当前位置: 仪器信息网 > 行业主题 > >

电池程控测试仪

仪器信息网电池程控测试仪专题为您提供2024年最新电池程控测试仪价格报价、厂家品牌的相关信息, 包括电池程控测试仪参数、型号等,不管是国产,还是进口品牌的电池程控测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池程控测试仪相关的耗材配件、试剂标物,还有电池程控测试仪相关的最新资讯、资料,以及电池程控测试仪相关的解决方案。

电池程控测试仪相关的论坛

  • 【分享】电池测试仪介绍

    电池测试仪,主要用于检测电流、电压、容量、内阻、温度、电池循环寿命,并给出曲线图。电池测试仪有多个通道可供选择。可以单点启动,单点控制,同时测不同型号、类型的电池(镍氢,镍镉,锂电等)。电池测试仪根据电池的形态及电池组装后的成品分类,测试仪又可分为:电芯测试仪,成品电池测试仪,手机电池测试仪,笔记本电池测试仪,移动DVD电池测试仪,蓄电池测试仪,都可以做综合性能测试。

  • 【分享】蓄电池容量测试仪的功能及应用

    蓄电池容量测试仪又称蓄电池放电仪,用来检测电瓶的性能和容量,维护和保养电瓶的仪器。蓄电池容量测试仪具有放电功率大、体积小、重量轻的优点。蓄电池容量测试仪的上位机数据管理软件功能齐全,随机配有大型数据库分析软件,可存储、记录、打印多组蓄电池在各种时期的充、放电及恒流测试的多种报表。 蓄电池容量测试仪采用最新的无线通讯技术,通过PC机监控软件可对蓄电池放电过程进行实时监测,监控每节电池的放电过程。采用PTC陶瓷电阻作为放电负载,完全避免了红热现象,使整个放电过程更安全。蓄电池容量测试仪可在线、快速检测蓄电池容量、全面记录蓄电池充放电数据;可全面测试蓄电池组在放电、充电及恒流测试中的总电压、电流、单体电压等数据,蓄电池容量测试仪具有无线通讯功能,无线采集盒与放电主机及上位监控PC主机三者之间通过无线方式进行通讯,简化接线,灵活方便。 蓄电池容量测试仪用于精确检测蓄电池的实际容量和性能,可以实时检测每一组电池的整组电压、单节电压、实时充电电流、放电电流、实时充入容量、放出容量及监测时间,蓄电池容量测试仪适用于-24V、-48V及UPS蓄电池容量的全面测试,可在线快速检测蓄电池容量,测量并记录电池组总电压、电流以及各单体电压、容量等参数。

  • 【分享】YXD-3006蓄电池内阻测试仪

    YXD-3006蓄电池内阻测试仪主要用途,1、主要是用来测试蓄电池的内阻进而判断蓄电池的好坏;2、还有一个主要用途,就是进行蓄电池的配租。也就是先用YXD-3006蓄电池内阻测试仪测试蓄电池内阻,再进行比较判断串联成一组使用。

  • 【分享】微孔分布测试仪的主要特性

    微孔分布测试仪主要应用领域:催化剂,广泛用于石化、化工、医药、食品、农业、精细化工等领域;吸附剂,如活性炭、分子筛、活性氧化铝等,广泛用于环保领域;颜填料,无机颜料、碳酸钙、氧化锌、氧化硅、矿物粉等;陶瓷材料原料,氧化铝、氧化锆、氧化钇、氮化硅、碳化硅等;炭黑、白炭黑、纳米碳酸钙等用于橡塑材料的补强剂等;新型电池材料,如钴酸锂、锰酸锂、石墨等电极材料;发光稀土粉末材料;磁性粉末材料,如四氧化三铁、铁氧体等;纳米粉体材料,包括纳米陶瓷材料、纳米金属材料,纳米银粉、铁粉、铜粉、钨粉、镍粉等;其他,如超细纤维、多孔织物、复合材料、沉积物、悬浮物等  微孔分布测试仪的主要特性:  测试时间:多点BET法比表面积平均每个样品15分钟,孔径分布测试、孔隙度测试平均每个样品100分钟  主要功能:可实行BET比表面积(多点及单点)测试,Langmuir比表面积测试,炭黑外比表面积测定,吸附、脱附等温曲线测定,BJH孔径分布、总孔体积和平均孔径测定;  真空系统:极限真空度6×10-2Pa  微孔分布测试仪测量范围:比表面积≥0.01M2/g至无规定上限,孔尺寸0.7~400nm;  样品数量:可同时测定1-4个样品;  测量精度:≤±2%;  微孔分布测试仪的压力控制:高精度压力传感器,数字显示,精度0.2%,独特的充气与抽气速度自动控制系统  运行方式:高度自动化,智能化,长时间运行可以无人看管自行测试  测试气体:高纯氮气(不用氦气),氮气消耗量极小  微孔分布测试仪的吸附过程:样品不需要频繁从液氮杜瓦瓶中进出,液氮消耗极少  软件系统:在Windows平台上,提供过程控制和数据采集、处理、报告系统,多种测试方法可自由方便选择,在计算机屏幕上,同步显示吸、脱附,比表面积及微孔分布测量仪测试过程、可随时查看已完成部分的测试数据;本机软件功能强大、界面友好、兼容性高、使用方便;

  • 锂电池交流内阻测试解决方案

    锂电池的内阻是电池性能评估的重要指标之一,已广泛应用于电动汽车系统、储能系统、电子设备和新能源产业等多领域,所以对于锂电池性能参数的快速测试也有了大量需求。内阻影响着锂电池功率性能和放电效率,随着存储时间的增加,电池不断老化,其内阻不断增大。不同类型的锂电池内阻变化程度不同,其初始的内阻大小主要受电池的结构设计、原材料性能和制程工艺的影响。通过测试内阻,可以全面评估电池在高功率应用下的性能表现,是衡量功率性能和寿命的关键参数。因此,内阻的合理控制和优化是提高电池品质、性能和可靠性的重要手段,对锂电池内阻的持续关注和有效管理是不可忽视的重要议题。通过精准测试和控制锂电池内阻,可以更好地满足不同应用场景对电池性能和品质的要求,推动电池技术的不断创新与进步。[img=锂电池内阻测试.png]http://uphotos.eepw.com.cn/1693205920/pics/1712640743873053.png[/img][b]锂电池的内阻[/b]是指电池在工作时,电流通过电池内部时所遇到的电阻。内阻的大小直接影响电池的性能,包括放电效率、温升情况以及电池的寿命。锂电池内阻通常分为欧姆内阻和极化内阻两部分。其中欧姆内阻由电池的总电导率决定,极化内阻由锂离子在电极活性材料中的固相扩散系数决定。[b]欧姆内阻:[/b] 由电极材料、电解液、隔膜电阻以及各部分零件的接触电阻所构成。它是电流通过电池时产生的电阻。极化内阻: 是指电化学反应时由极化引起的电阻,包括电化学极化内阻和浓差极化内阻。两者共同影响电池内阻的变化。[b]解决方案分享[/b]锂电池内阻测量可采用[b]直流内阻测量方法(DCR)和交流内阻测量方法(ACR)两种[/b]。[b]直流内阻测量方法[/b]是测试设备让电池在短时间内(一般为2~3秒)强制通过一个很大的恒定直流电流(一般使用40A~80A的大电流),测量此时电池两端的电压,并按公式计算出当前的电池内阻。通过公式计算出电池的直流内阻。然而,这方法存在一些问题,如果长时间通过大电流电池内部的电极会发生极化现象,出现极化内阻,影响结果的可靠性。另一种[b]交流内阻测量方法[/b]是通过在电池正负极注入正弦波电流信号,同时通过另外两端在电池正负极检测得到正弦波电压信号,进而可以推导出电池的交流内阻。交流内阻测试通入的电流较小,一般为50mA,且测量时间短,一般发生在毫秒级。现如今交流内阻测量方法得到了广泛的认可,并在实际应用中得到了较多的采用。但无论哪种方法,都存在一些很容易被我们忽视的问题,那就是测试仪器本身的元件误差和用于连接电池的测试线缆问题。一条短短的从仪器到电池的连接线本身也存在电阻(大约也是微欧级),还有电池与连接线的接触面也存在接触电阻,这些都将影响测试结果的准确性。[img=锂电池内阻测试方案图.png]http://uphotos.eepw.com.cn/1693205920/pics/1712640865761075.png[/img]由此可见在测量锂电池交流内阻时,采用高精度的测量仪器至关重要。SBT300电池测试仪是一款高精度、高分辨率的电池测试仪。采用交流四端子测试方法,可更精准地测试锂电池的内阻和电压。电阻最小分辨率可达0.1μΩ,电压最小分辨率可达10μV。内建比较器功能,可自动判断电池参数是否符合标准,以便统计合格率,适合各种电池的检测和分拣。仪器具有RS-232C/LAN通讯接口,支持SCPI通讯协议。为手机锂电池、动力电池、储能电池等各种应用场景提供精准测试支持。[b]主要优势[/b]1、比较器功能:电池测试仪SBT300中的电压和交流内阻测量分别具备独立的比较功能,能够同时进行Pass/Hi/IN/Lo的判断并在画面上显示,且可以向外部I/O口输出综合判断结果。2、模拟输出功能:电池测试仪SBT300可以进行交流内阻测量值的模拟输出,通过将模拟输出量连接到数据记录仪上,记录交流内阻值的变化,便于使用数据采集仪进行需要长期记录的测量和电池的评估等。3、统计功能:电池测试仪SBT300可以根据测量结果计算统计指标,绘制正态分布图,观察测量结果的正态分布情况。4、存储功能:电池测试仪SBT300内置2.8G存储空间,测量结果可以使用csv格式或者mat格式存储到仪器内存,并且提供USB接口,能够通过外接U盘导出数据,随时查看相应时间的测量结果。

  • 电池隔膜的质量控制方法

    随着信息、材料和能源技术的进步,锂离子电池以其高比能量、长循环寿命、无记忆效应、安全可靠以及能快速充放电等优点而成为新型电源技术研究的热点。电池隔膜作为锂离子电池的重要组成部分,在电池中起着防止正、负极短路,同时在充放电过程中提供离子运输通道的作用。其性能的优劣决定了电池的界面结构内阻,进而影响电池的容量、循环性能、充放电电流密度等关键特性。Labthink兰光接下来结合透气性测试仪、智能电子拉力试验机、测厚仪及热缩试验仪对电池隔膜的透气性能、耐穿刺性能、拉伸强度、厚度及热收缩性能检测进行简要的介绍。一、电池隔膜透气性能电池隔膜是指在锂离子电池正极与负极中间的聚合物隔膜,其主要作用有:隔离正、负极并使电池内的电子不能自由穿过;让电解质液中的离子在正负极间自由通过。隔膜的存在首先要满足它不能恶化电池的电化学性能,主要表现在内阻上。通常内阻的大小通过其透气率来表征,或者称之为Gurley数,即一定体积的气体,在一定压力条件下通过一定面积的隔膜所需要的时间。对于相同的电池隔膜,这个数值从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。Labthink兰光的BTY-B1P透气性测试仪,采用计算机控制,三测试腔设计,压力差可调,人机交互友好,测试效率高,可满足各种客户对于电池隔膜透气性测试的要求。二、电池隔膜耐穿刺性能及拉伸强度锂电池在使用过程中电池内部会逐渐形成枝状晶体,有可能刺破隔膜,造成内部微短路。在制造过程中由于电极表面涂覆不够平整、电极边缘有毛刺等情况,以及装配过程中工艺水平有限等因素,都要求电池隔膜具有相当的穿刺强度。另外,电池隔膜的拉伸强度也是影响其应用的一个重要因素,如果隔膜在使用过程中破裂,就会发生短路,降低成品率。Labthink兰光的XLW(PC)智能电子拉力试验机,该机具备拉伸强度与变形率、剥离强度,热合强度,撕裂等7项测试功能,并且这些功能均采用菜单式界面,选择相应检测功能,即可执行标准规定的检测。配合专用的测试夹具,还可以对电池隔膜进行刺破性能测试,是目前行业中最为专业的仪器。三、电池隔膜厚度电池隔膜的厚度是否均匀是检测其各项性能的基础。厚度不均匀,会影响到透气率、拉伸强度等性能,对厚度实施高精度控制也是确保质量与控制成本的重要手段。Labthink兰光的CHY-CA测厚仪,采用目前世界测量领域最先进的技术成果,确保测量结果的高精确性,多次测量结果的高度一致性;并且操作调试极其方便,几近于自动化操作,最大限度地减少了人为因素对测量结果带来的影响。该仪器具有手动、自动两种测量模式,对于手动模式测量,可打印输出测量结果;对于自动模式测量,可按照预先设置好的次数自动测试,并对测量结果进行统计、分析、打印输出;接触面积、测量压力、移动速度等严格遵循相关标准的规定。四、电池隔膜热收缩性在电池生产过程中由于电解液对水分非常敏感,大多数厂家会在注液前进行85℃左右的烘烤,要求在这个温度下电池隔膜的尺寸也应该稳定,否则会造成电池在烘烤时,隔膜收缩过大,极片外露造成短路。Labthink兰光的RSY-R2热缩试验仪,采用微电脑控制,PID温度控制,液体加热介质,温度控制精确,受热均匀,用于电池隔膜、热缩管、背板等材料在多种温度下进行热收缩性能及尺寸稳定性的精准测试。当然确保了电池隔膜的透气性能、耐穿刺性能、热收缩性能等指标合格后,还需要对其他的一些指标如浸润度、化学稳定性、孔径及分布、闭孔温度、破膜温度、孔隙率等进行控制,以确保其使用适应性。 以上资料由济南Ulab优班检测提供更多资料www.ulab.cn

