当前位置: 仪器信息网 > 行业主题 > >

地下探测金属器

仪器信息网地下探测金属器专题为您提供2024年最新地下探测金属器价格报价、厂家品牌的相关信息, 包括地下探测金属器参数、型号等,不管是国产,还是进口品牌的地下探测金属器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地下探测金属器相关的耗材配件、试剂标物,还有地下探测金属器相关的最新资讯、资料,以及地下探测金属器相关的解决方案。

地下探测金属器相关的资讯

  • 水下探测网与目标感知量值溯源关键技术研究项目实施方案通过论证
    3月14日,由中国计量科学研究院(以下简称“中国计量院”)牵头承担的国家重点研发计划“国家质量基础设施体系”重点专项(以下简称“NQI专项”)“水下探测网与目标感知量值溯源关键技术研究”项目实施方案论证会在中国计量院昌平院区召开。中国计量院副院长杨平及相关部门负责人、项目和课题负责人、各承担单位代表共40余人参加会议。中国工程院院士杨德森、崂山国家实验室副主任刘保华、中国船舶集团有限公司第七〇七研究所副总工杨晔等7位项目领域专家,与来自哈尔滨工业大学的项目责任专家刘俭教授,共8位专家组成项目咨询专家组对实施方案进行论证。会上,项目负责人、中国计量院副院长杨平从项目背景与目标、主要研究内容、技术路线及预期成果等方面汇报了项目的总体情况。来自中国计量院、清华大学、中国计量大学等单位的课题负责人详细介绍了各课题的具体任务及实施方案。项目咨询专家组成员听取了项目和各课题的详细汇报,对项目研究的必要性给予充分肯定,论证了项目实施方案的可行性,并从各自专业角度为项目及课题实施提出了建设性意见,同意通过实施方案论证评审。中国计量院相关部门负责人介绍了项目管理和经费管理的制度办法。据项目负责人杨平介绍,海洋中温度、水色、声压、磁力与重力等参数及其分布场的准确测量,是开展海洋科学研究、气候预报与环境保护、导航与目标识别的重要保障。随着多尺度、多参数、全天候水下探测网的建设,对关键参数的测量能力、探测网的校准能力,难以满足海洋精准测量、水下探测网在线/原位校准需要,响我国海洋开发治理和海洋安全。项目面向海洋水下探测与目标感知对海洋关键参数精准测量及量值溯源的迫切需求,通过开展相关参量的高准确度量值复现新方法研究,研制高稳定性传递标准器与装置,构建集多参数的水下校准平台,在典型水下探测网、海上试验场开展在线/原位校准与现场评价示范应用,解决海洋相关传感器、仪器及水下探测网的在线/原位校准问题。项目完成后,将形成海洋温、光、声、磁、重力等关键参数的精密测量能力、以及水下探测网/标准场的原位校准能力,为提高海洋探测与目标感知精准度提供质量基础保障,服务海洋基础科学研究与海洋装备产业发展。
  • 地下金属管道防腐层探测检漏仪是目前界上广泛重视的稳定性、抗干扰的新颖仪器之
    地下金属管道防腐层探测检漏仪/地下金属管道防腐层探测检测仪 型号:WN-SL-6 【能及用途】本仪器是目前界上广泛重视的稳定性、抗干扰的新颖仪器之,它能在不挖开复土的情况下,方便而准确地查出地下管道的走向、深度和缘防腐层的漏蚀点的确位置,使整个管道表面不再屡遭到处开搪破土之苦,是油田、化、输油、输气、水电等为保证地下管道防腐层的施质量检查和维修检查的种探测仪器。 【特点】1、仪器电源采用日本可靠性原装开关电源,充电时实行智能快速充电,无需人控制。2、仪器电压、输出电流信号能够自动转换。3、直流电源与交流供电能自动转换。4、仪器采用抗干扰线路,特别实用于城市管网的普查与维护。5、发射机采用液晶显示,提了输出度与仪器的性能。6、仪器特设保护自动调节能,克服产品致命的弱点。7、仪器的线路采用模块化结构、三防设计,从而大大提仪器的野外使用寿命和可靠性。 【主要术标】 1.检漏度:≥0.25mm2;2.位置偏差:<20cm;3.准确率:>98%4适用范围:各种直径的油、气、水等地下防腐金属管道。()发射机术标:1.发射率:≥25W,可调;2.发射频率:1K±0.1Hz,节拍频率1-2Hz;3.输出阻抗匹配:0-100Ω;4.发射距离:50m-5Km(5公里以外可逐移动);5.作电流:≤3A,1-3A可调;6.作电源:12V(系镉镍电池或汽车电源);7.重  量:2.8Kg(不计电池重量);8.外形尺寸:99×220×220(二)探测仪术标:1.灵敏度:0.1mV;2.走向位置偏差:<10cm;3.探测深度:≤5m;4.作电源:6V镉镍蓄电池组;5.重量:0.9Kg;6.外形尺寸:165×135×69。(三)检漏仪术标:1.检漏度:≥0.25mm2;2.检漏深度:≥0.5m;3.位置偏差:<20cm;4.作电源:6V镉镍蓄电池组;5.重量:0.9Kg;6.外形尺寸:165×135×69。 【检测原理及方法】通过向地下管道发送出1KHz的电磁波信号,探测仪利用探头与磁力线地平面垂直相切时,收到的信号小(几乎为零)的原理来测定管道的走向和深度。 检漏原理:通过向地下管道发送个交流信号源,当地下管道防腐层被腐蚀后,该处金属分与大地相短路,在漏点处形成电流回路,将产生的漏点信号向地面辐射,并在漏点正上方辐射信号,根据这原理就可准确地找到漏蚀点。检漏方法:采用“人体电容法”,就是用人体做检漏仪的感应元件,当检漏员走到漏点附近时,检漏仪开始有反应,当走到漏点正上方时,喇叭中的声音响,表头示,从而准确找到漏蚀点。
  • 全国首艘“无人智能巡逻艇”天鹅湖上岗 可水下探测
    p style=" text-align: center " img title=" 033.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/dbec24e0-8adf-464e-9b88-61b3a1a3c19a.jpg" / /p p   7月3日下午,合肥市公安局巢湖水上分局在天鹅湖举行“无人智能巡逻艇”首巡仪式。 /p p    strong 水面安全巡逻的现状和需求 /strong /p p   目前港口、码头、景观湖、水库、旅游景点、养殖业等水域的巡逻和安全防控基本上都是人工完成,存在工作量大、探测手段有限、安全救援迟缓等问题。相对于无人机、无人船等技术,无人水上艇技术发展相对较晚,目前无人水上巡逻艇主要由美国、以色列等少数发达国家生产,主要用于军事用途。国内无人艇技术相对落后,多数是尺寸较小、功能简单、智能化和信息化程度低的单一功能产品,近80%的无人水上艇应用都集中在观测与信息收集、物理环境测量等。 /p p   天鹅湖在安徽省省会合肥市境内,地处合肥政务文化新区核心,是一个人工景湖。始建于2003年,水深3.5米,有各种雕塑、园林树木、人工沙滩、喷泉,湖中有两座小岛等景观占总占地面积136公顷,湖面面积70公顷,平均水深3.5米。南北最大跨度0.7公里,东西最大跨度1.5公里,周长3.5公里。天鹅湖不但环境优美,旁边还新建了体育场,大剧院,市政办公中心等地标建筑,是合肥的政治文化休闲中心地,天鹅湖目前是合肥市内最大的开放式公园之一。近年来,天鹅湖溺亡事件频频发生。据不完全统计,天鹅湖自2004年蓄水开始,迄今为止至少溺亡了64人。因此,通过技术手段为天鹅湖安全监控和应急救援提供支持是非常有必要的,无人智能巡逻艇是近年来快速发展的技术,有望为天鹅湖安全防控提供最佳技术支持。 /p p    strong 无人智能巡逻艇的研制过程 /strong /p p   中国科学院合肥物质科学研究院智能机械研究所“973”首席科学家刘锦淮团队的余道洋博士主持的水面机器人系列研究成果于2015年11月份发布,经专家鉴定多项技术处于国内领先,该成果发布后引起了国内行业专家、企业和媒体的重视。安徽中科华澄智能科技有限公司是中国科学院合肥物质科学研究院水面机器人等研究成果以无形资产投资入股成立的院属企业,公司的核心产品之一是智能安防水面机器人,主要用于类似于天鹅湖等水域的综合安全预警与防控,特别是溺水监控与救援。智能安防水面机器人于2016年9月份在天鹅湖进行了演示和测试,得到了合肥市公安局水上分局王旭局长的认可,双方通过沟通一致同意共同研制无人智能巡逻艇,不仅仅用于天鹅湖,进一步扩展可以用于巢湖等大江大河的无人智能化监控和应急救援。今天的仪式也是共同研制产品的正式列装,是产品走出去的良好开端。 /p p style=" text-align: center " img title=" 011.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/d2261487-1ab5-498d-95ed-39b26f2baf73.jpg" / /p p    strong 无人智能巡逻艇及天鹅湖综合安全防控系统简介 /strong /p p   天鹅湖综合安全防控系统由无人智能巡逻艇、岸基红外和光学视频监控系统、无人机、高速救援艇、蛙人应急分队、城管巡防员、手持式通讯终端、水下探测以及综合安全监控平台等组成。该系统的核心是无人智能巡逻艇,本项目研制的无人智能巡逻艇核心技术和功能包括:自主巡航、自动避障、目标自动识别、早期预警、空地水系统联动、语音驱离、声光报警、强光指引、实时视频传输、多模式远程操控、风险评价、通讯链路、自主返港、水下探测、网格化精准定位等功能。 /p p   无人智能巡逻艇的核心技术是“智能”,融合了常规机器人的智能感知、智能决策和控制技术,主要体现在以下几个方面:自主巡航和主动避障功能由卫星导航、电子罗盘、海事雷达、超声雷达、激光雷达、声呐等信息感知模块组成,通过形态学膨胀腐蚀原理的二值图处理和动态目标A*算法等人工智能算法,实现水面机器人在复杂水域的全局路径优化和局部障碍规避 无人智能巡逻艇上分别搭载了光学摄像和热红外摄像头,开发了基于动态目标多特征差异检测原理的光学和热红外图像细胞神经网络识别算法,实现无人艇动态巡航条件下动态目标的捕捉与准确识别 无人智能巡逻艇的自动识别技术解决了天鹅湖危险水域人员的动态和快速识别,在此基础上开发了早期预警系统,对试图进入危险水域的人员提前进行警告和监控,为有效管控溺亡事故的应急处理提供了技术保障 天鹅湖岛上架设了20多台光学摄像和热红外摄像头,实现了天鹅湖全天候、无死角的实时监控、和目标自动识别,一旦出现人员越过警戒线和危险水域,将自动计算危险区域人员的精确位置坐标,自动判断风险等级,并自动向系统平台发送指令,系统平台再向无人智能巡逻艇、安防人员和管理人员发送信息,以最快的速度采取应急措施,真正实现天鹅湖的空地水立体化、全天候和无死角安排防控。