点丰度,准确性和重现性都很好。中国科学院昆明动物研究所 赖仞博士 报告题目《Mite Allergen Diversity Identification by Proteomics Coupling with Pharmacological Testing》  螨虫、马蜂、牛虻和蟑螂等带有很多种过敏原,一些过敏甚至会导致死亡。过敏的标准治疗方式就是利用过敏原进行脱敏治疗,现在很多机构希望把过敏原纯化出来进行过敏治疗,因此对过敏原发现和提取纯化都有更多要求。屋尘螨(HDM) 是最常见的室内过敏原。赖仞博士希望结合蛋白质组学、药理和病理学手段来进行过敏原的多样性研究。过敏原蛋白组学研究一般是将分离提取出的过敏原与病人血清进行IgE反应。赖仞研究组将蛋白组学技术和二维免疫印迹法结合,从粉尘螨提取物中鉴定出分属于12个组群的17种过敏原,由Edman降解、质谱分析和cDNA克隆等技术鉴定出其一级结构。通过酶联免疫吸附试验抑制测试、免疫印迹、粒细胞活化试验、皮肤点刺试验测定,该研究组发现了8种新的尘螨过敏原。中国医学科学院基础医学研究所 邵晨博士 报告题目《Opportunities and Challenges for Urinary Biomarker Discovery Using Proteomic Approaches》  邵晨博士对业内目前围绕尿蛋白质组生物标志物的发现研究进展进行了综述。据介绍,现在很多科研和医疗开始倾向于做尿液,因其具有易得性和稳定性,且含有丰富蛋白信息。邵晨博士研究组曾通过二维液相与串联质谱鉴定做了一些尿中蛋白质组的研究,尿液蛋白质组可以包括其他体液70%的蛋白质。研究组也通过3DLC-MS/MS鉴定出尿液中的6400多种蛋白,并发现与尿蛋白重合率最高的是脑组织中的高表达蛋白。尿蛋白能够反映很多远端的变化,如帕金森症和脑肿瘤等脑部疾病。在肾脏病中,肾小球损伤病人的肾小球会失去过滤功能而造成尿蛋白显著上升。目前很多研究发现尿蛋白中的生物标记物与一些疾病相关,主要集中在泌尿系统疾病的发现,如膀胱癌和急性肾损伤的标志物已获FDA批准,也有在消化系统疾病、肿瘤等疾病中的相关发现。其中,肺癌的研究比较成熟且已进入临床阶段。
  • 天美公司参加第四届蛋白质和多肽大会暨生命科学仪器展览会
    2010年3月23日-25日,由中国医药生物技术协会主办,大连百奥泰生物技术有限公司承办的&ldquo 第四届蛋白质和多肽大会暨生命科学仪器展览会&rdquo 在北京国家会议中心举行。大会以&ldquo 蛋白质与多肽领域的新领军者&rdquo 为主题,旨在为全球从事蛋白质和多肽研究的科学工作者、研究机构和企业搭建学术、技术和商务自由交流的平台。会议共吸引了世界40多个国家和地区的1000余人参加。 天美(中国)科学仪器公司参与了此次盛会,并展出德国IMPLEN Nanophotometer Pearl核酸蛋白分析仪及日立Hitachi CT15E微量超速离心机。市场部生化产品专家史晓春博士在大会中做了专题报告:Introduction of Implens Nanophotometer and Kurabos Nucleic Acid Extraction System。 展品介绍: 【Implen】微量核酸蛋白分析仪Nanophotometer Pearl (珍珠版) 1. 目前市场上样品使用量最少,仅需0.3微升,且新型的样品室设计使得对超微量样品的核酸、蛋白质和肽的浓度可进行精确检测。波长范围从190nm到1100nm。 2. 极宽的样品检测范围,从2ng/ul 到18750ng/ul(dsDNA)。使用不同光程的样品盖,样品可自动稀释为5倍、10倍、50倍、100倍、250倍,故无需担心稀释误差。 3. 开机无需等待,即开即用。操作时间最少,3.5秒即可完成 200nm-950nm波长的数据采集 4. 除了使用超微量比色池,也可选择使用常量比色皿(10mm光程) 5. 精度高且机器终身准确。具有密封的光路系统且无拆开部件,免去了昂贵的校正费用。使用了专利的样品压缩技术,避免样品的挥发及待测样品种类的受限。 6. 可选择不同的数据输出方式:通过内置打印机、SD-RAM卡、USB、或蓝牙输出。便于携带,可用于户外操作。 详见链接:http://www.instrument.com.cn/netshow/SH100322/C116281.htm
  • 《Nature Communications》|“钓鱼式检测技术”可实现单分子精度检测蛋白质标志物
    鉴定和定量蛋白质生物标志物是精准医疗的迫切需求。功能蛋白质组学的最新进展表明,仍有许多未开发的蛋白质对病理状况的进展具有潜在的影响。一般来说,蛋白质生物标志物在致癌条件下上调。这些生物标记物的临床检查对预后、诊断和治疗都有帮助。因此,利用对各种生化刺激的快速信号反应,研发高度特异性和敏感性的蛋白质传感方法至关重要。3月20日,《Nature Communications》发表题为《A generalizable nanopore sensor for highly specific protein detection at single-molecule precision》的论文。在文章中,他们介绍了自己设计出的一种微小的纳米传感器。这种传感器被戏称为“鱼钩和鱼饵”,能够以单分子精度检测样品中的蛋白质标志物。