当前位置: 仪器信息网 > 行业主题 > >

电离子射质谱仪

仪器信息网电离子射质谱仪专题为您提供2024年最新电离子射质谱仪价格报价、厂家品牌的相关信息, 包括电离子射质谱仪参数、型号等,不管是国产,还是进口品牌的电离子射质谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电离子射质谱仪相关的耗材配件、试剂标物,还有电离子射质谱仪相关的最新资讯、资料,以及电离子射质谱仪相关的解决方案。

电离子射质谱仪相关的论坛

  • 质谱 带电离子的产生、传输和检测

    [font=微软雅黑, sans-serif]带电离子的产生、传输和检测[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪工作时,仪器内部真空环境中带电离子的产生、传输和检测需要经过离子源、质量分析器和检测器等部件。[color=red]本文主要介绍单四极杆质谱仪的电子轰击电离源/电子电离源(EI)部分。[/color][/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f0/1d/ff01dcd00e8e45a3bc8250abe70575b7.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]离子源-电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源的主要作用是将分析样品中的待测组分电离成带电离子,并将带电离子集中成密集的离子束,引入质量分析器。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-单四极杆质谱联用仪常见的离子源主要有电子轰击电离源(EI)、化学电离源(CI)等。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif]通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)是最常见和最简单的电离方式之一,可靠性和灵敏度高,碎片离子信息丰富,质谱图具有良好的再现性,能够提供详细的结构信息和可供对照的标准NIST质谱数据库。目前EI 源是分析鉴定中草药、香精、香料、杀虫剂和石油成品等挥发性和半挥发性复杂样品的主要手段。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)的结构包括电离腔、透镜组和模拟电路板三大部分。电离腔包括磁铁、灯丝、推斥极等;透镜组则包括离子出口板、离子出口板间隔、聚焦透镜和引入透镜等;模拟电路板[size=12px](点击链接,了解详细内容:[url=https://ibook.antpedia.com/x/666377.html][color=#7030a0]单四极杆质谱仪工作流程及框架概述[/color][/url])[/size]则用以实现电子轰击电离源(EI)灯丝电流控制,离子源加热控制,推斥电极、静电透镜、电子能量电压控制等。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c6/fc/6c6fc7a87049a3eaa393fdac683e4dfc.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的产生[/font][font=微软雅黑, sans-serif]2.1.1.1 [/font][font=微软雅黑, sans-serif]离子的产生位置-电离腔[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电离腔[/font][font=微软雅黑, sans-serif]位于灯丝1与灯丝2之间,(上图)推斥极右侧,(上图)离子出口板左侧;磁铁位于灯丝1和灯丝2 的正上方;色谱柱于上图中色谱柱入口将分析样品中的待测组分引入离子源;另外,位于色谱柱入口正对面的真空腔门上开有小孔,外部装有开关阀及调谐用的全氟三丁胺,称为标液和标液阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源中的两个磁体之间会形成磁场,运动电荷在磁场中受到洛伦兹力的作用;洛伦兹力不改变运动电荷的速率和动能,只改变电荷的运动方向使之偏转;灯丝经过加热产生热电子,并在加速电压的作用下进入磁场,在磁场作用下螺旋形向前运动,增加与样品分子相互作用的几率。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1.2 [/font][font=微软雅黑, sans-serif]电离腔中离子产生的原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][color=#7030a0]说明:该小节参考《质谱分析技术原理与应用》,台湾质谱学会[/color][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)又称为电子电离源(EI),其基本原理是灯丝经过加热产生热电子,并在加速电压的作用下具有一定的能量和波长。当电子的波长符合分子电子能级跃迁所需的波长时,电子能量会被分子吸收,使分子内能提高,将外层电子提升至高能级,进而至离子化态并产生自由基阳离子。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在离子源中可以通过参数设置控制电子产生的数量和电子的能量。有机化合物的电离能大多数为(10-20)eV,但通常将灯丝产生的电子动能设置为70eV[size=12px](电子伏特(electron volt),符号为eV,是能量的单位。代表一个电子(所带电量为1.6×10-19C的负电荷)经过1伏特的电位差加速后所获得的动能)[/size]。电子动能为70eV时波长约为1.4?,该波长与分子键长度接近,更容易与化学键相互作用。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV位于最佳离子化效率能量区(50-100eV)的中间,可以避免由于在区间起始或者结束位置时电子能量微小波动导致的离子化效率明显变化;同时,也避免了当电子能量过低无法被分析物有效吸收或者过高直接穿透分子引起的离子化效率降低等情况。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV时可以提供较高的谱图重现性,同时具有丰富的碎片离子,可以提供分子离子的结构信息,用来鉴定或者解析分子。目前美国国家标准与技术研究院(NIST)收集了数十万分子电子电离产生的质谱图并建立了谱图库,可以通过与该标准谱图库进行对比的方法检定化合物的身份。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.1.2 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的传输和聚焦[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在电离腔中产生的离子碎片运动方向较为发散,为了将离子引出电离区,并将轴向发散的离子进一步加速、聚焦成离子束以减少在传输中的损失,并最终以较小的束宽和散角送入质量分析器中,一般使用透镜组对离子进行空间聚焦。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪电子轰击电离源(EI)中的透镜组(静电透镜/单透镜)是离子导向装置的一种,作为离子光学系统的一部分,承担着将离子传输至质量分析器的重要作用。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif]工作过程中,由电子轰击电离源(EI)的裂解机理产生的离子多为正离子,因此首先在推斥极上施加正电压,将离子推向离子出口板;一般而言,离子出口板和离子出口板间隔接地,推斥极和离子出口板之间会形成电压差,电压差亦会推动正离子向前运动;聚焦透镜和引入透镜为负电压,且聚焦透镜的电压值会更低[size=12px](说明:负的更厉害)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在三个圆筒形电极[size=12px](离子出口板和离子出口板间隔、聚焦透镜和引入透镜)[/size]的作用下,中间电极附近形成一鞍形电场——即中间电极电压低于两边电极电压,构成起始减速型单透镜结构,散射的正离子在起始减速型结构的单透镜中先加速后减速,先聚焦后发散再聚焦。该透镜组(静电透镜/单透镜)的特点是对传输离子无质量歧视,可以保持离子的动能,通过调节电压即可实现离子聚焦和改善离子传输效率。[/font]

  • 使用电子轰击电离源(EI)的单四极杆质谱仪工作流程及框架

    [font=微软雅黑, sans-serif]采用一组四极杆[size=12px](作为质量分析器)[/size]对带电离子进行分离的质谱仪称为单四极杆质谱仪。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]质谱仪的相关部件需要在高真空环境下进行工作[/font][font=微软雅黑, sans-serif],机械泵和分子泵为仪器工作提供高真空环境,真空规对真空度进行监测。在保证质谱仪相关部件高真空工作环境前提下,经[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分离后的待测样品组分从色谱柱流出,通过传输线流入离子源[size=12px](电子轰击电离源(EI),Electron Ionization)[/size];电子轰击电离源(EI)通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size];四极杆质量分析器在射频电源的作用下,直流电压(DC)和射频电压(RF)进行叠加,满足条件的特定质/荷比(mass-to-charge ratio)的离子稳定振荡通过四极杆到达检测器[size=12px](打拿极和电子倍增器等)[/size];检测器中的打拿极与四极杆成90°且在-10000V下工作,通过四极杆的光子、中性粒子等干扰信号被降低,正离子束撞击打拿极后产生电子进入电子倍增器并产生与接收到的离子数目成正比的信号,电子流经多级放大后输入到放大电路。放大电路产生的信号经处理后在工作站中显示。使用电子轰击电离源(EI)的单四级杆质谱仪整体结构与框架如下[size=12px](以北京普析通用仪器有限公司M7质谱仪为例)[/size]:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/ee/a5cee7570e3fc5969a944c5fabaef3a7.png[/img][/align]