天鹅湖综合安全防控系统可以与其他安全管理和应急系统联网,实现多网络平台的联动。 /p p   智能安防水面机器人是携带红外热成像仪和可见光摄像机等安防监控装置,在工作区域水面进行安防巡视监控并将画面和数据传输至远端监控系统,对突发事件进行应急处置的智能机器人。该产品2016年7月荣获合肥市首创产品认证 同年11月通过安徽省新产品鉴定,经评审专家组一致鉴定,该产品在国内处于领先水平。 /p p style=" text-align: center " img width=" 450" height=" 338" title=" 04.jpg" style=" width: 450px height: 338px " src=" http://img1.17img.cn/17img/images/201707/insimg/1fca29c6-3cee-4851-8632-07b83228e368.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 智能安防水面机器人在天鹅湖巡逻 /p p   strong  应用拓展 /strong /p p   无人智能巡逻艇在天鹅湖的成功应用得到了合肥市多个部门领导的重视和推荐,2017年7月3日的列装和天鹅湖首巡将会是该产品推广应用的良好开端,该产品将进一步应用到巢湖、河道湖泊、水库、江河湖海、水上航道、景区水域等区域的安全防范与巡逻。 /p
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 交大参与建设暗物质探测实验室 深入地下2500米
    记者从前天召开的中国物理学会2009年秋季会议上获悉,上海交大将参与建设国内第一个极深地下暗物质探测实验室,揭开这一世界前沿科研领域的神秘面纱。该实验室选址在“世界最深、探测条件最好”的四川锦屏山隧洞,深入地下2500米。目前,一台采用25公斤液氙的探测器模型也正在建造中,2年后有望投入运行,这一研究将打开一扇通向未知世界的大门。   上海交大物理系主任季向东教授告诉记者,暗物质是一个与任何东西都能相互作用,但非常弱的一种粒子,穿过地球你都感觉不到,所以非常难以探测到。要探测暗物质,就必须把宇宙线的背景屏蔽掉。由于受外界噪音、辐射等干扰,给暗物质的研究带来很大的难度。   “怎么屏蔽掉?就要往地下走。”季教授进一步解释说,地下深度和宇宙线的强度按指数在衰减,所以越深越好。但是想打一个几千米的地洞,实验室就必须花费很大的人力物力。“但是我们非常幸运,正好四川锦屏山要建一个大型水电站,其中锦屏山水电站的交通隧洞覆盖层深度达2500米以上。”季教授说,这一难得的“与世隔绝”的环境,成为研究暗物质的绝佳“天然实验室”。“交大物理系已经跟他们达成协议,等他们完工后,这个工程隧道由我们来用。这样,我们就变成拥有了全世界最深的地下实验室。”   “这里也是目前世界上一流的暗物质研究的环境。”季向东介绍,目前,交大物理系的专家正致力于实验室的建设,极深地下暗物质探测实验室也有望明年年底竣工。
  • 发射探测仪器、建设地下实验室 上天入地寻找“黑暗家族”
    当我们抬头仰望星空,能看到繁星的点点光芒布满天穹。但在这些我们能看到的微光之外,宇宙实则是被更多的“黑暗”所填充。科学家认为,宇宙总质能的95%是由人类看不见、摸不着的暗物质和暗能量组成。它们组成的宇宙“黑暗家族”不发出任何信号、极难被探测,但却充斥在宇宙空间,成为人们最想要破解的谜团之一。当地时间7月1日,欧几里得太空望远镜在美国佛罗里达州卡纳维拉尔角发射升空。该望远镜将观测100亿光年范围内的数十亿个星系,创建迄今最大、最精确的宇宙“3D地图”,试图揭开困扰人类许久的暗物质和暗能量之谜。暗物质和暗能量的发现史要理解暗物质和暗能量,首先要解释清楚一个“悖论”,即暗物质、暗能量既然极难被察觉,人类最初又是如何确定它们存在的?20世纪30年代,瑞典天文学家在研究中发现,后发座星系团中星系的速度弥散度非常大,这意味着这个星系团中不同星系的运行速度有着很大的差别。对于星系团中那些运行速度极快的星系来说,仅靠星系团中发光物质的质量,不足以束缚住其如此巨大的运行速度。研究者根据位力定理计算出的星系团总质量要远大于根据发光度计算出的星系团质量。因此,天文学家大胆推测,在星系团中还存在着大量不发光、但却有质量的物质,并将其称为暗物质。如果打一个通俗的比喻,暗物质或许就像一个黑暗房间中的大象,它庞大的身躯填满了整座房间。但由于其本身并不发出任何光亮和信号,人们无从得知它的存在,而只能看见它头顶电灯发出的一点微光,并误以为那是宇宙“房间”内全部的存在。“暗物质是一种在天文观测中被发现的物质,它具有引力作用但不发光。对暗物质的粒子物理性质研究是当前粒子物理和宇宙学最重要的研究课题之一。”北京大学物理学院研究员刘佳介绍。暗物质虽然不可见,但能够被称之为“物质”,是因为其具备物质的基本特征,例如暗物质有质量、有引力,并且也有可能与其他粒子发生接触、碰撞。相较于暗物质,暗能量则更加令人捉摸不透。天文学家在20世纪末才真正认可暗能量的存在。暗能量概念的提出与宇宙加速膨胀理论密不可分。在过去很长一段时间内,天文学家普遍相信,由于天体间引力的存在,宇宙的膨胀速度在逐渐放缓。但在20世纪末,多个研究团队通过对不同距离、被称为宇宙标准烛光的Ⅰa型超新星进行观测后发现,地球与这些标准烛光的距离正在加速变远,即我们的宇宙在加速膨胀。明明引力能够拉近天体间彼此的距离,但为什么宇宙仍然在加速膨胀?天文学家据此认为,一定有尚未被发现的力量在对抗着引力,推动宇宙加速膨胀,暗能量的概念便由此而生。利用“引力透镜”探测暗物质虽然看不见,但暗物质、暗能量并非无迹可寻,它们各有证明自己存在的方式。中国科学技术大学物理学院天文学系教授蔡一夫告诉科技日报记者,引力透镜效应是证实暗物质存在的最常用的方法之一。其基本原理是,基于广义相对论,光线会因为大质量天体的引力而产生弯曲,类似于透镜对于光线的作用。而如果在地球和极其遥远的发光天体之间存在一些引力源,这些引力源的引力场便会像透镜一样,使经过其身边的光线发生变化。暗物质同样具有引力,因此其也会对光线产生引力透镜效应,从而有机会被我们探测到。“通过引力透镜效应来勾勒暗物质的分布是目前最主要的探测手段之一。”蔡一夫说道。相较于暗物质,暗能量的探测则更为困难。由于至今仍无法确定暗能量的来源及特质,科学家一直无法直接探测它。蔡一夫表示,目前探测暗能量的主要方式,仍是依靠对Ⅰa型超新星的标准烛光测距来实现。宇宙的膨胀会拉伸我们与标准烛光的距离,我们收到的标准烛光的光线会因此产生红移效应。通过对大量标准烛光红移数据的收集、分析,天文学家将有机会探究宇宙膨胀的历史,揭示暗能量的本质。虽然对于暗能量的研究至今仍无定论,但关于暗能量来源的讨论一直是天文学界的热门话题。有许多科学家认为,黑洞或许就是暗能量的来源。不久前,一个国际科研团队对星系中央黑洞开展观测,结果表明黑洞可能是暗能量的来源。在这项最新研究中,科学家比较了拥有中心黑洞的遥远星系和本地椭圆星系的观测结果,发现星系中央黑洞的质量比90亿年前增长了7—20倍,如此快速的质量增长无法用吸积和合并来解释,因此研究者大胆引入暗能量来解释这一现象。多管齐下寻找蛛丝马迹虽然困难重重,但人类在寻找暗物质、暗能量上一直没有放弃努力。在此次发射欧几里得太空望远镜前,人类已经作出诸多尝试。在暗物质探测方面,我国发射的“悟空”号暗物质粒子探测卫星是世界上观测能段范围最宽、能量分辨率最优的暗物质粒子探测卫星。其可以通过测量高能宇宙射线来发现暗物质的踪迹。通常认为,宇宙射线的源头一般是超新星爆发,但暗物质湮灭时也会产生宇宙射线。如果能够发现超新星爆发以外的宇宙射线来源,或许可以间接探测到暗物质。除了上天找答案,为了寻找暗物质,人们还深入地下数千米。暗物质不可见,但它会和其他物质发生碰撞。因此,当暗物质和普通物质的原子核发生碰撞后,普通物质的原子核会动起来,产生微弱信号,科学家能够通过检测这种信号来探测暗物质的存在。但这种方法需要苛刻的实验环境。由于信号实在太过微弱,为了把宇宙射线本底屏蔽掉,营造出极纯净的实验环境,其必须在地下深处进行,且深度越深,宇宙射线本底越低。我国便在四川锦屏山地下约2400米建设了地下实验室,其重要目标之一便是寻找暗物质。此外,刘佳也表示,通过可见物质寻找暗物质也是当今粒子物理的前沿热点问题。例如,暗光子便是理论学家构建的沟通可见物质世界和暗物质世界的媒介粒子之一。不久前,刘佳参与的研究团队发现,地球附近的超轻暗光子暗物质能够诱导射电望远镜反射板上电子的振荡,产生可观测的射电信号,另外偶极射电望远镜能够直接与这种暗物质产生射电信号。基于这种现象,研究团队提出了一种利用射电望远镜直接探测地球附近暗光子暗物质的新方法。而在暗能量探测领域,不久前中国科学院国家天文台参与的暗能量光谱巡天国际合作项目(DESI)向全球发布了首批科学数据,包括了120万个河外星系、类星体及50万颗银河系恒星的光谱。该项目计划在5年内获取超4000万个星系的光谱数据,旨在构造出三维宇宙空间的物质分布,揭示暗能量的本质以及宇宙膨胀历史。相比于此前探测暗物质、暗能量的仪器,欧几里得太空望远镜的优势是大而精。其观测范围足够宽广,能够覆盖超过三分之一的天空,并可以对其中10亿个星系分门别类绘制宇宙图谱。“欧几里得太空望远镜的突破在于其所获得的高清超大面积巡天数据,可以提高引力透镜,特别是弱引力透镜测量精度,使其统计误差显著降低。”蔡一夫介绍。通过对数十亿星系的精确观测,欧几里得太空望远镜将创建包含星系形状、位置和运动状况等信息在内的,迄今最大、最精确的宇宙“3D地图”,帮助天文学家推断宇宙暗能量和暗物质的属性,进一步加深对宇宙本质的了解。
  • 隆重推出:地下水流速流向探测仪
    我公司隆重推出AquaVISION地下水流速流向探测仪。AquaVISION地下水流速流向探测仪通过采用专有的硬件和AquaLITE软件来完成测量地下水实时流速、流 向和粒子尺寸的艰巨任务。 AquaVISION地下水流速流向探测系统可以在具体的深度区间里准确确定地下水流速、流向和粒子尺寸。它可以在持续数小时的时间里,每分钟产生数以千计的、具有统计可靠性的数据 欢迎光临我们的网上展位了解产品的详细信息!
