当前位置: 仪器信息网 > 行业主题 > >

电池短路试验仪

仪器信息网电池短路试验仪专题为您提供2024年最新电池短路试验仪价格报价、厂家品牌的相关信息, 包括电池短路试验仪参数、型号等,不管是国产,还是进口品牌的电池短路试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池短路试验仪相关的耗材配件、试剂标物,还有电池短路试验仪相关的最新资讯、资料,以及电池短路试验仪相关的解决方案。

电池短路试验仪相关的资讯

  • 锂电池材料试验第四讲|锂离子电池的强制内短路测试
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第四讲——锂离子电池的强制内短路测试。锂离子电池的强制内短路测试。强制内短路测试既可以应用在18650,21700等圆柱形电池,也可以应用于方形软包电池。测试前,需要在规定环境的手套箱中对电池进行拆解,在混入模拟微小金属颗粒的标准金属镍片后对电池进行封装。在达到规定的温度和时间条件后,放置于强制内短路测试系统中以0.1mm/s的速度对电池放置镍片的位置进行施压,在匀速达到规定的压力同时,实时监测锂电池压力的变化和表面温度的变化。当观测到电压发生50mV压降或者当施压载荷达到400N(方形电池)或800N(圆柱形电池)时,停止加压并保持30s,然后撤压。如果在达到规定的压力前发生50mV压降,说明此电池未达到强制内短路测试的安全标准;如果当压力达到400N或800N而为发生电压降,说明此电池可极大程度的避免因外部颗粒原因造成内短路现象。而一套高精度的强制内短路测试系统,需要一台高精度、高采样率载荷施加系统,此系统需同时监测和记录锂电池微量的电压变化和温度变化,并可以灵活的设定试验条件以满足更为严苛的测试和研发需求。强制内短路测试系统在载荷量的施加与记录方面,LLOYD LD系列测试系统可实现0.5%读数级的载荷精度,并以1000Hz的采样率记录载荷的变化。此系统采用32位A/D转换,具有极高的力值分辨率。在达到载荷精度和分辨率的同时,其电压和温度记录也可高达250Hz,是目前业内同类测试中精度最高,采样率最高的测试系统。此系统配有防爆高低温环境箱,即可满足标准强制内短路测试的温度要求,可以变换温度模拟不同温度下的电池的力学性能研究。温箱本身达到防爆级,即使在电池发生剧烈燃烧、爆炸等情况下依然可以保障试验人员与系统的安全性,并带有主动排风系统,可将测试中电池的烟气排出,有效的保障实验室环境。锂电池的力学测试在满足强制内短路测试要求的同时,LLOYD LD测试系统还可以兼顾各种高精度的电池力学强度测试,如锂电池三点弯曲强度,抗压强度,锂电隔膜拉伸强度、延伸率测量,锂电隔膜穿刺强度,铝塑膜的拉伸和穿刺性能等。LLOYD测试系统专注于各类定制化解决方案,协助您完成更为专业的标准化和定制化测试,助力锂电产品的测试和研发。更多详细方案,请垂询AMETEK 中国区办事处或各地分销商。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验解决方案
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。锂离子电池隔膜拉伸测试LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。锂离子电池隔膜穿刺试验LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用双杠升降,可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过脚踏开关(或手动开关)快速操作完成夹持,夹持完毕后,只需按手控盒的开始键即可开始试验,试验完毕后可快速安置好下一试验点,迅速完成5点或多点测试。锂离子电池涂层隔膜剥离试验以锂离子电池聚乙烯(PE)等隔膜为基体,在其表面均匀的涂覆厚度为1~2μm混有纳米氧化铝粉末及胶凝剂浆体,可以制成无机复合陶瓷涂层锂离子电池隔膜。陶瓷涂层隔膜可以有效的提高锂离子电池的热安全性,同时对电解液具有良好的润湿性及保液性能,可以有效的提高锂离子电池的容量保持性能。锂离子电池强制内短路测试从每年在世界各地发生的电池安全事故的失效初步分析来看,大部分是由于电池内部发生短路引起的。 自 2004 年日本某公司笔记本电池发生起火后,经详细调查,起火是由于电池在生产过程中内部混入了微小的金属颗粒,此颗粒在电池充放电、温度变化和外部撞击的过程中穿刺了正负极隔膜,从而导致内部发生了短路,进而引起热失控,以致发生起火。 但此类偶然混入无法完全避免, 所以我们对锂电池提出了新的测试要求,即: 电池即使有微小颗粒混入, 需要依然能够安全的使用, 而测试电池混入微小颗粒后表现的测试即为锂离子电池的强制内短路测试。
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 电缆故障测试仪-一款地埋线断点短路检测仪器2024实时更新
    型号推荐:电缆故障测试仪-一款地埋线断点短路检测仪器2024实时更新,在电力传输与分配系统中,电缆作为关键的能量传输媒介,其稳定性和可靠性直接关系到整个系统的安全运行。然而,电缆因长期运行、外力损伤或自然老化等原因,难免会出现故障。为了快速准确地定位并解决这些故障,电缆故障测试仪应运而生,成为电力维护人员不可或缺的工具。 一、工作原理与功能 电缆故障测试仪基于多种物理原理,如脉冲反射、时域反射(TDR)等,通过向电缆中发送特定信号并接收反射回来的信号,分析信号特征以判断电缆中的故障位置。它不仅能检测开路、短路等常见故障,还能识别更复杂的故障类型,如高阻故障、闪络故障等。 二、操作便捷性与效率 相比传统的故障排查方法,电缆故障测试仪大大提升了操作便捷性和工作效率。它通常采用图形化界面,操作直观易懂,即使是初学者也能快速上手。同时,测试仪能够自动处理和分析数据,迅速给出故障位置和性质,减少了人工判断的误差和时间。 三、广泛适用性与精度 电缆故障测试仪广泛应用于各种类型和规格的电缆故障排查中,包括低压电缆、高压电缆、通信电缆等。其高精度的测量能力确保了故障定位的准确性,有助于减少不必要的开挖和更换工作,降低了维护成本。 四、产品特点1.480*800大屏幕真彩手机细腻屏在阳光下也能清晰可辨。2.自带数据接口,支持客户远程升级。3.采用ARM CPU配合FPGA技术,可快速准确判断故障波形。4.波形比较功能,特别适用于线路某点氧化造成后端电压低故障的测试定位。5.简洁的对应功能按键易学易会直观方便。6.高能量锂电池,使用时间可达6-8小时。7.信号器自带万用表功能方便测试电压电阻及绝缘。 综上所述,电缆故障测试仪作为电力维护领域的重要工具,以其高效、准确、便捷的特点,在电缆故障排查中发挥着不可替代的作用。随着技术的不断进步,电缆故障测试仪的性能将更加优越,为电力系统的稳定运行提供更加坚实的保障。
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环
  • 动力电池安全性能检测实验室场地建设规划条件
    p   近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg" / /p p strong span style=" color: rgb(31, 73, 125) "   span style=" color: rgb(84, 141, 212) "   span style=" color: rgb(0, 112, 192) " 一、(规划)锂电池实验室设计依据及设备部署: /span /span /span /strong /p p    strong 1、依据标准规范: /strong /p p   满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。 /p p   实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。 /p p   1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。 /p p    strong 2、(规划)锂电池实验室设备布局: /strong /p p   在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区: /p p   1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。 /p p   2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。 /p p   3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。 /p p   4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。 /p p   5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。 /p p    strong 注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 二、(规划)锂电池实验室测试程序: /strong /span /p p    strong 1. 电池材料检测 /strong /p p   电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg" / /p p   工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。 /p p    strong 2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg" / /p p    strong 3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。 /p p img title=" 4.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg" / /p p    strong 4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测 /strong /p p   电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg" / /p p    strong 5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险: /strong /p p   1)着火、燃烧、爆炸 /p p   磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。 /p p   电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。 /p p   2)有毒气体的排放 /p p   由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。 /p p   3)漏液的污染性 /p p   电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、(规划)锂电池实验室——通风系统特点: /strong /span /p p   1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。 /p p   2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。 /p p   3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。 /p p   4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。 /p p   5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。 /p p   6、实验室的通风换气次数取每小时10~20次。 /p p   7、支管内风速取6~12m/s,干管内风速取8~14 m/s。 /p p   8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。 /p p    strong span style=" color: rgb(0, 112, 192) " 四、(规划)锂电池实验室——内部装饰 /span /strong /p p    strong 1、天花 /strong /p p   (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。 /p p   (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。 /p p   (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。 /p p   (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。 /p p   (5)洁净室采用彩钢板天花板。 /p p    strong 2、地面 /strong /p p   (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。 /p p   (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。 /p p   (3)在装修过程中,抛光砖的铺设最适合于办公场所。 /p p   (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。 /p p   (5)洗涤室利用原有地面,节约成本。 /p p   (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。 /p p    strong 3、墙体 /strong /p p   (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。 /p p   (2)采用其他墙体全部贴500*500抛光砖 /p p   (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。 /p p   (4)采用玻璃间隔的设计使得开放式实验成为一种可能。 /p p   (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。 /p p    strong 4、门窗 /strong /p p   (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。 /p p   (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。 /p p    span style=" color: rgb(0, 112, 192) " strong 四、(建议)锂电池实验室注意事项: /strong /span /p p   实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。 /p p    strong 1.爆炸前预警: /strong 由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。 /p p    strong 2.爆炸过程控制: /strong 电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。 /p p    strong 3.污染物可回收: /strong 污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。 /p p    strong 4.试验室防爆系统: /strong 房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。 /p p    strong 5.每个防爆室配置有防爆灯,视频监控探头。 /strong 视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。 /p p    strong 6.充放电区: /strong 设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。 /p p    strong 7.