  • 静电离子色谱分离方法

    近年来离子色谱研究的一个重要趋势是研究各种分离效率高, 选择性好, 分析速度快, 可同时分析阴离子和阳离子的色谱柱. 研究的重点是将涂覆有生物表面活性剂的物质作离子色谱固定相, 并已在光学异构体和无机离子分离分析方面展示出独特的优越性和发展潜力. 1994年, Hu Wezhi等人首先采用在一分子内含有正负电荷的两性离子分子的表面活性剂作色谱固定相, 开创了静电离子色谱法. 本文利用自制的静电离子色谱柱, 选用不同种类流动相, 对含有不同阴离子的钠盐进行分离, 并初步探讨在磁场中静电离子色谱的保留行为. 1 实验部分  1.1 仪器和试剂  LC-4A高效液相色谱仪; RID-2AS示差析光检测器, C-R2A数据处理机. 静电离子色谱柱(自制), 流动相分别为水, 10 mmol/L Na2HPO4-NaH2PO4缓冲液(pH=6.8), 2.4 mmol/L NaHCO3和3 mmol/L Na2CO3; 1 mmol/L十二烷基磺酸钠. 所用试剂均为优级纯或分析纯; 溶液用二次蒸馏水按常规配制.   1.2 色谱柱制备和分离方法  把含有胆汁酸盐水溶液通过动态涂层法涂覆在ODS表面. 选用国产ODS分离柱(4.6 mm×250 mm), 将30 mmol/L的CHAPS溶液(经0.4 μm滤膜过滤)以 0.7 mL/min流速流经ODS柱80 min, 收集流出液重复上述操作2次, 然后用水冲洗40 min, 即得到在ODS柱表面涂覆一层含有正/负电荷胶束的静电离子色谱柱.  静电离子色谱法是利用在ODS载体上涂覆在同一分子内同时含有正/负两种电荷的胆汁酸诱导体胶束作固定相, 纯水或电解质溶液作流动相, 被测样品中的阴离子和阳离子通过纯粹的静电吸引、 离子配对后形成正、 负离子的缔合物(离子对), 由于被测离子的电荷和半径、 离子种类和离子浓度的不同, 因此形成的各种离子对受涂覆在固定相上的表面活性剂所带的正/负电荷静电吸引和排斥作用力不同而相互分离. 分离后的离子对进入检测器进行定量检测. 实验表明, 用本法制备的静电离子色谱柱, 连续使用3个月未发现分离效率下降. 2 结果与讨论 2.1 流动相和色谱图  分别以纯水、磷酸盐缓冲溶液为流动相得到色谱分离图  纯水为流动相时, Na2SO4和NaBr, KNO3和NaNO3, Na2S2O3和NaF+NaNO3各离子对得到分离, 但NaF与NaNO3不能分离开. 而磷酸盐为缓冲溶液时(图2), 不但Na2SO4和NaBr得到分离, 而且Na2S2O3, NaF, NaNO3也可相互分离. 由图2可见, 与纯水流动相相比, 流动相中磷酸盐的存在使各离子对保留时间和色谱峰形状发生变化, 虽然各离子对保留时间显著增加, 但出峰顺序未发生变化. 实验表明, 各离子对的保留时间与阴阳离子的半径、 电荷、 流动相种类和离子强度有关, 在流动相中加入不同种类的电解质溶液将有利于某些离子对的分离.   分别以碳酸盐、十二烷基磺酸钠为流动相得到的静电离子色谱分离图如图3所示. 由图3可见NaBr和Na2SO4可以完全分离, 与纯水为流动相相比, NaBr和Na2SO4的分离效率提高, 但保留时间增加. 特别是以十二烷基磺酸钠(表面活性剂)为流动相时, 使NaBr的保留时间延长(见图3(b)), 这说明表面活性剂的存在将对离子对的分离效率产生重要影响. 可以认为, 在流动相中加入电解质溶液, 除样品离子与固定相相互作用外, 流动相中电解质也参与了与固定相之间的静电吸引和排斥作用, 由于各离子对和电解质与固定相相互竞争的静电作用, 提高了各离子对的分离度.   2.2 流动相流速影响 当流动相流速不同时, 各离子对的保留时间发生改变. 纯水为流动相时, NaBr和Na2SO4离子对的保留时间与纯水流速的关系. 实验表明, 当采用不同种类流动相时, 随着流动相流速的增加, 保留时间都有不同程度的缩短. 但要根据被分离的离子对的分离效率和分析速度来选择流动相流速, 本实验选择流动相流速为0.6 mL/min. 2.3 外加磁场对静电离子色谱分离的影响  将静电离子色谱置于静态磁场(Nb磁铁, 160 mm×30 mm)中, 考察各离子对的分离效率和保留时间. 实验表明, 在外加磁场作用下, 纯水为流动相时, NaNO3和Na2S2O3离子对的保留时间稍向后位移(见图5), 但二者的峰形状未发生变化. 这可能是在离子对形成和洗脱过程中, 由于外加磁场的作用, 使形成的离子对与涂覆在载体上胆汁酸盐胶束所带的正负电荷静电吸引和排斥作用力发生变化, 打破了原来的平衡状态, 使离子对的保留时间发生位移.