  • 基于光电晶体管架构的X射线直接探测器研发成功
    中国科学院深圳先进技术研究院先进材料科学与工程研究所材料界面研究中心副研究员李佳团队,中科院院士、西北工业大学教授黄维团队,以及深圳先进院生物医学与健康工程研究所生物医学成像研究中心合作,首次将具有内部信号增益效应的异质结光电晶体管用于X射线直接探测器,实现了超灵敏、超低辐射剂量、超高成像分辨的X射线直接探测。相关研究成果以Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors为题,发表在Advanced Materials上。   当前,X射线直接探测器多采用反向偏置二极管结构(图1a)。这类器件普遍缺乏内部信号增益效应或增益较低,这意味着没有足够的信号补偿方案来补充载流子复合过程中湮灭的电子-空穴对。因此,这类设备的光-电转化效率较低,且需要使用高质量和高度均匀的X射线光电导材料(Photoconductor)以保证有效的电子-空穴的产生和传输,这对探测器性能的进一步提升设定了难以突破的上限,也增加了材料、器件制备的复杂性和成本。   科研团队在前期研究的基础上(Advanced Materials, 31,1900763,2019),提出异质结X射线光电晶体管(Heterojunction X-ray Phototransistor)这一新型器件概念,首次将具有内部信号增益效应的异质结光电晶体管引入X射线直接探测。光电晶体管是三电极型光电探测器,其沟道载流子密度可通过调控栅压和入射光子进行有效调制,从而结合了晶体管和光电导的综合增益效应,如图1b所示。将这种高增益机制引入X射线探测器可以对光生电流进行放大,并使外量子效率远超过100%,进而实现超灵敏的X射线直接探测。本工作中,研究团队设计了由钙钛矿光电导材料与有机半导体沟道材料组成的异质结光电晶体管,实现了高效的X射线吸收,获得了快速的载流子再注入与循环,导致高效的载流子产生、输运与巨大的信号增益效应,使X射线直接探测灵敏度达到109μCGyair-1cm-2(图2c),最低可检测剂量率低至1 nGyair s-1。同时,探测器具有较高的成像分辨率(图2e)——X射线成像调制传递函数(MTF)在20%值下显示每毫米11.2线对(lp mm-1),成像分辨率高于目前基于CsI:Tl的X射线探测器。   高增益异质结X射线光电晶体管为高性能X射线直接探测与成像开辟了新机遇,并体现出超灵敏、超低检测限、高成像分辨率、轻量、柔性(图2d)、低成本等优点,在医学影像、工业检测、安检安防、科学设备等领域具有广阔的应用前景。该成果将激发科研人员开发各种高增益器件以实现直接探测不同类型高能辐射的研究动力。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。图1.a、传统X射线探测器中,间接探测(左)使用闪烁体材料与光电二极管可见光探测器相互集成,X射线通过闪烁体材料转换为可见光,可见光由光电二极管探测器探测;直接探测(右)使用如非晶硒等半导体材料,半导体吸收X射线后直接产生电子-孔穴对,在半导体材料上施加高电场,分离和收集电子-空穴对;b、X射线光电晶体管结构,异质结中电子-空穴对产生(1)、分离(2)、电子捕获/空穴注入(3)和空穴再循环(4)产生高增益效应的过程图示图2.a、X射线光电晶体管器件结构;b、X射线探测的时间响应;c、X射线辐照下探测器灵敏度随栅压的变化关系;d、柔性X射线光电晶体管器件;e、金属光栅的光学显微照片(上)与X射线成像图(下),scale-bar为200微米;f、X射线光电晶体管的MTF曲线
  • 新方法实现中红外光室温探测
    据28日《自然光子学》杂志报道,英国伯明翰大学和剑桥大学的科学家开发了一种使用量子系统在室温下探测中红外(MIR)光的新方法,他们使用分子发射器将低能量MIR光子转换为高能的可见光光子。这项创新方法能够帮助科学家在单分子水平上进行光谱分析,这标志着科学家在深入了解化学和生物分子的能力方面的重大进步。研究人员解释说,维持分子中原子之间距离的键可像弹簧一样振动,同时这些振动会在非常高的频率下产生共振,它们可被人眼看不见的中红外区域光激发。室温下的键随机运动,因此,探测中红外光的一个主要挑战是避免这种热噪声。现代探测器依赖于能量密集型和体积庞大的冷却半导体器件,但此次研究提出了一种在室温下检测这种光的新方法。新方法被称为中红外振动辅助发光(MIRVAL),它使用既能成为中红外光又能成为可见光的分子。该团队将分子发射器组装成一个非常小的等离子体腔,该腔在中红外光和可见光范围内都是共振的。他们进一步对其进行了改造,使分子的振动态和电子态能够相互作用,从而有效地将中红外光转换为增强的可见光。通过创造微腔,研究人员实现了低于1立方纳米的极端光限制体积。微腔是一种由金属面上的单原子缺陷形成的极小的空腔,可捕获光线。这意味着该团队可将中红外光限制到单个分子的规模。该突破能够加深科学家对复杂系统的理解,并打开红外活性分子振动的大门,这在单分子水平上通常是无法获得的。除了纯粹的科学研究外,MIRVAL还可在许多领域发挥作用,如实时气体传感、医学诊断、天文测量和量子通信等。
  • 中科院“机载地下矿产与水资源探测仪研制与产业化示范应用”项目启动
    p   4月16日,国家重点研发计划“重大科学仪器设备开发”重点专项“机载地下矿产与水资源探测仪研制与产业化应用示范”项目在呼和浩特启动。 /p p   项目责任专家欧阳劲松代表科技部高技术研究发展中心就项目的执行提出要求,并作政策宣贯报告。内蒙古自治区科技厅副厅长张志宽代表推荐单位进行发言,表示自治区科技厅将在资金配套、优惠政策等方面对项目给予支持。中国科学院空天信息研究院副院长方广有代表技术专家组发言,并就项目的执行提出建议。 /p p   “机载地下矿产与水资源探测仪研制与产业化应用示范”项目针对我国地下矿产与水资源勘查领域,航空电磁探测核心装备长期受制发达国家技术封锁以及国际上现有设备存在探测盲区等状况,由内蒙古灵奕(集团)有限责任公司牵头组织,联合空天院、中国自然资源航空物探遥感中心、吉林大学、成都理工大学、厦门大学、重庆大学、核工业北京地质研究院等多家单位共同承担。项目将围绕电磁复合效应和机载相干随机脉冲探测技术开展创新性研究,研发机载相干随机脉冲电磁探测软硬件系统,实现地下0-800m深度全覆盖、无盲区探测,开展仪器工程化和产品化开发,完成多个矿区和地下水目标飞行试验与应用示范,实现项目的经济效益和社会效益。 /p p   会议按照重大专项管理要求成立了“两组一委”并颁发聘书。与会专家听取了项目负责人、空天院研究员刘小军作的项目实施方案报告和研究员杨景荣作的产业化与应用示范报告,提出意见和建议。项目牵头单位表示将切实落实与会专家意见,贯彻法人责任制,保证项目顺利实施。 /p p   国家重点研发计划总体专家组,内蒙古自治区科技厅、项目和课题承担单位的领导与专家等40余人参加会议。 /p
  • 食品金属探测器国家标准通过审定
    近日,中国标准化研究院在山东省青岛市组织召开了国家标准审定会,审定通过了李沧区青岛电子仪器厂主持制定的《食品金属探测器》国家标准,并上报国家标准化管理委员会,建议作为推荐性国家标准批准、发布。   审定委员会专家组在对标准送审稿进行认真审查讨论后认为,本标准填补了国内该领域标准的空白,达到国内领先水平 规范了食品金属探测器的性能要求及技术指标,能够有效指导食品金属探测器的设计、制造及检验,为保证食品金属探测器的产品质量,促进食品金属探测器行业的健康发展,提供了有力的技术保证。
  • 科学岛团队研制高性能金属减振器助力“陆地探测四号01星”实现高分辨探测
    8月13日,长征三号乙运载火箭携载“陆地探测四号 01星”成功发射。中国科学院合肥物质院固体所研制的高阻尼孪晶型金属减振器作为关键减振件应用于“陆地探测四号 01星”,助力对陆资源调查监测。 此前,该减振器已应用在 “高分七号”卫星和“ 5米光学卫星 02星”上。 “陆地探测四号01星”是《国家民用空间基础设施中长期发展规划(2015-2025年)》中陆地探测四号星座计划中的首颗星,是全球首颗全天候、高时间分辨率、宽视场的高轨、高分辨率地球同步轨道遥感卫星。与传统低轨SAR卫星、光学卫星相比,“陆地探测四号01星”可将高轨观测重访周期短、成像幅宽大等优势与微波观测不受气候限制(全天候)、不受光照限制(全天时)的优势结合起来,实现对我国本土及周边区域进行全天候、全天时的观测,满足防灾、减灾与地震监测、国土资源勘察以及海洋、水利、气象、农业、环保、林业等行业的应用需求。   针对“陆地探测四号01星”中高精度定轨加速度计在轨服役中遭受的低频、微振动干扰问题,固体所高阻尼材料研究团队在葛庭燧院士发现并提出的晶界内耗研究基础上,基于“高密度孪晶界面运动耗能”的高阻尼材料设计原理,研制了兼有金属刚性和橡胶高阻尼特性的微振动抑制敏感型减振合金,并与航天五院总体部合作,成功将其研制为高精密加速度计用低频、微振动抑制敏感的减振构件,实现对低频振动能的抑制高于99%,创新性地拓展了高阻尼合金的航天应用范围。   2015年1月,固体所同航天五院总体部合作开展了高分卫星微振动减振效应研究。2018年1月,“陆地探测四号01星”用高阻尼减振构件研制任务正式启动。近5年来,经过多次的方案论证、优化,研究团队突破了材料减振性能、高低温适应性、表面防腐处理等关键指标及工艺技术难题,最终研制出各项性能指标及空间环境适应性均优于技术要求的材料及产品。在项目执行过程中,研制测试材料、阻尼构件共计300余件,实现产品初样、正样一次性交付,建立了完善的材料工艺体系和质量控制体系,有效地保证了减振器服役性能的可靠性、稳定性和一致性,保障了航天任务的顺利完成。   未来,研究团队还将在轻质、高强韧、极低温、宽温域、宽频谱等方面开展新型高阻尼材料的基础理论和工程应用研究,持续为我国航天及民用减振降噪领域做出努力和贡献。交付的高性能金属减振器