  • 锂电池过度充电测试

    锂电池以其能量密度高等特点,广泛应用于工业自动化、新能源汽车、消费电子产品等领域。然而,在日常使用中,电池过度充电等问题时有发生,这可能对电池造成不可逆的损害,轻则缩短电池寿命或导致彻底失效,重则可能引发电池燃烧爆炸,危及电气设备和人员安全。为确保锂电池在使用和运输过程中的安全性,必须进行严格的测试和检测,以评估其对过度充电的承受能力。其中,UN38.3过度充电测试是锂电池在运输前必须通过的安全检测,由联合国发布,具备高度的公信力。在锂电池行业中,注重安全标准和测试的重要性,是为了推动科技发展的同时,最大程度地降低潜在的风险和安全隐患。通过这一测试,可以有效避免用户在使用锂电池时发生意外,保障设备和人员的安全。[align=center][img=,690,411]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181624110174_6281_6387980_3.png!w690x411.jpg[/img][/align][b]什么是UN38.3(可充电型锂电池操作规范)[/b]UN38.3(可充电型锂电池操作规范)是联合国危险物品运输专门制定的《联合国危险物品运输试验和标准手册》的第3部分38.3款,为确保锂电池在运输前的安全性,规定了一系列严格的测试要求。这些测试包括高度模拟、高低温循环、振动试验、冲击试验、55℃外短路、撞击试验、过度充电试验、强制放电试验等。如果锂电池与设备没有安装在一起,并且每个包装件内装有超过24个电池芯或12个电池,则还须通过1.2米自由跌落试验。[b]解决方案[/b]在这些测试中,过度充电试验是其中难度较大的一项。该测试要求在2倍最大连续充电电流和2倍最大连续充电电压的条件下,将待测锂电池连续充电24小时。测试的主要目的是评估锂电池对过度充电的承受能力,要求电池在过度充电过程中及之后七天内没有发生电池解体或燃烧爆炸的情况。这一系列的测试确保了锂电池在运输过程中的高度安全性,尤其是过度充电试验,关系到用电设备与用户的安危,具有极其重要的意义。为应对UN38.3标准中的过度充电测试。利用直流电源为电池进行持续供电,同时结合SBT300电池测试仪,全面监测电池充电过程中的电压、交流内阻等关键参数。通过这些先进的测试设备,工程师能够深入分析锂电池的衰化效应和稳定性,为研发制造更加安全可靠的锂电池提供有力支持。[align=center][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181625312538_6416_6387980_3.png!w690x460.jpg[/img][/align][b]主要优势[/b]交流四端子法测量:SBT300电池测试仪采用交流四端子法测量交流内阻和电压,能够分离提供电流的导线和测量器件上电压降的导线,进而消除电缆和探针接触电阻的阻抗。校正功能:SBT300电池测试仪能够补偿仪器内部电路的偏置电压或者增益漂移等,对测量数据进行校正以提高测量精度,并且可以根据测量结果计算统计指标,绘制正态分布图,观察测量结果的正态分布情况。模拟输出:SBT300电池测试仪可以进行交流内阻测量值的模拟输出,通过将模拟输出量连接到数据记录仪上,记录电阻值的变化,便于使用数据采集仪进行需要长期记录的测量和锂电池的评估等。

  • 电池电机电控测试

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-11070.html[/url]电池安全性测试过量充电、短路、针刺、海拔、振动、机械冲击、撞击跌落、翻滚、碰撞/挤压、加热、燃料火灾、温度冲击浸泡电池性能测试外观、极性、尺寸及质量、常温放电容量、-20℃放电容量、55℃放电容量、常温倍率放电、常温荷电保持、容量恢复能力、高温荷电保持、容量恢复能力、存储、容量及能量(室温、高温、低温)、功率及内阻测试(室温、高温、低温)、无负载容量损失(高温、室温)、存储中的容量损失、高低温启动功率、能量效率测试电池电磁兼容性测试电磁干扰(EMI)、电磁干扰度(EMS)电池生命周期和耐久性测试加速的寿命测试、寿命终结预测、日历寿命测试、高温和低温操作耐久性试验、供电热循环耐久性试验热湿度循环试验、高温和高湿度耐久性电池的可靠性和环境模拟振动、机械冲击、温度、湿度、盐雾、灰尘、固体和液体侵入(IP保护)、混流气、化学品接触、水射流、盐水浸泡、热冲击循环UN运输测试T1海拔模拟、T2热测试、T3振动、T4冲击、T5外部短路、T6撞击、T7过度充电[table=100%][tr][td][img=,260,182]https://img2.17img.cn/pic/kind/20191025/20191025154232_9800.jpg[/img][/td][td][img=,260,182]https://img2.17img.cn/pic/kind/20191025/20191025154233_1519.jpg[/img][/td][td][img=,260,182]https://img2.17img.cn/pic/kind/20191025/20191025154233_2828.jpg[/img][/td][/tr][tr][td]新能源动力电池(蓄电池)分析检测[/td][td]美国必测电池包测试系统[/td][td]电池包试验现场[/td][/tr][tr][td][align=center][img]https://img2.17img.cn/pic/kind/20191025/20191025154233_4068.jpg[/img][/align][/td][td][align=center][img]https://img2.17img.cn/pic/kind/20191025/20191025154233_5425.jpg[/img][/align][/td][td][align=center][img]https://img2.17img.cn/pic/kind/20191025/20191025154234_0289.jpg[/img][/align][/td][/tr][tr][td]电池燃烧试验机、电池挤压试验机电池重物冲击试验机[/td][td]防爆型可程式恒温恒湿试验箱[/td][td]温控型电池短路试验机[/td][/tr][/table]

  • 【讨论】蓄电池测试仪

    我公司将参加“2007第六届上海国际电池展览会”我公司将于2007年7月11日-13日参加在上海光大会展中心举办的“2007第六届上海国际电池展览会”布展时间:2007年7月10日 (周二) 展览时间:2007年7月11-13日 9:00-16:30(周三-周五)撤展时间:2007年7月13日 16:00(周五)展览地点:上海光大会展中心(漕宝路78号光大会展中心) 展位号:2楼A232展位该展会是蓄电池行业的盛会,公司届时将推出以下蓄电池安全预警系统:蓄电池在线监测设备 蓄电池在线检测设备蓄电池核对放电设备蓄电池修复设备蓄电池内阻检测仪[img]http://www.quantic.cn/gb/images/2007zwt.jpg[/img]到时会有哪些同行来参加呀,留个名呀,谢谢了

  • TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    [size=16px][color=#339999]摘要:电化学热电池(electrochemical thermcells)作为用于低品质热源的热电转换技术,是目前可穿戴电子产品的研究热点之一,使用中要求具有一定的温差环境。电化学热电池相应的性能测试就对温度和温差形成提出很高要求,特别是要求温度控制仪器具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能。本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/color][/size][align=center][size=16px][img=电化学热电池性能测试中的TEC半导体制冷片温度控制解决方案,600,379]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171026207841_631_3221506_3.jpg!w690x436.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 温差发电在固体材料与半导体材料的发展上均比较成熟,而近年出现了一种新型的电化学热电池(electrochemical thermcells)拥有更高的塞贝克系数,同时成本较低、能够适应复杂热源表面,因而具有一定的应用前景,成为当前研究的热点方向之一。如图1所示,这种电化学热电池的基本原理是利用电化学体系中的赛贝克效应,将冷热电极之间的温差直接转化为电势差而产生发电效果,因此温差环境是使用和测试评价电化学电池的必要条件。[/size][align=center][size=16px][color=#339999][b][img=01.电化学热电池原理图,450,396]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027053355_4631_3221506_3.jpg!w690x608.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 电化学热电池基本原理[/b][/color][/size][/align][size=16px] 电化学热电池中的电解质、材料和电极受温度的影响,以及整个热电池的相关性能测试评价,对测试过程中的温差形成有十分复杂的要求,具体内容如下:[/size][size=16px] (1)热电池的两个冷热端电极要处于不同温度以形成温差,两个电极温度要具有一定的变化范围以便在不同电极温度和不同温差条件下测试评价热电池的各种性能。[/size][size=16px] (2)对于冷端温度,可采用TEC半导体制冷片进行调节和控制,但热端温度普遍较高,采用制冷片无法实现高温加热,需采用电阻等加热。[/size][size=16px] (3)在热电池性能测试过程中,需要在冷热电极处实现台阶式或周期交变式可编程温度变化。这样一方面是能够测试不同电极温度和不同温差下的热电池性能,得到热电池最佳工作状态时的温度和温差条件,另一方面是测试考核热电池的疲劳衰减特性。[/size][size=16px] (4)新型的电化学热电池往往很薄,如各种可穿戴电子产品用热电池。在实际应用中,这类薄片或薄膜状热电池上形成的温差很小,这就要求热电池性能测量装置需要具备在冷热电极之间提供小温差的能力。[/size][size=16px] 根据上述要求可以看出,一旦电化学热电池形状确定,热电池性能测试装置的结构也基本确定,而测试装置中温度控制的关键是确定合理的加热方式和温控仪表。[/size][size=16px] 对于加热形式,采用电阻加热和TEC半导体制冷片两种形式,可满足绝大多数电化学热电池在任意温度和温差范围内的测试需要,对于温度不高的测试,可仅使用TEC半导体制冷片进行温度控制。电阻加热用于热电极处的高温加热,温度范围为50~150℃以上。TEC半导体制冷片加热用于冷电极处的低温加热和冷却,温度范围为-10~60℃。[/size][size=16px] 对于温控仪表,满足上述温度控制要求的控温仪表需具备以下功能:[/size][size=16px] (1)可对电阻加热和TEC半导体制冷片分别进行控制。[/size][size=16px] (2)可编程控制功能,可控制温度按照编程设定的温度折线进行变化。[/size][size=16px] (3)交变温度控制功能,可控制温度按照设定周期和幅度进行交替变化。[/size][size=16px] (4)带PID自整定功能,避免繁琐的人工调整PID参数,并可存储和调用多组PID参数。[/size][size=16px] (5)测量和控温精度高,特别是要满足薄膜热电池的温差控制,控温精度要达到0.01℃。[/size][size=16px] (6)带通讯功能可与上位机连接,由上位机进行设置、编程、控制运行、显示和存储。[/size][size=16px] (7)带计算机软件,无需编程,可通过计算机进行设置、编程、控制运行、显示和存储。[/size][size=16px] 从上述功能要求中可以看出,电化学热电池性能测试中对温度和温差形成的要求很高,特别是要求温控仪表具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能,而这些很多都是目前电化学热电池性能测试用控温仪无法具备的功能。为此,本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案设计的温控系统典型结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.电化学热电池性能测试温控系统结构示意图,690,343]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027488618_9875_3221506_3.jpg!w690x343.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 电化学热电池性能测试温控系统结构示意图[/b][/color][/size][/align][size=16px] 图2所示的解决方案示意图包含了电化学热电池性能测量装置和温度控制系统两部分。其中的电化学热电池测量装置示出的是对块状、板状或薄膜状热电池的测试结构,电极分别贴服在热电池的顶部和底部,顶部的阴极电极处通过TEC半导体制冷片进行低温控制形成冷电极,底部的阳极电极处通过电阻加热方式(电热膜和电热块)进行高温控制形成热电极,由此在热电池上下两端形成所需温差。需要说明的是,解决方案在冷电极处选择TEC半导体制冷片的主要目的是为了实现高精度的温度控制,这在测试评价薄膜式可穿戴用热电池中实现高精度小温差时非常重要。在热电极出选择电阻加热方式主要是为了满足更高温度的大温差测试需要。[/size][size=16px] 由于半导体制冷片和电阻加热是两种完全不同的发热制冷原理,它们的温度控制方式也完全不同,因此图2所示解决方案设计了两个独立的温控回路,两个温控回路采用的是相同的超高精度PID控制器VPC2021-1。选择使用VPC202-1这种PID控制器,是出于多功能和超高精度的考虑,此控制器可以满足前面所述的对温度控制器的所有要求。[/size][size=16px] 在TEC半导体制冷片温控回路中,使用了VPC2021双向控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动双向电源对TEC制冷片进行加热或制冷控制,由此实现高精度的温度控制。[/size][size=16px] 在电阻加热温控回路中,使用了VPC2021基本的温度控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动固态继电器进行加热,由此实现高精度的温度控制。这里需要注意的是,如果要在电阻加热中实现较高精度的温度控制,除了采用高精度的温度传感器(如铂电阻或热敏电阻)之外,还需要与相应的冷源配合以减小热惯性,如在电阻发热体下面配备冷却装置以便能够形成快速散热。如果是测量薄膜热电池,则无需这些考虑,只需在电阻发热体下面增加绝热层即可,因为热电池和电阻加热膜厚度很小,热惯性自然也小,冷电极的低温可以对热电极进行快速散热,有利于热电极处的温度高精度控制。[/size][size=16px] 为了实现热电池的温度交变试验,解决方案采用了VPC2021控制器的高级功能:远程设定点功能,即在辅助输入通道上接入外部信号发生器以生成各种周期性波形信号作为交变设定值,由此可控制热电极温度按照此设定波形进行周期性变化,从而形成交变温差。如图2所示,此远程设定点功能的选择可以通过一个外置开关进行选择,实现正常控温和交变控温之间的切换。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以满足绝大多数电化学热电池性能测试中的温差环境控制需要,为测试评价热电池性能和优化使用条件提供了便利的试验和考核手段。[/size][size=16px] 更重要的是高精度PID控制器配备了相应的计算机软件,采用了具有标准MODBUS通讯协议的RS485接口,与计算机一起可以组成独立的测控系统,通过计算机可方便的对PID控制器进行远程操控,设置控制器的各种参数,采集、存储和曲线形式显示PID控制器的过程参数,无需再进行任何编程即可进行测试试验,非常适应于实验室研究试验。[/size][size=16px] 此解决方案的另外一个特点是具有很强的灵活性和拓展性,可通过外置不同传感器和信号发生器实现多种物理量和波形的准确控制,更可连接上位机直接与中央控制器进行集成,与整个设备形成很好的配套。[/size][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】耐压测试仪的原理及构成