研究者们制定的一类传感元件:一个可编程的抗体模拟粘合剂融合到一个单体蛋白质纳米孔。这些传感器将有一种模拟抗体的蛋白质粘合剂,通过一根像鱼钩一样的柔性系绳,在tFhuA纳米孔(一种单体β桶状支架)上进行工程设计。蛋白质识别元件,而不会破坏其膜嵌入结构和成孔特性,从而实现“精准垂钓”。设计原理在针对不同抗体的时候仅需要改变粘合剂的一小部分即可,通过这种方式,极大地扩展了纳米孔传感器对许多蛋白质的效用,同时保留了它们的结构、特异性和灵敏度。研究者们通过开发和试验证明了这些传感器可用于在大小、电荷和结构复杂性方面发生巨大变化的蛋白质分析物。这些分析物产生的独特的电特征取决于它们的身份和数量以及纳米孔尖端的粘合剂-分析物组装。虽然该研究还只是一个概念原型,但在未来在诊断癌症时,这些纳米传感器将在一定程度上替代成像和活组织检查,并为预后、诊断、治疗提供具有参考价值的信息。这项工作的结果可以通过为生物流体中的生物标志物检测提供基础,影响生物医学诊断。
  • 质谱电离技术重要突破!超导纳米线检测单个蛋白质离子
    Fig. 1: View of the SuperMaMa laboratory at the University of Vienna. The hanging gold-plated insert is the radiation shield behind which the superconducting nanowire detectors are installed. C: Quantennanophysik @ Universität Wien  Fig. 2: Counting single proteins with a superconducting nanowire. The background and nanowire are altered in Photoshop with the Generative Fill AI. (Human Insulin PDB:3I40). C: CC BY-ND 4.0 Quantum Nanophysics University of Vienna.  据奥地利维也纳大学(University of Vienna, Boltzmanngasse, Vienna, Austria.)2023年12月4日提供的消息,由维也纳大学量子物理学家马库斯阿恩特(Markus Arndt)领导的国际研究团队在蛋白质离子检测方面取得突破:超导纳米线探测器凭借其高能量灵敏度,实现了蛋白质离子检测的突破(Quantum physics: Superconducting Nanowires Detect Single Protein Ions)。几乎100%的量子效率,比传统离子探测器在低能量下的探测效率高出1000倍。与传统探测器相比,它们还可以通过冲击能量来区分大分子。这允许更灵敏地检测蛋白质,并提供质谱分析中的附加信息。这项研究的结果于2023年12月1日已经在在《科学进展》(Science Advances)杂志网站发表——Marcel Straus, Armin Shayeghi, Martin F. X. Mauser, Philipp Geyer, Tim Kostersitz, Julia Salapa, Olexandr Dobrovolskiy, Steven Daly, Jan Commandeur, Yong Hua, Valentin Köhler, Marcel Mayor, Jad Benserhir, Claudio Bruschini, Edoardo Charbon, Mario Castaneda, Monique Gevers, Ronan Gourgues, Nima Kalhor, Andreas Fognini, Markus Arndt. Highly sensitive single molecule detection of macromolecule ion beams. Science Advances, 1 Dec 2023, Vol 9, Issue 48. DOI: 10.1126/sciadv.adj2801. https://www.science.org/doi/10.1126/sciadv.adj2801  参与此项研究的除了来自维也纳大学的研究人员之外,还有来自奥地利科学院(Austrian Academy of Sciences, Boltzmanngasse, Vienna, Austria)、荷兰MSVision(MSVision, Televisieweg 40, 1322 AM Almere, The Netherlands)、荷兰单量子(Single Quantum, Rotterdamseweg 394, 2629 HH, Delft, The Netherlands) 瑞士巴塞尔大学(University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland)以及瑞士洛桑联邦理工学院(école Polytechnique Fédérale de Lausanne简称EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel, Switzerland)的研究人员。  