  • “盗墓贼”七千元购买探测仪器 向工商举报是假货
    —位东北“消费者”日前向洪山工商部门举报:他们家乡附近有许多古墓,为避免藏在地下的金银财宝生锈腐烂,他想通过科学方法,让地下宝藏早日见光,变废为宝。通过网上搜索,他发现武汉先锋世纪电子仪器公司正在卖—种“地下金银探测器”:可通过直观的3D图像,探测地层结构内的空穴、墓穴、木箱等,并能清晰显示地下2030米所埋的金、银、铜等目标物 尤其是在夜间,也可轻易探测墓穴内的金币、银元、项链等小型物体,还配有探测墓穴的相关图片。   他看到广告信以为真,感觉发财的机会就要来了,就花7000多元网购了—台,可使用时什么都显示不出来。洪山工商入员接到举报后,来到珞喻路 727号东谷银座B902号,对被投诉的武汉先锋世纪电子仪器公司进行调查,发现该公司对外宣称“2000年成立”,是—家“集团公司”,是“国内探测仪器最早的研发生产销售企业” “与中国地质大学、武汉长盛地质检测研究所等国内领先物探科研机构,保持有良好的研发与合作关系” “在2008年的四川抗震救灾中,应邀接受国家有关部门的专业咨询”等。   其所卖产品有探测棒、像地雷探测器—样的盘式探测仪等,还有配套的音频耳机和3D成像的视频眼镜等等,可用于考古研究、找寻宝藏、野外探宝等。   经工商入员调查,武汉先锋世纪电子仪器公司并非“集团公司”,在工商部门注册的时间是2007年9月,也没证据可以证明,该公司是国内最早探测仪器研发和生产企业,而所谓的与“中国地大”和“长盛”等单位有研发与合作关系,也只是与这些单位的个入有私交而已。在四川大地震时,并未“应邀接受国家有关部门的专业咨询”。只是法定代表入在抗震救灾期间,与抗震救灾指挥部有关入员有过电话交流。   该公司销售的金属探测器,均没有中文标识,没有产品名称、生产厂名及厂址等信息。在网站上所展示的产品,有90%以上从来没有购进或销售过。   目前,工商部门正在依法进—步调查金属探测器的来龙去脉。   按照我国规定:传世文物、祖传文物可收藏、拍卖。地下、水下出土、出水的文物归国家所有,其中包括私入宅基地下出土的文物。
  • 金属探测仪首用于高考安检
    30日上午,广州市副市长贡儿珍带队视察高考考点,包括市公安局、市监察局、市环保局、市交委、市水务局、市卫生局、市城管局、市保密局、市气象局、市应急办、市招考办、广州供电局等十六部门联合对广州市部分高考考场进行考前准备工作检查。今年广州58个考点首次启用“金属探测仪”,这仪器到底长啥样?30日记者一探究竟。记者获悉,由于该仪器的使用,今年高考,各科均提前30分钟进场。   入场检查:金属探测仪防带手机入考场   “嘟嘟嘟……随着仪器在身上轻轻一扫,考生身上的所有金属物件,手机、钥匙包、衣扣、甚至女姓的纹胸扣均一一现形”这是昨日记者在广雅中学考场看到的一幕。   今年广东省各大高考试室首次启用金属探测仪检查广州市58个考点将全面实施,此举是防止考生作弊,并对误带手机入场的“大头虾”考生起到提醒警示作用。但这个仪器究竟长啥样?探测中会出现什么问题?需要多长时间?考生和家长疑虑重重。昨日记者一探究竟。   在广雅中学考场,记者看到,所谓“金属探测仪”是类似于机场地铁的安检仪器的“长棒子”。金属探测仪究竟怎样发挥“威力”?市招办负责人现场演示一番。   只见被检查者需双手张开伸直,让金属探测仪在身上游走,一旦发现金属物品,它就会发出“嘟嘟嘟……”的信号声,即便手机等金属物均无所遁形。   市招办负责人表示,由于女生的内衣上的金属扣也会有所反映,高考考场检则将尽显人性化,所有考点安排女监考员检查,避免考生因身体接触而发生不必要的尴尬和误会。“有机场安检经验的人就会知道,这其实跟机场的金属探测仪检测差不多。”   广雅中学负责人向记者证实,该考点已经培训了44名考务人员专门负责金属深测仪检查工作,出于人性化考虑,工作人员都是女士。   每位考生检查耗时6秒   记者获悉,金属探测仪检查,每位考生只需花6秒钟就可以搞定,一试室30名考生约需2分钟,绝不会耽误考生的考试。尽管如此,考试部门依然作出规定,今年高考各科,所有科目均提前30分钟进场,这意味着,除语文外,其它各科进场时间均提前了5分钟。   这种探测行为会不会给原本心情就紧张的考生带来更大压力?市招办负责人就强调,“营造一个公平公正的考试环境是每个考生和家长的愿望,如果考生都能诚信考试,就不会有压力的感觉。所以不但不会给考生增添压力,反而会让他们吃下定心丸,保证公平考试。”
  • 《食品金属探测器》国家标准正式批准发布
    近日,中国标准化研究院在山东省青岛市组织召开了国家标准审定会,审定通过了青岛电子检测仪器厂主持制定的2010年第8号(总第163号)《食品金属探测器》国家标准,并上报国家标准化管理委员会,作为推荐性国家标准批准、发布。标准的发布,标志着食品金属探测器行业的进一步规范化。2010年11月,由国家质量监督检验检疫总局、国家标准化管理委员会正式批准和颁布了食品金属探测器国家标准,标准号:GB/T25345-2010。   2008年底,青岛电子检测仪器厂接到中国标准化管理委员会通知,作为主持制定单位进行食品金属探测器国家标准的起草制定单位。经过一年多的意见征集、整理,用户调研、行业内各企业调研等步骤,最终整理制定出食品金属探测器国家标准。   审定委员会专家组在对标准送审稿进行认真审查讨论后认为,本标准填补了国内该领域标准的空白,达到国内领先水平 规范了食品金属探测器的性能要求及技术指标,能够有效指导食品金属探测器的设计、制造及检验,为保证食品金属探测器的产品质量,促进食品金属探测器行业的健康发展,提供了有力的技术保证。
  • 拉曼主导市场|2027全球手持化学和金属探测器市场将达41亿美元
    据最新研究报道,到2027年,全球手持式化学和金属探测器市场预计将从2022年的23亿美元增至41亿美元,2022 年至2027年的复合年增长率为12.4%。而推动市场增长的主要因素包括化学和爆炸物恐怖主义的威胁日益增加,以及世界各国政府越来越重视实施严格的法规以确保人类和环境安全。拉曼光谱预计在预测期内以最高复合年增长率增长拉曼光谱是广泛使用的检测技术之一。根据缉获毒品分析科学工作组(SWGDRUG)的说法,基于拉曼光谱的仪器或设备是一种分析技术,对毒品具有最高的潜在检测和鉴别能力(A类分析技术)。此外,基于拉曼光谱的手持式检测器提供快速响应、易于操作,并通过扫描包装材料有效识别化学品、爆炸物和麻醉品,而不会干扰样品,从而最大限度地减少对操作员的暴露——保持第一响应者和社区更安全。由于这些好处,拉曼光谱技术有望在预测期内主导市场。在预测期内,毒品检测应用预计将以最高复合年增长率增长根据联合国毒品和犯罪问题办公室(UNODC)的《2021年世界毒品报告》,在过去的二十年里,大麻的效力在世界某些地区翻了两番。从2010年到2019年,吸毒人数增加了22%,吸食大麻的人数增加了近18%。此外,大多数国家报告说大麻的使用有所增加。预计在预测期内,毒品或麻醉品使用量的增加将增加对用于毒品检测的手持式探测器的需求。到2027年,预计北美将占据整个市场的最大份额北美在2021年占据手持式化学和金属探测器市场的最大份额,预计在预测期内将主导市场。这种主导地位是由于其强大的最终用户基础,包括执法机构和法医部门、海关和边境安全人员、军队和国防军、机场和制药行业。这些最终用户需要手持式化学、爆炸物、麻醉品和金属探测器,以安全检测化学品、爆炸物和优先药物。据NBC新闻报道,加州的国家森林是该国80-85%的非法大麻种植地。毒贩将数百万加仑的水改道种植,并引发了几场大火。此外,在农作物上大量使用杀虫剂正在危及野生动物、供水和人类。手持式探测器可帮助森林官员检测这些危险化学品和药物,并保护森林免受野火的影响。而且,该地区还拥有众多化学、爆炸物、麻醉品和金属探测器制造商,包括OSI Systems, Inc. Teledyne 技术公司 赛默飞世尔科技公司;安捷伦科技公司和908设备公司。
  • 电镜那么多探测器,拍摄时我到底该如何选择?