    耐压测试仪的基本原理:把一个高于正常工作的电压加在被测设备的绝缘体上,并持续一段规定的时间,如果其间的绝缘性足够好,加在上面的电压就只会产生很小的漏电流。如果一个被测设备绝缘体在规定的时间内,其漏电电流保持在规定的范围内,就可以确定这个被测设备可以在正常的运行条件下安全运行。耐压测试仪的主要构成:1)升压部分  调压变压器、升压变压器及升压部分电源接通及切断开关组成。   220V电压通过接通,切断开关加到调压变压器上调压变压器输出连接升压变压器。用户只需调节调压器就可以控制升压变压器的输出电压。 (2)控制部分  电流取样,时间电路、报警电路组成。控制部分当收到启动信号,仪器立即在接通升压部分电源。当收到被测回路电流超过设定值及发出声光报警立即切断升压回路电源。当收到复位或者时间到信号后切断升压回路电源。 (3)显示电路  显示器显示升压变压器输出电压值。显示由电流取样部分的电流值,及时间电路的时间值一般为倒计时。 (4)程控耐压测试仪以上是传统的耐电压试验仪的结构组成。随着电子技术及单片,计算机技术飞速发展;程控耐压测试仪这几年也发展很快,程控耐压仪与传统的耐压仪不同之处主要是升压部分。程控耐压仪高压升压不是通过市电由调压器来调节,而是通过单片计算机控制产生一个50Hz或60Hz的正弦波信号再通过功率放大电路进行放大升压,输出电压值也由单片计算机进行控制,其它部分原理与传统耐压仪差别不大。

  • 电池测试设备制冷加热控温过程中影响制冷量的因素有哪些?

    电池测试设备是应用于新能源汽车电池、电机测试过程中使用的,在电池电机控温的过程中使用,那么,在制冷加热过程中,影响无锡冠亚电池测试设备制冷量的因素有哪些呢?  电池测试设备制冷系统中电池测试设备压缩机的功率越大,制冷量越高,根据电池测试设备机型大小选配机构形式不一样的压缩机,例如小型电池测试设备选用活塞式,中型选配涡旋式。电池测试设备水温(蒸发温度不一样,制冷量不一样)越高时,制冷量越大,水温越低时,制冷量越小。电池测试设备水泵功率水循环量的多少,直接影响传热速度,蒸发器,冷凝器的形式,分为水箱盘管试,壳管式,不锈钢板式等,需要我们按照一定的需求进行配置,热材质中铜管传热比较好。  影响电池测试设备制冷量外部因素也有,电池测试设备大部分是风冷式散热,所以外部环境温度需要在一个合理的范围之内,冷凝温度不能超过45度,一旦超过制冷量会明显减弱,也不能太低,电池测试设备空气是不是对流也很重要,散热口不能有阻挡物,参考标准出风口周围1米内不能有障碍物。  电池测试设备的制冷量关系到整个电池测试设备运行过程,所以,电池测试设备的制冷量一定要有所保证,使得电池、电机在制冷加热的过程中很好的运行。