  • 单四极杆质谱仪工作流程及框架概述

    [font=微软雅黑, sans-serif]质谱技术是20世纪发展起来的最重要的分析技术之ー,既可用于分析无机元素(包括同位素),又可用于分析有机小分子,还可用于分析生物大分子,在生命科学、材料科学、环境科学、药物硏发、食品安全和石油化工等领域发挥着巨大而不可替代的作用。随着科学技术的发展,质谱的分析能力愈加强大,在方方面面的应用越来越普遍。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用技术兼具[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的高分离效率和质谱的高选择性、高灵敏度,是复杂样品组分分离、定性和定量的有力工具。在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪器中,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]作为进样系统,将样品组分分离后引入质谱仪器;质谱仪作为检测器,通过不同离子化方式和质量分析技术,选择性的检测目标化合物的特征离子,有效排除基质和杂质峰的干扰,提高检测灵敏度。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析公众号开设新的专题《[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用分析技术》,介绍不同质谱仪的原理、结构、应用和维护;第一辑介绍具有电子轰击电离源/电子电离源(EI)的单四极杆质谱仪的原理、结构、应用和维护。本文为第一辑第1篇,概述使用电子轰击电离源/电子电离源(EI)的单四极杆质谱仪的仪器工作流程及框架。[/font][font=微软雅黑, sans-serif]1[/font][font=微软雅黑, sans-serif] 质谱仪器原理概述[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]质谱仪是用来检测物质含量[size=12px](定量分析)[/size]和鉴定物质类别[size=12px](定性分析)[/size]的仪器。其主要原理是将分析样品中的待测组分电离成带电离子;带电离子在电场或者磁场的作用下进行空间或者时间上的分离;分离后的带电离子被检测器检测,得到包含有不同带电离子质荷比和相对强度的质谱图,进而推算出分析样品中不同组分的分子量。通过质谱图或者精确的分子量测量,可以对待测组分做定性分析;利用检测到的离子强度,可以对待测组分做准确的定量分析。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif]使用电子轰击电离源(EI)的单四极杆质谱仪工作流程及框架[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]采用一组四极杆[size=12px](作为质量分析器)[/size]对带电离子进行分离的质谱仪称为单四极杆质谱仪。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/84/0c/4840c4c8f8825162ff40cfbe90380db1.png[/img][/align][font=微软雅黑, sans-serif]质谱仪的相关部件需要在高真空环境下进行工作。[/font][font=微软雅黑, sans-serif]质谱仪对带电离子进行分离和检测,为了使产生的带电离子可以通过各部件到达检测器,减少离子运动过程中的碰撞和碎裂,需要提供高真空环境使带电离子在质谱仪内有较高的平均自由程;同时,高真空环境可以避免仪器内部在低气压高电压情况下的放电,免于损坏电路和相关部件;此外,高真空环境也有利于仪器进行调谐等操作。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在保证质谱仪相关部件高真空工作环境前提下,经[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分离后的待测样品组分从色谱柱流出,通过传输线流入离子源[size=12px](电子轰击电离源(EI),Electron Ionization)[/size];电子轰击电离源(EI)通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size];四极杆质量分析器在射频电源的作用下,直流电压(DC)和射频电压(RF)进行叠加,满足条件的特定质/荷比(mass-to-charge ratio)的离子稳定振荡通过四极杆到达检测器[size=12px](打拿极和电子倍增器等)[/size];检测器中的打拿极与四极杆成90°且在-10000V下工作,通过四极杆的光子、中性粒子等干扰信号被降低,正离子束撞击打拿极后产生电子进入电子倍增器并产生与接收到的离子数目成正比的信号,电子流经多级放大后输入到放大电路。放大电路产生的信号经处理后在工作站中显示。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]仪器结构与框架如下[size=12px](以北京普析通用仪器有限公司M7质谱仪为例)[/size]:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/3e/66/c3e66d1e73156663c8f01b2ade960d97.png[/img][/align][font=微软雅黑, sans-serif]在上述框图中(由下至上),机械泵和分子泵为仪器工作提供高真空环境,真空规对真空度进行监测:高真空由机械泵和涡轮分子泵串联完成。机械泵作为前级真空泵先将体系真空度抽到10[size=12px]-1[/size]Pa[/font]~[font=微软雅黑, sans-serif]10[size=12px]-2[/size]Pa[/font][font=微软雅黑, sans-serif],然后再由涡轮分子泵继续抽到高真空。离子源、质量分析器和检测器的真空度应达(10[size=12px]-3[/size]~10[size=12px]-4[/size])Pa。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]模拟电路板[/font][font=微软雅黑, sans-serif]是模拟信号控制系统,主要功能是电子轰击电离源(EI)灯丝电流控制,离子源加热控制,推斥电极、静电透镜、电子能量电压控制等。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]测控电路板[/font][font=微软雅黑, sans-serif]包括一个接口扩展板和一个指示灯电路板,主要功能是:采集模拟电路输出的模拟信号,通过模拟/数字转换器转换成数字信号,经过预处理后传输给计算机;接受计算机的数字信号,经过数字/模拟转换器转换成低电压模拟信号,控制高电压的模拟电路部件。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]射频电路板[/font][font=微软雅黑, sans-serif]由一个射频电源控制电路板和射频电源放大电路板组成,主要功能是将直流电压(DC)和射频电压(RF)进行叠加,使满足条件的特定质/荷比(mass-to-charge ratio)的离子稳定振荡通过四极杆到达检测器。射频电源采用幅度扫描方式,在实现功率放大的同时,又保证了线性度和稳定度。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]小信号检测电路板[/font][font=微软雅黑, sans-serif]是高速高精度微弱信号采集系统,主要功能是放大电子倍增器输出的高速变化微弱电流;通过信号调理电路、高速高精度模拟数字转换器转换成数字信号,再经测控系统转换成计算机可辨视的数据,而完成整个测量的过程。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]小结[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]不同厂家单四极杆质谱仪的仪器工作流程及框架大致相同,了解仪器结构和原理,有利于更加深刻和细致的使用和操作仪器,同时也有利于仪器的维护和维修。[/font]

  • 电感耦合等离子体飞行时间质谱仪 ICP-TOF-MS简介

    [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 的质量分析器系统的作用是将离子束中的离子按质荷比的大小而分开。根据离子束的特点和分析工作的要求,质量分析器系统应具有足够的离子传输效率和分辨本领。通常,这两者是相互矛盾的。完善质量分析器离子光学系统的设计,就是要保证足够分辨本领的条件下,达到最高的离子传输效率。目前,飞行时间质量分析器系统的离子传输效率已接近100%。相比之下四极杆只是一个质量选择器,而不是一个质量分析器,在一个离子通过四极杆时,其它质荷比的离子将被过滤掉。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 的联用技术是当前进行价态、形态研究的热点技术,四极杆[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url] 由于其单道扫描特性,不适于监测联用技术中的瞬时多元素信号。飞行时间质谱仪的基本原理飞行时间质谱仪作为一种带电粒子的质量鉴定方法,很早就已经得到采用,它的工作原理十分简单,这就是,初始能量相同的带电原子或者带电分子,漂移一段固定的路程所用的时间与它本身的质量有关。测定漂移时间的差别,即可对不同质量的离子进行鉴别。1932 年,斯迈思和马赫建造了第一台基于飞行时间原理的质谱计,并成功地进行了氧同位素丰度的分析。这是历史上第一台动态质谱仪器。二次世界大战后,由于脉冲技术的发展,促进了飞行时间质谱技术的发展进程。1946 年,斯蒂芬斯提出了直线脉冲飞行时间质谱仪器的设想,而在1948 年,卡梅伦和埃格斯从实验上给以实现。1955 年,威利和麦克伦完成了这种质谱仪器的系统设计,使之成为近代商品飞行时间质谱仪器的原型。ICP-oa-TOF-MS 相当于全谱直读的仪器,特别适合获取瞬时信号的信息,是进行FI、ETV、LA 和多种色谱方法进行样品引入研究的强大工具。这种方法也非常适合同位素稀释法的应用或者其它内标校准方法。飞行时间质谱仪具有一系列显著的特点。其中包括:仪器的分析部分只是一支漂移管,机械结构简单;仪器性能指标主要依靠调节电参数而获得,机械调整方面不多,因此使用方便,能实现快速扫描,可用于监控极短的瞬时事件;在短时间内能记录任一反应过程的全部质谱,给出反应的全部信息。1973 年,马米林把静电离子反射技术引入飞行时间质谱计。当质量相同而能量存在发散的离子进入静电离子反射区域时,能量较高的离子会比能量较低的离子穿透较深距离,因此能量较高离子将比能量较低离子飞行时间更长,而在漂移区间则刚好相反,因此它们最终可以同时到达接收器,因而实现了时间聚焦,从而使仪器的分辨本领大为提高。随着各种新技术的引入,飞行时间质谱仪的工作水平在不断提高,充分显示了它的突出优点,成为继磁质谱仪器、四极质谱仪器之后的第三代具有广泛用途的质谱仪器。这种分析器的离子分离是用非磁方式达到的,因为从离子源飞出的离子动能基本一致,在飞出离子源后进入长约一米的无场漂移管,在离子加速后, 此离子达到无场漂移管另一端的时间为t=L/u,故对于具有不同m / z 的离子,到达终点的时间差取决于m / z 的平方根之差。飞行时间质量分析器已经在有机质谱分析中成功应用多年,是一种成熟的技术,历史比四极杆还要长。用这种仪器,即使有机质谱分析中的质量范围很宽,每秒钟仍然可以得到多达1000 幅的全谱质谱图。