消防要求: /strong 在人员操作区和样品区设置有消防烟感探头。 /p p    strong 8.视频监控要求: /strong 共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。 /p p    strong 9.实验室噪音: /strong 实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。 /p p    strong 10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。 /strong 设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。 /p p    strong span style=" color: rgb(0, 112, 192) " 五、(规划)锂电池实验室水电要求: /span /strong /p p   1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /p p   2.独立地线:接地电阻≤4Ω /p p   3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /p p   4.排水:配管连接直径Φ100。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、(设计)锂电池实验室测量系统精度: /strong /span /p p   1.所以控制值的准确度应在以下范围内 /p p   2.电压:± 1.0% /p p   3.电流:± 1.0% /p p   4.温度: ± 2℃ /p p   5.时间:± 1.0% /p p   6.尺寸:± 1.0% /p p   7.容量:± 1.0%。 /p p    strong span style=" color: rgb(0, 112, 192) " 七、锂电池防爆实验室典型设计应用: /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " img title=" 6.png" src=" http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg" / /span /strong /p p style=" text-align: center " (锂电池实验室效果图) /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg" / /p p style=" text-align: center " (测试系统综合交钥匙工程) /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg" / /p p style=" text-align: center " (电池整体实验室正面) /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg" / /p p style=" text-align: center " (电池整体实验室背面) /p p    strong 作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器) /strong /p
  • 利好科学仪器!欧盟电池法正式生效:电池回收、碳足迹要求升级
    仪器信息网讯 8月17日,欧盟官方公示满20天的《欧盟电池和废电池法规》(下称《欧盟电池法》,法规全文见文末附件)正式生效。核心要点:谁生产谁回收、谁进口谁回收。《欧盟电池法》对生产者责任延伸、电池回收管理、数字电池护照等提出更高要求,明确自2027年起,动力电池出口到欧洲必须持有符合要求的“电池护照”,记录电池的制造商、材料成分、碳足迹、供应链等信息。这将对中国动力电池企业出口欧洲产生重大影响。《欧盟电池法》生效利好科学仪器行业。新法规对电池回收、碳足迹、电池护照要求升级背后,科学仪器测试技术支撑作用突显,新法规文件中,“测试”一词出现达82次。如法规文件附件五的安全参数部分,依次对热冲击和循环、外部短路保护、过冲保护、过放电保护、过温保护、热传导保护、外力引起机械损伤、内部短路、热滥用、着火试验、气体排放等相关测试项目进行了描述。且多个测试项目明确要求需采用最先进的测试技术或测试仪器设备。《欧盟电池法》对于投放到欧盟市场的所有类型电池(除用于军事、航天、核能用途电池)提出了强制性要求。这些要求涵盖可持续性和安全、标签、信息、尽职调查、电池护照、废旧电池管理等等。同时,新电池法详细规定了电池以及含电池产品的制造商、进口商、分销商的责任和义务,并建立了符合性评估程序和市场监管要求。据华泰证券分析,《欧盟电池法》对我国产业链或将带来三方面影响:第一,碳排放的相关要求或将强制出口企业进行零碳转型,在生产技术上将向着高效低能耗、环保低碳等方向进行革新 第二,有望倒逼国内回收体系完善,长期将带动国内产业链的绿色转型,推进行业的可持续发展。回收要求趋严或利好已和海外厂商合作布局回收的企业 第三,电池护照旨在确保供应链的透明度,出口企业将面临护照数据库建设、护照管理系统维护及国际统一标准构建等挑战。《欧盟电池法》目录一览:第1章 一般规定第2章 可持续性和安全性要求第3章 标签、标记和信息要求第4章 电池一致性第5章 合格评定机构的通知第6章 第七、八章以外经营者的义务第7章 经济运营商在电池尽职调查政策方面的义务第8章 废电池管理第9章 数字电池护照第10章 第十章联合市场监督和欧盟保障程序第11章 绿色公共采购和修订限制的程序第12章 授权和委员会程序第13章 修正案第14章 最后条款附件1对物质的限制附件2碳足迹附件3通用便携式电池的电化学性能和耐久性参数附件4 LMT电池、容量大于2kWh的工业电池和电动汽车的电化学性能和耐久性要求附件5安全参数附件6标签、标记和信息要求附件7确定电池健康状态和预期寿命的参数附件8合格评定程序附件9欧盟一致性声明编号(申报的识别号)附件10原材料和风险类别清单附件11废旧便携式电池和废旧LMI电池收集率的计算附件12储存和处理,包括回收,要求附件13电池护照中应包含的信息附件14废旧电池装运的最低要求附件15相关表附:欧洲电池法规Battery regulation approved by EU Parliament.pdf
  • 安全无小事——从刀片电池看XPS如何助力电池安全研究
    2020年3月,某新能源汽车公司一则动力电池“针刺试验”视频将锂电池的安全问题推向了风口浪尖。视频中对比了三种动力电池——三元锂电池、磷酸铁锂块状电池与刀片电池,在针刺之后,电池发生短路,三元锂电池出现明火燃烧,磷酸铁锂块状电池虽无明火,但有出现冒烟,刀片电池则无火无烟。日常生活中,锂电池在不规范使用过程中仍有可能发生短路现象,比如高功率快速充电引起自燃。 锂离子电池在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌,如果充电功率过高锂离子快速脱出并“游向”负极,锂离子可能会在表面析出形成锂枝晶,如果锂枝晶不断生长,就会从负极刺穿到隔膜,造成电池短路自燃。岛津通过最新的Axis Supra+光电子能谱仪分析了造成短路的“罪魁祸首”锂枝晶的内部成分及形貌像,我们一起来看一下!图1. Axis Supra+光电子能谱仪图2. 锂离子电池结构图 X射线光电子能谱(XPS)技术现在已经成为科研分析中的日常表征手段,通过XPS结合岛津Minibeam 6型团簇离子枪可以给出材料表面元素、价态及其随深度的变化情况,离子枪加速电压可以达到20kV,相比于10kV的加速电压,离子溅射速率提升了约20倍,使其不仅可对较软的有机材料进行刻蚀,也可对无机材料进行刻蚀,如图3是Minibeam 6型团簇枪的结构图。Axis Supra+配备了独有的“半球型分析器(HSA) +球镜型分析器(SMA)”双层分析器设置,通过独立的球镜型分析器(见图4)可以对材料表面元素进行快速的化学态成像,两种技术强强联手,对锂离子电池的电极进行了表征。图3. Minibeam 6型团簇离子枪图4. 镜像分析器原理 首先通过XPS全谱分析了电极表面的主要元素,主要存在Mg、Li、Cu、O、C及少量的F、Na、Cl、S,全谱图如图5所示,之后对材料表面进行团簇刻蚀分析。刻蚀电压选择为20kV,Ar团簇数为500,此模式下刻蚀能量大,团簇数小,可以对无机材料进行快速的刻蚀,团簇刻蚀均分到每个Ar原子的能量只有40eV,因此对材料的化学态影响较小。图6是团簇刻蚀得到的元素深度分布曲线,从图中可看出,在刻蚀到2500s时,Cu元素为主要存在元素,说明已基本刻蚀到电极表面。Li、O、Cl元素靠近样品表面,Mg元素在表面与体相的分布则比较均衡。 图5. 电极表面XPS全谱图6. 电极表面的深度剖析图 深度剖析给出了材料元素的纵向分布情况,XPS成像则可以给出表面元素的横向分布情况。如图7是材料表面元素的叠加XPS成像,红色为Cl元素,蓝色为Mg元素,可以看出表面呈枝晶状分布的Cl元素,充电时Li元素与其共同沉积在电极表面形成了枝晶,Mg则属于电极表面的元素。为了对枝晶的物种成分进行分析,对枝晶区域采集了小面积的XPS精细谱,如图8所示,高氯酸盐的存在形式表明枝晶物种成分主要为高氯酸锂。 图7. 电极表面XPS成像(红色为Cl,蓝色为Mg)图8. Cl元素的XPS精细谱结 论安全无小事,跟人们生活密切相关的电池安全更是如此,随着锂电池研究的深入,锂电池部件表界面的状态扮演着越来越重要的角色,比如锂的嵌入与脱出、SEI膜的形成机理与作用、隔膜的表面修饰等等,XPS作为表面分析中重要的研究手段,正在成为锂离子电池研究开发的利器!本例中通过Axis Supra+型光电子能谱仪对锂离子电池电极进行了分析,结合团簇剖析与XPS成像分别给出了材料表面元素纵向与横向的分布情况,对电极表面及枝晶的“化学形貌像”进行了生动的呈现! 撰稿人:王文昌
  • FLIR ONE Pro有效检测汽车电路板短路,小身材超能力轻松搞定!
    汽车在使用过程中难免有一些小故障汽修师父在寻找这些故障的过程中除了凭借丰富的经验外还要借助一些给力的检测工具今天小菲就来给大家说一下汽车免拆除专家叶工程师使用FLIR ONE Pro手机热像仪轻松发现汽车电路板短路的案例!转向灯失灵, 难查故障源头一辆2007款宝马740Li车,其左侧翼子板上的辅助转向灯无法点亮,其他维修厂多次维修试车均找不到故障原因。叶工接车后试车,接通左转向灯开关,组合仪表上的左转向指示灯(绿色)闪烁得比较快,且组合仪表上提示“左前转向信号灯失灵”;下车检查,发现左侧前照灯中的转向灯能够点亮且闪烁,而左侧翼子板上的辅助转向灯无法点亮。用故障检测仪检测,发现LM中存储有故障代码“009CB8LM短路故障”,且无法清除。左侧翼子板上的辅助转向灯无法点亮LM中存储的故障代码据悉,左侧辅助转向灯灯泡与右侧辅助转向灯灯泡调换过,且更换过LM,因此可以认定该车故障可能是由线路故障引起的。通过对左侧辅助转向灯的外围供电线导电检测,发现其并未对搭铁短路,而至于左侧辅助转向灯的供电线通过LM内部与搭铁导通是否正常,暂时无法确定。进一步查看维修资料得知,当LM中存储短路类故障,且达到一定次数时,LM将被锁止,此时LM不再向相关灯泡供电。用宝马工程师软件解除LM的锁止状态后试车,发现左侧辅助转向灯的灯泡、供电线、搭铁线及搭铁点均正常,接下来决定从LM入手检查。LM电路板上的多个触点被加焊过 热成像技术有效检测:线路异常升温拆开LM外壳,发现电路板上的多个触点(芯片触点和导线连接器对应的触点)被加焊过,推断专业汽车电器维修店的维修人员以为电路板上的触点存在虚接故障,于是对多个触点进行了加焊处理。接通左转向灯开关,用手触摸LM电路板上的芯片,发现上图中红色箭头所指芯片(以下简称芯片A)的温度迅速升高,而接通右转向灯开关,各芯片的温度均无明显变化,由此推断芯片A工作异常,可能的故障原因有:芯片A内部短路;LM外围线路短路,以致流经芯片A的电流过大。未接通左转向灯开关时芯片A的温度接通左转向灯开关时芯片A的温度用FLIR红外热像仪测量芯片A的温度可知,芯片A温度异常升高是由流经芯片A的电流过大引起的,且大电流对应LM端子68。LM在检测到左侧前照灯中的外转向灯的电流过大时,出于对电路的保护,不再持续输出供电,而是以占空比的形式输出供电,且占空比越来越小,这与故障时左侧辅助转向灯的供电方式一致。后经过调查得知,该车前照灯内的线路容易老化,由此推断该车故障是由左侧前照灯内部线路短路引起的。前照灯内的线路老化FLIR ONE Pro, 提高诊断效率将左侧前照灯送至专业的维修店维修后装复试车,转向灯均工作正常,故障排除。对于维修各种车型的维修厂来说,想对每种车型的配置细节都很了解有点不太现实,但只要有清晰的诊断思路,不管手里握的是哪条藤,一样能顺利摸到瓜。搭配合适的诊断工具,比如这次的FLIR ONE Pro手机红外热像仪,扫描一下就发现了线路问题,大大提高了诊断效率,非常实用!FLIR ONE Pro手机红外热像仪小巧轻便,配合智能手机即插即用,非常方便!它能够测量介于-20°至400°C之间的温度,热灵敏度可检测到70mk的温差,支持最多3个点温仪和最多6个温度感兴趣区域,它已经协助叶工发现很多次难以攻克的汽修问题,想要详细了解的小伙伴戳这里:NO拆卸!只需两步,FLIR ONE Pro高效排查汽车发动机冷却液故障实地案例|汽修工程师,如何化解难以察觉的“小问题”?FLIR ONE Pro的热分辨率高达19200,其采用VividIR™ 图像处理技术,使您能够看到更多重要细节,因此可广泛应用在我们的日常工作生活中,比如检查电气面板、查找暖通空调故障、检测房屋水损问题等。
  • 电池被刺爆破的瞬间,FLIR高速热像仪收集各项热数据!
    在很多研究实验中,都需要对设备进行热点监控,因此Teledyne FLIR高速热像仪越来越受到瞩目。今天,小菲就来说一个Teledyne FLIR 高速热像仪在进行电池滥用测试中应用的案例。选择Teledyne FLIR的原因位于印第安纳州纽伯里的电池创新中心 (BIC) ,是一家合作性非营利机构,专注于为商业和国防客户提供安全、可靠和轻量化电池的快速开发、测试、验证和商业化的服务。其部分测试过程包括各种滥用测试,将电池暴露于最恶劣的情况,以确定并解决由此产生的安全问题。近些年,我们对电池的需求急剧增加,为了满足这一需求,电池的型号在不断增加,使其性能和安全性的验证变得越来越重要。“电池的测试至关重要”,BIC 总裁兼首席执行官 (CEO) Ben Wrightsman 说。“在进行测试时,我们希望收集尽可能多的数据,并且我们希望能够确信我们的数据是准确的,”BIC项目总监Ashley Gordon解释说。为了从这些测试中收集尽可能多的数据,BIC选用了Teledyne FLIR 高速热像仪,它可显示用其他技术无法捕捉的热成像细节。在电池的使用过程中,事故是难免的,而在事故发生时,一定要知道电池会有什么反应,比方说如果电池着火,引起周围材料着火的速度有多快,可能性有多大。“我们模拟最坏的情况以收集数据,然后就知道预期会发生什么情况,”Gordon 说。BIC在2020年年底购入的FLIR高速热成像仪已成为其收集数据的关键。传统热电偶的局限性“在我们拥有热成像仪之前,主要采用体积较大的热电偶和更普通的红外 (IR) 设备,”BIC 研究总监 James Fleetwood 博士说。热电偶是一种由两根不同的导线组成的廉价温度传感器,常用于工业领域的温度测试。然而,它们也存在许多局限,特别是对于在BIC进行的电池测试。热电偶的主要缺点是一次只能测量一个点。“如果我只使用热电偶,得到的是接触点的温度读数。这意味着只有热电偶所在位置的读数,”BIC实验室技术员Rodney Kidd解释说。热电偶的放置也容易出现偏差。“这是一种自我实现反馈,”Fleetwood 博士说。“你其实并不知道热点在哪里,只有已知位置对应的测量值。”电池滥用测试中的热观察电池要接受的滥用测试之一是针刺,该测试用于模拟短路,而短路可能导致电池过热、着火甚至爆炸。“如果我们在进行针刺测试时只能使用热电偶,你实际上必须在整个电池表面放置一千个热电偶,才能清楚地了解整个电池的温度分布,”Kidd 说。了解短路和热量扩散如何导致气体积聚及这些气体和其他电池材料从哪里排出(以及它们有多热)对于工程师来说非常重要。“我们不能保证每次都能防止电池着火,”Kidd 解释说,“但我们可以减轻损害程度,并引导其进入安全的通道。”“这是我们以前用热电偶和普通红外热像仪所无法捕捉到的,”Kidd 说。虽然它们也能看到碎屑排出,但材料在接触大气时会立即冷却。“有了FLIR高速热像仪,我就可以放慢速度,并捕捉到这种材料,其温度有时可高达700℃,甚至更高”他解释说。其结果是热成像比单纯的通过/失败认证提供了更多的信息。“比起系统是否着火,热图谱可以告诉你更多有关热管理系统效果的信息
  • 飞行安全 第 一:如何让锂离子电池更安全?