  • 电池热失控试验中精确模拟大气环境压力变化的解决方案

    电池热失控试验中精确模拟大气环境压力变化的解决方案

    [size=16px][color=#990000][b]摘要:针对目前新能源电池热失控和特性研究以及生产中缺乏变环境压力准确模拟装置、错误控制方法造成环境压力控制极不稳定以及氢燃料电池中氢气所带来的易燃易爆问题,本文提出了相应的解决方案。方案的关键一是采用了低漏率电控针阀作为下游控制调节阀实现压力可编程精密控制,二是采用高压气体型真空源避免机械式真空泵的电火花造成引燃,三是在压力控制的同时也对电池加热温度进行自动控制。整个装置控制精度和自动化程度较高。[/b][/color][/size][align=center][size=16px][color=#990000][b]==================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 随着现代新能源行业的飞速发展,各种新能源电池在经济社会中发挥着越来越重要的作用,由此对低压环境下新能源电池的使用、储存和运输也提出更高技术要求。例如高原地区和飞机运输中新能源电池的性能变化特征以及热失控传播特性,都是电池发展极其重要的一个环节。目前新能源电池在低压环境下的热失控特性和性能变化特性研究主要存在以下几方面的问题:[/size][size=16px] (1)目前的新能源电池热失控的测试设备主要集中在研究常压下的热失控行为,环境压力对电池热失控特征的研究较为缺失,对压力变化影响热失控行为的研究仍需进行更深入研究。[/size][size=16px] (2)研究变环境压力下电池燃烧爆炸行为的特性与特征,对于新能源电池的前期研发、中期使用以及后期预防热失控都有着尤为重要的参考意义。但目前缺乏变环境压力的准确模拟装置,控制方法存在严重问题而造成环境压力控制极不稳定,难以准确观察压力室内电池特性的变化,实验的可信度较差。[/size][size=16px] (3)另外,氢燃料电池作为一种新能源电池同样存在上述问题,同样需要在不同海拔工况下验证电池的运行性能和可靠谱。但由于氢燃料电池的特殊性,特别是由于氢气属于易燃易爆气体,在环境压力模拟设备运行时流道内的旋转机械有可能在高速运转情况下产生火花,继而引燃氢气形成爆炸,这对于环境模拟实验设备而言是绝对不允许的。同时,氢气与空气在燃料电池内反应生成水,故而在排气中含有液滴,这部分液滴在进入设备时可能对旋转部件造成损害,影响设备可靠性。因此,对于氢燃料电池的环境压力模拟装置,需要避免这些问题的出现。[/size][size=16px] 针对上述新能源电池以及氢燃料电池中环境压力准确控制方面存在的问题和需求,本文提出了相应的解决方案,解决方案主要包括以下两方面的内容:[/size][size=16px] (1)针对现有的锂电池环境压力模拟装置进行技术改造,采用下游控制模式实现模拟箱内环境压力的可编程准确控制,以满足绝大多数新能源电池的环境压力模拟需要。[/size][size=16px] (2)针对氢燃料电池的环境压力模拟,提出更安全的环境压力准确控制解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 锂离子电池在高温环境下容易发生热失控,具有一定危险性,会发生着火甚至爆炸。为了给电池的测试试验同时提供高温和环境压力的模拟条件,解决方案是将电池放置在密闭的测试环境箱内,并对环境箱内部进行气压控制,使电池处于所需环境压力。然后通过对锂离子电池外部加热的方式给予电池达到热滥用的条件,再通过热电偶、数字天平等装置研究温度与质量等参数的变化。热电偶测量热失控过程中的温度变化,数字天平测量热失控过程中电池质量参数的变化,整个测试装置的控制系统如图1所示。[/size][align=center][size=16px][color=#990000][b][img=电池环境压力和高温温度模拟控制系统结构示意图,690,394]https://ng1.17img.cn/bbsfiles/images/2023/10/202310161757014248_9888_3221506_3.jpg!w690x394.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 电池环境压力和高温温度模拟控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,整个控制系统主要由环境压力控制回路、电池加热温度控制回路、质量测量装置和数据采集装置构成,它们的各自功能和技术内容如下:[/size][size=16px] (1)环境压力控制回路:其功能是对测试环境箱进行可编程气体压力控制,可对一系列不同的设定压力进行自动控制。控制回路由数控针阀、真空计、真空泵、真空压力控制器和真空管路组成,其中一个数控针阀控制进气流量、另一个数控针阀控制排气流量,真空计测量环境箱内的真空度并传输给控制器,控制器将接收到的真空度信号与设定值比较后驱动数控针阀的开度变化,并快速使得环境箱内的真空压力达到设定值。需要说明的是,这里的控制采用了固定进气针阀开度而改变排气针阀开度的下游控制模式,这样可以实现更高精度和稳定性的环境压力控制。[/size][size=16px] (2)电池加热温度控制回路:其功能是对电池进行加热和温度控制,以模拟电池热失效过程中的温度变化。控制回路由加热器、电池组件、固定夹板、热电偶温度传感器和双通道控制器组成,其中热电偶采集电池温度并传输给控制器,控制器将接收到的温度信号与设定值比较后驱动加热器通电加热,并使电池温度快速达到设定值。[/size][size=16px] (3)质量测量装置:其功能是测量电池本体在热失控过程中的质量损失。质量测量装置主要是悬挂式数字天平,放置在环境箱外部的数字天平通过悬丝测量电池质量。[/size][size=16px] (4)数据采集装置:其功能是同时采集电池温度、环境压力和质量测量数据,并以曲线形式进行显示和存储。数据采集装置主要由多通道数据采集器和计算机组成,多通道数据采集器连接相应的温度压力传感器和数字天平,计算机与采集器进行通讯并用软件显示和存储采集结果。[/size][size=16px] 需要说明的是,在解决方案中,计算机或上位机也可以与真空压力控制器和温度控制器进行通讯,并通过各自的软件对控制器进行参数设置、运行控制和控制过程参数变化曲线的显示。[/size][size=16px] 图1所示的电池环境压力模拟控制系统并不适合氢燃料电池的性能测试,这主要是机械式旋转型的真空泵有可能在高速运转情况下产生火花而引燃氢气形成爆炸,同时氢燃料电池测试过程中会在真空管路内形成水滴而造成阀门和真空泵旋转部件的损伤。为了解决这两个问题,本文所提出的解决方案采用了以下两项技术:[/size][size=16px] (1)将真空泵更换为真空发生器,即通过高压气体来形成真空,这样可以避免机械式旋转部件所带来的火花引燃危害。[/size][size=16px] (2)环境压力的调节还是采用前面所述的电动针阀,因为这种NCNV系列具有非常好的真空密封性能,电机转动部分与所通气体完全隔离,不会带来引燃隐患。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,解决方案通过改进后的环境压力下游控制技术、高压气体真空发生技术和温度自动控制技术,可以很好的实现各种新能源电池在可变环境压力和高温温度下的热失控特性和运行特性变化测试和试验考核,解决方案具有以下几方面的突出特点:[/size][size=16px] (1)可实现环境压力和温度的高精度控制,更有利于电池特性的精密研究和测试考核。[/size][size=16px] (2)环境压力和温度控制可按照不同设定值进行编程控制,可自动实现电池特性测试的全过程。[/size][size=16px] (3)通过使用控制器和数据采集器自带的计算机软件,可快速搭建起电池特性测试装置,无需再专门编写计算机程序,大幅减小了装置组建的工作量。[/size][align=center][size=16px][color=#990000][b][/b][/color][/size][/align][align=center][size=16px][color=#990000][b][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    [color=#cc0000]摘要:本文针对锂离子电池材料导热系数测试方法,评论性概述了近些年的相关研究文献报道,研究分析了这些导热系数测试方法的特点,总结了电池材料导热系数测试技术所面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径。[/color][hr/][size=18px][color=#cc0000]1.问题的提出[/color][/size] 锂离子电池在各种应用中用于能量转换和存储,包括消费类电子产品、电动汽车、航空航天系统等。图1-1所示为典型的锂离子电池的结构,锂离子电池主要包括电极材料、电解质材料、隔膜材料、电池堆和热管理高导热相变复合材料。[align=center][img=锂离子电池结构示意图,500,375]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250623319094_6619_3384_3.jpg!w600x450.jpg[/img][/align][align=center][color=#cc0000]图1-1 锂离子电池结构示意图[/color][/align] 导热系数作为电池材料的重要热物理性能参数之一,严重影响着锂离子电池的各种特性。而锂离子电池在使用过程中会面临着电、热、力和质的不同边界条件,这就使得准确测试电池材料导热系数面临着以下几方面的严峻挑战: (1)锂离子电池材料往往涉及含能和储能材料,在不同边界条件下,如在充放电过程中会伴随着生热甚至热解过程,在电池热管理系统中还涉及到相变材料,这就要求要在这些电化学和热化学过程中同时对导热系数进行测量,这要比以往纯热物理变化过程中的导热系数测试技术更为复杂。 (2)导热系数测试方法众多,但针对锂离子电池材料的复杂特征和要求,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池材料和电池热管理尤为重要。 (3)由于锂离子电池材料导热系数测试所涉及的环境条件众多,会涉及众多不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽量少的测试方法和仪器设备尽可能多的满足各种各种锂离子电池材料的导热系数测试需求。 (4)由于锂离子电池材料还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器进行集成,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。 本文将针对上述存在的问题和挑战,首先对近些年锂离子电池材料导热系数测试技术进行评论性综述,然后在分析研究的基础上,提出比较适合锂离子电池和材料导热系数测量的实用方法。[size=18px][color=#cc0000]2.电池材料导热系数测试方法综述[/color][/size] 在锂离子电池材料级别方面,主要涉及的材料有电极、电解质、隔膜、电极隔膜堆和热管理高导热相变复合材料。 在材料级别方面,已经报道了电极[1]-[4]、电解质[5]、隔膜[6][7]、电极堆[2][8]的导热系数和接触热阻[9][10]测量结果。 如图2-1所示,阴极样品厚度方向上导热系数已使用保护型热流计法(ASTM E1530)进行了测量[1][12],阴极由等体积分数的聚合物电解质以及活性材料和乙炔黑的混合物制成。经测量,在25~150℃之间复合材料导热系数在0.2 ~ 0.5 W/mK范围内变化。由于阴极材料太薄,将多层阴极材料叠加后形成1~2mm厚的可测样品,样品直径为25.4mm,测试压力为10psi以减少多层叠加后带来的接触热阻。[align=center][img=保护型热流计法导系数测试示意图,500,419]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250624120593_5244_3384_3.jpg!w500x419.jpg[/img][/align][align=center]图2-1 保护型热流计法导热系数测试示意图[/align] 如图 2-2所示,展示了锂离子电池电极材料厚度方向导热系数测量装置结构[2]。[align=center][img=,600,428]https://ng1.17img.cn/bbsfiles/images/2020/05/202005252355511656_8624_3384_3.jpg!w600x428.jpg[/img][/align][align=center][color=#cc0000]图2-2 锂离子电池材料厚度方向导热系数测量装置示意图[/color][/align] 装置采用了稳态薄加热片法[13],单层材料面积为431mm2,厚度0.42mm,被测样品为多层叠加形式。还采用了闪光法测量多层锂离子电池薄层材料的热扩散系数,并通过叠层材料不同取样方向来测量得到不同方向的热扩散系数。 时域热反射(TDTR)技术已用于测量LiCoO2薄膜厚度方向导热系数[3],样品厚度约500nm,测量了锂化程度对导热系数的影响。循环过程中原位测量LiCoO2阴极的导热系数表明,去锂化时,导热系数从5.4W/mK可逆地降低至4.7W/mK。 如图2-3所示,采用闪光法确定由各种粒径的合成石墨制成的负电极(NE)材料的导热系数[4][14],样品尺寸为直径约15mm,厚度范围为1.1~9.5mm,实验在室温RT,150和200°C下进行。[align=center][img=激光闪法测量原理,500,467]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625143698_6549_3384_3.jpg!w500x467.jpg[/img][/align][align=center][color=#cc0000]图2-3 激光闪光法测量原理[/color][/align] 同样,聚合物电解质的导热系数采用图1-1所示保护型热流计法进行了测量[5],测量样品厚度方向上的温差,该温差用于计算总热阻,从中可提取出样品厚度方向上的导热系数。通过刮刀技术制备聚合物电解质薄膜样品,并将其夹在导热仪顶板和底板之间,然后测量温度差。据报道,在25~150℃范围内,导热系数在0.12~0.22W/mK之间变化。 如图2-4所示,隔膜材料面内方向导热系数已使用直流加热法进行了测量[6]。在100级无尘室中从26650锂离子电池中提取隔膜样品,在隔膜样品上沉积了两条相距很小的细钛线,其中一条线用作加热器,而这两条线都用于温度测量,两条线的温度作为时间函数的超快测量用于确定隔膜样品的热性能[15]。室温下的面内方向导热系数为0.5W/mK,在50℃下测量时,这些值没有明显变化。[align=center][img=,500,308]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625463285_8933_3384_3.jpg!w550x339.jpg[/img][/align][align=center][color=#cc0000]图2-4 隔膜材料比热容和面内方向导热系数测试示意图[/color][/align] 正负电极薄膜材料和隔膜材料厚度方向和面内方向导热系数已使用不同的稳态方法进行了测量[7],实验装置与先前使用的一维热流计法装置非常相似[1]。样品尺寸30mm×30mm,单层膜厚度在24~106um范围内,导热系数测量结果范围为0.19~31W/mK。 如图2-5所示,采用闪光法测量了多层阳极、隔膜和阴极构成的电极隔膜堆的厚度方向和面内方向热扩散系数[8],采用差示扫描量热仪测量了比热容,由此得到电极隔膜堆厚度方向和面内方向的导热系数。另外对从新电池中取出的电极隔膜堆在45℃下循环500次,考察了高温循环对导热系数的影响。[align=center][img=闪光法厚度方向和面内方向测试示意图,690,400]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626168406_2334_3384_3.jpg!w690x400.jpg[/img][/align][align=center][color=#cc0000]图2-5 (a)闪光法测试厚度方向和面内方向电极隔膜堆热扩散系数示意图;(b)测试过程中样品的取样形式和摆放形式[/color][/align] 除了上述关于导热系数测量的报道外,还报道了采用恒定热流法(ASTM D5470)在不同压力和温度下测量了电极隔膜堆的接触热阻[9][16]。如图2-6所示,测试过程中将被测电极隔膜堆叠层夹在两个铜块之间,并测量了叠层的总热阻。电池隔膜堆包括了涂覆有石墨的铜阳极、涂覆有钴酸锂的铝阴极、聚乙烯/聚丙烯隔膜和电解质,测试温度范围-20~50℃,压力0~250psi。通过测试得出的主要结论包括:与干电池组相比,湿电池组的接触热阻更低,并且电极隔膜堆叠热阻的温度依赖性较弱。但是,此处测得的热阻是总热阻,其中还包括材料自身热阻,而不仅仅是电池不同材料之间的接触热阻。已经测量了使用的电极和铜棒之间的接触热阻,这与电池的原位操作没有特别的关系。[align=center][img=,550,442]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626475813_5845_3384_3.jpg!w550x442.jpg[/img][/align][align=center][color=#cc0000]图2-6 恒定热流法(ASTM D5470)测量电池材料接触热阻示意图[/color][/align] 如图2-7所示,在另一项工作中,同样采用恒定热流法(ASTM D5470)测量了阴极和隔膜之间的界面热传导[10]。测量结果表明,锂离子电池的热特性很大程度上取决于穿过阴极-隔膜界面的传热,而不是通过电池本身的传热。这种界面热阻约占电池总热阻的88%。[align=center][img=,500,267]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627005929_1859_3384_3.jpg!w600x321.jpg[/img][/align][align=center][color=#cc0000]图2-7 恒定热流法测量电池材料接触热阻示意图:(a)被测样品为电极隔膜堆;(b)纯隔膜样品;(c)纯阴极样品[/color][/align] 如图2-8所示,采用瞬态平面热源法测量了石墨烯填料的混合相变材料[11][17],石蜡相变材料在添加石墨烯前后的导热系数分别为0.25W/mK和45W/mK。[align=center][img=,500,202]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627216467_2507_3384_3.jpg!w600x243.jpg[/img][/align][align=center][color=#cc0000]图2-8 瞬态平面热源法测试探头和测量原理图[/color][/align] 对于锂离子电池材料这类薄膜材料,其导热系数的测量还有一种非常有效的方法就是温度波法[18]。这种方法尽管已推出多年,但应用还是较少,但今后将是一种重要的有效方法。[size=18px][color=#cc0000]3.测试方法的特点[/color][/size] 从上述综述中可以看出,电池材料导热系数采用了以下几种测试方法: (1)稳态保护热流计法:ASTM E1530; (2)稳态护热板法:ASTM C177; (3)时域反射法; (4)闪光法:ASTM E1461; (5)稳态热流计法:ASTM C518; (6)恒定热流法:ASTM D5470; (7)瞬态平面热源法:ISO 22007-2。 (8)温度波法:ISO 22007-3。 从上述所涉及的多个测试方法可以看出,与传统材料导热系数测试不同,锂离子电池材料导热系数测试呈现出以下显著特点: (1)薄膜化:锂离子电池材料基本都呈现出薄膜化的形态,所涉及的则是典型的薄膜导热系数测试技术; (2)各向异性:薄膜化的锂离子电池材料呈现出比较明显的各向异性特征,导热系数在厚度方向和面内方向上表现出明显差别,锂离子电池材料导热系数测试实际上是一个各向异性薄膜材料导热系数测试问题; (3)测试变量多:锂离子电池材料导热系数测试的另一个显著特征是测试条件变量较多,除需在传统的不同温度下进行测试之外,还需要包括其他测试条件,如不同的加载压力、SOC荷电、气氛、振动、湿度等条件,甚至还需在通电状态下。[size=18px][color=#cc0000]4.电池材料导热系数测试方法分析[/color][/size] 根据上述锂离子电池材料导热系数测试的特点,对上述各种测试方法进行分析,以寻找出那些测试方法更能适合锂离子电池材料的测试。 纵观上述测试方法,我们将它们分为稳态法和瞬态法进行分析。[color=#cc0000]4.1. 稳态法[/color] 稳态法主要包括:保护热流计法、护热板法、热流计法和恒定热流法。 稳态法的显著特点就是依据经典的傅里叶稳态传热定律,在被测电池材料薄膜样品的测试方向上形成稳定的一维热流,通过测量不同条件下的温度和热流密度来测定相应的导热系数和接触热阻。 稳态法做为一种传统方法,是在较厚的块体材料热性能基础上发展起来的测试方法,对于较大尺寸和较厚块体样品的导热系数测试非常准确和成熟,如保护热流计法、护热板法、热流计法。为了进行电池薄膜材料测试,需要对薄膜材料进行多层叠加后制成样品才能满足稳态法测量准确性要求,这种多层叠加势必会带来接触热阻的严重影响。鉴于传统稳态法对薄膜材料导热系数测试的局限性,开发的恒定热流法则部分解决了测试问题,通过独特的表面温度测试技术,可以进行百微米厚度量级的薄膜导热系数测量,非常适合测试多层膜构成的电池堆以及高导热相变复合材料。 尽管做了相应的改进,但这种在稳态法上做的任何努力都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,测试能力下限毕竟还是非常有限,受到了稳态法自身的制约,特别是受到表面温度和厚度测量准确性的制约,使得这种扩展空间十分有限且效果很难保证。总之,对于锂离子电池材料,暂时比较适合的稳态法是ASTM D5470恒定热流法,可以进行导热系数和热阻测量,样品尺寸适中并比较适合加载各种边界条件。[color=#cc0000]4.2. 瞬态法[/color] 瞬态法主要包括时域反射法、闪光法和瞬态平面热源法。 与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不再属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。 总之,瞬态法作为非接触是测量方法非常适用于致密性薄膜材料,适合测量非常薄的样品,但对于锂离子电池材料这类较低密度的薄膜材料则会遇到许多测试难题,多孔性的薄膜材料样品需要进行表面处理才能进行导热系数测量,但表面处理往往会带来渗透而改变薄膜样品的热性能。另外,瞬态法的另一个明显不足是很难在被测样品上加载各种相应的边界条件进行导热系数测量,如压力和通电等。但瞬态法中的温度波法则是一个例外,这将在下节中进行介绍。[size=18px][color=#cc0000]5.未来设想:新方法的提出[/color][/size] 从上述对电池材料导热系数测试方法的分析中可以看出,现有方法都不能很好的解决本文开始提到的锂离子电池材料导热系数测试所面临的问题,需要研究和开发新型测试方法才能应对相应的技术挑战。 通过我们的研究,我们认为将上述稳态法和瞬态法相结合的方法将会是一种有效的技术途径,具体的结合形式就是改进型的瞬态温度波法。 ISO 22007-3规定的温度波测试方法[18],主要用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。ISO 22007-3中给出了温度波法测量装置示意图,如图5-1所示。[align=center][img=温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627416770_5455_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图5-1 温度波法热扩散系数测量装置示意图[/color][/align] 从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。 总之,采用改进后的温度波法,将具备以下几方面的显著特点: (1)在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,可以在测量过程中对样品加载一定的压力和其他测试条件。同时,温度波法还具备了非接触瞬态法的优点,将温度和热流测量转换为高精度的频率和相位测量,减少了误差,可以实现高灵敏的测量。 (2)尽管ISO 22007-3规定的温度波测试方法是用于测量薄膜材料厚度方向的热扩散系数,但这种方法也可以用于薄膜面内方向上的热扩散系数测量,转换后的测试方法就是经典的Angstrom周期热波法[19]。 (3)从图5-1所示的温度波测量原理可以看出,只要将交流加热形式控制为直流形式,温度波法就变成了传统的热流计法,就可以用于板材样品测量,也就是说可以进行各种规格尺寸袋装和片状锂离子电池热扩散系数和导热系数的测量。 (4)更重要的特点是,改进的温度波法结构小巧,可以与其他热性能测试方法进行集成,这方面的内容将在后续报告中进行介绍。 综上所述,我们选择并开展改进型的温度波法研究,基本可以解决本文前面所提出的锂离子电池材料测试中所面临的几方面难题,同时还兼顾了测试仪器的微型化、集成化和低成本,这将是我们今后热分析仪器发展的一个方向。[size=18px][color=#cc0000]6.参考文献[/color][/size][1] Song, L., and Evans, J. W., 1999, “Measurements of the Thermal Conductivity of Lithium Polymer Battery Composite Cathodes,” J. Electrochem. Soc., 146(3), pp. 869–871.[2] Maleki, H., Al Hallaj, S., Selman, J. R., Dinwiddie, R. B., and Wang, H., 1999, “Thermal Properties of Lithium-Ion Battery and Components,” J. Electrochem. Soc., 146(3), pp. 947–954.[3] Cho, J., Losego, M. D., Zhang, H. G., Kim, H., Zuo, J., Petrov, I., Cahill, D. G., and Braun, P. V., 2014, “Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide,” Nat. Commun., 5, p. 4035.[4] Maleki, H., Selman, J. R., Dinwiddie, R. B., and Wang, H., 2001, “High Thermal Conductivity Negative Electrode Material for Lithium-Ion Batteries,” J. Power Sources, 94(1), pp. 26–35.[5] Song, L., Chen, Y., and Evans, J. W., 1997, “Measurements of the Thermal Conductivity of Poly(Ethylene Oxide)-Lithium Salt Electrolytes,” J. Electrochem. Soc., 144(11), pp. 3797–3800.[6] Vishwakarma, V., and Jain, A., 2014, “Measurement of In-Plane Thermal Conductivity and Heat Capacity of Separator in Li-Ion Cells Using a Transient DC Heating Method,” J. Power Sources, 272, pp. 378–385.[7] Yang, Y., Huang, X., Cao, Z., and Chen, G., 2016, “Thermally Conductive Separator With Hierarchical Nano/Microstructures for Improving Thermal Management of Batteries,” Nano Energy, 22, pp. 301–309.[8] Maleki, H., Wang, H., Porter, W., and Hallmark, J., 2014, “Li-Ion Polymer Cells Thermal Property Changes as a Function of Cycle-Life,” J. Power Sources, 263, pp. 223–230.[9] Ponnappan, R., and Ravigururajan, T. S., 2004, “Contact Thermal Resistance of Li-Ion Cell Electrode Stack,” J. Power Sources, 129(1), pp. 7–13.[10] Vishwakarma, V., Waghela, C., Wei, Z., Prasher, R., Nagpure, S. C., Li, J., Liu, F., Daniel, C., and Jain, A., 2015, “Heat Transfer Enhancement in a Lithium-Ion Cell Through Improved Material-Level Thermal Transport,” J. Power Sources, 300, pp. 123–131.[11] Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., and Balandin, A. A., 2014, “Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries,” J. Power Sources, 248, pp. 37–43.[12] ASTM E1530 Standard Test Method for Evaluating the Resistance to Thermal Transmission by the Guarded Heat Flow Meter Technique[13] ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus[14] ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method[15] ASTM C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus[16] ASTM D5470 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials[17] ISO 22007-2 Plastics — Determination of thermal conductivity and thermal diffusivity — Part 2: Transient plane heat ource (hot disc) method[18] ISO 22007-3, Plastics – Determination of thermal conductivity and thermal diffusivity – Part 3: Temperature wave analysis method.[19] A. J. Angstrom, Ann. Physik Leipzig 114, 513 (1861).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【仪器心得】+检测实验室蓄电池和电池组的维护、故障诊断和性能测试的利器——Fluke BT500 系列蓄电池内阻分析仪使用心得