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 实验室分析仪器--质谱仪的离子源种类及各自原理

    离子源是质谱仪器最主要的组成部件之一,其作用是使被分析的物质分子或原子电离成为离子,并将离子会聚成具有一定能量和一定几何形状的离子束。由于被分析物质的多样性和分析要求的差异,物质电离的方法和原理也各不相同。在质谱分析中,常用的电离方法有电子轰击、离子轰击、原子轰击、真空放电、表面电离、场致电离、化学电离和光致电离等。各种电离方法是通过对应的各种离子源来实现的,不同离子源的工作原理不同,其结构也不相同。离子源是质谱仪器的一个重要部分,它的性能直接影响仪器的总体技术指标。因此,对各种离子源的共性要求如下:①产生的离子流稳定性高,强度能满足测量精度;②离子的能量发散小;③记忆效应小;④质量歧视效应小;⑤工作压强范围宽;⑥样品和离子的利用率高。[b]一、电子轰击型离子源[/b]电子轰击离子源(electron impact ion source)是利用具有一定能量的电子束使气态的样品分子或原子电离的离子源(简称EI源)。具有结构简单、电离效率高、通用性强、性能稳定、操作方便等特点,可用于气体、挥发性化合物和金属蒸气等样品的电离,是质谱仪器中广泛采用的电离源之一。在质谱分析领域,为了适应不同样品电离的需求质谱仪器会配置不同功能的离子源。但电子轰击源作为一个基本装置,仍被广泛应用在气体质谱仪、同位素质谱仪和有机质谱仪上。应该特别指出,电子轰击源是最早用于有机质谱分析的一种离子源,可提供有机化合物丰富的结构信息,具有较好的重复性,是有机化合物结构分析的常规工具。电子轰击离子源一般由灯丝(或称阴极)、电子收集极、狭缝、永久磁铁。、聚焦电极等组成(见图1)[img=49049846c413a18bd54bf33a180973f.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178115431647.jpg[/img]图1 电子轰击型离子源示意图灯丝通常用钨丝或铼丝制成。在高真空条件下,通过控制灯丝电流使灯丝温度升至2000℃左右发射电子。一定能量的电子在电离室与气态的样品分子或原子相互作用使其部分发生电离。永久磁铁产生的磁场使电子在电离室内做螺旋运动,可增加电子与气态分子或原子之间相互作用的概率,从而提高电离效率。电离室形成的离子在推斥极、抽出极、加速电压(accelerating voltage)、离子聚焦透镜等作用下,以一定速度和形状进入质量分析器。在电子轰击源中,被测物质的分子(或原子)是失去价电子生成正离子:M+eM[sup]+[/sup]+2e或是捕获电子生成负离子:M+e[sup]-[/sup]→m一般情况下,生成的正离子是负离子的10[sup]3[/sup]倍。如果不特别指出,常规质谱只研究正离子。轰击电子的能量一般为70eV,但较高的电子能量可使分子离子上的剩余能量大于分子中某些键的键能,因而使分子离子发生裂解。为了控制碎片离子的数量,增加分子离子峰的强度,可使用较低的电离电压。一般仪器的电离电压在5~100V范围内可调。电子轰击源的一个主要缺点是固、液态样品必须气化进入离子源,因此不适合于难挥发的样品和热稳定性差的样品。[b]二、离子轰击型离子源[/b]利用不同种类的一次离子源产生的高能离子束轰击固体样品表面,使样品被轰击部位的分子和原子脱离表面并部分离子化—一产生二次离子,然后将这些二次离子引出、加速进入到不同类型的质谱仪中进行分析。这种利用高能一次离子轰击使被分析样品电离的方式统称为离子轰击电离。使用的一次离子源包括氧源、氩源、铯源、镓源等。[b]1、溅射过程及溅射电离的机理[/b]一个几千电子伏能量的离子束(初级离子)和固体表面碰撞时,初级离子和固体晶格粒子相互作用导致的一些过程如图2所示。一部分初级离子被表面原子散射,另一部分入射到固体中,经过一系列碰撞后,将能量传递给晶格。获得一定能量的晶格粒子反弹发生二级、三级碰撞,使其中一些从靶表面向真空发射,即溅射。溅射出来的晶格粒子大部分是中性的,另有一小部分粒子失去电子或得到电子成为带正电或负电的粒子,这部分带电粒子称为二次离子。[img=b5d7ca2ed153a848f53723f1c88a292.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178115377492.jpg[/img]图2 溅射离子过程关于二次离子产生的机理,有许多学者进行了研究, Evans的综述认为有两种过程导致二次离子产生。一种是“动力学”过程,连级碰撞的结果使电中性的晶格粒子发射到真空中,其中一部分处于亚稳激发态,它们在固体表面附近将价电子转移到固体导带顶端而电离。另一种是“化学”过程,认为在样品靶中存在化学反应物质,比如氧,由于氧的高电子亲和势减少了自由导带电子数目,这就降低了在固体中生成的二次离子的中和概率,允许它们以正离子发射。反应物质可能是固体中本来就存在的,也可以是以一定的方式加入体系的。在这两个过程中,“化学”过程起主导作用。[b]2、几种常用的一次离子源[/b]目前在离子轰击电离方式中,用于产生一次离子的离子源型号很多,主要介绍下面两种类型的离子源:冷阴极双等离子体源和液态金属场致电离离子源。[b](1)冷阴极双等离子体源[/b]世界上不同厂家制造的SMS仪器,所选用的冷阴极双等离子体离子源可能因生产厂家及型号不同,外形结构差异很大,但基本工作原理类同。图3为冷阴极双等离子源的基本结构示意。冷阴极双等离子体离子源具有电离效率高、离子流稳定、工作可靠及能产生极性相反的引出离子等特点。[b](2)液态金属场致电离离子源[/b]场致电离离子源通常使用的金属有镓、铟、铯等,使用金属离子轰击固体样品表面产生负的二次离子,多用于氧、硫、碳等非金属元素的分析。由于一次金属离子在样品表面会产生电荷累积效应,因此需要配合电子枪使用。图4是铯源的基本结构示意。[img=6e861f14b1d8243a7d37f50da23bf84.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116476680.jpg[/img]图3 冷阴极双等离子源的基本结构示意图[img=c72458c7b868299d2724613ef5b0b90.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116400622.jpg[/img]图4 铯源的基本结构示意图[b]三、原子轰击型离子源[/b]与离子轰击电离相似,原子轰击电离也是利用轰击溅射使样品电离的,所不同的是用于轰击的粒子不是带电离子,而是高速的中性原子,因此原子轰击电离源又称为快原子轰击源(fast atom bombardment source, FAB)。原子轰击源是20世纪80年代发展起来的一种新技术。由于电离在室温下进行和不要求样品气化,这种技术特别适合于分析高极性、大分子量、难挥发和热稳定性差的样品。具有操作方便、灵敏度高、能在较长时间里获得稳定的离子流、便于进行高分辨测试等优点。因此得到迅速发展,成为生物化学研究领域中的一个重要工具。原子轰击既能得到较强的分子离子或准分子离子,同时也会产生较多的碎片离子;在结构分析中虽然能提供较为丰富的信息。但也有其不足,主要是:[b]①甘油或其他基质(matrix)在低于400的质量数范围内会产生许多干扰峰,使样品峰识别难度增加;②对于非极性化合物,灵敏度明显下降;③易造成离子源污染。[/b]原子轰击源中使用的轰击原子主要是Ar原子。在放电源中,氩气被电离为Ar,经过一个加速场,Ar具有5~10keV的能量,快速的Ar进入一个充有0.01~0.1Pa氩气的碰撞室,与“静止”的Ar原子碰撞,发生电荷交换。即:Ar(快速)+Ar(静止)→Ar(快速)+Ar[sup]+[/sup](静止)生成的快速Ar原子保持了原来Ar[sup]+[/sup]的方向和大部分能量,从碰撞室射出,轰击样品产生二次离子。在射出碰撞室的快原子中还来杂有Ar[sup]+[/sup],在碰撞室和靶之间设置的偏转极可以将Ar[sup]+[/sup]偏转掉,仅使Ar原子轰击样品。图5是原子轰击源的结构示意。此外,氙气(Xe)、氦气(He)等其他情性气体的原子也可用作轰击原子使用。[img=76a94ac1e2c48555b7631bc4a90a183.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116426694.jpg[/img]图5 原子轰击源的结构示意图[b]四、放电型离子源[/b]利用真空火花放电在很小的体积内积聚起的能量可使体积内的物质骤然完全蒸发和电离,从而获得具有表征性的离子流信息。 