    2013年1月7日,一架波音787飞机上的保洁人员发现飞机后舱冒烟。一名机修工在经过仔细检查后,发现火灾源自APU电池外壳的盖子。所幸这架飞机当时停在美国洛根国际机场,因此183名旅客和11名机组人员均未受伤。九天后的2013年1月16日,另一架波音787飞机因出现主锂离子电池事故而不得不紧急降落在日本高松机场。因此,联邦航空管理局(FAA)在NTSB(美国国家运输安全委员会)开展调查前,停飞了整个787“梦幻客机”机队。01 被忽视的严重问题 NTSB调查发现,火灾最可能的原因是锂离子电池发生内部短路。这种短路导致热失控,造成相邻电池温度升高,从而导致过热、火灾甚至爆炸。波音787飞机是第*一架使用大型锂离子电池的飞机,经过一番艰难排查,发现其存在一定的局限性。总结如下:波音、FAA和电池制造商并未完全解锂离子电池的相关风险。然而,这不是锂离子电池第*一次在飞机上引发问题。就在今年,FAA发布了一份在线清单,列出了从1991年3月至2019年5月22日发生的258起独立事件,其中包括锂离子电池导致的烟雾、火灾、过热或爆炸。自2016年4月以来,国际民用航空组织一直实施有关锂离子电池航空运输的严格法规——美国今年也已效仿此项举措。那么,为什么锂离子电池如此危险?制造商可采取哪些措施来降低风险?02 什么原因导致锂离子电池过热?NTSB调查发现,电池发生的内部短路会导致火灾。短路会导致电流过大,使电池过度加热,从而使之点燃。如今,人们普遍认为,电池内异物产生的细小金属颗粒是导致短路的原因。产生这种现象的方式如下:1. 化学短路在这种情况下,阴极附近的电解质内尺寸为20μm至50μm的微小金属颗粒发生电离。电离原子带正电荷,表明它们会被吸引至阳极。在向阳极移动时,它们会穿透电池隔板,从而导致阴极至阳极侧发生短路。2. 物理短路如果阴极电解质中存在大金属颗粒(如尺寸超过100μm),则它们的尺寸大到足以在隔板上打孔,并将电流直接从阴极传送至阳极侧,从而再次发生短路。03 如何对应以确保安全?为确保安全操作,电池制造商和电池组件提供商必须检查并减少生产中的金属异物。必须将异物保持在最*低限度的区域如下:阳极和阴极材料导电增强剂浆料形成过程镀层和干燥过程检查这类区域中的金属异物的尺寸和密度将有助于避免发生会导致整个波音787机队停飞的现场故障。 日立X射线异物分析仪EA8000 日立分析仪器开发出专门用于检测和分析锂离子电池内金属异物的X射线分析仪EA8000,它创新性地协同使用X射线透射成像与先进的X射线荧光光谱,具有极快的测量速度、高准确性和高精密度等特点,可用于维持整个锂离子电池生产过程中的质量。
  • Delta德尔塔仪器告诉您——如何才能杜绝电动自行车电池自燃
    5月10日晚上,成都市丛树家园小区一电梯内电瓶车起火,导致包括一名婴儿在内的多人烧伤视频在网上传播后,牵动人心。 电梯监控视频显示,10日19时33分,一男子乘电梯下楼,随后电梯停在某层楼,一名妇女怀抱着一名婴儿进入电梯,电梯继续下行。19时34分23秒,电梯再次停下,一男子推着一辆电瓶车进入电梯,身后还有一名双手提着物品的男子也紧跟进入。19时34分34秒,就在电梯门关闭瞬间,一秒钟时间不到电瓶车底部突然冒起浓烟,瞬间闪起了火光,电梯内迅速被火光和浓烟覆盖。视频显示,冒烟发生同时,推电瓶车的男子迅速伸手按了一下电梯开关。事发时,电梯内有4名大人和1名幼儿。对此很多网友表示,坚决反对电瓶车上楼! 对于网友的评论,我有不同的看法,作为主动方面,禁止电动自行车车进入电梯确实是可行的,但我们不能一昧的谴责推电动自行车进入电梯的男子,却往往忽略了z大的危害源头是电动自行车的电池。电动自行车是为了方便市民的工具,而不是成为大家“闻风丧胆”、相互嫌弃的工具。只有生产厂家按照国家的标准,做好安全检测才投放到市场,这才是遏制电动自行车电池自燃最有效的方法。由国家市场监督管理总局、国家标准化管理委员会批准的GB/T 36972-2018《电动自行车用锂离子蓄电池》国家标准于2018年12月28日正式发布,将于2019年07月01日正式实施,该标准对推动电动自行车用锂离子电池综合标准化工作及电动自行车锂离子电池推广应用具有重要意义和作用,同时也为电动车用锂离子电池领出了一条健康、可持续发展的道路。 Delta德尔塔仪器专业致力于GB/T 36972-2018《电动自行车用锂离子蓄电池》的研发和定制,可为客户提供锂电池安全检测实验室整体打包、一站式交钥匙工程服务。客户只需要提供试验场地,其他的交给我们为您搞定! (电动自行车锂电池安全测试系统综合交钥匙工程)《电动自行车用锂离子蓄电池》(GB/T 36972-2018)检测设备推荐清单序号测试项目本标准条款关键设备设名称辅助功能/引用标准能力说明要求试验方法1. I2(A)放电5.2.16.2.1① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1) 可选配充放电测试通道数和测试额定电流、电压;2) 防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。2. 充电6.2.1.13. 放电6.2.1.24. 2I2(A)放电5.2.26.2.25. 低温放电5.2.36.2.3① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT6030)② 高低温冲击试验箱(-40℃~150℃)(推荐型号:GS-THE8002)③ 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和电流、电压;2)可选配高低温试验箱内箱容积和温度范围;3)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。6. 高温放电5.2.46.2.47. 荷电保持能力及荷电恢复能力5.2.56.2.5① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT6030)② 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)③ 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和电流、电压;2)可选配恒温箱内箱容积和温度、湿度范围;3)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。8. 荷电保持能力6.2.5.19. 荷电恢复能力6.2.5.210. 长期贮存后荷电恢复能力5.2.66.2.611. 循环寿命5.2.76.2.712. 内阻5.2.86.2.8① 电池内阻测试仪(推荐型号:HK3561R)② 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)可选配恒温箱内箱容积和温度、湿度范围。13. 过充电5.3.26.3.2① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。14. 强制放电5.3.36.3.315.外部短路5.3.46.3.4① 外部短路试验机(3000A)(推荐型号:GS-MST920)可选配常温外部短路和高温外部短路16.挤压5.3.56.3.5① 电池挤压试验机(0-35KN)(推荐型号:GS-MST930)1) 可选配挤压+针刺(穿刺试验)功能;2) 可选配红外摄像监控系统、自动灭火器装置、废气回收净化装置。17.机械冲击5.3.66.3.6① 机械冲击试验机(600g)(推荐型号:GS-MST980)可选配峰值加速度和试验负载18.振动5.3.76.3.7① 电磁振动试验机(0~400Hz)(推荐型号:GS-MST970)X,Y,Z三轴向振动;可选配振动频率、振幅范围及试验负载。19.自由跌落5.3.86.3.8① 电池跌落试验机(定向X,Y,Z)(推荐型号:GS-MST960)X/Y/Z定向跌落;可选配热成像相机、自动灭火器装置。20.低气压5.3.96.3.9① 高空低气压试验箱(11.6KPa)(推荐型号:GS-MST950)可选配试验箱体积(内容积)21.高低温冲击5.3.106.3.10①高低温冲击试验箱(-40℃~150℃)(推荐型号:GS-THE8002)可选配高低温试验箱内箱容积和温度范围22.浸水5.3.116.3.11① 电池水浸泡试验箱(推荐型号:GS-MST10)可选配实验水箱容积及温度控制范围23.过充电保护5.4.26.4.2① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。24.过放电保护5.4.36.4.325.短路保护5.4.46.4.4① 外部短路试验机(3000A)(推荐型号:GS-MST920)可选配常温外部短路和高温外部短路26.放电过流保护5.4.56.4.5① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。27.静电放电5.4.66.4.6 ① 静电放电发生器(20kV)(推荐型号:ESD61002TA)引用标准:GB/T 17626.2-200628.模制壳体应力5.5.16.5.1① 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)可选配恒温箱内箱容积和温度、湿度范围。29.壳体承受压力5.5.26.5.2① 电池壳体抗压试验装置(推荐型号:GS-KYL503)试验压力:250N30.壳体阻燃性5.5.36.5.3①水平垂直燃烧试验机(PLC+触摸屏)(推荐型号:GS-HUVL90)引用标准:GB/T 5169.16-201731.外形尺寸5.6.16.6.1① 游标卡尺(推荐型号:0-300mm)选配指针式/数显,测量量程可选32.充放电接口5.6.26.6.2目检引用标准:QB/T 442833.外观5.6.36.6.3目检/34.极性标志5.6.46.6.4酒精耐磨试验机(推荐型号:GS-YCR02)/合计需要仪器数量:约18台(国家纳米科学中心——锂电池实验室交付现场图片)设备已经成功运用到各大专业测试机构和生产厂家提供服务。第三方检测机构例如:广州SGS通标实验室,上海天祥ITS实验室,昆山出入境技术检验中心,广东质检院,深圳计量院,福建质检院(马尾基地),东莞标检产品检测有限公司(STC),各大企业例如:爱玛电动车,绿源电动车,喜德盛电动车等生产厂家品质研发部,深受客户好评。未来,Delta德尔塔仪器将持续用高品质的产品和服务,为电动自行车和电动助力车行业的发展添砖加瓦,为市民便捷出行、公共交通领域保驾护航,让人们生活的更加安全、舒适、和谐。张工yi八1,28零28677(WX同号)
  • 精邦LIMS促进新能源电池检测实验室智能化管理方向发展