    【仪器心得】+检测实验室蓄电池和电池组的维护、故障诊断和性能测试的利器——Fluke BT500 系列蓄电池内阻分析仪使用心得

    [font=宋体][color=#222222]实验室除了开展计量工作,还会进行检测相关的产品分析和测试技术工作,蓄电池内阻分析也是我们的课题研究,同时作为家电领域的权威机构,采购福禄克的Fluke BT500 系列蓄电池内阻分析仪毋庸置疑。作为一名使用福禄克多年的用户,下面来评价一下该款测试仪的优势和不足,希望大家在选购仪器设备时少走弯路,也希望厂家不断改进仪器来满足用户的需求。[/color][/font][font=宋体][color=#222222]一、厂家介绍:[/color][/font][font=宋体][color=#222222]福禄克Fluke仪器仪表公司在中国改革开放的初期1978年就进入了中国。首先在北京建立了维修站,随后就成立了办事处。目前福禄克公司在北京、上海、广州、成都、西安都设有办事处,在沈阳、大连、武汉、南京、济南、乌鲁木齐、重庆和深圳设有联络处,这些机构为中国各界用户提供着方便、周到、及时的服务。[/color][/font][font=宋体][color=#222222]多年来,福禄克为各个工业领域提供用于测试和检测故障的优质电子仪器仪表产品,并把该市场提升到重要地位。每新建的一个工厂、 办公区、或设施,都可成为福禄克产品的潜在用户。从工业控制系统的安装调试到过程仪表的校验维护,从实验室精密测量到计算机网络的故障诊断,福禄克的产品帮助各行各业的业务高效运转并不断发展。无论是技术人员、工程师、科研、教学人员还是计算机网络维护人员,都通过使用福禄克的仪器仪表产品扩展了个人能力,并出色地完成了工作。正是他们,给予福禄克的信任和良好的口碑,使得福禄克品牌在安全、耐用、精准、易用的质量标准方面得到高度的美誉,成为所涉及的领域中的佼佼者。[/color][/font][img=,148,266]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231213485788_5239_2771427_3.jpg!w148x266.jpg[/img][font=宋体][color=#222222]二、蓄电池分析仪的用武之地:[/color][/font][align=left][font=宋体][color=#222222]除了与我们每天几乎形影不离的电池,还有一类电池,平时看不见,但是对人们的工作生活影响重大,这就是后备电池系统。[/color][/font][/align][align=left][font=宋体][color=#222222]大多数后备电池系统包括不间断电源 (UPS) 和电池组。正是有了它,数据中心、医院、机场、公共事业、铁路、石油天然气设施等,面对突发断电才依然能正常运转。[/color][/font][/align][font=宋体][color=#222222]当然,后备电池也会因各种原因失效或故障,所以对电池定期测试从而确保其健康状态尤为关键,所用的专业工具就是蓄电池分析仪。[/color][/font][font=宋体][color=#222222]三、测试中发现,蓄电池故障的表征:[/color][/font][font=宋体][color=#222222]后备电池常见的失效模式有:漏液腐蚀、内部短路、极板硫化、壳体变形等。[/color][/font][font=宋体][color=#222222]状况良好的电池容量应高于制造商额定容量的90%;大多数制造商建议在电池容量低于80% 时更换电池。[/color][/font][font=宋体][color=#222222]四、电池性能指标的感悟:[/color][/font][font=宋体][color=#222222]电池内阻:在电池处于工作状态时的定性测试内阻增大意味着电池容量降低。当电池处于工作状态时,使用专业的测量电池内阻的仪器,注入一个交流电流测试电压变化,并计算阻值。[/color][/font][font=宋体][color=#222222]容量测试:电池处于非工作状态,进行放电测试发现电池真实容量的最佳方法,但实施非常耗时且有一定危险性。在放电测试中,将电池连接到负载,在特定时间内,以已知的恒定电流进行放电,同时定时测量电压。由放电电流、放电用时计算电池的容量,并与制造商的技术规格相比较。[/color][/font][font=宋体][color=#222222]五、福禄克Fluke BT500 系列蓄电池内阻分析仪优势和不足:[/color][/font][font=宋体][color=#222222]优势:[/color][/font][font=宋体][color=#222222]1.[/color][/font][font=宋体][color=#222222]因为电池的内阻很小,但不会快速变化,需要微欧级分辨率判断测量何种信号。分辨率很重要;[/color][/font][font=宋体][color=#222222]2.[/color][/font][font=宋体][color=#222222]消除接触阻抗:不同的操作力度所成的接触阻抗差异可能带来误差;[/color][/font][font=宋体][color=#222222]3.[/color][/font][font=宋体][color=#222222]统一测试位置:表笔接触极柱测试位置不统一可能引入误差,若接触螺栓,内阻约增2至5 mΩ,若接触连接片,内阻约增5至10mΩ;[/color][/font][font=宋体][color=#222222]4.[/color][/font][font=宋体][color=#222222]波纹抑制:一节12 V的电池上可能出现20 kHz,100 mV的交流电压纹波,纹波情况下内阻测试结果可能会出现不稳定的情况。[/color][/font][font=宋体][color=#222222]不足:[/color][/font][font=宋体][color=#222222]价格在1.3w-2w元左右,相比于国产设备较贵,但是微欧级分辨率、消除接触阻抗利用Kelvin四线制测试法和同轴弹簧表针两项技术消除;接触阻抗影响、纹波抑制,除电路本身的抗干扰设计以外,还特别设计了数字滤波器,可以在纹波较大情况下开启使用;电池管理软件,用于对数据进行导入、储存、比较、趋势分析和制图、并以有意义的方式在报告中显示该信息。安全等级[/color][/font][font=宋体][color=#222222]业内最高安全等级:CAT III 600V;最高额定直流1000 V。这一点福禄克仪器你毋庸置疑。实验室人员需要权衡仪器设备的使用精度、频次以及技术要求。[/color][/font][font=宋体][color=#222222]六、身边同事的使用心得:[/color][/font][font=宋体][color=#222222]同事间使用福禄克产品居多,他们对品牌都很信赖,购买了设备,电池测试功能,如直流电压和内阻的同步采集,连接片电阻测试以及使用集成了红外测温系统的互动式手柄对温度进行同步测量。有较高准确度,稳定性和重复性较好。[/color][/font][font=宋体][color=#222222]七、总结[/color][/font][font=宋体][color=#222222]市场上[/color][/font][font=宋体][color=#222222]测试仪[/color][/font][font=宋体][color=#222222]厂家很多,有进口的有国产的,各厂家的仪器特点不同,突出的特点也不一样,有的仪器市场占有率较高,与仪器灵敏度,稳定性好,使用方便,售后服务好等有关系。想在市场上占有一席之地,一是不断改进与提高仪器的使用技术,二是满足用户需求,设计出用户满意的[/color][/font][font=宋体][color=#222222]仪表[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222] [/color][/font]