Dempsteri最早把这一现象应用到质谱仪器上实现了当时物理、化学家们用电子轰击型电离源无法解决的铂、钯、金、铱电离的遗留问题完成了当时已知元素同位素的全部测量。这一具有历史意义的成果对后来物理、化学、地质、核科学等学科的发展,起着基础性的促进作用。下面介绍两种典型的放电型离子源。[b]1、高频火花源[/b]高频火花离子源(high frequency spark ion source)是广泛使用的一种真空放电型离子源。由于其对所有的元素具有大致相同的电离效率,因此应用范围较广,可用来对多种形态的导体、半导体和绝缘体材料进行定量分析,是早期质谱仪测定高纯材料中微量杂质的重要方法之一。图6是高频火花放电电离示意。被分析物质以适当的方式制成样品电极,装配时和参比电极相距约0.1mm的间隙。利用加载在两个电极间的高频高压电场使其发生火花击穿来产生一定数量的正离子。[img=c20a2842770bee39eaa9af208c6f2d5.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117263374.jpg[/img]图6 高频火花放电电离示意图使用高频火花源的一个关键是制作电极,对不同形态、不同导电性能的样品有不同的电极制作方法。如果样品是块状导体,可以直接裁制成约1mm直径、10mm长的柱状(或条状)电极;如果是粉末样品,可以冲压成上述形状;液体样品要加充填物。对于非导体材料,则需要采用适当的方法,使电极有较好的导电性能。一种方法是在非导体样品粉末中掺入良导体材料,如石墨、金、银、铟粉,然后冲压成电极;另一种方法是在非导体表面喷镀导电层,或在样品下面衬进导体基片。火花源的缺点:操作技术复杂,造价昂贵,且离子能量发散较大。这些缺陷限制了它的进一步发展和应用[b]2、辉光放电源[/b]辉光放电源是另一种放电电离技术,辉光放电技术先于真空火花放电电离,但用于质谱仪器上却在火花放电电离技术之后。事实上,是由于当时火花源的成就使人们离开辉光放电,而在相隔50多年以后,又是火花源在使用过程中出现的缺陷,促使质谱工作者又重新思考辉光放电技术。正如人们所知,气体放电过程出现的辉光是等离子体的一种形式,等离子体是由几乎等浓度的正、负电荷加上大量中性粒子构成的混合体。出现辉光放电最简单的形式是在安放在低压气体中的阴、阳电极间施加一个电场,使电场中的部分载气(如氩气)电离,电离产生的“阴极射线”或“阳极射线”在残留的气体中朝着带相反极性的方向加速,轰击阳极或阴极,使位于极板上的样品物质气化,部分气化物质的原子在其后的放电过程中电离。[b]五、热电离离子源[/b]热电离离子源是分析固体样品的常用离子源之一。其基本工作原理是:把样品涂覆在高熔点的金属带表面装入离子源,在真空状态下通过调节流过金属带的电流强度使样品加热蒸发,部分中性粒子在蒸发过程中电离形成离子。热电离效率依赖于所用金属带的功函数、金属带的表面温度和分析物质的第一电离电位。通常金属带的功函数越大、表面温度越高、分析物质的第一电离电位越低,热电离源的电离效率就越高。因此具有相对较低电离电位的碱金属、碱土金属和稀土元素均适合使用热电离源进行质谱分析。而一些高电离电位元素,如Cu、Ni、Zn、Mo、Cd、Sb、Pb等过渡元素,在改进涂样技术和使用电离增强剂后,也能得到较好的质谱分析结果。[img=6cb803845e78c0c20db3311688659a1.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117555301.jpg[/img]图7 表面电离源的示意图图7是表面电离源的示意,结构为单带热电离源。当金属带加热到适当的温度,涂在带上的样品就会蒸发电离。单带源适合于碱金属等低电离电位的元素分析。对于电离电位较高的样品为了得到足够高的电离效率,需要给金属带加更高的工作温度。金属带在升温过程中,样品有可能会在达到合适的电离温度之前,因大量蒸发而耗尽。为了解决这一问题,在其基础上又形成了双带和多带热电离源。即在源中设置两种功能的金属带,一种用于涂样,称样品带;另一种用于电离,叫电离带。这两种带的温度可分别加以控制。当电离带调至合适的温度后,样品带的温度只需达到维持蒸发产生足够的束流。这样既能节制蒸发,又能获得较高的电离效率。还有一种舟形的单带,把铼或钨带设计成舟形,舟内放入样品。由于舟内蒸发的样品在逸出前会与炽热的金属表面进行多次碰撞,增加生成离子的机会,因此,舟形单带的电离效率可接近于多带电离源。[b]六、电感耦合等离子体离子源[/b]利用高温等离子体将分析样品离子化的装置称为电感耦合等离子体离子源,也叫ICP离子源。等离子体是处于电离状态的气体。它是一种由自由电子、离子和中性原子或分子组成的且总体上呈电中性的气体,其内部温度可高达上万摄氏度。电感耦合等离子体离子源就是利用等离子体中的高温使进入该区域的样品离子化电离。ICP离子源主要由高频电源、高频感应线圈和等离子炬管组成(图8)。利用高频电源、高频感应线圈“点燃”等离子体炬管内的气体使其变成等离子体。等离子体炬管由三根严格同心的石英玻璃管制成。外管通常接入氩气,流量控制在10~15L/min,它既是维持ICP的工作气流,又起到冷却作用将等离子体与管壁隔离,防止石英管烧融;中间的石英管通入辅助气体,流量为1L/min左右,用于“点燃”等离子体;内管通入0.5~1.5L/min载气,负责将分析样品送进等离子体中进行电离。由于ICP离子源是在常压下工作的,因此产生的离子还必须通过一个离子引出接口与高真空的质量分析器相连,这就需要应用差级真空技术,如图8所示。通常是在样品锥和截取锥之间安装一个大抽速前级泵,在此形成第一级真空,此真空维持在100~300Pa范围。截取锥之后为第二级真空,装有高真空泵,真空可达0.1~0.01Pa范围。电感耦合等离子体离子源最大的特点是在大气压下进样,更换样品非常简单、方便。此外,由于等离子体内温度很高,样品电离的效率高,因此,电感耦合等离子体离子源可提高质谱仪器元素的检测灵敏度。但是,同样在高温状态下生成的分子离子也会严重干扰对被检测样品成分的鉴别。超痕量分析中,样品处理过程中应注意可能有来自试剂、容器和环境的污染。[img=9ce118fc568554297ba172fbfaa3aa8.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117157289.jpg[/img]图8 电离耦合等离子体离子源示意图[b]七、其他类型的电离技术1、激光电离技术[/b]具有一定能量的激光束轰击样品靶,实现样品蒸发和电离,即激光电离(laser ionization,L电离的概率取决于激光脉冲的宽度和能量。当选择单色光激光器作为电离源,可进行样品微区分析,样品的最小微区分析区域与激光的波长有关。分析灵敏度在10量级,分析深度为0.5um,空间分辨率1~5um。随着激光束的不断改进,剖析深度可以达到几十微米,配备数字处理系统,还可得到样品的三维离子分布图。激光电离飞行时间质谱仪就是一种典型的使用激光电离技术的质谱分析仪器。从脉冲激光束开始照射样品,到质谱分析的完成,时间很短,分析效率极高。现在,随着激光技术的快速发展和激光发生器生产成本的降低,激光电离技术已越来越多地用在不同类型的质谱仪上,得到广泛应用。[b]2、激光共振电离技术[/b]激光共振电离(laser resonance ionization,LRI)是20世纪70年代发展起来的激光电离的另一种形式,基本原理是基于每种元素的原子都具有自己确定的能级,即基态和激发态。量子力学揭示这些能级是分离而不是连续的。当某一个处于基态的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]了激光特定能量的光子,跃迁到激发态能级,便实现了共振激发。处于激发态的原子如能再吸收光子,只要两次吸收的光子能量之和大于该原子的电离能,即可使该原子电离,这一过程称为 LRI LRI的基本特征是:对被激发的元素具有非常强的选择性。LRI与质技术相结合组成的激光共振电离质谱仪(laser resonance ionization mass spectrometry,LRIMS)是20世纪后期发展起来的一种新型质谱技术,能够有效地排除其他同位素质谱测量过程中难以克服的同质异位素干扰,灵敏度、丰度灵敏度高,适合核反应过程中的低产额裂变核素测量,也为地球化学、宇宙化学研究中的稀有核素分析提供强有力的支持。Mainz大学使用该技术测量了Ca、u、Np等元素,对Ca的探测限达到10[sup]6[/sup]个原子。曼彻斯特大学采用冷端富集与激光脉冲电离方式实现了惰性气体的高灵敏度分析,对[sup]132[/sup]xe的探测限达到1000个原子