    作为战略性新兴行业之一,中国新能源汽车近年来发展迅速。数据显示,2018年中国新能源汽车产销量突破100万辆,产销规模连续三年位居全球第一。但同时,新能源汽车自燃、电池寿命短等与动力电池安全有关的事件和问题的频发为新能源汽车行业敲响了警钟。什么是新能源汽车检测试室呢?为什么要建设新能源汽车检测实验室呢?新能源电池实验不同于家用电器和汽车电子产品实验,由于电池的危险性,电池测试过程中可能会产生有害气体、冒烟、明火、爆炸,这些问题可能导致环境空气污染、设备损坏、人员受伤,甚至对人身财产造成巨大损失。因此,电池试验室的规模大小,场地建设,设备购置,以及日常的运营成本都需要引起重视。实验室主要分为电池性能测试评价、环境可靠性测试评价、安全滥用性测试评价三大平台,其测试能力覆盖动力电池单体、模组、Pack(电池包)及系统级别的各项产品,可满足多项国际标准及中国国家标准。通常具有完整测试能力的电池检测实验室 ,可规划成如下功能分区:1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等。2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合试验台。3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等。4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水侵泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、温度箱等。另一方面,为此建立的电池安全检测标准有: 国际标准(IEC)、欧盟标准(EN)、中国标准(GB QC)、美国标准(SAE UL)、日本标准(JIS),针对新能源汽车应用较为广泛的标准是UN 38.3、QC 743、SAND 2005-3123、UL 2580、ISO 12405。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。新能源汽车检测实验室为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况应运而生。通过电池安全检测标准的新能源汽车才能在安全上有长久的保障,相信未来新能源汽车的安全性会得到大大改善。精邦实验室信息化管理平台针对未来汽车实验室科学管理,开发出汽车行业LIMS系统软件,该系统是一款以ISO/IEC17025、ISO9000等精细化管理标准为基础,采用现代化的电子信息技术和数据库系统,专业为汽车企业实验室和质量检验平台设计方案的综合型业务管理系统。汽车实验室精邦LIMS系统关键程序模块:1. 样品管理:是检测中心的关键工作之一。精邦LIMS针对取样、来样加工、试样、留样、余样等差异环节特征的样品,提供样品接收、确认、前处理、派发、传递、检测、保存、处理、退回等全程管理功能模块运用条形码标签建立样品的唯一性界定和查询精准定位。2. 检测管理,具备分配任务、分配管理、结果备案、评价、审核等检测流程管理功能模块,支持数值、字段、文档、报表、图谱等各类结果类别。可设置计算方法、判定指标值等业务流程标准,根据实验仪器接口功能模块,同时导入初始检测统计数据运用电子签章技术性审核结果,保证网络安全;3. 设备维护: 提供设备台账,申购采购,应用记录,维修保养,计量检测,出现故障检修,借还备案,状态控制,销毁报废,利用率统计分析等管理功能模块。较大底限地提升实验室设备等设施自动化技术管理能力;4. 规范管理,为实验室应用的规范丰富多彩提供数字化管理,便捷相关技术人员免费在线查看,并对规范方式的追踪,非标准方式的制订、确认和应用推行有效管理。5. 人员管理针对检测中心的各类技术人员,精邦LIMS提供健全的人员管理方案如技术人员基本资料、人事关系、专业能力确认、资质确认、授权管理、工作记录、监管、评价、学习培训、绩效考评等6. 物资管理精邦LIMS提供实验室物资管理,合格供应商管理,耗材申购、采购、项目验收、入库管理,领用备案,库存量智能提醒(有效期限、库存值)等管理功能模块建立耗材的标准化管理,动态性管控并有效控制耗材使用量,减少检测成本费7. 质量控制精邦LIMS针对实验室內部审核、管理评审、能力验证、实验室间核对、外部审查(如资质证书评定、实验室认可)等相关品质活动,提供了活动计划、活动变更、活动执行、不良整顿 等质量管理和质量控制功能模块8. 数据分析精邦LIMS针对各检测业务的对象、业务流程阶段、业务流程状态智能生成月表、年报表或阶段性可视化报表,同时强大功能的报表设计构思器,允许客户自定义报表格式和內容来源,定期进行或实时生成各类的可视化图形报表,为业务流程分析、市场拓展、领导层管理决策填报数据支持9. 流程优化精邦LIMS嵌入工作流引擎,可为检测中心量身定做定制最贴切的工作流程,将信息流(凭证)、商品流(样品)、审批流(每日任务)有机化学融合成一体化,建立检测业务流程的全程动态性管理, 能够迅速响应检测中心业务流程飞速发展的需求精邦LIMS系统面向生产制造产业,技术专业的质量检验实验室LIMS系统软件提升规范性与智能化管理能力,全方位覆盖了实验室和质量检验平台的经营范围,为汽车产品质量检验的每个阶段提供全方位、精细的管理解决方法,并将各部门日常任务工作中有机地相结合,形成个完整性、统一性的业务流程管理平台,全部工作都能够使用LIMS协调工作。10.智能数据分析 数据智能分析中心主要是针对系统已经存在的检测数据进行多维度、多层级的单向、多项目组合分析管理。通过数据分析能够把数据之间的逻辑关系清晰的展现出来,以满足企业对历史检测数据的纵向、横向分析,以便为产品研发、生产、采购提供科学的建议,同时有效的减低产品研发成本、提高产品的质量、缩短研发周期。精邦数据智能分析中心通过可视化的展现可以快速、精准的对检测数据进行分析,图表与图形智能的展现,帮助实验室从历史检测数据中提取数据进行综合排优比对与建议。◆ 精邦数据智能分析中心不仅仅是前端报表,还包括元数据管理与数据中心(数据仓库);◆ 不仅仅是数据可视化,不仅仅是敏捷数据智能分析中心,精邦 BI 独有的多维动态分析与智能钻取轻松实现智能分析;◆精邦 BI 开发平台,包括数据转换管理(ETL)、OLAP 数据库设计、元数据管理、WEB多维报表设计、多维动态分析、智能钻取、智能报告、数据填报、移动应用、微信应用、单点登陆等 10 余项功能,专注企业级应用,更符合第一方实验室的信息化现状及需求;通过数据匹配组成最佳产品体系分析,形成研发数据库为研发部提供数据支撑; 根据不同的测试安排和类型,数据分析的功能分为数据对比和 SPC 监控两部分。 1 数据对比主要是同一测试项目可直接较 ,如客户需 60 度 7 天后 厚度膨胀(内阻、 厚度膨胀(内阻、 OCV OCV、恢复容量剩余处理方式一样),可以将不同阶段,不同规格的试验单,在一表中展示(busbar 形式,或客户要求的其他),并可以直接导出比较图表、原始数据。 2 SPC 监控主要针对品质稳定性监控,比如量产电池的厚度、容量、倍率、存储、循环 150 次的结果,做长期跟踪,并依据时间、批次,给出某一关键指标的趋势变化图,若出现超规格情况,可依据严重程度,系统自动给出预警(比如邮件、短信)通知,可设置不同层级(工程师、经理、总监、副总、总经理等); 3 数据对比 选择测试用例及需要进行对比的测试任务进行数据可视化对比分析,包括不限于倍率、循环、存储、高低温测试,可针对不同项目不同关注点进行比较,比如容量(保持率)、厚度(增长)、放电能力、内阻增加等各个方面进行展示。对于原始的充放电数据(放电数据),循环数据,都可以直接叠加比较。 该软件可以查询相关的功能,并设置了重置,可以一次性对比几个测试,选择重置,可以清空这些对比信息,主要的对比包括如下几点: 4 倍率放电测试记录在不同倍率(0.1C,0.2C,0.5C,1C,1.5C,2C)下,电芯的放电曲线
  • 浅谈现有锂离子电池检测标准
    p   由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求。有鉴于此,本文作者对国内外现有的一些具有代表性的标准进行了归纳和分析,以期为检测技术的发展提供参考。 /p p    strong 1 电池安全性能检测标准简介 /strong /p p   目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。 /p p   应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3) /p p   和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验 机械试验包括挤压试验、撞击试验、冲击试验和振动试验 环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。 /p p   目前,国内外常用的锂离子电池标准列表归纳于表1。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/34f9e075-349d-4134-93b8-3c9ec7601566.jpg" title=" 003.jpg.png" alt=" 003.jpg.png" / /p p    strong 2 现有标准的侧重点分析 /strong /p p   现行的主要标准可概括为以下几类: /p p    strong 2.1 主要针对运输过程中的外部环境和机械振动 /strong /p p   如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。 /p p    strong 2.2 主要针对设计和制造过程 /strong /p p   如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。 /p p    strong 2.3 主要针对锂离子电池电性能和安全性 /strong /p p   如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。 /p p    strong 3 现有标准的不足 /strong /p p   过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。 /p p   根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准 即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。 /p p   迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布 同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。 /p p   在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性 另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。 /p p    strong 4 结束语 /strong br/ /p p   安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。本文作者归纳和总结了国内外常用的锂离子电池安全性能检测标准,通过分析发现,目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。 /p p   随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自Battery Bimonthly(电池),2015,45(3),(蔡春皓,段冀渊,寿晓立,杨荣静, 中华人民共和国上海出入境检验检疫局) /i /span /p
  • 什么是固态电池 ——迎接国际新一轮动力电池技术竞争