  • 动力电池组测试系统更加省电

    经济的快速发展和环境日益槽糕的状态对于人们来来说,问题也日益凸显,所以,不论什么设备,都需要节能,动力电池组测试系统在使用中节能省电是十分必须的。  调整动力电池组测试系统合理的运行负载,在保证动力电池组测试系统安全运行的情况下,主机组运行在70%-80%负载比运行在满负载小时,单位冷量的功耗更小。运用此方式开机要结合动力电池组的运行情况综合考虑。  降低动力电池组测试系统冷凝温度,在满足动力电池组测试系统安全和生产需求的前提下,尽量提高无锡冠亚动力电池组测试系统蒸发温度和降低冷凝温度,为此需加大对动力电池组测试系统的改造,以保证冷却水效能。车,专用于新能源汽车永磁同步电动机、开关磁阻电机、异步电动机及其控制器测试时的精密控温设备。  动力电池组测试系统在运行中,要防止和减少冷却循环水机管道结垢,如果循环水处理做的不好,碳酸氢钙和碳酸氢镁受热产生的碳酸钙和碳酸镁会沉积在管道上,使导热性能下降,影响冷凝器和蒸发器的换热效率,并使运行的电费大幅度上升。此时除了采用水处理技术外,还可以利用管道定期自动清洗设备进行管道清洗,节省电量的同时提升制冷效果。  动力电池组测试系统在运行过程中,节能减排在一定程度上可以节约企业运行成本,为企业创造更大的效益。

  • 仪器程控类软件

    [font=微软雅黑, &][size=14px] 生产测试当中,测试仪器不可或缺,如果是小规模生产,手动测试可以对付;但是要想到达大批量生产的目的,为了简化测试,节约时间,就需要进行自动化测试。出于这样的需求,对仪器的自动化程控就有了需求。[/size][/font][align=center][img=image.png]http://www.namisoft.com/UserFiles/Article/image/6375410535203893283100989.png[/img][/align][align=center] 上图是一个普遍的测试框架,今天给大家介绍纳米软件仪器程控类的产品。[/align][font=微软雅黑, &][size=14px][b]01[/b][size=17px] 软件开发工具[/size][/size][/font][list][*][font=微软雅黑, &][size=14px][size=15px]使用[/size][size=15px][b]CVI/Labview[/b][/size][size=15px]作为开发平台;[/size][/size][/font][*][font=微软雅黑, &][size=14px][size=15px]使用纳米软件的标准界面(可接受定[/size][b][size=15px]制化界面[/size][/b][size=15px]);[/size][/size][/font][*][font=微软雅黑, &][size=14px][size=15px]完成单台或多台具有程控接口(GPIB、USB、RS232、LAN、RS485、TTL)的仪器的[/size][b][size=15px]级联控制;并行控制;测试数据和图像的采集;同步保存测试结果。[/size][/b][/size][/font][/list][font=微软雅黑, &][size=14px][b]02[/b][size=17px] 软件接口[/size][/size][/font][font=微软雅黑, &][size=14px] 软件兼容市面上具有GPIB、USB、RS232、TCP/LAN/以太网、RS485、TTL、蓝牙等任意一种程控接口的仪器,支持泰克、是德、R&S、普源、福禄克、吉时利等主流品牌仪器定制化开发。[/size][/font][align=center][font=微软雅黑, &][size=14px][b][img=image.png]http://www.namisoft.com/UserFiles/Article/image/6375410532889058308103228.png[/img][/b][/size][/font][/align][font=微软雅黑, &][size=14px][b]03[/b][size=17px] 软件功能[/size][/size][/font][size=15px]仪器程控软件可以实现[/size][b][size=15px][color=#511b78]仪器连接、参数设置、运行测试、数据自动存储[/color][/size][/b][size=15px]4大功能。[/size][b]04[/b][font=微软雅黑, &][size=17px] 数据管理[/size][/font][list][*][font=微软雅黑, &][size=14px]软件数据可以下载到本地保存。[/size][/font][*][font=微软雅黑, &][size=14px]数据可以保存在软件自带的数据库。[/size][/font][*][font=微软雅黑, &][size=14px]数据可以对接到用户要求的第三方系统或平台中。[/size][/font][*][font=微软雅黑, &][size=14px]数据可以对接到纳米软件各类管理系统中。[/size][/font][*][font=微软雅黑, &][size=14px]数据可以对接到ATECLOUD云测试平台中,进行数据高级分析。[/size][/font][/list][font=微软雅黑, &][size=14px][b]05[/b][size=17px] 软件非标定制[/size][/size][/font][font=微软雅黑, &][size=14px] 软件支持示波器、数字万用表、信号源、网络分析仪、LCR测试仪、网络分析仪、电源、源表等仪器的自动化测试软件,用户只需提供测试需求。[/size][/font][align=center][font=微软雅黑, &][size=14px][img=image.png]http://www.namisoft.com/UserFiles/Article/image/6375410513542905281404476.png[/img][/size][/font][/align][font=微软雅黑, &][size=14px][b]06[/b][size=17px] 软件交付案例[/size][/size][/font][align=center][img=image.png]http://www.namisoft.com/UserFiles/Article/image/6375410515740938902860022.png[/img][/align][align=center][color=#ff0000][b]*如果您想要免费试用软件,请搜索 【纳米软件】至官网试用。[/b][/color][/align]