  • 实验室分析仪器--质谱仪的主要技术指标

    [b]一、质量范围[/b]质量范围是质谱仪所能测定离子质荷比的离子质量范围。不同用途质谱仪器的质量范围相差很大,稳定同位素气体质谱仪的质量范围通常在1~200之间;固体质谱仪的质量范围大都在3~380之间;有机质谱仪的质量范围从几千到几万不等,甚至更高。现在质谱分析中质量范围最大的质谱仪是基质辅助激光解吸电离飞行时间质谱仪该种仪器测定的分子质量可高达10000以上(质荷比啊啊:m/z,质量单位:amu或u,Da或D)[b]二、分辨本领[/b]分辨本领又称分辨率(resolution ratio)定义为质谱仪可分辨相邻两个质谱峰的能力,广义以R=M△M来度量M为可分辨两个质谱峰的质量平均值:△M为可分辨的两个质谱峰的质量差。实际上,可分辨的两个质谱峰允许有一定重叠,使用时应注明重叠程度。通常用两峰间的峰谷高度为峰高的5%或10%测量分辨率,即分辨率记为R5%或R10%,用下式计算:R10%=M/△M ×a/b式中,a为相邻两峰的中心距;b为峰高10%处的峰宽;M=(M1+M2)2,为两个质谱峰的质量平均值;△M=M2-M1,为两个峰质量的差值分辨率定义示意见图1[img=1a5d9bc3a78c20c874d745ddc287dea.jpg]https://i5.antpedia.com/attachments/att/image/20220126/1643179988174254.jpg[/img]图1 分辨率定义示意图[b]三、灵敏度[/b]同位素质谱仪的灵敏度通常用原子/离子的转换效率来定义,即用接收器接收到的离子数去除以进入离子源的样品原子总数之比的百分数。灵敏度取决于离子源的电离效率和离子在离子源、分析器的传输效率和接收器的接收效率。[b]四、丰度灵敏度[/b]丰度灵敏度是质谱仪器的一个重要性能指标其定义为:质量为M的离子峰AM与它在质量数[M+1]位置,或质量数[M-1]位置的离子拖尾峰Am+1、Am-1之比的倒数,即AM+1/AM和AM-1/AM丰度灵敏度反映仪器聚焦性能、分辨率,也与测量时的真空度状态相关。拖尾峰主要由强峰离子与管道缝隙或管道内残存的气体发生非弹性或弹性碰撞,导致离子散射或电荷转移形成的带电离子和非带电粒子组成。提高丰度灵敏度的主要原则是:降低离子在传输过程中弹性、非弹性碰撞的概率,阻滞散射离子进入接收器。通过改善测量时的真空环境,减少离子与管道内残存气体碰撞概率;使用具有质量、能量双聚焦功能的分析器,及采用不同类型阻滞透镜优化离子传输,可提高同位素质谱仪的丰度灵敏度。[b]五、精密度和准确度[/b]精密度(或称精度)定义为在规定条件下所获得的独立测量结果之间的一致程度。单次进样测量结果的标准偏差称为内精度;重复进样测量结果的标准偏差称为外精度。内精度主要反映仪器性能,外精度由仪器性能和施加的测量条件决定。外精度通常大于内精度。准确度指测量结果与被测量真值或约定真值间的一致程度。随着真空、材料、电子学及计算机技术的快速发展,越来越多的新技术被用在质谱仪器上,使得质谱仪的各项性能指标都取得了显著提高。提供的测试数据在国民经济运行过程中发挥着不可替代作用。今大,尤其是一些新方法在新一代的质谱仪上得以实现,如原位微区分析方法,对解决地矿、环境、生化、核裂变产物和宇宙空间的稀有样品分析具有更加特殊的意义。在现在分析领域中,质谱仪器有着不可替代的作用。但由于其结构复杂,仪器制造成本高,同样限制了它的使用范围。因此发展小型及便携的质谱仪器和发展有更高性能指标的大型质谱仪器同样重要

  • 实验室分析仪器--质谱仪其他类型的电离技术及原理

    [b]1、激光电离技术[/b]具有一定能量的激光束轰击样品靶,实现样品蒸发和电离,即激光电离(laser ionization,L电离的概率取决于激光脉冲的宽度和能量。当选择单色光激光器作为电离源,可进行样品微区分析,样品的最小微区分析区域与激光的波长有关。分析灵敏度在10量级,分析深度为0.5um,空间分辨率1~5um。随着激光束的不断改进,剖析深度可以达到几十微米,配备数字处理系统,还可得到样品的三维离子分布图。激光电离飞行时间质谱仪就是一种典型的使用激光电离技术的质谱分析仪器。从脉冲激光束开始照射样品,到质谱分析的完成,时间很短,分析效率极高。现在,随着激光技术的快速发展和激光发生器生产成本的降低,激光电离技术已越来越多地用在不同类型的质谱仪上,得到广泛应用。[b]2、激光共振电离技术[/b]激光共振电离(laser resonance ionization,LRI)是20世纪70年代发展起来的激光电离的另一种形式,基本原理是基于每种元素的原子都具有自己确定的能级,即基态和激发态。量子力学揭示这些能级是分离而不是连续的。当某一个处于基态的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]了激光特定能量的光子,跃迁到激发态能级,便实现了共振激发。处于激发态的原子如能再吸收光子,只要两次吸收的光子能量之和大于该原子的电离能,即可使该原子电离,这一过程称为 LRI LRI的基本特征是:对被激发的元素具有非常强的选择性。LRI与质技术相结合组成的激光共振电离质谱仪(laser resonance ionization mass spectrometry,LRIMS)是20世纪后期发展起来的一种新型质谱技术,能够有效地排除其他同位素质谱测量过程中难以克服的同质异位素干扰,灵敏度、丰度灵敏度高,适合核反应过程中的低产额裂变核素测量,也为地球化学、宇宙化学研究中的稀有核素分析提供强有力的支持。Mainz大学使用该技术测量了Ca、u、Np等元素,对Ca的探测限达到10[sup]6[/sup]个原子。曼彻斯特大学采用冷端富集与激光脉冲电离方式实现了惰性气体的高灵敏度分析,对[sup]132[/sup]xe的探测限达到1000个原子