大分子的检测、识别和分析在生命科学的许多领域都很有趣,包括蛋白质研究、诊断和分析。质谱法通常用作检测系统即一种通常根据带电粒子(离子)的质荷比分离带电粒子(离子)并测量检测器生成的信号强度的方法。这提供了有关不同类型离子的相对丰度的信息,从而提供了样品组成的信息。然而,传统探测器只能对具有高冲击能量的粒子实现高探测效率和空间分辨率——这一限制现已被使用超导纳米线探测器的国际研究团队克服。  低能粒子的合力(Joined forces for low energy particles)  在当前的研究中,由维也纳大学与代尔夫特的单量子、EPFL、MSVision和巴塞尔大学的合作伙伴协调的欧洲联盟首次展示了超导纳米线的使用所谓的四极杆质谱(quadrupole mass spectrometry)中蛋白质束的优秀检测器。待分析样品中的离子被送入四极杆质谱仪并进行过滤。“如果我们现在使用超导纳米线而不是传统探测器,我们甚至可以识别以低动能撞击探测器的粒子,”维也纳大学物理学院量子纳米物理小组(Quantum Nanophysics Group at the Faculty of Physics at the University of Vienna)的项目负责人马库斯阿恩特 (Markus Arndt) 解释道。这是通过纳米线探测器的特殊材料特性(超导性)实现的。  借助超导技术实现这一目标(Getting there with superconductivity)  这种检测方法的关键是纳米线在非常低的温度下进入超导状态,在这种状态下它们失去电阻并允许无损电流流动。进入离子对超导纳米线的激发导致返回到正常导电状态(量子跃迁)。在此转变期间纳米线电特性的变化被解释为检测信号。“通过我们使用的纳米线探测器,”第一作者马塞尔 施特劳斯(Marcel Strauß / Marcel Straus)说,“我们利用了从超导到正常导电状态的量子跃迁,因此可以比传统离子探测器性能高出三个数量级。” 事实上,纳米线探测器在极低的冲击能量下具有显著的量子产率-并重新定义了传统探测器的可能性:“此外,配备这种量子传感器的质谱仪不仅可以根据分子的质量到电荷状态来区分分子,还可以根据分子的动能对它们进行分类。这改善了检测并提供了更好的空间分辨率的可能性,”马塞尔施特劳斯说道。纳米线探测器可以在质谱、分子光谱、分子偏转或分子量子干涉测量中找到新的应用,这些领域需要高效率和良好的分辨率,特别是在低冲击能量下。图 2(Fig. 2)是用超导纳米线计数单个蛋白质。  团队和资金(Team & Funding)  单量子(Single Quantum)领导超导纳米线探测器的研究,洛桑联邦理工学院的专家提供超冷电子学,MSVISION 是质谱专家,巴塞尔大学的专家负责化学合成和蛋白质功能化。维也纳大学将所有组件与其在量子光学、分子束和超导性方面的专业知识结合在一起。  本研究得到了戈登和贝蒂摩尔基金会 (Gordon and Betty Moore Foundation: 10771)、欧盟地平线2020框架计划(European Union’s Horizon 2020 Framework Programme: 860713 and 777222)的资助。  上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。  Abstract  The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry. Here, we demonstrate that superconducting nanowire detectors are exceptionally well suited for quadrupole mass spectrometry and exhibit an outstanding quantum yield at low-impact energies. At energies as low as 100 eV, the sensitivity of these detectors surpasses conventional ion detectors by three orders of magnitude, and they offer the possibility to discriminate molecules by their impact energy and charge. We demonstrate three developments with these compact and sensitive devices, the recording of 2D ion beam profiles, photochemistry experiments in thegas phase, and advanced cryogenic electronics to pave the way toward highly integrated detectors.文章来源:科学网 诸平
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制