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

  • 动力电池用相变材料:国内外导热和储能性能测试中存在的问题

    动力电池用相变材料:国内外导热和储能性能测试中存在的问题

    [color=#993366]摘要:针对动力电池热管理系统用复合相变材料,对复合相变材料热性能测试中国内外普遍存在的大量错误现象进行了分析,列出了各种典型错误现象和错误案例,指出了产生这些错误的主要原因,明确了后续工作的方向和内容。[/color][align=center][img=,690,431]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292102575588_388_3384_3.png!w690x431.jpg[/img][/align][color=#ff0000]1. 引言[/color] 在动力电池热管理系统中,空冷、液冷和相变材料冷是较为常用的三种冷却方式。其中前两种是主动热管理,第三种是被动热管理。相变材料做为被动式热管理方式用于动力电池热管理系统是一个新兴的发展方向,与传统空冷、液冷等方式相比,具有高效、节能、温度波动小、防止热失效等优点。[color=#ff0000]2. 相变材料在动力电池中的应用结构形式[/color] 相变材料在电池包中的应用主要有两种结构形式: (1)电池单元直接置于相变材料中的包裹式形式,如图 2‑ 1和图 2‑ 2所示; (2)相变材料将电池单元夹在中间形成三明治夹层结构形式,如图 2‑ 2所示。[align=center][img=,690,335]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292104045551_7090_3384_3.png!w690x335.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 1 相变材料包裹电池式结构[/color][/align][align=center][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292102422682_8708_3384_3.jpg!w690x517.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 2 相变材料包裹物及电池[/color][/align][align=center][color=#ff0000][/color][/align][align=center][img=,690,402]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292104307481_9899_3384_3.png!w690x402.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 3 相变材料与电池三明治夹心结构[/color][/align] 以上相变材料在电池包中的三种结构形式,其中第一种结构虽然换热效率高,比较适合各种柱状和其它异形电池使用,但结构复杂,对制造工艺要求较高。第二种结构结构简单、易操作,比较适合板状和块状形式的各种电池。[color=#ff0000]3. 动力电池中复合相变材料类型[/color] 动力电池中复合相变材料的设计和制造主要考虑以下几方面因素:[quote][color=#993300] (1)适宜的相变温度和较大潜热;[/color][color=#993300] (2)其他热物理性能:导热系数高、热容大、密度高、体积变化率低、无相分离、低过冷度;[/color][color=#993300] (3)化学性质:无腐蚀、化学稳定性好、与容器相容、无毒、无易燃、无污染;[/color][color=#993300] (4)经济性要求:低成本、容易获得、可循环使用。[/color][/quote] 对于相变材料的研究已经相对比较成熟,但大多数固液相变材料,尤其是中低温相变材料具有较低的导热系数,这直接使得相变材料在动力电池热管理系统应用中存在的最大问题是导热系数偏低(0.2 W/mK左右),而在电池热热管理系统中则需要较快的吸收和放出热量,否则只有部分导热相变材料发生相变吸收或放出热量,将导致相变材料在热管理系统中的作用下降,在高温或大电流等极端条件下同样会发生电池热失控而造成安全问题。 如何克服上述缺点,改善导热能力成为近年来国内外在动力电池用相变材料中的一个研究热点,研究方向主要集中在采用多孔泡沫金属和泡沫碳作为导热增强介质,相变材料被分散成小颗粒储藏在泡沫介质孔隙中,泡沫介质骨架起到强化传热作用,由此来显著提高整体复合相变材料的导热系数,同时相变材料中的空穴也因为毛细作用分散在孔隙中,避免了因空穴集中而产生的局部热阻和热应力。[color=#ff0000]3.1. 泡沫金属复合相变材料[/color] 泡沫金属是指含有泡沫气孔的特种金属材料。图 3‑ 1的扫描电镜照片显示了典型泡沫金属材料的微观结构,可以看到相互连通的孔隙部分占到了泡沫金属材料的绝大部分空间,其间的金属基体材料呈立体骨架结构。不同孔隙单元的结构并不完全相同,但是从较大范围来看则具有相似特性,这说明泡沫金属材料微观结构的均匀性和各向同性使得其导热过程的各向同性。[align=center][img=,690,519]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292105079861_3622_3384_3.jpg!w690x519.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 1 泡沫金属材料扫描电镜照片[/color][/align] 已实用并具有较大导热系数的泡沫金属主要有泡沫镍、泡沫铝和泡沫铜,如图 3‑ 2所示。[align=center][img=,690,200]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292105542851_1607_3384_3.png!w690x200.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 2 各种泡沫金属[/color][/align][color=#ff0000]3.2. 泡沫碳复合相变材料[/color] 泡沫碳是碳元素的同素异形体之一,如图 3‑ 3所示,泡沫碳材料内部是中空的蜂窝状结构,其中70%~90% 为开口或相通的蜂窝状孔洞,微孔的平均直径为200~500 um,固体结构由相互交错的韧带支撑而成。如所示,泡沫碳的几何结构使其密度大幅度降低,比表面积极具增大,是一种具有低密度、高导热(导热系数高达200 W/mK)、耐高温、耐腐蚀等优点的新型材料。[align=center][img=05.泡沫碳材料的扫描电镜照片,443,333]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292107453445_4814_3384_3.png!w443x333.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 3 泡沫碳材料扫描电镜照片[/color][/align] 由此可见泡沫碳材料具有高的导热系数和稳定的化学性质,泡沫碳材料在石墨基材料中导热系数最高,并与相变材料具有良好的相容性,因此常用于相变材料的强化传热。相变材料渗入泡沫碳所构成的复合相变材料,其相变速率可大大提高,所以具有非常好的应用前景,已成为国内外研究的热点。[align=center][img=05.泡沫碳,690,222]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292108217452_8396_3384_3.jpg!w690x222.jpg[/img][/align][align=center][color=#ff0000]图 3‑ 4 泡沫碳[/color][/align] 另外,泡沫碳是一种在石墨基体中均匀分布大量连通孔洞的新型高导热材料,相比于常见的膨胀石墨,泡沫碳有孔密度大、通孔率高、能够维持自身形状结构等特点,其导热系数要大于泡沫铜很多倍。与泡沫金属另外一个重要不同之处是因为泡沫碳材料内部气孔分布的不均匀性和孔径差异造成泡沫碳材料具有明显的各向异性,由此会造成泡沫碳复合相变材料的导热性能也具有明显的各向异性特征。[color=#ff0000]4. 国内外复合相变材料热性能测试中普遍存在的问题[/color] 由于复合相变材料呈现出多孔性、各向异性和多种成分复合性等多种特性,在进行复合相变材料导热系数测试中要十分小心的选择合适的测试方法,稍有不慎就会做出错误的选择,得出错误结果。纵观国内外在复合相变材料导热系数测试方面的文献报道,可以明显发现存在大量问题,主要表现出以下错误现象:[quote][color=#993300] (1)选择测试方法很随意,使得测试方法多种多样。[/color][color=#993300] (2)对所选测试方法的适用范围并不清楚,很多时候在测试过程中忽略了材料的各向异性特征。[/color][color=#993300] (3)对测试结果所包含的内容并不清楚,很多时候测试结果中包含了大量的测试误差,导致很多文献报道的性能测试结果和变化规律相互矛盾。[/color][color=#993300] (4)测试分析仪器厂商对测试技术的理解、研究和技术培训有限,误导了仪器使用人员在测试操作和试验参数设置上的不正确,从而得出误差较大结果。[/color][color=#993300] (5)各种测试方法还缺乏针对性和覆盖能力,针对或满足新材料性能测试,还缺乏相应的标准测试方法或具体条款。[/color][/quote] 造成复合相变材料热性能测试中普遍存在问题,科技文献中大量数据错误的主要原因是:[quote][color=#993300] (1)材料研究人员不懂测试技术,而测试人员对材料特征缺乏足够的了解。[/color][color=#993300] (2)有关复合相变材料研究报告和文献的审稿人一般都是搞材料的专业人员,他们对材料工艺非常熟悉和了解,对材料性能也只算是了解,也仅仅是数量级和大致范围的了解,但对材料性能的具体测试技术,特别是对测试方法的选择、测试仪器的操作细节等一系列保证准确测量的技术手段并不清楚。[/color][color=#993300] (3)材料研究人员和性能测试人员缺乏充分的技术交流。[/color][color=#993300] (4)测试人员针对复合相变材料热性能测试缺乏深入的测试方法研究。[/color][/quote][color=#ff0000]5. 典型错误案例[/color][color=#ff0000]5.1. 金属泡沫复合相变材料导热系数测试典型错误案例[/color] 上海交通大学肖鑫等人研究了不同孔隙率和孔径大小的泡沫铜和泡沫镍,其中导热系数测试则采用了瞬态平面热源法。对于泡沫铜材料,当孔隙率为89%和孔径为1.0 mm时测试结果显示具有的最高有效导热系数为16.01 W/mk;对于泡沫镍材料,当孔隙率为91%和孔径为1.0 mm时测试结果显示具有的最高有效导热率为2.33 W/mk。作者指出,复合相变材料的有效导热系数随孔隙率的增加而减小,且不受孔隙大小的影响。 日本北海道大学的Oya等人采用泡沫镍和熔融温度为118℃的赤藓糖醇相变材料制备了高温复合相变材料,并采用激光闪光法测量了导热系数和比热容。综合测试结果表明,孔隙大小对潜热和熔点几乎没有影响,采用0.5 mm孔径大小的金属泡沫所制成的复合相变材料的导热系数从纯赤藓糖醇相变材料0.733 W/mk显著提升到复合相变材料的11.6 W/mk。与上述肖鑫等人的研究结论相反,Oya等人认为孔径大小对导热系数有显著的影响,因为随孔隙大小的增加骨架的连通性从0.1 mm增加到0.5 mm,从而在较大孔径情况下导致更高的导热系数,这种结论意味着金属泡沫的质量非常重要,因为骨架的连通性保证了传热路径。 美国太平洋西北国家实验室的Hong和Herling 制作了石蜡/铝泡沫复合相变材料并测量它们的导热系数,所用泡沫铝的孔隙率为92~93%、孔径大小在0.5~2.0 mm范围内,导热系数测试采用了稳态恒定热流法。所报道的归一化有效导热系数,即复合相变材料有效导热系数与纯相变材料导热系数的比值,在20~44范围内。从测试结果可以看出, 随着 PCM 从固态到液态的变化,归一化有效导热系数增加。作者将这种增加归因于泡沫金属和液态PCM之间更好的热接触。不同于肖鑫等人和Oya等人得出的结论,测试结果清楚地显示有效导热系数随着泡沫铝孔径的减小而增加,特别是当孔径为0.5 mm时导热系数最大。 上述三篇研究文献非常典型,都是针对金属泡沫制成的复合相变材料进行了测试,测试方法分别采用了瞬态平面热源法(金属泡沫孔径范围1~5 mm)、激光闪光法(金属泡沫孔径范围0.1~0.5 mm)和稳态恒定热流法(金属泡沫孔径范围0.5~2 mm),但针对导热系数与金属泡沫孔隙率和孔径大小的关系,他们所得出的结论完全不同。[color=#ff0000]5.2. 泡沫碳复合相变材料导热系数测试典型错误案例[/color] 中科院山西煤化所钟雅娟等人用石蜡和中间相沥青基石墨泡沫制备复合相变材料,使用了四种不同孔径大小和体积密度的石墨泡沫做为样品,并用激光闪光法测量了石墨泡沫的导热系数。低容重的石墨泡沫具有较大的孔隙率,可容纳较多石蜡,测试结果显示热扩散系数高度取决于石墨泡沫骨架的孔径大小和厚度。 上述只是一篇典型的泡沫碳复合相变材料研究文献,在众多泡沫碳复合相变材料导热系数测试文献中多采用的是激光闪光法,很多得到的错误结论都是“热扩散系数高度取决于石墨泡沫骨架的孔径大小和厚度”。可以证明的是,对于泡沫碳这种高孔隙率、高导热和低密度材料,其热扩散系数取决于样品厚度的错误结论完全是对激光闪光法测试理论和测试仪器不了解造成,热扩散系数与样品厚度高度相关完全是因为测试误差所致。[color=#ff0000]5.3. 差热扫描量热仪测试典型错误案例[/color] 目前国内外针对复合相变材料的蓄热性能,全部采用的都是差示扫描量热仪(DSC)进行测试。我们调研了众多关于复合相变材料、特别是关于常温附近的相变材料和复合相变材料的文献报道,发现在所有文献中DSC测试相变材料的试验参数设置全是错误的,测试过程中的样品升降温速率几乎都在5℃/min以上,最大甚至达到了20℃/min,只有极个别的采用了0.5℃/min的低升降温速率。按照相关针对常温型相变材料DSC标准化测试方法研究成果,已经证明在升降温速率小于0.05℃/min时才能得到较准确的结果,升降温速率太快会给测量结果带来严重误差,如图 5‑ 1所示。[align=center][img=06.不同样品质量和不同加热速率效应,690,484]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292109236481_5646_3384_3.png!w690x484.jpg[/img][/align][align=center][color=#ff0000]图 5‑ 1 样品不同质量和不同升降温速度时的DSC测试结果[/color][/align] 有关DSC测试过程中升降温速率对测量精度的影响,以及常温型相变材料DSC测试标准化研究成果,将在后续报告中进行详细描述[color=#ff0000]6. 结论[/color] 针对动力电池用复合相变材料,特别是通过对复合相变材料热性能测试中国内外普遍存在的错误现象进行了分析,列出了各种典型错误现象和错误案例,并指出了产生这些错误的主要原因。 我们将在随后的工作和研究报告中,特别针对动力电池用复合相变材料的热性能测试问题,详细描述如何选择合理的测试方法和测试仪器,详细描述测试过程中如何设置正确的试验参数,从而保证复合相变材料热性能测试的准确性和重复性。[color=#ff0000]7. 参考文献[/color] (1)Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci 2014 81:94-105. (2)Oya T, Nomura T, Okinaka N, Akiyama T. Phase change composite based on porous nickel and erythritol. Appl Therm Eng 2012 40:373-7. (3)Hong ST, Herling DR. Effects of surface area density of aluminum foams on thermal conductivity of aluminum foam-phase change material composites. Adv Eng Mater 2007 9:554-7. (4) Zhong YJ, Guo QG, Li SZ, Shi JL, Liu L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energy Mater Sol Cells 2010 94:1011-4. (5) Zhang, P., X. Xiao, and Z. W. Ma. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement." Applied Energy 165 (2016): 472-510.[align=center] [img=,640,20]http://ng1.17img.cn/bbsfiles/images/2018/01/201801292109565831_9881_3384_3.gif!w640x20.jpg[/img][/align]

  • 动力电池测试系统研究说明

    新能源汽车动力电池测试其目的是为了新能源汽车电池系统的合理使用,提高新能源汽车产业的经济运行效益,实现新能源汽车电池的稳定发展。  在以往动力电池执行标准构建的过程中,所使用的对象相对单一,而且没有全面反映出电池的综合使用性能所以无法满足新能源汽车动力电池系统的设计需求。伴随我国新能源以及新材料的发展,在产业运行中,为了实现高新技术的综合性运用,需要结合动力电池材料的产业发展状况,进行资源的合理使用,并充分展现材料使用的优势性,进行动力电池测试,促进新能源动力产业的稳定发展。  电芯系统测试  对于电芯而言,作为电池系统中很重要的组成部分,是电池的储能单元。研究中发现,电芯性能的稳定性在某种程度上决定了电池系统的动力性能使用期限以及安全能力等。所以,在检测的过程中,应该针对电芯层面的实验进行电化学性能、使用寿命以及安全性能的分析,并结合测试实验的温度因素,进行电芯能力的确定,以保障电芯测试的稳定性,提高电芯使用寿命。  电池系统测试  在电池模块设计的过程中,电池模块作为构成电池系统的重要组成部分,通常是由电芯、电池管理单元以及冷却装置共同组成。通过电池系统的使用,应该充分满足安全性、机械性以及环境的基本需求。通常状况下,在电池系统测试严重的过程中,不仅会对电池模块层面的电池管理模块进行控制,而且也会对电池自身设计结构具有一定要求,通过这些要求的设计,可以充分保障电池系统运行的安全性。因此,在电池模块安全性能检测的过程中,应该将安全问题作为重点,充分保证电池系统运行的有效性。  测试研究结果分析  通过对新能源汽车动力电池系统检测状况的分析,在电池模板、电芯检测的过程中,应该按照整车开发性能进行检测标准的确定。所以,在电池系统的整车开发中,应该结合整车的性能汽车零部件测试要求以及电池自身特点等,进行检测方法的完善,以保障检测方案的合理性。  所以,在新能源汽车动力电池测试中,需要结合无锡冠亚新能源汽车电池系统的整体状况,提高新能源汽车电池的整体质量,促进汽车产业的绿色发展。