  • 【原创】食品检测实验室液相色谱-质谱仪的选型

    前年根据目前食品实验室分析工作的需求和网友的建议,写了一篇博客“食 品 检 测实验室气相色谱-质谱仪的选型”。本文将根据笔者这些年来使用液相色谱-质谱联用仪(LC-MS)经验和文献、用户、公司等介绍,对不同液相色谱-串联质谱仪设备的特性与配置再做一些介绍。  食品检测实验室主要检测任务是对有害残留物进行分析,所以,对仪器首先要求有较高的灵敏度,以满足法律法规限量要求。液相色谱-四极质谱(单四极)检测灵敏度基本满足不了残留兽药的限量要求。当然,对于一些限量值较高的项目还是能用的。因此,本文不对单四极质谱仪做描述,主要介绍串接质谱仪。 与LC联用的主要MS类型有:四极质谱(Q-MS)、离子阱质谱(IT-MS)、飞行时间质谱(TOF-MS)、傅立叶变换质谱(FT-MS)。不同类型的MS串接起来,组合成多种丰富的形式,适用于各种不同目的的分析。简 介  近年来随着各个领域对LC-MS技术的需求,特别是生物技术(蛋白质分析)、制药技术(药物代谢分析)等,促进了LC-MS技术有了突飞猛进的发展,LC与各种类型质谱(包括多种类型的组合质谱)的联用,使LC-MS的联用形式较之气相色谱-质谱(GC-MS)的更丰富,应用的领域也更广泛。图1是现在讲到LC-MS常常要提到的,它说明大气压电离源,即:电喷雾电离源(ESI)+大气压化学电离源(APCI)的应用覆盖了绝大部分有机物分析领域。http://www.antpedia.com/attachments/2011/04/19_201104111616111.jpg图1 不同离子化方式应用于有机化合物分析的范围,从非极性到极性,从小分子到大分子  与GC-MS相比,LC-MS商品化及大规模普及使用要晚近10年。这是由于LC-MS的接口比GC-MS要复杂的多。现将不同仪器的工作状态列于表1中。表1 不同仪器的工作状态仪器名称分析物状态工作状态GC气体正压(0~100 psi)LC液体正压(~1000 psi)MS气体真空(10-4~10-11 torr)  由表1可以看出,GC和LC都是在正压状态下工作,而MS则是在真空状态下工作,为了完成二者的联用,必须将正压降为负压。因而需要一个装置进行过渡,这个装置通常称为接口。从表1中还看到,GC和MS分析物的状态均为气体,二者的相连显然更容易些,而且GC-MS的流动相是氦气,分子量小(m/z 4),惰性气体稳定性好,现在GC通常采用0.25mm内径的毛细管柱,流量一般为1mL/min,现代质谱用的分子涡轮泵(特别是双分子涡轮泵配置)抽这点气不成问题,能够很好的保持MS的真空度,不会对离子化和检测产生影响。 LC的液体状态流动相与分析气体状态化合物的MS联用,难度要大的多。将液体汽化,其汽化后的体积约为原体积的500倍,排除如此大量的物质不仅要求真空泵的抽率足够大(这点还比较容易做到),而且在尽可能排除流动相物质时,还要尽可能减少被测物的丢失。所以,对接口的要求就非常高。在几十年的研制过程中,推出了多种形式的接口,但检测灵敏度均不太理想。经过几代质谱人努力,推出了常压电离源接口(API),比较好的解决了流动相与被测物的分离,大大提高了离子化效率,提高了信/噪比(S/N)。从而加速了LC-MS商品化的进程。仪器性能的不断提高满足了食品中残留兽药分析的需要,使之成为食品检测实验室必备的检测仪器。现在的商品化仪器基本都是配置API电离源,包括电喷雾电离源(ESI)和大气压化学电离源(APCI)。图2是ESI电离的原理图,图3是APCI电离的原理图。详细的原理解释可参考相关文章。http://www.antpedia.com/attachments/2011/04/19_201104111625051.jpg图2 ESI工作原理,①液滴带电—②溶剂蒸发液滴表面电荷密度增加—③离子溅射成为带电离子进入MS分析器http://www.antpedia.com/attachments/2011/04/19_201104111626321.jpg图3 APCI工作原理,①溶剂通过加热区蒸发成为液滴—②液滴通过放电针使离子带电—③带电离子进入MS分析器  现在仪器设计的ESI和APCI更换略有不同,但都非常方便。如AB SCIEX公司的ESI与APCI只是更换一下喷针即可,见图4。http://www.antpedia.com/attachments/2011/04/19_201104111656011.jpg图4 AB Sciex公司设计的离子源的ESI和APCI喷针,上方较长的为ESI喷针,下方较短的为APCI喷针  从图1可以看到,ESI主要用于极性、大分子有机物分析。蛋白质分析用纳升电喷雾电离源(N- ESI)。APCI主要用于弱极性有机化合物的分析。此外,还有光电离源(APPI),主要用于非极性有机化合物的分析,如多环芳烃等。分析测试百科网m6elkf wh P(lasv购买仪器前应考虑的几个因素  前面已经提到,由于LC-MS的MS部分为二级MS,不同类型MS的组合组成了多种类型MS,各种类型的MS有其各自特点,各厂家的仪器也都各有特点,购买前一定要明确任务,做好调研工作,当然还要考虑经费情况。残留分析实验室应综合考虑仪器的性能以及仪器公司的技术支持:  1. 灵敏度高 特别要注意在检测实际样品时有较高的灵敏度,不要一味地追求指标灵敏度,LC-MS的基质效应影响较GC-MS的大,所以仅用标准品还不能真正的衡量出一台仪器的性能,有时标准品的与实际样品的灵敏度能差两个数量级。有条件可以用1、2个实际样品到不同公司的仪器实测一下,这样对比得到的结果更能说明仪器真实灵敏度。  2. 质量稳定性好 通常我们是利用质谱检测目标化合物的特征离子,因此,这些被检测的特