    固态电池是一种使用固态电解质替代传统液态电解质的电池,其电解质可以是聚合物、氧化物、硫化物等多种材料。固态电池的结构主要包括正极、负极、电解质和隔膜四部分。与液态电池相比,固态电池具有更高的安全性、更大的能量密度和更长的寿命。来源:《中国固态电池行业研究报告》,前瞻产业研究院固态电池的工作原理与液态电池类似,都是通过正负极之间的离子传递来实现电荷的存储与释放。在充电过程中,正极释放电子,负极吸收电子,同时离子从正极向负极移动,嵌入负极材料中;在放电过程中,电子从负极流向正极,离子从负极向正极移动,释放出储存的能量。工作原理上,固态锂电池和传统的锂电池并无区别。两者最主要的区别在于固态电池电解质为固态,相当于锂离子迁移的场所转到了固态的电解质中。而随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度。另外,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。固态电池的优势安全性:固态电池采用固态电解质,可以有效防止电池内部短路和漏液,降低热失控风险。同时,固态电解质的化学稳定性较好,不易燃烧,因此在高温、撞击等极端条件下,固态电池的安全性明显优于液态电池。能量密度:固态电池具有较高的能量密度,一方面是因为固态电解质可以承受更高的电化学窗口,使得电池可以使用更高电压的正极材料;另一方面,固态电池可以采用更薄、更轻的隔膜和集流体,减轻电池重量,提高能量密度。寿命:固态电池的寿命较长,一方面是因为固态电解质可以有效抑制电池内部副反应,降低自放电速率;另一方面,固态电池的充放电循环稳定性较好,可以承受更多的充放电次数。来源:《全固态电池技术的研究现状与展望》,许晓雄固态电池的挑战1、固态电解质材料研究目前,固态电解质材料的研究尚不充分,需要进一步优化和筛选具有良好离子导电性、机械强度和化学稳定性的材料。此外,固态电解质与电极材料的界面问题也需要解决,以提高电池的性能。2、制造成本固态电池的制造成本较高,主要原因是固态电解质和电极材料的制备工艺复杂,且生产规模较小。此外,固态电池的生产设备和技术也与传统液态电池有所不同,需要投入大量资金进行研发和产业化。3、充放电速率固态电池的充放电速率相对较慢,主要受限于固态电解质的离子导电性。提高充放电速率需要进一步优化固态电解质材料,以及开发新型电极材料和结构。固态电池的国际竞争势态美国在固态电池领域具有较强的研发实力,拥有多家知名企业和研究机构,如QuantumScape、Solid Power、Ionic Materials等。美国政府也高度重视固态电池技术,将其列为国家战略项目,投入大量资金支持相关研究。欧洲在固态电池领域同样具有较强的竞争力,拥有多家知名企业和研究机构,如德国的Varta、比利时的Solvay等。欧洲联盟也推出了“欧洲电池联盟”计划,旨在推动固态电池技术的发展和产业化。日本在固态电池领域具有领先地位,拥有全球最大的固态电池制造商丰田和全球领先的电池材料供应商村田制作所。日本政府和企业对固态电池技术的研究投入巨大,力求保持在该领域的竞争优势。韩国在固态电池领域同样具有较强实力,拥有全球领先的电池制造商LG化学和三星SDI。韩国政府和企业也在积极推动固态电池技术的发展,以应对全球动力电池市场的竞争。固态电池的发展对于我国新能源汽车产业具有十分重要意义。通过加强固态电池的研发和应用,不仅可以提升我国新能源汽车的核心竞争力,还可以推动我国在全球动力电池市场中的地位提升。因此,我国应加大对固态电池技术的研发力度,加强与国际先进企业的合作与交流,共同推动固态电池技术的快速发展。固态电池的主要研究课题尽管固态电池有着巨大的潜力和商业价值,但目前仍存在很多技术难点需要研究和攻克。尤其是固态电解质离子传输动力学、固/固界面物理和化学接触问题。这其中,对于固态电池的电解质/电极材料的电导率、内部产气/压力、膨胀行为的评估依然是对电池材料、电池性能、生产工艺等的重要研究手段。电弛的解决方案固态电池中的固体电解质和电极界面并不是完全稳定,仍会存在一定程度的副反应。因此,对于固态电池产气、内部压力、膨胀行为等的研究依然受到高度关注。武汉电弛新能源有限公司自主研发的原位产气量测试系统,原位气体内压测试系统、原位电池膨胀力测试系统,可对多种电池种类和电池形态的电池进行产气量、内压、膨胀行为的测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池、软包电池、方壳电池、圆柱电池、电芯模组。系统高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。同时,可为不同形态电池提供定制化夹具,开展不同测试模式的研究。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。
  • 降低锂离子电池的火灾和爆炸风险
    2013年1月7日,一架波音787飞机上的保洁人员发现飞机后舱冒烟。一名机修工在经过仔细检查后,发现火灾源自APU电池外壳的盖子。所幸这架飞机当时停在美国洛根国际机场,因此183名旅客和11名机组人员均未受伤。九天后的2013年1月16日,另一架波音787飞机因出现主锂离子电池事故而不得不紧急降落在日本高松机场。因此,联邦航空管理局(FAA)在NTSB(美国国家运输安全委员会)开展调查前,停飞了整个787“梦幻客机”机队。被忽视的严重问题 NTSB调查发现,火灾最可能的原因是锂离子电池发生内部短路。这种短路导致热失控,造成相邻电池温度升高,从而导致过热、火灾甚至爆炸。波音787飞机是第*一架使用大型锂离子电池的飞机,经过一番艰难排查,发现其存在一定的局限性。总结如下:波音、FAA和电池制造商并未完全解锂离子电池的相关风险。然而,这不是锂离子电池第*一次在飞机上引发问题。就在今年,FAA发布了一份在线清单,列出了从1991年3月至2019年5月22日发生的258起独立事件,其中包括锂离子电池导致的烟雾、火灾、过热或爆炸。自2016年4月以来,国际民用航空组织一直实施有关锂离子电池航空运输的严格法规——美国今年也已效仿此项举措。那么,为什么锂离子电池如此危险?制造商可采取哪些措施来降低风险?什么原因导致锂离子电池过热?NTSB调查发现,电池发生的内部短路会导致火灾。短路会导致电流过大,使电池过度加热,从而使之点燃。如今,人们普遍认为,电池内异物产生的细小金属颗粒是导致短路的原因。产生这种现象的方式如下:1. 化学短路在这种情况下,阴极附近的电解质内尺寸为20µm至50µm的微小金属颗粒发生电离。电离原子带正电荷,表明它们会被吸引至阳极。在向阳极移动时,它们会穿透电池隔板,从而导致阴极至阳极侧发生短路。2. 物理短路如果阴极电解质中存在大金属颗粒(如尺寸超过100µm),则它们的尺寸大到足以在隔板上打孔,并将电流直接从阴极传送至阳极侧,从而再次发生短路。如何对应以确保安全?为确保安全操作,电池制造商和电池组件提供商必须检查并减少生产中的金属异物。必须将异物保持在最*低限度的区域如下:阳极和阴极材料导电增强剂浆料形成过程镀层和干燥过程检查这类区域中的金属异物的尺寸和密度将有助于避免发生会导致整个波音787机队停飞的现场故障。日立X射线异物分析仪EA8000日立分析仪器开发出专门用于检测和分析锂离子电池内金属异物的X射线分析仪EA8000,它创新性地协同使用X射线透射成像与先进的X射线荧光光谱,具有极快的测量速度、高准确性和高精密度等特点,可用于维持整个锂离子电池生产过程中的质量。
  • 2024固态电池元年,安全是关键,电弛电芯原位产气如何解
    2024年,被誉为固态电池元年。随着新能源汽车市场的持续扩大,固态电池作为一种具有高能量密度、长寿命、高安全性的新型电池,逐渐成为未来新能源汽车的主流动力电池。然而,在固态电池的研发和产业化过程中,安全性问题始终是关键因素之一。电芯原位产气作为固态电池安全性问题的重要表现,亟待解决。 固态电池安全性问题1、高温性能固态电池在高温环境下容易出现性能衰退,甚至热失控。高温会导致固态电解质和电极材料发生分解、氧化等化学反应,释放出气体,从而产生内部压力。当压力超过电池壳体的承受能力时,电池可能会发生爆炸。()2、过充与过放过充和过放是固态电池安全性的重要隐患。在过充过程中,电池内部会产生大量的气体,导致电池内部压力升高。而过放会导致电池内部产生锂枝晶,容易引发内部短路,进一步加剧电池的热失控风险。3、内部短路固态电池在制造和使用过程中,可能会出现内部短路现象。内部短路会导致电池局部热量积累,进而引发热失控。此外,内部短路还可能引起电池内部的气体产生和压力升高,增加电池爆炸的风险。 电芯原位产气的原因及解决方法原位产气的原因电芯原位产气是指在电池充放电过程中,由于电极材料、电解质或其它电池组件的化学反应,导致电池内部产生气体的现象。原位产气会降低电池的性能,增加电池内部压力,甚至引发热失控。固态电池中原位产气的主要原因包括:(1)电极材料的热分解:在充放电过程中,电极材料可能会发生分解反应,产生气体。(2)电解质的热分解:固态电解质在高温或高电压环境下,容易发生分解反应,产生气体。(3)电池组件的化学反应:电池内部的其他组件,如隔膜、粘结剂等,也可能会发生化学反应,产生气体。 (锂电池的内部产气原因) 解决方法为了解决电芯原位产气问题,可以从以下几个方面进行优化和改进:(1)优化电极材料:选择稳定性好、耐高温的电极材料,减少电极材料的分解反应。同时,对电极材料进行表面修饰,提高其结构稳定性。(2)改善电解质:选用具有高离子导率、低界面阻抗的固态电解质,提高电池在高温或高电压环境下的稳定性。此外,可以开发新型固态电解质,如聚合物、硫化物等,以提高电解质的化学稳定性。(3)优化电池结构:设计合理的电池结构,如采用柔性电极、三维导电网络等,以降低电池内部的应力集中,减少内部短路的风险。(4)严格制造工艺:在电池制造过程中,严格控制工艺参数,如温度、湿度等,以降低电池内部产生气体的可能性。 2024年是固态电池元年,安全性问题成为关键因素。电芯原位产气作为固态电池安全性问题的重要表现,亟待解决。通过优化电极材料、改善电解质、优化电池结构和严格制造工艺等方法,可以有效降低电芯原位产气的风险。然而,固态电池安全性问题的解决仍需要持续的技术创新和产业化推进。未来,我国应继续加大研发投入,推动固态电池技术走向成熟,为新能源汽车产业的可持续发展提供有力支撑。 电弛GPT-1000S 解决方案 电弛DC GPT-1000S 解决方案,通过特殊设计的GSP采气装置,可从软包电池、方壳电池、圆柱电池直接将电池产气已入到产气体积测量装置。该产气体积测量装置采用超微量气体流量测量技术,可原位、实时、在线、连续地监测电池的产气行为,包括产气量和产气速率等参数。其原理是为由于气体进入特定的介质中,介质分子与气体分子之间的相互作用破坏了介质表面的力平衡,使介质表面张力减少,从而在介质中形成微小气泡。由于该介质具有惰性与电池内产生的气体不发生反应,其形成的气泡可等同于电池产气体积。然后通过光学,超声波,电磁等传感器测量气泡,即可得到产气量。相较于传统的Jeff Dahn法(基于阿基米德浮力原理)、理想气体状态方程计算法等方法,本设备可直接测量微量产气的体积数据(μL),无需数据转换或换算,数据直接、结果精准、重复性高。且测量后的气体尾气可直接进行收集或直接串联GC、GC-MS、DEMS等多种气体成分分析设备,实现产气体积测量和成分分析联动测试,为材料研发和锂电池电芯产气机理的分析研究提供了真实可靠的数据支持。 (计量认证与方法验证) (定制集成化系统多因子耦合测量方案)
  • 岛津CT助力锂离子动力电池检测(下)
    近年来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,提升动力电池安全迫在眉睫。经过多年的发展,动力电池从最初的圆柱电池,发展到方形、软包电池,容量提升,形式多样。 上篇中,我们展示了岛津ct在正极材料和负极材料观测方面的应用。本篇我们将展示岛津ct观测各种成品电池和对电池原位充放电的实时观察。 成品动力锂电池ct的观察 在成品动力锂电池检查中,ct检测可以发现动力锂电池内部缺陷,比如内部杂质、正负极扭曲变形、正负极片短路和正负极片的断裂等不良。在长期充放电使用及激烈碰撞后,这些不良容易造成电池短路,甚至可能造成新能源汽车自燃和爆炸。 岛津smx-225ct fpd hr plus微焦点x射线ct系统 ct检测是失效分析和产品工艺优化及品质控制的重要手段。通过对失效的动力锂电池进行无损检测,在不破坏失效动力锂电池结构的情况下获得真正失效原因。通过对动力锂电池的内部结构观察及尺寸测量,可以优化生产工艺、提高品质。 电池内部结构及缺陷观察 目前动力锂电池电芯生产主要有卷绕和叠片两种制造工艺,对应的动力锂电池结构形式主要为圆柱和方形、软包三种,圆柱和方形锂电池主要采用卷绕工艺生产,软包锂电池则主要采用叠片工艺制造。圆柱锂电池主要以18650为主,方形锂电池外壳采用硬铝壳包装,而软包锂电池采用铝塑料包装。 运用ct对18650动力锂电池检测可观察内部正负极及隔离膜,因此内部变形及金属杂质可以清晰地被检测到。通过对正极极片展开,可观察到极片上的孔隙。图1给出了18650动力锂电池的ct图像。 图1 18650动力锂电池ct图像 图2是方形动力锂电池的ct扫描图像,外形尺寸为l150mm´w100mm´h26mm。 通过扫描半电池可以清晰地看到电池正负极片和杂质以及激光焊接部位的孔隙。甚至有机质的隔离膜也能够被观察到。 图2 方形动力锂电池ct图像 软包叠片动力锂电池的常见缺陷为极片开裂破损、有杂质及当封入外壳时负极变形等,ct检测是此缺陷观察必要手段。如图3所示。 图3 软包叠片动力锂电池ct图像 电池内部尺寸测量 在电池生产中,尺寸质量控制的要求变得越来越复杂,无法使用传统的测量技术进行测量,更不可能对电池进行切割或破坏后再进行检测。此时,需要使用微焦点ct对电池内部缺陷及结构进行尺寸测量。从而能够评估产品制造过程和优化产品。 图4是18650动力锂电池在空电和满电状态下的电芯尺寸测试,通过比较发现满电状态比空电状态下的电芯尺寸膨胀了约0.2mm。这对电池研发人员设计很有帮助。图4 18650动力锂电池空电和满电状态电芯尺寸测量 在方形动力锂电池中,满电时的极片厚度尺寸测量、正负极对齐测量和封装时电芯与外壳的距离等这些尺寸对电池生产厂家都有很重要的参考意义,如图5所示。 图5 方形动力锂电池尺寸测量 图6给出了软包动力锂电池中的孔隙及金属杂质尺寸测量,这些缺陷都可能会引起电池起火或自燃。 图6 软包动力锂电池尺寸测量 电池原位充放电循环中的ct观察 通过对原位动力锂电池充放电试验,可以观察电池在循环充放电情况下的状态。x射线微焦点ct作为对动力锂电池充放电循环检查的重要一环,可以直观观察动力锂电池在不同状态下内部结构的变化,为研发及生产制造提供数据。 图7从2d截面图像和3d图像示出了100次、500次、1000次、1500次动力锂电池的充放电试验ct测试图像。从而观察到随着充放电次数的增加,动力锂电池由于内部产生的惰性气体的释放而不断膨胀。 图7 动力锂电池充放电实验ct观察 通过以上案例展示,岛津x射线微焦点ct不仅可以观察动力锂电池正负极片材料内部微观结构,还可以观察成品动力锂电池的内部结构及缺陷。结合尺寸测量定量分析,为动力锂电池研发设计者及生产制造商提供帮助,优化生产流程及制造工艺,为新能源汽车提供安全保障。