    “TESCAN电镜学堂”终于又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。那我们该如何根据样品类型以及所关注的问题选择合适的电镜条件呢?这里是TESCAN电镜学堂第12期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第五章 电镜操作与工作参数优化第三节 常规拍摄需要注意的问题电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。前几期我们已经介绍过加速电压、束斑束流、工作距离该如何根据实际应用需求选择。本期将为大家继续介绍明暗对比度、不同探测器对扫描电镜拍摄的影响。§4. 明暗对比度的影响一张清晰的电镜照片需要有适中的明暗对比度,可以利用电镜软件中的直方图工具来进行明暗对比度的判断,如图5-30。直方图的横坐标表示亮度,左为暗部,右为亮部,纵坐标表示各种灰度所占的比例。图5-30 直方图工具一张明亮对比适中的图片,需要暗处、亮处、中间灰度均有分布,直方图从中间到两边类似正态分布,如图5-31。图5-31 亮度与直方图当图像亮度过亮、过暗都会导致另一端没有灰度信息,导致图像信息损失。对比度的调节希望整个灰度分布恰好覆盖大部分区域,如图5-32,对比度太小则灰度仅覆盖中间很少区域,而对比度太大,会造成亮处、暗处有信息损失。在开始扫描的时候尽量将明暗对比度调节至最合适的条件,如果一开始明暗对比不适合,利用软件自带的处理工具可以对图像进行优化,如图5-33。调整完的可以清楚的判别出其中至少五种灰度衬度,而调整前只能勉强分辨四种衬度。图5-32 对比度与直方图图5-33 明暗对比度的影响及对应的直方图§5. 探测器的选择TESCAN的场发射扫描电镜如果配置齐全包括SE、InBeam-SE、BSE、InBeam-BSE、STEM-BF、STEM-DF六个独立的探测器,前面已经在电镜结构中简单介绍了各个探测器的原理和特点。在平时拍摄时,选择不同的探测器也会获得不同的效果。图5-34 TESCAN电镜所有的电子探测器① SE和BSE探测器的对比SE和BSE分别是旁置式电子探测器和极靴下探测器,前者接收二次电子和部分低角背散射电子,后者接收大部分低角背散射电子探测器。所以从图像效果来说,SE探测器的图像以形貌衬度为主,立体感强,兼有少量的成分衬度;BSE探测器的图像以成分衬度为主,兼有一定的形貌衬度,如图5-35。图5-35 SE(左)和BSE(右)探测器的衬度对比② SE与InBeam-SE探测器的对比SE和InBeam-SE探测器相比,前者在侧方,具有阴影效应,可以形成强烈的立体感,而后者位于正上方,不会受任何形貌的遮挡,立体感较差,如图5-36。图5-36 SE(左)和InBeam-SE(右)探测器的立体感对比SE探测器接收SE1、SE2、SE3和部分BSE信号,分辨率相比只收集SE1的InBeam SE探测器要低,如图5-37。图5-37 SE(左)和InBeam-SE(右)探测器的分辨率对比对于一些凹坑处的观察,由于InBeam-SE探测器在上方没有遮挡,所以会比SE探测器有更多的信号量,InBeam-SE探测器更适合做凹陷区域的观察,如图5-38。图5-38 SE(左)和InBeam-SE(右)探测器对凹陷处观察对比③ BSE与InBeam-BSE探测器的对比BSE探测器主要采集低角背散射电子,InBeam-BSE探测器采集高角背散射电子,前者兼有成分和形貌衬度,后者相对来说成分衬度占主要部分,形貌衬度相对较弱。不过后者接收的电子信号量小于前者,所以信噪比也不如前者,如图5-39。图5-39 BSE(左)和InBeam-BSE(右)探测器受形貌影响的对比对于能观察到通道衬度的平整样品来说,BSE探测器显然有更好的通道衬度,更有利于晶粒的区分,如图5-40。图5-40 BSE(左)和InBeam-BSE(右)探测器通道衬度的对比④STEM探测器的应用电子束轰击到试样上形成水滴状的散射,但当试样足够薄时,电子束的散射面积还没有扩大就已经透射样品,所以此时各种信号的分辨率较常规样品更高,STEM探测器也有更好的分辨率。STEM探测器由于需要样品经过特殊的制样,虽然在扫描电镜中不常用,但是却有着所有探测器中最高的分辨率。当二次电子和背散射电子探测器分辨率都达不到要求时,可以尝试STEM探测器。如图5-41,二次电子探测器在20万倍下已经分辨率不够,而STEM放大至50万倍也能很好的区分。图5-41 SE(左)和STEM(右)探测器分辨率的对比此外,对于一些纳米级的小颗粒,因为团聚厉害,二次电子即使在低电压下也难以将其区分,且分辨率也不好,而STEM探测器通过透射电子来进行成像,对小颗粒的区分能力要强于其它探测器。如图5-42,STEM探测器可以区分团聚在一起的更小的单个纳米颗粒,而二次电子探测器则观察到团聚在一起的颗粒。图5-42 STEM(左)和InBeam-SE(右)探测器对团聚纳米颗粒的分辨对比扫描电镜中的STEM探测器虽然分辨率是最高的,但是和透射电镜的分辨率相比还是相形见绌。不过扫描电镜的电压要远小于透射电镜,所以扫描电镜的STEM相比TEM有着更好的质厚衬度。所以对一些不是非常注重横向分辨率,但特别注重质厚衬度的样品,如一些生物样品、石墨烯等,扫描电镜的STEM探测器可以表现出更大的优势。如图5-43,为10kV下观察到的石墨烯试样,图5-44为生物样品在扫描STEM和TEM下的对比。图5-43 STEM探测器在10kV下拍摄的石墨烯试样图5-44 生物试样在SEM STEM探测器和TEM的对比⑤ 多探测器同时成像TESCAN的电镜具有四个独立的通道放大器,可以进行四个探测器的同时成像。如果分辨不清楚用何种探测器时,可以选择多种探测器同时成像。然后在软件中将需要的图像进行通道分离,如图5-45。 图5-45 四探测器同时成像
  • 集成有亚波长光栅的台面型InGaAs基短波红外偏振探测器
    红外辐射(760nm-30μm)作为电磁波的一种,蕴含着物体丰富的信息。红外光电探测器在吸收物体的红外辐射后,通过光电转换、电信号处理等手段将携带物体辐射特征的红外信号可视化。其具有全天候观测、抗干扰能力强、穿透烟尘雾霾能力强、高分辨能力的特点,在国防、天文、民用领域扮演着重要的角色,是当今信息化时代发展的核心驱动力之一,是信息领域战略性高技术必争的制高点。众所周知,波长、强度、相位和偏振是构成光的四大基本元素。其中,光的偏振维度可以丰富目标的散射信息,如表面形貌和粗糙度等,使成像更加生动、更接近人眼接收到的图像。因此偏振成像在目标-背景对比度增强、水下成像、恶劣天气下探测、材料分类、表面重建等领域有着重要应用。在短波红外领域,InGaAs/InP材料体系由于其带隙优势,低暗电流,和室温下的高可靠性已经得到了广泛的应用。目前,一些关于短波偏振探测技术的研究已经在平面型InGaAs/InP PIN探测器上开展。然而,平面结构中所必须的扩散工艺导致的电学串扰使得器件难以向更小尺寸发展。同时,平面结构中由对准偏差导致的偏振相关的像差效应也不可避免。与平面结构相比,深台面结构在物理隔离方面具有优势,具有克服上述不足的潜力。中国科学院物理研究所/北京凝聚态物理国家研究中心E03组长期从事化合物半导体材料外延生长与器件制备的研究。E03组很早就开始了对近红外及短波红外探测器材料与器件的研究,曾研制出超低暗电流的硅基肖特基结红外探测器【Photonics Research, 8, 1662(2020)】,研究过短波红外面阵探测器小像元之间的暗电流抑制及串扰问题【Results in Optics, 5, 100181 (2021)】等。最近,E03组研究团队的张珺玚博士生在陈弘研究员,王文新研究员,邓震副研究员地指导下,针对光的偏振成像,并结合亚波长光栅制备技术,片上集成了一种台面型InGaAs/InP基PIN短波红外偏振探测器原型器件。该原型器件具有的深台面结构可以有效地防止电串扰,使其潜在地实现更小尺寸短波红外偏振探测器的制备。图1是利用湿法腐蚀和电子束曝光等微纳加工技术制备红外探测器及亚波长光栅的工艺流程。图2和图3分别是制备完成后的红外探测器光学显微镜图片和不同取向的亚波长光栅结构SEM图片。图1. 集成有亚波长Al光栅的台面型InGaAs PIN基偏振探测器的工艺流程示意图。图2. 两种台面尺寸原型器件的光学显微镜图片 (a) 403 μm×683 μm (P1), (b) 500 μm×780 μm (P0)。图3. 四种角度 (a) 0°, (b) 45°, (c) 90°, (d) 135° Al光栅形貌。图4是不同台面尺寸的P1和P0器件(无光栅)在不同条件下的J-V特性曲线和响应光谱。在1550 nm光激发,-0.1 V偏压下,P1和P0器件的外量子效率分别为 63.2% and 64.8%,比探测率D* 分别达到 6.28×1011 cm?Hz1/2/W 和6.88×1011 cm?Hz1/2/W,表明了原型器件的高性能。图4. InGaAs PIN原型探测器(无光栅)的J-V特性曲线和响应光谱。(a) 无光照下,P1和P0的暗电流密度Jd-V特性曲线;不同入射光功率下,(b) P1和(c) P0的光电流密度Jph-V特性曲线,插图是-0.1V下光电流密度与入射光功率之间的关系曲线; (d) P1和P0的响应光谱曲线。图5表明器件的偏振特性。从图5可以看出,透射率随偏振角度周期性变化,相邻方向间的相位差在π/4附近,服从马吕斯定律。此外, 0°, 45°, 90°和135°亚波长光栅器件的消光比分别为18:1、18:1、18:1和20:1,TM波透过率均超过90%,表明该偏振红外探测器件具有良好的偏振性能。图5. (a) 1550 nm下,无光栅器件和0°, 45°, 90°和135°亚波长光栅器件的电学信号随入射光极化角度的变化关系;(b) 光栅器件透射谱。综上所述,研究团队制备的台面结构InGaAs PIN探测器,其响应范围为900 nm -1700 nm,在1550 nm和-0.1 V (300K) 下的探测率为6.28×1011 cmHz1/2/W。此外,0°,45°,90°和135°光栅的器件均表现出明显的偏振特性,消光比可达18:1,TM波的透射率超过90%。上述的原型器件作为一种具有良好偏振特性的台面结构短波红外偏振探测器,有望在偏振红外探测领域具有潜在的广泛应用前景。近日,相关研究成果以题“Opto-electrical and polarization performance of mesa-structured InGaAs PIN detector integrated with subwavelength aluminum gratings”发表在Optics Letters【47,6173(2022)】上,上述研究工作得到了基金委重大、基金委青年基金、中国科学院青年创新促进会、中国科学院战略性先导科技专项、怀柔研究部的资助。另外,感谢微加工实验室杨海方老师在电子束曝光等方面的细心指导和帮助。物理所E03组博士研究生张珺玚为第一作者。
  • 涨知识!竟然可以利用光学方法探测金矿