  • 解析如何检测电池水分含量及SFY-20A含水率测试仪的应用

    解析如何检测电池水分含量及SFY-20A含水率测试仪的应用

    电池中的水分来源哪里?  对于电池中的水分,它的来源就主要来之于材料,当然也涉及环境。  正极片:正极片如果使用的是纳米材料,这种纳米材料具有很强的吸水性,很容易周围的空气中吸收水分。  负极片:负极片比正极片来说,吸水性相对低一点,当然,在没有控制湿度的环境下,其从环境空气中吸水数量也是相当乐观的。  隔膜纸:隔膜纸也是一种多孔性的塑料薄膜,其吸水性也是很大的。  电解液:电解液是一种非常怕水的物质,它也是非常容易吸水,他它会和水进行反应,直至所有的电解液物质反映完成,也就是说,它喝水的能力是永无止境,直到自己死掉。  其他金属零件:虽然金属零件本身对水分的吸收有限,但是,金属零件对水分却很怕,因为水分的存在会使其生锈或者腐蚀。 材料中的水分含量是电池中水分的主要来源,当然,环境湿度越大,电池材料越容易吸收水分。(来源:仪器信息网)http://ng1.17img.cn/bbsfiles/images/2017/02/201702271001_01_2233_3.jpg水分对锂离子电池影响巨大  如果水分过高,电解液和水分反应,生成微量有害气体,对注液房环境有不良影响;这也会影响电解液本身的质量,使得电池性能不良,还会使电池柳钉生锈。  水分和电解液中的一种成分反应,生成有害气体,当水分足够多时电池内部的压力就变大,从而引起电池受力变形。如果是手机电池,就表现为鼓壳;当内部压力在高的时候,电池就有危险了,爆裂使得电解液喷溅,电池碎片也很容易伤人。  电池内部水分过高;损耗了电解液的有效成分,也损耗了锂离子,使得锂离子在电池负极片发生不可逆转的化学反应。消耗了锂离子,电池的能量就减少了。  用26650电池给电钻供电,充满电后本来可以使用1小时,因为电池内部有水分,就只能使用50分钟了。  当电池内部的水分多的时候,电池内部的电解液和水反应,其产物将是气体和氢氟酸(氢氟酸是一种腐蚀性很强的酸,它可以使电池内部的金属零件腐蚀,进而使电池最终漏液。如果电池漏液,电池的性能将急速下降,而且电解液还会对使用者的机器进行腐蚀,终而引起更加危险的失效。如何检测电池材料中的含水率 对于电池材料含水率的检测,行业内一般使用SFY-20A快速水分检测仪来精确测定材料的水分含量。A、SFY-20A快速水分检测仪技术指标 1、称重范围:0-90g 可调试测试空间为3cm 2、水分测定范围:0.01-100% 3、样品质量:0.100-90g 4、加热温度范围:起始-205℃ 加热方式:可变混合式加热 微调自动补偿温度最高15℃ 5、水分含量可读性:0.01% 6、显示参数:7种    红色数码管独立显示模式 7、外型尺寸:380×205×325(mm) 8、电源:220V±10% 9、频率:50Hz±1Hz 10、净重:3.7Kghttp://ng1.17img.cn/bbsfiles/images/2017/02/201702270957_01_2233_3.jpgB、SFY-20A快速水分检测仪使用注意事项1.在测定水分过程中,一定要避免震动,加热筒下端缺口不能迎风摆放。2.测定样品在称量盘中堆积一定要平整,堆积面积尽量布满称盘底面,堆积厚度应尽量薄,利于水分完全蒸发。3.在测定水分过程中,不能用手去摸加热筒,严禁敲击或直接振动工作台面。4.由于该仪器称重系统为精密设备,尤其传力部分特别怕重压,冲击,因而在每次取,放称量盘时尽量用托架,若用手进行取,放称量盘应轻取,轻放。5.测定完成后,马上取下称量盘必须用托架,以免烫手.托架在放入仪器中不应碰到称重支架与称量盘。6.测定后须待称量盘完全冷却后,再放入下一个试样。C、SFY-20A快速水分检测仪工作原理 采用干燥失重法原理,通过加热系统快速加热样品,使样品的水分能够在最短时间之内完全蒸发,从而能在很短的时间内检测出样品的含水率。检测一般样品通常只需3分钟左右。冠亚水分仪采用的原理与国家标准烘箱法相同,检测结果具有可替代性,仪器采用一键式操作,不仅操作简单而且也避免了人为因素对测量结果产生的误差。

  • 动力电池测试解决方案

    在目前能源危机下,减轻污染,绿色出行已经是当代发展的主题之一,所以,电动汽车发展也是必然的,电动汽车的电池作为其运行核心,动力电池测试解决方案也是比较重要的。  在汽车领域,通过巨额补贴来鼓励大家购买新能源汽车,可以说新能源汽车已经成为汽车工业发展的必然趋势,基于这种社会需求,必将推动动力电池的市场需求。但是,汽车电池在分拣过程中,会出现很多问题,比如:汽车电池组在使用一段时间后,每个电池的容量会有不同程度的下降,这样,便造成了电池模块内部以及电池模块间的不均衡状态。从而导致电池组的整体利用率下滑,新能源汽车每次充电的里程数也会大大缩短。或者电池经常处于过充电或者过放电的情况导致的电池容量下降。而且,容量变化的程度不一。  如果有这样的分拣测试系统或者检测设备,它可以将单个电池逐一进行分拣,挑出效率高的电池,甩掉“拖后腿”的电池,从而使整台车的电池组达到优化的状态,相信这是汽车电池生产厂家追求的致高境界。那么现在就有这样的系统与设备,可以实现这样的设想。无锡冠亚动力电池测试解决方案就应运而生了,通过该系统自身的工作原理来实现消除电池间不均衡的现象,从而达到提高整个电池组的工作效率,在未来的新能源汽车发展中,动力电池测试系统的不断研发与升级将会使新能源汽车市场更加趋于成熟并高速发展。  动力电池测试解决方案不同,推出的动力电池测试设备也是不同的,专业提供动力电池测试解决方案,帮助用户解决制冷加热控温难题。

  • 【资料】接地电阻测试仪的常见故障排除

    接地电阻测试仪是检验测量接地电阻的常用仪表,同时也是电气安全检查与接地工程竣工验收不可缺少的工具,不过常常会出现小问题,接地电阻测试仪常见故障及排除方法,如下:    常见故障1:检查到电池电压正常而进行接地电阻测量时测量数据不准,误差大、不精确。  故障原因:这个故障通常是由于检测信号滤波及调效电路故障引起,最常见是滤波电感T1损坏引起,  排除方法:更换T1电感就可以马上修好。    常见故障2:检查到电池电压正常,但是不能进行接地电阻测量。  故障原因:这个故障可能是因为通常是由于开关电源、交直流转换、以及恒流输出部分故障。  排除方法:用频率计测量C端口。无820Hz交流输出,可逐步检查该部分电路,从输出变压器,开关管,振荡电路等找出故障部分,更换新零件即可修复。    常见故障3:进行接地电阻测试仪测量的时候测量数据飘浮不定,时准时不准。  故障原因:此现象“KYORITSU4102A”地阻仪通常无故障,问题出在电阻仪与地桩(辅助电极)及被测接地体连接不好引起,常见有三条连接导线有断开或接头地方松,导致导电性能不好。如使用过程中发现导线与两端的接头金属片断开,一定要用焊锡重新把它焊牢,才能保证接地电阻测试仪的正常测量工作。    常见故障4:接地电阻测试仪的表头指针不动,或者电池电压及接地电阻测试仪测量时表头指针都不动。  故障原因:可能由于表头烧毁或连接表头与线路板连线断开引起。这也都是由于接地电阻测试仪在使用或者运输过程中过于震动引起。  排除方法:首先打开表头面板,用手拨动指针,如指针不能自动回零,表明表头已震坏;否则就要焊下表头,用万用表电阻档测量表头,如果是开路的,那就表明表头已烧坏。然后再用万用表电流电压档测量原连接表头接头,按下地阻仪检查电压按钮,假如万用表有电压指示,表明只是接地电阻测试仪的故障由表头损坏引起,更换新表头后就可以修复;如果表头完好,再打开接地电阻测试仪外壳,检查表头连线,如果断开接上就可以了。

  • 继电保护测试仪的用途有哪些?

    继电保护测试仪的用途有哪些?

    众所周知,继电保护系统是电力系统中的组成部分。当电路出现故障时,它可以快速准确地切除故障部分,让电力系统的安全稳定运行。然后,为了提前发现和查出继电保护系统的故障和问题,通常需要使用继电保护测试仪。大多数人都知道这个设备,但很多人可能对它了解不多。今天我们就来盘点一下4点[url=http://www.whfulude.com/jbq/]继电保护测试仪[/url]的用途和6点功能!让我们来看看。[align=center][img=继电保护测试仪,484,300]https://ng1.17img.cn/bbsfiles/images/2023/12/202312272135327993_4717_6337156_3.jpg!w484x300.jpg[/img][/align]  [b]一、继电保护测试仪的用途如下:[/b]  1、故障模拟和测试:继电保护测试仪可以模拟短路、断路等各种类型的电力故障,为继电保护系统提供测试环境。通过模拟故障,可以检查继电保护装置在故障发生时是否能够准确快速地移动,从而让电力系统安全。  2、性能评估:继电保护测试仪可以通过测量动作时间、动作值等参数来判断继电保护装置的性能,从而评估继电保护装置的性能。这有助于及时发现和更换性能差的继电保护装置,提高电力系统的正常性。  3、调试和维护:继电保护测试仪可用于新继电保护装置的安装或维护过程中的调试和维护。通过测试,可以检查设备的所有功能是否正常,参数设置是否正确,让设备正常运行。  4、培训教学:继电保护测试仪也广泛应用于电力系统的培训教学中。它使学生能够实际操作,了解和掌握继电保护装置的工作原理和操作方法,提高实际操作技能。  [b]二、继电保护测试仪的功能如下6个:[/b]  1、测量:继电保护测试仪具有测量的电压、电流、电阻等测量功能,能准确评估继电保护装置的性能。  2、数据处理能力:继电保护测试仪可以快速、准确地处理和分析测量数据,并提供各种参数的报表和图形显示。  3、自动化测试:继电保护测试仪能实现自动化测试,降低了人工操作的难度和工作量。  4、远程控制功能:通过计算机或网络连接,可对继电保护测试仪进行远程控制,实现远程测试和数据分析。  5、自我诊断和报警:继电保护测试仪具有自我诊断功能,能在设备出现故障时显示故障,方便用户快速定位和解决问题。  6、录音报告:继电保护测试仪可以记录测试过程和结果,生成详细的报告,方便用户查看和分析。  更多关于继电保护测试仪的产品及相关信息,欢迎来武汉福禄德电力查看:http://www.whfulude.com/gongsi/1662.html

  • 【分享】变压器直流电阻测试仪的功能特征

    变压器直流电阻测试仪的主要功能及特点如下:  1、采用高速16位A/D转换器,测量数据稳定,重复性好。  2、自动程控电流源技术,电流源共设1000个电流档位,由内部微控制器根据被测电阻自动控制,从而达到比较宽的测量范围和最佳的测量状态,无须手动切换电流换档。  3、响应速度快,在测量状态可以直接转换分接开关,仪器会自动提示,新的电阻值很快就会显示出来。  4、高度智能化设计,功能设置巧妙先进,可自动判断测试线虚接、断线等故障。  5、智能化功率管理技术,可有效减轻仪器内部发热。  6、变压器直流电阻测试仪可储存120次测量数据,掉电不丢失。  7、全部汉字菜单及操作提示,直观方便。  8、保护功能完善,能可靠保护反电势对仪器的冲击,具有自动放电指示功能。  9、变压器直流电阻测试仪可显示测量电流和测量时间。

  • 【分享】绝缘电阻测试仪的使用功能特点

    绝缘电阻测试仪的功能特点:  1、输出功率大、带载能力强,抗干扰能力强。  2、绝缘电阻测试仪外壳由高强度铝合金组成,机内设有等电位保护环和四阶有源低通滤波器,对外界工频及强电磁场可起到有效的屏蔽作用。  3、绝缘电阻测试仪不需人力作功,由电池供电,量程可自动转换。一目了然的面板操作和LCD显示使得测量十分方便和迅捷。  4、绝缘电阻测试仪输出短路电流可直接测量,不需带载测量进行估算。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制