  • 岛津CT助力锂离子动力电池检测(下)
    近年来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,提升动力电池安全迫在眉睫。经过多年的发展,动力电池从最初的圆柱电池,发展到方形、软包电池,容量提升,形式多样。上篇中,上篇中,我们展示了岛津CT在正极材料和负极材料观测方面的应用。本篇我们将展示岛津CT观测各种成品电池和对电池原位充放电的实时观察。 成品动力锂电池CT的观察在成品动力锂电池检查中,CT检测可以发现动力锂电池内部缺陷,比如内部杂质、正负极扭曲变形、正负极片短路和正负极片的断裂等不良。在长期充放电使用及激烈碰撞后,这些不良容易造成电池短路,甚至可能造成新能源汽车自燃和爆炸。 岛津SMX-225CT FPD HR Plus微焦点X射线CT系统 CT检测是失效分析和产品工艺优化及品质控制的重要手段。通过对失效的动力锂电池进行无损检测,在不破坏失效动力锂电池结构的情况下获得真正失效原因。通过对动力锂电池的内部结构观察及尺寸测量,可以优化生产工艺、提高品质。 电池内部结构及缺陷观察目前动力锂电池电芯生产主要有卷绕和叠片两种制造工艺,对应的动力锂电池结构形式主要为圆柱和方形、软包三种,圆柱和方形锂电池主要采用卷绕工艺生产,软包锂电池则主要采用叠片工艺制造。圆柱锂电池主要以18650为主,方形锂电池外壳采用硬铝壳包装,而软包锂电池采用铝塑料包装。 运用CT对18650动力锂电池检测可观察内部正负极及隔离膜,因此内部变形及金属杂质可以清晰地被检测到。通过对正极极片展开,可观察到极片上的孔隙。图1给出了18650动力锂电池的CT图像。 图1 18650动力锂电池CT图像 图2是方形动力锂电池的CT扫描图像,外形尺寸为L150mm´W100mm´H26mm。 通过扫描半电池可以清晰地看到电池正负极片和杂质以及激光焊接部位的孔隙。甚至有机质的隔离膜也能够被观察到。 图2 方形动力锂电池CT图像 软包叠片动力锂电池的常见缺陷为极片开裂破损、有杂质及当封入外壳时负极变形等,CT检测是此缺陷观察必要手段。如图3所示。 图3 软包叠片动力锂电池CT图像 电池内部尺寸测量在电池生产中,尺寸质量控制的要求变得越来越复杂,无法使用传统的测量技术进行测量,更不可能对电池进行切割或破坏后再进行检测。此时,需要使用微焦点CT对电池内部缺陷及结构进行尺寸测量。从而能够评估产品制造过程和优化产品。 图4是18650动力锂电池在空电和满电状态下的电芯尺寸测试,通过比较发现满电状态比空电状态下的电芯尺寸膨胀了约0.2mm。这对电池研发人员设计很有帮助。 图4 18650动力锂电池空电和满电状态电芯尺寸测量 在方形动力锂电池中,满电时的极片厚度尺寸测量、正负极对齐测量和封装时电芯与外壳的距离等这些尺寸对电池生产厂家都有很重要的参考意义,如图5所示。 图5 方形动力锂电池尺寸测量 图6给出了软包动力锂电池中的孔隙及金属杂质尺寸测量,这些缺陷都可能会引起电池起火或自燃。 图6 软包动力锂电池尺寸测量 电池原位充放电循环中的CT观察通过对原位动力锂电池充放电试验,可以观察电池在循环充放电情况下的状态。X射线微焦点CT作为对动力锂电池充放电循环检查的重要一环,可以直观观察动力锂电池在不同状态下内部结构的变化,为研发及生产制造提供数据。 图7从2D截面图像和3D图像示出了100次、500次、1000次、1500次动力锂电池的充放电试验CT测试图像。从而观察到随着充放电次数的增加,动力锂电池由于内部产生的惰性气体的释放而不断膨胀。图7 动力锂电池充放电实验CT观察 通过以上案例展示,岛津X射线微焦点CT不仅可以观察动力锂电池正负极片材料内部微观结构,还可以观察成品动力锂电池的内部结构及缺陷。结合尺寸测量定量分析,为动力锂电池研发设计者及生产制造商提供帮助,优化生产流程及制造工艺,为新能源汽车提供安全保障。
  • 三元锂电池的异物分析
    本文要点随着科技的进步,3C产品的多元化,集成化,便捷化,产品的体积越来越小,锂电池作为储能设备,不仅用于手持式电器,如手机,电脑,也广泛应用于汽车行业,得益于仅使用电能,几乎不产生CO2,相比传统燃油车具有更好环保效果,因此锂电池成为了当前应用最广泛的储能电池。目前主流的锂电池技术有磷酸铁锂和三元锂电池。其中三元锂电池具有更高的能量密度,更小的重量下具有更高的续航能力。然而三元锂电池相比于磷酸铁锂电池,耐高温性较差,如果电池因外部撞击破坏或内部异常损伤,均可导致电池短路,发生放热现象,更严重的会直接自燃。因此,有关锂电池的安全性,近来成为网上的热点话题,也是很多科学家及企业需要攻克的难题。三元锂电池结构三元锂电池是由正极,负极,隔膜,外包材,电解液等组成的。其中隔膜具有隔离电池正负极,仅让锂离子通过的作用。如果电池内部隔膜发生破坏,就会出现正负极联通导致电池短路放热,引燃电解液的现象发生。一般引起隔膜穿刺现象的原因有外部撞击破坏或内部异物破坏导致的。其中,外部的机械滥用或是电滥用均有可能导致电池热失控而发生意外自燃;内部异物破坏的诱因可能是原材料内部不纯净或工艺问题,而引入一些微米级别金属磁性单质,导致在电池使用过程中出现金属磁性单质刺破隔膜,发生短路现象。因此针对于三元锂电池原材料异物解析,可以采用扫描电镜及能谱异物分析功能,实现对原料或工艺后期引入的异物的自动寻找及分析。日立钨灯丝扫描电镜Flexsem1000 Ⅱ型(左)和场发射扫描电镜SU5000(右)本次测试采用日立钨灯丝扫描电镜Flexsem1000Ⅱ和牛津Aztec Feature软件,对微孔滤膜上的三元正极粉末的生产原料进行大区域自动采集,分析,找出关注颗粒单质Fe,对单质Fe进行统计,给出统计结果,进而评估原料是否合格。在整个测试过程中,设备自身的自动化功能调整,条件的标准化把控以及Feature软件自行检测,记录与统计,大大的降低了人的依赖性。测试特点1、 Flexsem1000Ⅱ可以一键切换高低真空,无论是导电与不导电样品,都无需对样品进行喷金处理而直接测试。2、 Flexsem1000Ⅱ配置了高灵敏5分割BSE探头,可轻松获得高衬度图像;且标配了自动聚焦,自动亮度对比度等自动化功能,快速准确调整电镜图片。3、 使用大面积拼图功能,可以测试整个微孔滤膜上的样品,获得全部颗粒的结果;同时,对每一个测量位置也可以实现追溯,再分析等功能。4、 根据自身需求,自行设置分类异物,在最终结果中得到异物颗粒的某一单一数据或所有异物的数据,如总个数,占比等结果。5、 在测试分析过程中,可实现后期无人监看,电镜自行完成样品台上样品的全部测试并获得最终结果。日立为三元锂电池异物分析提供了扫描电子显微镜及能谱,Feature软件的解决方案,不仅帮助检测原料异物,同时在工艺管控,品控测试环节提供更多的帮助。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 国产纳米级固态钠离子电池下线,瞭望2024中国固态电池发展
    随着全球能源转型和新能源汽车产业的快速发展,固态电池作为一种具有高能量密度、长寿命、高安全性的新型电池技术,已经成为未来电池领域的重要发展方向。我国政府高度重视固态电池产业的发展,积极推动技术创新和产业布局。就在今年年初,国产第一块大容量高能量密度的纳米固态钠离子电池中试产品成功下线,标志着我国固态电池技术取得了重要突破。 国产纳米级固态钠离子电池技术特点1、高能量密度国产纳米级固态钠离子电池采用了先进的纳米材料技术,使得电池具有较高的能量密度。相比传统的液态锂离子电池,固态钠离子电池的能量密度提升了30%以上,达到了250Wh/kg以上,甚至有望突破300Wh/kg。这意味着在相同体积或重量下,固态钠离子电池可以存储更多的电能,为新能源汽车提供更长的续航里程。 2、长寿命固态钠离子电池具有较长的循环寿命。由于采用固态电解质,电池内部不存在液态电解质易泄漏、腐蚀等问题,因此电池的寿命得到了显著提升。实验室测试结果表明,国产纳米级固态钠离子电池的循环寿命可达10000次以上,远高于传统液态锂离子电池的寿命。 3、高安全性固态钠离子电池采用固态电解质,具有较好的热稳定性和化学稳定性。在高温、过充、短路等极端条件下,固态电解质不易燃烧和爆炸,有效降低了电池的安全风险。此外,固态电解质还可以有效抑制锂枝晶的生长,降低了电池内部短路的风险,提高了电池的安全性。 4、低成本钠元素在地壳中的储量丰富,且分布广泛,成本低廉。相比锂元素,钠元素的提取和加工成本较低,有利于降低固态钠离子电池的生产成本。此外,固态钠离子电池的结构相对简单,无需使用大量的贵金属催化剂和隔膜材料,也有助于降低成本。 2024年中国固态电池产业发展趋势政策支持我国政府高度重视固态电池产业的发展,将其列为战略性新兴产业。近年来,国家层面出台了一系列政策文件,明确了固态电池产业的发展目标和重点任务。例如,《新能源汽车产业发展规划(2021-2035年)》提出,到2025年,固态电池单体能量密度达到400Wh/kg以上,成本降至1元/Wh以下。这些政策文件的出台,为固态电池产业的发展提供了有力的政策支持。 技术创新我国固态电池技术取得了世界领先的成果。在材料研发、电池设计、制造工艺等方面,我国科研团队不断取得突破。例如,中科院宁波材料所研发的固态电解质材料,具有高离子导率和低界面阻抗的特点;清华大学研发的固态电池制备技术,实现了电池的高效、稳定生产。这些技术创新为固态电池产业的发展奠定了基础。 产业链布局随着固态电池技术的不断成熟,我国企业纷纷加大在固态电池领域的布局。目前,已有数十家企业进入固态电池产业链,涉及材料、设备、电池制造等环节。例如,宁德时代、比亚迪等知名企业纷纷投资固态电池项目,推动产业快速发展。此外,固态电池产业链的上下游企业也在加强合作,共同推动产业发展。 市场需求随着新能源汽车市场的持续扩大,对高性能电池的需求日益增长。固态电池作为一种具有高能量密度、长寿命、高安全性的新型电池,有望成为未来新能源汽车的主流动力电池。根据预测,到2025年,我国新能源汽车销量将达到700万辆,为固态电池市场提供了巨大的发展空间。 国产纳米级固态钠离子电池的成功下线,标志着我国固态电池技术取得了重要突破。在政策支持、技术创新、产业链布局和市场需求的推动下,我国固态电池产业有望在2024年实现快速发展。然而,固态电池产业仍面临诸多挑战,如材料性能提升、制造工艺优化、成本降低等。未来,我国应继续加大研发投入,推动固态电池技术走向成熟,为新能源汽车产业的可持续发展提供有力支撑。 电弛的解决方案2023年,武汉电弛新能源有限公司研发团队经过技术攻关,成功推出了DC IPT 2000/2000Pro 原位气体内压测定仪,为锂电池测试提供了全新的解决方案。