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 金(gold)是一种软的,金黄色的,抗腐蚀的贵金属。从传统的珠宝配饰、储备和投资的流通货币,到电子通讯设备、传感器,再到体内药物传输、外太空探测等科技前沿,金的应用可谓包罗万象。据统计,仅2013年,金的全球需求总量已超过400吨。& nbsp br/ & nbsp & nbsp & nbsp & nbsp 大自然中,大量的金以离子形式进入溶液,被植物根茎或是地下微生物吸附,发生还原反应,转化为低浓度的纳米金溶胶。金溶胶是金盐被还原成金单质后形成的稳定、均匀、呈单一分散状态悬浮在液体中的金颗粒悬浮液。而这些金纳米颗粒往往构成探测信号,预示着该处地下沉积着更多金元素。因此,探测到这些金纳米颗粒信号尤为重要。一般而言,金的地壳丰度约为1.3ppb。只要能探测到浓度为8ppm的金元素,则有可能发现金矿。& nbsp br/ & nbsp & nbsp & nbsp & nbsp 人们早已开始使用X射线荧光光谱法(XRF)来探测ppm(毫克/升)量级的金元素,该方法简便快捷。相比之下,采用电感耦合等离子体质谱(ICP-MS)和电感耦合等离子体原子发射光谱(ICP-AES)来探测ppb(微克/升)量级的金元素就不这么容易了。通常,研究人员需要从现场采集矿石样品,转移至实验室进行处理和分析。这将消耗时间和人力成本,增加金矿开采的工作量。 /p p style=" line-height: 1.75em text-align: center " br/ /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/5a0d7abc-1deb-41e9-964a-c5651c22f7f1.jpg" title=" PT160301000044fLiO.jpg" / /p p style=" line-height: 1.75em text-align: center " 纳米金溶胶是一种以稳定形式存在的溶液中的金颗粒,为多相不均匀体系,根据颗粒直径不同,其颜色呈橘红色到紫红色。& nbsp /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 最近,澳大利亚阿德莱德大学的研究人员发现,金具有独特的光学性质:局域表面等离子体共振(SPR)和对荧光团的催化效应。该性质将有利于金的传感和探测。据此发现,研究人员正在采用光吸收法和荧光法探测钻井工地中的金纳米颗粒。这种方法不需要额外采集和制备矿石样品。& nbsp br/ & nbsp & nbsp & nbsp & nbsp 为了找出探测ppb量级的金纳米颗粒的最佳方法,研究人员以不同浓度的金溶胶试样(溶质颗粒直径为5nm、20nm和50nm)为对象,分别使用光谱仪、手持式和便携式光谱仪进行检测,并研究在以上三种情况下SPR法和荧光法的检出限。& nbsp br/ & nbsp & nbsp & nbsp & nbsp 研究人员分别分析了吸收池和SC光纤(SCF)中的纳米金溶胶,该光纤呈三个气孔包裹中央实芯结构。使用SC光纤作为分析场所的好处是:取样量小,分析环境不受限制,如井底。& nbsp br/ & nbsp & nbsp & nbsp & nbsp 研究人员发现,就光吸收法而言,实验室光谱仪的测定下限比便携式光谱仪低七倍(取决于纳米颗粒尺寸)。就荧光法而言,两种光谱的测定下限相同。对比吸收池和SC光纤,SC光纤中50nm颗粒的测定下限约为吸收池中的一半,但对于5nm和20nm颗粒的测定下限相同。& nbsp br/ & nbsp & nbsp & nbsp & nbsp “我们已经确定了光吸收法和荧光法的测定下限。这两种光学方法简便快捷、可操作性强、应用广泛,可以用于生物样品中金的探测。”阿德莱德大学的Agnieszka Zuber 解释道,“除了检出限低,两种方法的最大优势在于其便携性。这将省去制备矿石样品的繁琐工序,分析时间将从原来的几天减少到几个小时。”& nbsp br/ & nbsp & nbsp & nbsp & nbsp 研究人员还表示,该研究已获得阿德莱德深层勘探技术合作研究中心的支持。 /p p br/ /p
  • 四川叠溪山体垮塌新进展:精密仪器可探测地下8米生命
    p & nbsp & nbsp & nbsp & nbsp 6月24日6时左右,受强降雨天气影响,四川茂县叠溪镇新磨村突发山体高位垮塌,造成该村河道堵塞2公里,40余户100余名群众被掩埋,部分受灾区域通讯光缆、电网、铁塔等基础设施受损,通信中断。习近平对四川阿坝州叠溪镇新磨村山体高位垮塌抢险救援工作作出重要指示,要求全力组织搜救被埋人员,尽最大努力减少人员伤亡。李克强就抢险救援工作作出批示。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp strong 搜救面积扩大 精密仪器投入使用 /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 目前,抢险救灾工作已经进行了大约30个小时,救援人员夜以继日地工作,继续在现场搜救。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 四川阿坝消防部队的官兵使用“蛇眼”探测仪对事发区域进行生命搜索,这个探测仪是具备音视频功能的探测仪,最长能深入到石缝下3米。另外,阿坝消防部队还配备了搜救雷达,可以探测到石缝下7-8米的生命迹象。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/15994ae7-8d28-4c07-9422-ee95137172d6.jpg" title=" 1.png" / /p p style=" text-align: center " “蛇眼”探测仪 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/e429f506-4b91-4dbd-ae12-fc75672ffe3e.jpg" title=" 2.png" / /p p style=" text-align: center " 搜救雷达 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 同时,武警黄金部队使用激光扫描仪对山体进行扫描,从而构建三维地图,跟灾害发生之前的地图进行对比,为今后的科学施救提供依据。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/7b345abd-51ba-4a97-969e-6abad5202e8c.jpg" title=" 3.png" / /p p style=" text-align: center " 激光扫描仪 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 此外,一部分救援人员在塌方体对面聚集,展开搜救。为什么要在那么远的地方搜救?因为山体滑坡导致的巨大冲击力,当地的地形地貌发生了根本改变,河床抬高了近20米,河流的流向也发生了位移。所以在整个塌方体的边缘,很有可能有生命体存在。25日上午,在河对岸已经发现了一名遇难者的遗体。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp strong 山体垮塌方量约800万立方米 /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 24日晚11点,四川茂县前方新闻中心举行第二场新闻发布会,介绍了抢险救灾的情况。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 发布会上,“6.24”叠溪山体突发高位垮塌灾害抢险救灾前线指挥部指挥长王铭晖通报了具体详情。这次山体垮塌方量约800万立方米,最大落差1600米,河道平面2500至3000米,堵塞河道约2公里。目前,现场发现了部分人员遗体,待进一步核实后进行通报。经专家现场踏勘初步分析,这是一起降雨诱发的高位远程崩滑碎屑流灾害。下一步还要切实防范次生灾害,组织专家、技术人员现场勘验,开展隐患排查、传染病防控和水质监测等工作。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/806e5834-d07d-4d16-93f4-82c30bf7be25.jpg" title=" 4.png" / /p p style=" text-align: center " 灾害发生现场 /p p & nbsp & nbsp & nbsp & nbsp & nbsp strong & nbsp 118名失联人员身份已经确认 /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 在发布会过后不久,阿坝州政府发布消息,灾害中118名失联人员身份已经确认,具体名单和联系电话0837-7428325也已经公布在阿坝州政府门户网站,希望社会各界帮助寻找线索。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp strong 安排110余村民向小学转移 /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 鉴于次生灾害观测难度大,当地已安排附近村组磨坊沟25户110余名村民向叠溪镇上的叠溪中心小学转移。叠溪松坪沟景区游客中心的空地也搭起了帐篷。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp strong 今明两天有阵雨 对救援影响不大 /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 持续的降雨天气是此次茂县山体垮塌灾害发生的重要原因之一,而据中央气象台的消息,今明两天,该地区依然为阵性降雨天气,不过雨量相对较小,对救援影响不大。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp strong & nbsp 联合国秘书长向中方表达慰问 /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 针对茂县山体垮塌造成人员伤亡一事,联合国秘书长古特雷斯24日通过发言人发表声明,向中国人民和政府致以慰问,对人员伤亡表示悲痛。古特雷斯表示:如有需要,联合国愿以力所能及的方式向中国提供支援。 /p p br/ /p
  • 更多宇宙的声音可以被新探测器听见
    欧洲爱因斯坦望远镜艺术图 图片来源:ET概念设计团队 5年前,当物理学家首次探测到引力波时,他们为宇宙打开了一扇新的窗户。引力波是大质量黑洞或中子星碰撞时产生的涟漪。现在,研究人员已经在计划更大、更灵敏的探测器。而且,美欧之间的竞争已经初露端倪,美国科学家提出建造更大的探测器,而欧洲研究人员则在追求更激进的设计。  “目前,我们只捕捉到最罕见、最响亮的事件,但在宇宙中还有更多的声音。”美国加州州立大学天体物理学家Jocelyn Read说。加州理工学院物理学家David Reitze也表示,物理学家希望新的探测器能在21世纪30年代运行,这意味着他们必须现在就开始计划。“引力波的发现已经吸引了全世界的目光,所以现在是思考接下来会发生什么的好时机。”  目前的探测器都是L形的仪器,叫做干涉仪。激光在悬挂在每条臂的两端的镜子之间反射,有些光线会漏出来,在L形臂的弯处会合。在那里,光的干涉方式取决于臂的相对长度。通过监测这种干扰,物理学家可以发现通过的引力波,这种引力波会使臂的相关数值产生不同程度的变化。  因此,为了探测空间的微小拉伸,干涉仪的臂必须很长。发现了第一个引力波的位于路易斯安那州和华盛顿州的激光干涉仪引力波天文台(LIGO),臂长达4公里。位于意大利的Virgo探测器有3公里长的臂。  现在,研究人员现在想要一种灵敏度比现有设备高10倍的探测器。它能发现可观测宇宙中所有的黑洞合并,甚至可以追溯到第一批恒星出现之前,从而寻找大爆炸中形成的原始黑洞。它还应该能发现数百个“千新星”,揭示中子星超密度物质的本质。  美国科学家对新探测器的愿景很简单。“我们只想把它做得非常非常大。”Read说。Read正在帮助设计“宇宙探索者”—— 一个臂长40公里的干涉仪,本质上是一个放大了10倍的LIGO。  指导了LIGO建设的加州理工学院物理学家Barry Barish说,这种批量设计可能使美国能够负担得起多个分离的探测器,这将有助于新设备像现在的LIGO和Virgo一样精确定位天空中的事件源。  但安置这样巨大仪器可能很棘手。40公里的臂必须是直的,但地球是圆的。如果L形的弯道位于地面上,那么干涉仪的末端可能必须放在30米高的护堤上。因此,美国研究人员希望找到一个碗状区域,以便容纳这种结构。  相比之下,欧洲物理学家设想了一个地下引力波天文台,称为爱因斯坦望远镜(ET)。意大利国家核物理研究所物理学家、ET指导委员会联合主席Michele Punturo说:“我们想要实现一个能够在50年内承载(探测器)所有进化的基础设施。”  ET将由多个V形干涉仪组成,臂长10公里,排列在一个深埋地下的等边三角形中,以帮助屏蔽振动。借助指向三个方向的干涉仪,ET可以确定引力波的偏振度,帮助科学家在天空中定位引力波的来源,并探测引力波的基本性质。  Punturo表示,ET预计耗资17亿欧元,包括用于隧道和基础设施的9亿欧元。研究人员正在考虑两个地点,一个靠近比利时、德国和荷兰的交汇处,另一个在撒丁岛。相关计划正在等待审议。  美国的提议则不那么成熟。研究人员希望美国国家科学基金会提供6500万美元用于设计工作,这样就可以在本世纪20年代中期对这台价值10亿美元的机器做出决定。但物理学家们都希望这两台新设备能在2030年代中期启动。