该产品方案得到了行业内先进企业的认可,其具有以下优点: 直接穿刺,精准测量传统阿基米德法、理想气体方程或其他“间接法”形式,存在实验过程繁琐、测量误差大的问题。大道至简,DC IPT 2000/2000Pro 直接对锂电池内部气体及压力进行取样和测量。通过锂电池穿刺取样这种直接测量方法,可以快速获取真实、准确的数据,从而极大地提升检测质量效率。 气体采样,兼容并包“间接法”测量无法兼容的问题增加电池测试成本。为了解决这个问题,武汉电弛新能源研发团队设计一种全新的“锂电池气体采样接口(GSP)”,该接口“软硬兼容”——可同时测量软包电池、方形电池和圆柱电池等各类形态电池。便捷快速地评估电池安全性能。DC IPT 2000/2000Pro 测量方式不仅提高了测试效率,也降低了测试成本和风险。①高效便捷:用户无需在不同的测量设备之间切换或等待适配,测试效率高,降低人力时间成本。②数据准确:采用先进的测量技术和算法分析,确保数据的准确性和可靠性。③高重复性:标准化接口设计和测量流程,保证结果的可重复性和一致性,有利于比较分析。 网络接口,云端数据数据也是生产力,高效率的信息传递,对每块电池的质量状态做出快速预判。DC IPT 2000/2000Pro 预设网络接口,实现了数据联云上网,以及与其他测试设备或系统进行数据交互和共享。企业可构建一个完整的电池测试和管理系统,实现对电池测试数据的全面管理和分析,掌握质量情况。 多通道定制,高通量测试DC IPT 2000 /2000Pro 标准款为8通道设计,可定制设计更高通道数量,满足多场景测试需求。每个通道都采用了独立的测量电路,确保了测试的准确性和一致性。无论是大型企业还是研究机构,都可以根据自身的测试需求和规模,选择适合的通道数量和配置。
  • TOF-SIMS质谱仪帮助新电池开发 储能2倍于锂电池
    p   美国能源部可再生能源实验室(NREL)的科学家们开发了一种制造可充电无水镁电池的新方法。 br/ /p p   近期刊登在Nature Chemistry上的一篇论文引起了轰动,该篇论文详细阐述了科学家开发镁金属在无腐蚀性碳基电解质中发生可逆化学反应的过程,并且该过程通过了接下来的测试。比起锂离子电池,该技术具有更有潜力的优势——其中最大的优势是具有更高的能量密度、更强的稳定性和更低的成本。 /p p   Seoung-Bum Son, Steve Harvey, Andrew Norman 和 Chunmei Ban是NREL的研究人员,同时也是Nature Chemistry 白皮书《碳酸盐中人造可逆的镁化学反应》的合著者,他们利用飞行时间二次离子质谱仪来辅助自己的研究工作。该设备可以帮助他们在纳米尺度上研究材料退化和失效机制。 /p p   NREL材料科学部门的科学家、《碳酸盐中人造可逆的镁化学反应》的作者之一Chunmei Ban表示:“作为科学家,我们总是在想接下来会发生什么。”她认为在市场上占主导地位的锂离子电池技术已经触摸到了技术上的天花板,因此迫切需要探索新的化学电池技术,以更低的成本提供更多的能量。 /p p   NREL前博士后,现科学家科学家,该论文的第一作者Seoung-Bum表示:“这一发现将为镁电池的设计提供新的途径。”其他合著者则是Steve Harvey, Adam Stokes, 和 Andrew Norman。当离子从负极流向正极时,电化学反应就会使电池产生能量。对于锂电池来说,电解液是含有锂离子的盐溶液。而电池技术的关键在于化学反应必须是可逆的,只有这样电池才能实现充电过程。 /p p   理论上讲,同体积的镁(Mg)电池所能储存的能量几乎是锂离子电池的两倍。但是之前的研究遇到了一个难题:传统的碳酸盐电解质会因为化学反应在镁表面形成一道屏障,这会阻碍电池的充电过程。镁离子可以通过高腐蚀性的液体电解质流向相反的方向,但这也打消了高压镁电池的可能性。 /p p   而为了解决这个难题,研究人员开发了一种由聚丙烯腈和镁离子盐组成的人工固体电解质夹层,这可以保护镁阳极表面。而最终这种受保护阳极的性能也得到了改善。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/f5d8577d-dfe1-4599-8433-a5dce896b151.jpg" title=" 201804080849345113.jpg" / /p p style=" text-align: center " NREL科研人员攻克可充电镁电池难关示意图(图片来源:John Frenzl) /p p   上文中的插图显示了NREL的科学家是如何解决可充电镁电池问题的。 /p p   科学家们组装了标准电池,证明了人工中间相的有效性,而最终的结果也令人十分欣喜:Mg在具有保护阳极的电池的碳酸盐电解质中发生了可逆化学反应,这一现象是镁电池领域的首次发现。与没有保护阳极的原型电池相比,带有保护阳极的镁电池可以提供更多的能量,并且可以维持周期性的充放电过程。此外,该科研小组还充分展示了镁电池的充电能力,这也首次为解决阳极/电解质不相容问题以及离子离开阴极收到限制的问题提供了解决方法。 /p p   与锂相比,镁的获取范围更广,并且与锂电池这种更成熟的电池技术相比,镁电池还具有其他的潜在优势。首先,镁可以释放两个电子,这是锂的两倍,这使得它可以产生几乎两倍于锂的能量。其次,镁电池中没有枝晶的生长,这种枝晶很容易导致短路,从而导致过热甚至事故的发生,这种特质使得镁电池比锂离子电池更加安全。 /p
  • 安东帕流变仪如何降低电池安全风险?
    目前,欧盟约20%的温室气体排放是由交通造成的。如果你关注于这个问题,你将无法忽略一个主题:电池。几十年来,它们一直是收音机、牙刷、电话不可或缺的,在过去几年中,我们甚至在更大范围内改用电能,例如汽车。电动汽车是一种趋势。尽管它们带来了优势,但有时仍带来一些恐惧:如果汽车电池突然爆炸怎么办?识别风险“原则上,这是可能的。理论上,不正确的接触会导致电池燃烧,甚至包括汽车电池,”Anton Paar流变仪领域的培训与沟通经理兼电池专家Christopher Giehl说道。电动汽车通常配备锂离子电池。与所有电池一样,该电池由正极(阳极)和负极(阴极)负载端组成。中间是隔膜和电解质溶液,它提供锂离子的充电传输。如果双方在没有电解质溶液和隔板的情况下“接触”,或者如果电池充电过快,就会发生过热,电池可能会爆炸。对于汽车电池,这可能在出现事故时发生,例如隔板被撕裂或刺穿。将风险降至最低这就是Anton Paar流变仪(如MCR 92或702e MultiDrive)发挥作用的地方。它们用于电池领域的三种不同分析。“首先:分析所谓的‘浆料’的流动特性。浆料以液体状态覆盖在集电体上,干燥、压制,形成正极或负极。对于混合、转移和涂覆到集电体的过程,浆料的流变特性非常重要。第二:可以分析隔膜的拉伸特性。它需要非常有弹性,不易撕裂,并且在高温和潮湿条件下保持稳定。第三:我们正在分析电解质溶液(正极和负极之间的液体)。它必须很容易填充,但理想情况下是剪切加厚,这意味着它会在突然的强大压力下变硬,就像车祸一样。否则,正极和负极会接触,导致短路,并可能导致火灾或爆炸,”Christopher Giehl说。
  • 电镜表征新成就颠覆认知 全固态电池量产不是梦
    导语2020开年新气象,电镜科研新成就。困扰业界许久的锂枝晶生长机理问题取得重大突破,全固态电池距离量产迈进一大步。近日,燕山大学亚稳材料制备技术与科学国家重点实验室黄建宇教授、沈同德教授和唐永福副教授等人联合美国佐治亚理工学院朱廷教授、宾夕法尼亚大学张宿林教授,通过巧妙地设计实验过程,实时直观地记录了锂枝晶生长的微观机制,精准测定了其力学性能和力-电耦合特性。更难能可贵的是,该研究团队还提出了一种固态电池中抑制锂枝晶生长的可行性方案。锂枝晶的生长机理难题困扰业界许久,至此终于有种“拨开云雾见天日,守得云开见月明”的感觉了。论文链接:www.nature.com/articles/s41565-019-0604-x据悉,该研究成果已在权威国际期刊《自然-纳米技术》(Nature Nanotechnology)刊登发布。《自然-纳米技术》是材料与纳米科技领域的国际顶级学术期刊,2019年的影响因子高达33.407,该研究成果的突破性和重要性由此可见一斑。为什么这项研究成果能够引发业界广泛关注呢?这就不得不提到目前在电动汽车上广泛使用的液态锂离子电池,其主要结构包括正负极材料、隔膜和电解液。因内部构造原因,液态锂离子电池容易受环境温度影响,而且很容易产生不可控的锂枝晶。锂枝晶非常“锋利”,可以刺破隔膜导致电解液泄漏,导致电池内部短路,从而造成电池起火甚至汽车自燃事故,近年来为提升电池的能量密度,企业把隔膜厚度从十几毫米降低到了五六毫米,2019年特斯拉、蔚来等大牌电动汽车相继“走火”,或许也间接反映了这个问题。概括言之,在材料体系没有创新的条件下,目前商品化的液态锂离子电池的能量密度已经逼近“极限”(300Wh/kg左右),“里程焦虑”、“可能自燃”等问题重创消费市场。既然液态电解液不行,那改用机械刚性的固态电解质不就完事了么?于是乎,全固态锂离子电池(简称:全固态电池)进入了公众视野。顾名思义,全固态锂离子电池采用的是固态电解质,不含任何液态组份,结构更加安全。与液态锂离子电池相比,全固态锂离子电池的能量密度最高潜力达900Wh/kg,因此,固态电池被视作为下一代锂电池技术革命,其量产与普及将会彻底解决电动汽车发展的最大瓶颈问题,国内外车企巨头已然纷纷布局涉足,“固态热潮”一时风头无两。然而,全固态电池的研发之路也并非一马平川。全固态电池以金属锂作为负极材料,仍然绕不开“不可控锂枝晶”的这个坎儿,实验结果表明,锂枝晶生长到一定程度时,也可以穿透固态电解质,造成电池短路失效。尽管诸多研究致力于探索如何抑制锂枝晶的产生,但是以往研究主要停留在宏观尺度,对于锂枝晶生长的微观机理、力学性能、刺穿固态电解质的机制及抑制其生长的科学依据缺乏足够了解。赘述至此,相信您应该充分了解黄建宇教授、沈同德教授等人的研究成果的重要性了吧?!___AFM-ETEM纳米电化学测试平台,可实现原位观测纳米固态电池中锂枝晶生长机制及其力学性能和力—电耦合精准定量测量。___据悉,该研究团队基于AFM-ETEM平台发现,在室温下,当对AFM针尖施加电压(过电位)时亚微米晶须开始生长,其生长应力高达130 MPa,远高于此前研究报道。此外,研究人员还发现锂晶须在纯机械载荷作用下的屈服强度可达244Mpa,远高于宏观金属锂的屈服强度(~1MPa)。可以说,该研究成果颠覆了研究者对锂枝晶力学性能的传统认知,为抑制全固态电池中锂枝晶生长提供了新的定量基准,为设计具有高容量长寿命的金属锂固态电池提供了科学依据,这项研究成果得到应用之后,全固态电池将有望加速实现商业化量产。很荣幸,赛默飞世尔科技旗下Thermo Scientific品牌的两大拳头电镜产品能够深度参与此项研究工作,并帮助研究团队发明了一种基于原子力显微镜—环境透射电镜(AFM-ETEM)原位电化学测试平台,建立起了一种有效的研究锂枝晶的动态原位实验表征新技术。它们是Themis™ ETEM环境气氛球差校正透射电子显微镜(左图)与Helios PFIB双束电镜(右图):Helios PFIB Themis™ ETEM Themis™ ETEM 300kV原子分辨扫描/ 透射电子显微镜可以一体化解决纳米材料在接触活性气体环境和升温的过程中的时间分辨动态特性原位研究,包括材料的结构性能关系、原子尺度的几何结构、电子结构以及化学组成。Helios PFIB系统结合了Elstar电子镜筒和Vion氙等离子体离子镜筒,既可以实现纳米分辨率和最高衬度成像,又能确保尺度样品加工的速度和精确度。基于此,赛默飞推出了一系列针对锂电池行业的多尺度二维及三维表征解决方案,主要包含多功能计算机断层扫描系统、扫描电镜、镓离子双束电镜、Xe等离子双束电镜、透射电镜等产品,涉及电芯表征、电极表征、隔膜表征等应用,希望从广度和深度两个方面,为客户在锂电池开发的各个阶段提供强力支持的产品组合,助力攻克电池研发技术难题,让全固态锂离子电池的量产与普及不再是梦,让电动汽车“充一次电跑1000公里”不再是梦!
  • 凯尔邀您共聚CIBF深圳国际电池技术展览会
    第十五届深圳国际电池技术交流会/展览会,即将在深圳国际会展中心隆重举办。 凯尔测控是一家专注于电池检测仪器研发和生产的高新技术企业,携专为电池领域研发的检测设备亮相展会现场,欢迎各位莅临我们的展台,期待现场与您共同探讨电池技术的前沿动态和未来发展趋势。参展信息■ 展会时间:2023年5月16日~18日■ 展会地点:深圳国际会展中心 (深圳市宝安区福海街道展城路1号)■ 凯尔展位:1号馆 1B065 此次CIBF2023深圳国际电池展集中展示全球动力电池、储能电池、3C电池、充换电设备及配套设施、氢能及燃料电池、各种电池材料、制造设备、动力及储能系统解决方案,重点展示近两年来我国在各种新能源乘用车、客车、物流车、载重卡车、船舶等用动力电池、燃料电池和储能领域的一系列成果。展品“剧透”1极片电阻率分布测试系统 可进行极片电阻率测试,评估电池极片材料的导电性能和适用性,以确定其在电池中的性能和稳定性。极片材料需要具有良好的导电性能,以确保电池的电流传输和充放电效率。产品介绍■ 双电极开尔文四线法测量极片整体电阻 (率) ,更接近电池内电流真实传输路径。■ 初始厚度分布图、电阻分布图、接触厚度分布图、电阻率分布图一建导出。■ 自动生成测试报告。2微型电磁式动态力学试验系统 可进行电池隔膜穿刺试验,穿刺测试用于评估电池隔膜抗刺穿性能的测试方法。模拟电池在使用过程中可能发生的温度变化、碰撞、机械应力等情况,以评估其是否会发生短路、爆炸等安全问题。3微型多尺度原位力学试验系统 可进行电池隔膜涂层剥离试验,用于评估电池隔膜涂层材料的粘附性能,以确定其适用性和耐久性。 还可进行电池隔膜拉伸试验,用于评估电池隔膜材料的拉伸强度和延展性,以确定其适用性和耐久性。更多展品,现场揭晓!2023年5月16日~18日第十五届深圳国际电池技术交流会/展览会CARE与您相约1B065欢迎各位的莅临,我们不见不散!
  • 锂金属电池保护薄层 可提高电池效率并允许冷充电
    p 据外媒报道,宾夕法尼亚州立大学研究团队表示,想要开发可靠、快速充电、适宜在寒冷天气下工作的汽车电池,自组装薄层电化学活性分子或将成为解决方案。 /p p br/ /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/70cad0b3-66f1-47a4-989c-f6ad1caabc2a.jpg" title=" 202009011201548733.jpg" alt=" 202009011201548733.jpg" / /p p style=" text-align: center " 锂图片来源:PSU官网 /p p br/ /p p 金属电池是继锂离子电池之后的下一代电池,宾夕法尼亚州立大学机械工程教授、电池和储能技术中心的主要研究人员Donghai Wang说,“这种电池使用的是锂负极,能量密度更高,但存在枝晶生长、效率低和循环寿命短等问题。”研究人员表示,具有电化学活性的自组装单层,可以分解成合适的构成部分,保护锂负极表面,从而解决这些问题。 /p p br/ /p p 这类电池由锂负极、锂金属氧化物正极和电解质构成,其电解质中含有锂离子导电材料和保护性薄膜层。在快速充电或在寒冷的条件下,如果没有保护层,电池中可能逐渐长出锂枝晶,最终会导致电池短路,大大降低电池的实用性和循环寿命。Wang表示:“关键在于调整分子化学,使其能够在表面自我组装。”在充电时,这种单层可以提供良好的固态电解质界面,从而保护锂负极。 /p p br/ /p p 研究人员将这种单层膜沉积在薄铜层上。在电池充电时,锂撞击单层并分解形成稳定的界面层。部分锂与剩余的层体一起沉积在铜上,原层分解的部分在锂上面进行重组,从而保护锂,防止生成锂枝晶。 /p p br/ /p p 据研究人员介绍,利用这项技术,可以提升电池的存储容量,增加充电次数。Wang说:“这项技术的关键在于能够在需要的时候及时形成一层膜。这种膜可以分解并自动转化,然后留在铜上并覆盖锂表面。这种技术可以应用于无人机、汽车或一些水下低温应用的小型电池中。” /p
  • 防患于未“燃”,电动自行车锂电池强制性国家标准即将出台!
    2月23日凌晨,南京市一居民楼发生火灾致15人死44伤,伤亡惨重。据通报,经初步分析,火灾是由6栋建筑地面架空层停放电动自行车处起火引发。这次事故再次引起公众对电动自行车停放和充电安全的强烈关注。据国家消防救援局统计,2023年全国共接报电动自行车火灾2.1万起,锂电池是主要的燃烧源或爆炸源。由于我国缺少电动自行车锂电池强制性标准,导致锂电池质量参差不齐,电动自行车安全事故频发。为从源头防范电动自行车质量安全事故的发生,强制性国家标准体系的完善刻不容缓。据央视财经《经济信息联播》栏目报道,2022年由工业和信息化部组织起草的强制性国家标准《电动自行车用锂离子蓄电池安全技术规范》已经完成了起草和征求意见阶段,目前正处于审查阶段。中国电子技术标准化研究院安全技术研究中心副主任何鹏林是工信部锂离子电池及类似产品标准工作组组长,同时也是这项国家标准的主要起草人之一。他介绍道:按照项目计划,这项强制性国家标准将于今年发布。本标准将填补国家层面对电动自行车用锂离子电池安全质量监管的技术依据空白。标准发布以后,按照《中华人民共和国标准化法》的规定,不符合强制性标准的产品、服务,不得生产、销售、进口或者提供。据《电动自行车用锂离子蓄电池安全技术规范》征求意见稿编制说明,该标准规定了电动自行车用锂离子蓄电池单体和电池组的安全要求和试验方法,适用于符合GB17761规定的电动自行车用锂离子蓄电池单体和电池组。主要检验项目包括:电池安全项目:过充电、过放电、外部短路、热滥用、针刺;电池组机械安全项目:挤压、机械冲击、振动、自由跌落、提手强度、模制壳体应力等;电池组电气安全项目:强制放电、过充电保护、过流放电保护、短路保护、温度保护、绝缘电阻、静电放电等;电池组环境安全项目:低气压、高低温冲击、浸水、盐雾、湿热、阻燃性等;人身安全项目:热扩散。其中,首次在电动自行车用锂离子蓄电池标准中引入人身安全相关项目。热扩散项目参考GB 38031-2020《电动汽车用动力蓄电池安全要求》标准。电池单体发生热失控时热量会通过不同方式传递到相邻电池单体,单个电池热失控可能传播到周围的电池单体,引起连锁反应,热扩散时形成的烟雾、火灾和爆炸直接威胁电动自行车驾乘和使用人员安全。该项要求旨在考核电池热扩散控制能力,为预警和驾乘人员安全提供保障。标准要求电池组发出报警后5min内不能起火爆炸。
  • 钙钛矿太阳能电池离子迁移行为与器件稳定性关系研究获进展
    钙钛矿太阳能电池(PSCs)作为新兴的薄膜光伏器件,通过最近10年的发展,光电转换效率从3.8%提升到了25.7%,展现出巨大的商业化应用前景。然而高效的n-i-p结构电池批次重复性和稳定性较差,成为钙钛矿电池产业化应用的关键限制。而目前研究人员对导致器件重复性和稳定性较差的原因理解还不够充分。   中国科学院苏州纳米技术与纳米仿生研究所马昌期团队系统地研究了n-i-p结构PSCs在空气氧化过程中的离子迁移行为。结果表明,Spiro-OMeTAD薄膜的氧化是通过非接触电化学方式进行的,其中,空气中的氧气和水分子作为氧化剂将Spiro-OMeTAD氧化,进而提高了Spiro-OMeTAD薄膜的导电性能。更为重要的是,这一氧化过程促使Spiro-OMeTAD层内的Li+向电池内部迁移并在SnO2/Perovskite界面富集。Li+离子的迁移与富集促进了Spiro-OMeTAD氧化并降低SnO2的LUMO能级,提高了器件内部的内建电场,并同时改善了钙钛矿/Spiro-OMeTAD以及钙钛矿/SnO2界面处的空穴和电子提取效率,进而提升了器件的效率(图1)。该工作为n-i-p型钙钛矿太阳能电池中Spiro-OMeTAD的氧化提供了完整的机理解释。相关成果以Synergetic Effects of Electrochemical Oxidation of Spiro-OMeTAD and Li+ Ions Migration in Improving the Performance of n-i-p Type Perovskite Solar Cells为题发表于Journal of Materials Chemistry A。 图1 n-i-p结构钙钛矿太阳能电池中Spiro-OMeTAD的电化学氧化过程中的Li+离子迁移机制   研究团队在后续研究n-i-p型钙钛矿太阳能电池工作稳定性过程中发现,钙钛矿电池在运行过程中会出现器件的突然失效(Catastrophic Failure)。通过光致发光(PL)成像分析确定短路位置发生在金属Ag电极的边缘。进一步通过SEM和TOF-SIMS分析证明了Ag+离子在器件边缘发生迁移扩散,而器件内部的电极以及钙钛矿薄膜却没有发生明显的变化。研究人员利用SEM表征了沉积在Spiro-OMeTAD上的Ag薄膜的形貌,结果表明由于Ag与Spiro-OMeTAD的不浸润性,边缘的Ag颗粒团簇尺寸比中心部分的尺寸更小、更疏松。基于此,研究团队推断器件突然短路失效的机制为:光照下钙钛矿薄膜分解并形成多碘化合物发生扩散并与电极边缘松散的Ag簇并发生反应而导致Ag电极被腐蚀,腐蚀产生的Ag+离子穿过Spiro-OMeTAD而向钙钛矿中迁移,最终在Ag电极和钙钛矿之间形成丝状电导,导致器件短路。基于此,研究团队在Spiro-OMeTAD上沉积一层MoO3薄膜,改善沉积Ag电极过程中Ag的生长,获得了边缘更加致密的Ag电极。此外,由于MoO3薄膜的引入使得Spiro-OMeTAD和Ag电极之间的空穴提取效率更高,避免了空穴在该界面的积累,进而有利于稳定性的提升,实现器件运行600h以上而不发生前述的突变失效(图2),有效提升器件的稳定性能。相关成果以Revealing the Mechanism behind the Catastrophic Failure of n‐i‐p Type Perovskite Solar Cells under Operating Conditions and How to Suppress It为题发表于Advanced Functional Materials。 图2 钙钛矿电池运行过程中Ag+离子迁移引起的“突变失效”及MoO3的引入提高运行稳定性机制   虽然该结构电池的运行稳定性得到提升,但是该类光伏电池运行过程中初始几十个小时内往往存在效率的快速衰减过程(burn-in衰减),严重降低了器件的稳定输出效率。针对该问题,研究团队通过器件结构设计及稳定性测试过程中器件内部离子分布、界面复合变化,证实该结构电池中的“burn-in”衰减与SnO2中Li+迁移至钙钛矿/空穴传输层界面有关。通过在SnO2/Perovskite界面引入一个薄层交联PC61BM(CL-PCBM)后可以抑制“burn-in”衰减。TOF-SIMS的结果证明了CL-PBM薄层可以将Li+离子固定在Perovskite/SnO2界面中,而且CL-PCBM的引入可以增加器件的内建电场并提高电子提取效率;最终在Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3体系钙钛矿电池中获得了22.06%的效率,在光照下持续运行1000h后仍保留初始效率的95%,而参比电池仅保留75%;在FAPbI3体系钙钛矿电池中时,获得了24.14%的光电转换效率,同时也消除了“burn-in”衰减过程。这表明利用CL-PCBM界面修饰来消除“burn-in”衰减具有普适性。综上,通过降低器件工作过程中的Li+迁移可以大幅降低钙钛矿太阳能电池稳定性测试初期存在的“burn-in”衰减,提高器件的稳定输出功率(图3)。相关成果以Boosting Perovskite Solar Cells Efficiency and Stability: Interfacial Passivation of Crosslinked Fullerene Eliminates the "burn-in" Decay为题发表于Advanced Materials。图3 CL-PCBM界面修饰抑制Li+离子迁移提高器件效率并消除器件的“burn-in”衰减
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制