  • 以色列研究人员正在培养荧光菌以探测地雷
    p   残酷的战争结束后,都会或多或少留下一些痕迹,包括那些埋在地下的地雷。残余地雷每年会导致1.5万-2万人伤亡,而目前传统的做法是借助金属探测器来进行扫雷,然而这种办法并不完全奏效,工兵人身安全依然受到严重的威胁。近日有消息称,以色列最高学府希伯来大学的研究人员决定借助发光的细菌来探测地雷。 /p p style=" TEXT-ALIGN: center" img title=" 细菌2.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/ce946ae9-a886-44bf-bbf0-caf2562862ef.jpg" / /p p   埋在地里的地雷或多或少会释放一些爆炸性气体,并聚集在地雷上方的土壤中,而这种荧光菌在接触到这些爆炸性气体的时候就会释放出荧光信号。 /p p style=" TEXT-ALIGN: center" img title=" 细菌1.png" src=" http://img1.17img.cn/17img/images/201704/insimg/1a592f3e-6718-4d66-84cd-2e22c7dd58de.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 细菌3.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/ab47884c-7a7a-4674-a53a-a965093ec1d8.jpg" / /p p   这项研究刊登在新一期的《自然生物科技》(Nature Biotechnology)杂志中,希伯来大学的研究人员称,细菌释放的信号将被远程记录下来,并对其进行量化。研究人员相信,这是首次实现远程探测地雷。但他们同时也表示,要完美地实现生物排雷的目标还有更多的工作要做,包括增强荧光菌的灵敏度和稳定性、提升扫描的速度以及覆盖面积、尝试在无人机上也使用荧光菌播撒等。 /p p style=" TEXT-ALIGN: center" img title=" 细菌4.png" src=" http://img1.17img.cn/17img/images/201704/insimg/84c65363-2685-476e-915b-69c879a6c4bc.jpg" / /p p   根据相关统计,全球约 50 万人都曾被战后地雷炸伤过,但是目前还有超过 1 亿颗地雷埋藏在 70 多个国家之中。所以清雷的工作需要更高效的技术支持,或许这项生物技术的引进,会给世界安全起到更大的作用。 /p
  • 欧航局选定木星探测器搭载的11套科学仪器
    欧洲航天局21日宣布,该机构计划于2022年发射的木星冰月探测器将搭载11套科学仪器,探索木星卫星上存在生命的可能性。   木星冰月探测任务于去年5月被欧航局列为“2015-2025宇宙愿景”首个大型任务。按计划,该探测器将于2030年抵达木星轨道,对木星及其卫星进行至少3年的观测。   欧航局科学项目委员会当天确定了木星冰月探测器将携带的11套科学仪器,包括照相机、光谱仪、激光测高仪、探冰雷达、磁力仪和粒子监测仪等。这些仪器将由来自15个欧洲国家、美国和日本的科学团队共同研发。   欧航局太阳系任务协调员路易吉・ 科兰杰利表示,这些仪器能够达成木星冰月探测任务的所有科学目标,从现场测量木星磁场,到远距离观测木星卫星表面与内部结构等。   木星拥有多颗卫星,有“小太阳系”之称。此前探索表明,木卫二、木卫三和木卫四上可能存在地下海洋。木星冰月探测器将对这三颗卫星进行探测,探索其上存在生命的可能性。
  • NASA选定九种科学仪器探测木卫二
    美国国家航空航天局(NASA)已经为木卫二探测任务选定了9种科学仪器来探索这颗神秘的冰质卫星是否具备适合生命存在的条件。 NASA的伽利略任务强有力地证明了木卫二的冰壳之下存在未知的海洋,体量大概是地球水资源的两倍。木卫二含有充足的盐水、岩石构成的海床以及由潮汐提供的能量和化学环境,可能成为太阳系除地球外存在生命的最佳地点。 NASA科学任务理事会副理事长约翰· 格伦斯菲尔德说:&ldquo 木卫二的冰冷表面和浩瀚海洋的系列证据一直困扰着我们,但最近匹配成功的伽利略太空船11次近距离飞行所获数据与哈勃望远镜观测的羽流反射月光数据,让我们惊讶地发现,这个新任务的潜力所在,这些被选定的仪器将揭开木卫二的神秘面纱,帮助我们寻找地外生命存在的更多证据。&rdquo NASA2016年财政预算报告中包含了3000万美元的木卫二任务预算。该任务将于2020年发射一个太阳能动力太空船进入木星轨道,在接下来的3年时间内,45次飞临木卫二,距离其表面25公里到2700公里不等。 据NASA官网27日消息,入选科学仪器包括摄像机、光谱仪,用以生成高分辨率木卫二表面图像并确定其构成;一个冰层探测雷达将用来确定冰壳厚度并寻找地下湖泊;任务还会携带一个磁强计来测量木卫二磁场的强度和方向,能够帮助科学家明确海洋的深度和盐度;热工仪表将搜查木卫二的冰冷表面,寻找最近发生的温暖海水喷涌;另一些仪器则会搜索稀薄大气中的水分子和微小粒子存在的证据。 哈勃太空望远镜在2012年于木卫二的南极地区观察到水汽,提供了水羽流存在的第一个强有力证据。通常羽流与地下海洋紧密联系,如果羽流的存在得到证实,将有助于科学家研究木卫二潜在的适合人类居住环境的化学组成。 去年,NASA邀请研究人员提交研究木卫二科学仪器的建议,总共有33个入选,最终有9个被选定于任务启动时升空。 木卫二项目科学家柯特· 尼尔博说:&ldquo 对于我们在太阳系内寻找支持生命的天体来说,又向前迈进了一大步,我们很自信,这套通用的科学仪器将在人们期盼已久的科学任务中有所斩获。&rdquo
  • 嫦娥三号将携多种仪器落月 实现多项首次探测
    承担中国探月工程第二步&ldquo 落月&rdquo 任务的嫦娥三号探测器将于今年底择机发射。记者从4日举行的首届北京月球与深空探测国际论坛上获悉,即将软着陆月面的嫦娥三号将携带多种&ldquo 独门武器&rdquo ,实现多项首次探测。   探月工程领导小组高级顾问欧阳自远院士介绍说,嫦娥三号着陆器上除了装配有各种照相机外,还携带了近紫外月基天文望远镜,将在国际上首次实现在月球上观测恒星、星系和宇宙。由于月球没有大气层、电离层和磁层的干扰,近于真空状态,没有各种人为活动和污染,也没有全球性磁场,因此这台望远镜将&ldquo 看&rdquo 得更远更清晰,可能会有一些新发现。   他介绍说,着陆器上还有一台极紫外相机,也是首次在月球上应用,将对地球等离子体层的整体变化进行监测,反映地球的环境变化。   嫦娥三号月球车将在月球表面自主&ldquo 行走&rdquo ,进行巡视探测。欧阳自远表示,在月球车上除了各种照相机、红外光谱仪和粒子激发X射线谱仪外,还在车底安装了雷达,将探测月球地表以下100至200米左右深度的地下结构。   嫦娥三号2008年2月立项,目前已完成研制建设工作,飞行产品基本就绪,探测器系统完成总装、各种大型试验和出厂评审,将于今年底由西昌卫星发射中心择机发射。   此外,中国科学家正在开展月球以远深空探测的论证工作,并正在积极进行技术储备。有专家建议,中国应尽快实施月球以远的深空探测计划。
  • 英国商人向中国等国售假“炸弹探测器”获罪
    英国ATSC公司的主管麦考克被判处欺诈罪名成立,将面临最高8年监禁 资料图:这名机场安全人员手持的就是所谓ADE-651“炸弹探测器” 资料图片“摩尔探测器”   据英国广播公司报道,56岁的英国商人麦考米克因向包括伊拉克、中国在内的多国出售假冒“炸弹探测器”,于当地时间4月23日被英国法庭裁定犯有欺诈罪。法庭认为他此举“太缺德”。   报道称,身为退休警官的麦考米克在英格兰肯特郡成立了一家公司,向全球20多个国家兜售一款名为ADE-651型的炸弹探测器。麦考米克声称,该探测器有一张“能探测出爆炸物的特殊电子卡”。但英国剑桥大学的科学家在检测后发现,这种电子卡不过是商店用来防小偷的一种电子标签,根本不能探测出爆炸物。   英国《泰晤士报》24日称,调查发现,麦考米克在2005年到2006年间以每个13英镑的价格购买了一批高尔夫球寻找器。之后,他将这些寻找器改头换面,以2.7万英镑的单价向20多个国家销售,包括伊拉克、格鲁吉亚、沙特、尼日尔和中国等,销售额高达5500万英镑。   令麦考米克的欺骗行为曝光的是他的探测器在伊拉克探测武装分子炸弹时完全不起作用。据英国《独立报》报道,伊拉克政府花费8000多万美元购买这种探测器,但之后不久,伊拉克在2009年遭遇多起针对英美军队的自杀式攻击,造成数百人死亡。当局发现,使用这种无用的炸弹探测设备,可能是导致自杀式炸弹攻击者能够顺利通过安全检查、进行攻击的原因。伊拉克总理马利基已下令全面调查政府为安全部队采购的ADE-651探测器,伊拉克议员要求英国政府召回全部产品。   《泰晤士报》引述原告律师维特姆的话说,一般的炸弹探测器要求可以检测到地下0.6英里、高空3英里以内的可疑物,但麦考米克的产品根本达不到这个标准。英国广播公司称,像麦考米克这样的假货商人在英国还有。2010年,英国警方曾搜查与三家向国外销售假炸弹探测器公司有关的办公室和住宅,缴获大量现金及数百台炸弹探测器。美国联邦调查局也曾对一种名为“QuadroTracker”的假探测器发出警告,要求各政府机构不得使用。(驻英国特约记者 纪双城)
  • 江门中微子实验中心探测器不锈钢主结构安装完成
    6月24日,江门中微子实验(JUNO)地下700米的实验大厅内,中心探测器不锈钢主结构最后一个拼装单元吊装合拢,标志着中心探测器不锈钢主结构安装工作顺利完成。 江门中微子实验核心探测设备——中心探测器位于地下实验大厅内44米深的水池中央,其不锈钢主结构设计采用直径约41米的球形网壳结构形式,也称作不锈钢网壳,作为探测器的主支撑结构,它将承载35.4米直径的有机玻璃球、两万吨液体闪烁体、两万只20英寸光电倍增管、两万五千只3英寸光电倍增管、前端电子学、电缆、防磁线圈、隔光板等诸多关键部件。 不锈钢主结构由预制的焊接H型钢通过12万套高强螺栓拼接而成,结构制造精度要求非常高,连接孔与环槽铆钉的安装间隙不超过1毫米,球形网壳网格拼装精度小于3毫米,是目前国内最大的单体不锈钢主结构。自2013年立项以来,高能所与设计、生产企业协同攻关,攻克诸多工艺技术难题,解决了大型不锈钢复杂结构焊接变形问题,通过特殊工装和工法完成了所有构件在工厂的高精度预拼装;研发了不锈钢表面粗化技术,该技术将不锈钢表面抗滑移系数从普通的0.2提高到0.5以上;同时针对JUNO项目的特殊需求研制了高强不锈钢短尾环槽铆钉。 不锈钢主结构项目负责人、现场安装经理何伟表示:不锈钢主结构设计与预研过程中获得了多项技术发明专利授权,同时带动提升了相关制造企业的创新发展和综合实力;其中不锈钢短尾环槽铆钉技术经中国机械通用零部件工业协会鉴定,首次用于不锈钢钢结构领域,相关标准据此发布,填补了国内空白。在不锈钢网壳现场安装过程中,为了保证安装质量、提高安装速度,同时满足实验高洁净度的要求,工程技术人员不断摸索优化拼装单元和安装工法,并且改进了铆钉枪的使用,有效减少了铆接不良率和返修数量,保证了质量和工期。 江门中微子实验项目采用单主线多副线并行的高效建设方案。在中心探测器不锈钢网壳安装过程中,同步进行了反符合探测器主支撑结构和有机玻璃升降平台的现场安装。其中,反符合探测器主支撑结构分布于直径43.5米的大型圆柱形池壁内侧,为悬挂不锈钢钢结构位于防水HDPE膜外,具有大长细比自重预应力的特点。该结构准确紧贴池壁,充分提高探测体积,同时43米通长无侧支撑,从根本上解决混凝土穿透处高压地下水渗漏难题。该结构作为池壁承载的主结构,承载探测器的各种电缆、光纤、液闪和纯水管路、tyvek反射纸以及水切伦科夫探测器刻度光源等。 不锈钢主结构的合拢也意味着有机玻璃球现场安装的开始,中心探测器结构中的有机玻璃球直径35.4米,壁厚120毫米,重600多吨,是世界上最大的单体有机玻璃结构,生产和建造在国内外都无先例,如何突破传统工艺,在短期内顺利完成这一球体建造是项目组面临的又一巨大挑战。 江门中微子实验位于广东省江门市开平市,是由中科院和广东省共同建设的大科学装置,同时也是一个大型的国际合作项目。2015年开始建设,计划2023年建成运行,以测定中微子质量顺序、精确测量中微子混合参数为主要科学目标,并进行其他多项科学前沿研究。江门中微子实验的实施将使我国在中微子研究领域的领先地位得到进一步巩固,并成为国际中微子研究的中心之一。
  • MGD磁导向钻井技术,通过多种测量仪器实现地下“厘米级”导航
    太空对接不易,入地连通更难。工程技术研究院具有完全自主知识产权的MGD磁导向钻井技术,利用井下探管实时检测人工磁场或井下落鱼的磁场分布特征,将测量的微弱磁信号采集、处理,利用定位算法模型及工程解释软件,给出钻头与目标靶点的相对距离、相对方位和相对井斜。在明确相对位置关系后,调整井眼轨迹走向,最终实现井眼空间位置的“厘米级”高精度导航。定向井技术是当今世界石油勘探开发领域最先进的钻井技术之一。它是应用特殊井下工具、测量仪器和工艺技术有效控制地下井眼轨迹,使钻头沿着特定方向钻达预定目标的常规钻井工艺技术。随着全球油气田开发的深入推进,通过复杂井型建立油气通道,已成为提高单井产量、提高采收率、降低综合成本的重要技术手段之一,尤其是在煤炭地下气化、超稠油开采、中低熟页岩油原位开发等需要精确定位邻井位置的情况下,最终以U型井、平行井、小井距水平井簇、立体井网等复杂井型完钻,解决其高精度“测、定、导”一体化关键技术难题。该技术起源于美国,最初是为了实现对井喷失控井进行压井作业而开发的一项技术,后又衍生出有源和无源两大类型多种型号的精确磁导向技术与配套工具。近年来,MGD磁导向钻井技术被规模化应用,源于该技术具备以下几个方面优势。精准对接是建设U型“地下锅炉”的基础。U型井是由一口水平井与直井连通构成的井组,在煤层气开采中可实现水平井排水和直井采气;在煤炭地下气化中可实现可控后退式点火;在地热开发中可实现取热不取水。与压裂、射孔相比,井眼对接是最直接、有效的连通方式。精密平行是搭建水平井“地下炼厂”的关键。平行井是由2口以上相互平行的水平井构成的井组,在超稠油SAGD开发中,可降黏提采50%以上;在低熟页岩油原位转化中,有希望动用潜力巨大的页岩油资源;与常规水平井相比,水平段间距的精密度提高了99.7%(千米水平段井间误差由10米左右降至0.3米以内)。精确导钻是敷设非开挖“地下管网”的前提。非开挖是在入土和出土小面积开挖情况下,敷设、更换和修复各种地下管线的施工新技术,不会破坏绿地、植被、建筑物,不会影响居民的正常生活和工作秩序。与传统开挖施工相比,施工速度可提高60%,综合成本可降低40%,入土和出土点偏差±1米。老井精细处置是保障“地下粮仓”密封完整的核心。救援井是在发生井下复杂、通道丢失时通过伴行跟踪实现目标井重入的一种技术,尤其适用于解决精细处置储气库疑难老井封堵、老油田涌水冒油、井喷失控等问题,筑牢油气安全环保第二道防线。MGD磁导向钻井技术已在储气库、地热、稠油等六大领域实现了规模化工业应用,累计推广了近500口井,创造直接和间接经济效益数十亿元。该技术解决了储气库复杂老井“封天窗”技术难题,使老井封堵作业成本下降90%,并为国内首座海上储气库冀东油田南堡1号储气库、辽河储气库群等重大工程提供了支撑利器。2023年,该技术支撑了中国石油深层U型地热井、国防管道铺设、重大塌陷救援等10余个重点项目,创造了2810米最深储层千米对接、2520米非开挖穿越等13项国内纪录。“十四五”期间,该技术有望在中低熟页岩油原位开发、煤炭地下气化、老油田提高采收率、干热岩开发等多个领域实现推广应用,助力构建“地下炼厂”“地下锅炉”等新能源开发新模式。面向未来,MGD磁导向钻井技术将接续研发,实现提档升级,推动磁导向技术与工具向着谱系化、自动化、信息化方向发展,具备万米深井井喷救援能力,并积极开拓丛式井网防碰、疑难复杂老井一体化处置、大埋深定向钻等新领域新业务,为超深层油气资源勘探开发、干热岩采热储能耦合开采等国家战略性新兴产业及未来产业提供关键核心技术支撑。(本文作者系工程技术研究院非常规油气工程研究所副所长、正高级工程师)
  • 太赫兹成像微芯片可探测物质内部信息
    一位特工正在和时间赛跑,他知道炸弹就在周围。他跑到一个拐角,发现小巷内堆满了可疑的纸箱。他急忙掏出手机,快速地逐个扫描面前的箱子,包装内的物品一一展现。千钧一发之际,手机屏幕上出现了爆炸装置的轮廓,形势瞬间扭转,待爆炸装置运行中止时,他才长出了一口气。   看起来像是电影情节?但这一幕却很有可能成为现实,而这要得益于美国加州理工学院工程师们开发出的一种低成本的微小硅芯片。这种成像芯片能够产生并发射出高频的电磁波,即太赫兹(THz)波。当它处于尚未被完全开发的电磁光谱区域,介于微波和远红外辐射之间,能够渗透多种材料,却不会出现X射线的电离损伤。   在扫描和成像领域应用潜力大   把这种新型微芯片整合进手持设备中,能够应用于国家安全、无线通信、医疗保健甚至非接触式游戏研发等多个方向。未来,这一技术还有望为非侵入式的癌症诊断提供帮助。相关研究报告发表在最新一期的电气电子工程师学会(IEEE)《固态电路杂志》上。   该校的电气工程系教授阿力· 哈基姆瑞说:&ldquo 利用与制造现今手机微芯片同样成本低廉的集成电路技术,我们研发出了比它们运行速度快300倍的硅芯片。这些芯片将为制造下一代十分多能的传感器奠定基础。&rdquo   频率从0.3THz到3THz的太赫兹波,具有在扫描和成像等领域的应用潜力。这些电磁波能轻易渗透包装材料,使得探测材料内部信息成为可能。例如,陶瓷、硬纸板和塑料制品等对太赫兹电磁辐射而言就是透明的,因此太赫兹波可以作为X射线的非电离和相干的互补辐射源,用于机场、车站等地的安全监测,比如探查枪械、生物武器、爆炸物和毒品等隐藏的非法物品。然而现有的太赫兹设备多为笨重而昂贵的激光装置,有时甚至需要处于低温环境。而技术的匮乏,也使太赫兹成像和扫描的发展停滞不前。   为了实现太赫兹波在这一领域的应用,哈基姆瑞和考西克· 森古普塔使用了互补金属氧化物半导体,即通常会被用于电子设备芯片制造中的CMOS技术,来设计具有全面集成功能的、可在太赫兹频率运行的硅芯片,而其尺寸只有指尖大小。研究人员表示,这使太赫兹波成像成为了可能。新芯片能够激发比现有途径强劲1000倍的信号,而发出的太赫兹信号能在特定方向被动态程控,使它们成为世界上第一个集成的太赫兹扫描阵列。借助这种扫描装置,研究人员能够发现藏在塑料制品中的剃须刀片,或者确定动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,以及植物叶片组织的水分含量分布等。而太赫兹成像技术与其他波段的成像技术相比,所得到探测图像的分辨率和景深也均有明显提高。&ldquo 这并不是在谈这项技术的潜能,而是切实地展现出它的实际效用。第一次看到太赫兹扫描图像时,我们都屏住了呼吸。&rdquo 哈基姆瑞说。   新研究克服了诸多技术限制   事实上,研究小组克服了诸多技术限制,才将CMOS技术转变成了可运行的太赫兹芯片。每个晶体管都具有一个截止频率,在这一频率之上信号放大就无法实现,而标准的晶体管亦不能在太赫兹频率放大信号。为了解决截止频率的难题,科学家尝试令多个晶体管一起工作。在正确的频率和时间结合它们的力量,来促进集体信号的强度提升。借助新的晶体管操作方法,可使晶体管保持在截止频率之上40%至50%,并能产生较大的功率。&ldquo 就像一群蚂蚁联合起来,也能做到大象所能做到的事情,而且不止于此。&rdquo 森古普塔解释说。   科研人员还解决了太赫兹信号的发射和传输。在如此高的频率下,无法按常理使用导线,而传统的天线在微芯片尺寸效率也很低下。因此,科学家将整个硅芯片当作天线,集成了芯片上的金属部分,在特定的时间和强度一起发射信号。整个解决方案囊括了集成电路、天线、电磁学和应用科学等多领域的创新,可谓十分全面。此外,IBM公司亦有助于此次的芯片制造。
  • 江门中微子实验中心探测器有机玻璃球正在安装
    中微子在宇宙起源及演化中扮演着极为重要的角色,至今仍有诸多未解之谜,是基础科学领域的国际前沿热点之一。我国的江门中微子实验以揭开中微子质量顺序之谜为首要科学目标。目前,江门中微子实验的核心探测设备——中心探测器的有机玻璃球正在有序安装。总台央视记者 郑玮玮:现在我们看到的是江门中微子实验的中心探测器,在外面球形的结构是不锈钢主结构,中间正在安装的是35.4米直径的有机玻璃球。有机玻璃球将来会灌装2万吨液体闪烁体,液体闪烁体是捕捉中微子的靶物质。在大科学装置江门中微子实验地下700米的实验大厅内,科研人员正在用全站仪测量有机玻璃节点和有机玻璃板的位置坐标数据。据介绍,有机玻璃球壁厚120毫米,重600多吨,是世界上最大的单体有机玻璃结构,生产和建造在国内外都史无前例。为了保障探测器数据分析的准确性,有机玻璃球在建造过程中需要严格控制每一块板和每一层板的尺寸和位置精度。中国科学院院士 中国科学院高能物理研究所所长 王贻芳:它独创的设计在于把过去的大型中微子探测器的结构从三层结构变成两层结构,过去一般是钢结构的外面是水,里面放矿物油。三层结构变成两层结构之后,钢球就变成钢梁,这样中间这层矿物油变成水,大大降低造价。江门中微子实验核心探测设备——中心探测器位于地下实验大厅内44米深的水池中央,其不锈钢主结构设计采用直径约41米的球形网壳结构形式,作为探测器的主支撑结构,它将承载35.4米直径的有机玻璃球、两万吨液体闪烁体、两万只20英寸光电倍增管、两万五千只3英寸光电倍增管、前端电子学、电缆、防磁线圈、隔光板等诸多关键部件。江门中微子实验位于广东江门开平市,是由中科院和广东省共同建设的大科学装置,同时也是一个大型的国际合作项目。2015年开始建设,计划2023年完成建成。亚湾中微子实验装置退役 二代装置接棒对中微子的研究一直是科学界关注的热点。江门中微子实验装置是我国第二代中微子实验装置,其前身是两年前已经圆满完成科学目标正式退役的大亚湾中微子实验装置。大亚湾中微子实验装置由中科院高能物理研究所主持,是中美两国在基础研究方面最大的国际合作项目。2012年3月,大亚湾实验国际合作组宣布发现了一种新的中微子振荡,这一重大发现对于研究物质本原和宇宙起源,理解宇宙中反物质消失之谜具有重要意义。该实验成果入选美国《科学》杂志2012年度十大科学突破。中微子是宇宙中最古老、数量最多的物质粒子,从宇宙诞生的大爆炸起就充斥在整个宇宙空间,每秒钟都有亿万个中微子穿过我们的身体,但它几乎不与任何东西发生反应,甚至可以轻松穿过整个地球。大亚湾中微子实验项目使人类对物质世界的基本规律有了新的认识,也为未来中微子研究指明了方向。(总台央视记者 郑玮玮)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制