  • 【转帖】食品检测实验室液相色谱-质谱仪的选型

    【转帖】食品检测实验室液相色谱-质谱仪的选型

    前年根据目前食品实验室分析工作的需求和网友的建议,写了一篇博客“食品检测实验室气相色谱-质谱仪的选型”。本文将根据笔者这些年来使用液相色谱-质谱联用仪(LC-MS)经验和文献、用户、公司等介绍,对不同液相色谱-串联质谱仪设备的特性与配置再做一些介绍。  食品检测实验室主要检测任务是对有害残留物进行分析,所以,对仪器首先要求有较高的灵敏度,以满足法律法规限量要求。液相色谱-四极质谱(单四极)检测灵敏度基本满足不了残留兽药的限量要求。当然,对于一些限量值较高的项目还是能用的。因此,本文不对单四极质谱仪做描述,主要介绍串接质谱仪。与LC联用的主要MS类型有:四极质谱(Q-MS)、离子阱质谱(IT-MS)、飞行时间质谱(TOF-MS)、傅立叶变换质谱(FT-MS)。不同类型的MS串接起来,组合成多种丰富的形式,适用于各种不同目的的分析。简 介  近年来随着各个领域对LC-MS技术的需求,特别是生物技术(蛋白质分析)、制药技术(药物代谢分析)等,促进了LC-MS技术有了突飞猛进的发展,LC与各种类型质谱(包括多种类型的组合质谱)的联用,使LC-MS的联用形式较之气相色谱-质谱(GC-MS)的更丰富,应用的领域也更广泛。图1是现在讲到LC-MS常常要提到的,它说明大气压电离源,即:电喷雾电离源(ESI)+大气压化学电离源(APCI)的应用覆盖了绝大部分有机物分析领域。http://ng1.17img.cn/bbsfiles/images/2011/04/201104112329_288300_1641058_3.jpg图1 不同离子化方式应用于有机化合物分析的范围,从非极性到极性,从小分子到大分子与GC-MS相比,LC-MS商品化及大规模普及使用要晚近10年。这是由于LC-MS的接口比GC-MS要复杂的多。现将不同仪器的工作状态列于表1中。表1 不同仪器的工作状态http://ng1.17img.cn/bbsfiles/images/2011/04/201104112330_288301_1641058_3.jpg 由表1可以看出,GC和LC都是在正压状态下工作,而MS则是在真空状态下工作,为了完成二者的联用,必须将正压降为负压。因而需要一个装置进行过渡,这个装置通常称为接口。从表1中还看到,GC和MS分析物的状态均为气体,二者的相连显然更容易些,而且GC-MS的流动相是氦气,分子量小(m/z 4),惰性气体稳定性好,现在GC通常采用0.25mm内径的毛细管柱,流量一般为1mL/min,现代质谱用的分子涡轮泵(特别是双分子涡轮泵配置)抽这点气不成问题,能够很好的保持MS的真空度,不会对离子化和检测产生影响。LC的液体状态流动相与分析气体状态化合物的MS联用,难度要大的多。将液体汽化,其汽化后的体积约为原体积的500倍,排除如此大量的物质不仅要求真空泵的抽率足够大(这点还比较容易做到),而且在尽可能排除流动相物质时,还要尽可能减少被测物的丢失。所以,对接口的要求就非常高。在几十年的研制过程中,推出了多种形式的接口,但检测灵敏度均不太理想。经过几代质谱人努力,推出了常压电离源接口(API),比较好的解决了流动相与被测物的分离,大大提高了离子化效率,提高了信/噪比(S/N)。从而加速了LC-MS商品化的进程。仪器性能的不断提高满足了食品中残留兽药分析的需要,使之成为食品检测实验室必备的检测仪器。现在的商品化仪器基本都是配置API电离源,包括电喷雾电离源(ESI)和大气压化学电离源(APCI)。图2是ESI电离的原理图,图3是APCI电离的原理图。详细的原理解释可参考相关文章。http://ng1.17img.cn/bbsfiles/images/2011/04/201104112332_288302_1641058_3.jpg图2 ESI工作原理,①液滴带电—②溶剂蒸发液滴表面电荷密度增加—③离子溅射成为带电离子进入MS分析器http://ng1.17img.cn/bbsfiles/images/2011/04/201104112332_288303_1641058_3.jpg图3 APCI工作原理,①溶剂通过加热区蒸发成为液滴—②液滴通过放电针使离子带电—③带电离子进入MS分析器  现在仪器设计的ESI和APCI更换略有不同,但都非常方便。如AB SCIEX公司的ESI与APCI只是更换一下喷针即可,见图4。http://ng1.17img.cn/bbsfiles/images/2011/04/201104112333_288304_1641058_3.jpg图4 AB Sciex公司设计的离子源的ESI和APCI喷针,上方较长的为ESI喷针,下方较短的为APCI喷针  从图1可以看到,ESI主要用于极性、大分子有机物分析。蛋白质分析用纳升电喷雾电离源(N- ESI)。APCI主要用于弱极性有机化合物的分析。此外,还有光电离源(APPI),主要用于非极性有机化合物的分析,如多环芳烃等。

  • 二次离子质谱仪原理简介

    二次离子质谱仪原理简介二次离子质谱仪(Secondary Ion Mass Spectrometry, SIMS)又称离子探针(Ion Microprobe),是一种利用高能离子束轰击样品产生二次离子幵迚行质谱测定的仪器,可 以对固体或薄膜样品迚行高精度的微区原位元素和同位素分析。由于地学样品的复杂性和对 精度的苛刻要求,在本领域内一般使用定量精度最高的大型磁式离子探针。该类型的商业化 仪器目前主要有法国Cameca 公司生产的 IMS1270-1300 系列和澳大利亚ASI 公司的 SHRIMP 系列。最近十年来,两家公司相继升级各自产品,在灵敏度、分辨率及分析精度 等方面指标取得了较大的提升,元素检出限达到ppm-ppb 级,空间分辨率最高可达亚微 米级,深度分辨率可达纳米级。目前,大型离子探针可分析元素周期表中除稀有气体外的几 乎全部元素及其同位素,涉及的研究领域包括地球早期历叱不古老地壳演化、造山带构造演 化、岩石圀演化不地球深部动力学、天体化学不比较行星学、全球变化不环境、超大型矿床 形成机制等。因而国内各大研究机构纷纷引迚大型离子探针(北京离子探针中心的SHRIMP II SHRIMPIIe-MC、中科院地质不地球物理研究所的 Cameca IMS-1280、Cameca IMS-1280HR 和NanoSIMS 50L、中科院广州地球化学研究所的 Cameca IMS-1280HR、 中核集团核工业北京地质研究院的 IMS-1280HR),大大提高了国内微区分析的能力。 本实验室配备了Cameca 公司生产的IMS1280 离子探针和其升级型号 IMS1280HR。 两台仪器的基本原理及设计相同,升级型号IMS1280HR 主要在磁场设计上有所改迚,具 有更高的质量分辨率和传输效率。该型仪器从功能上可分为四部分,如图一所示:一次离子 产生及聚焦光路(黄色部分)、二次离子产生及传输光路(蓝色部分)、双聚焦质谱仪(粉 色部分)和信号接收系统(紫色部分)。Cameca 离子探针可以类比为一台显微镜,离子源 相当于显微镜的光源,传输光路相当于物镜,质谱仪相当于滤镜,而接收器相当于目镜或照 相机。 图一, IMS1280/HR 型离子探针原理示意图 一次离子部分包含了两个离子源分别是可以产生O 离子的双等离子体离子源(Duo Plastron Source)和产生Cs 离子的热电离铯离子源(CsIon Source),一 般分别对应地学领域分析中的正电性元素(如 Pb、U、Th、REE、Li、Ca 等)和负电性元 等)。两个离子源由软件控制选择,所产生的离子通过高压(一般为数千伏特)加速后迚入一次离子质量过滤器(PBMF)迚行质量筛选,常用的一次离子有 16 16O2 133Cs 离子。后续的一次离子光路通过调整离子透镜Lens2,Lens3 和Lens4 电压可以获得两种照明方式:均匀照明(科勒照明或平行光照明)和高斯照明。一次离子光路原理如图二所示。 均匀照明模式使用离子透镜Lens2 将一次离子束调整为“平行光”,幵穿过位于其后 的一次束光阑(PBMF_Aperture),再通过离子透镜Lens4 将该光阑成像到样品表面。在 该模式下,离子束的直径由PBMF_Aperture 的大小决定,由于该光阑受到离子束的剥蚀 而逐渐变大,因此实际上这种模式的离子束直径是随时间丌断变化的,对空间分辨率丌太敏 感的应用可以使用该模式。实验室的常规定年就使用了这种照明模式,由于其离子束密度均 匀,在样品表面留下的剥蚀坑为椭囿形的平底坑。 图二 一次离子光路原理示意图 在高真空条件下,带有数千电子伏特(eV)的高能带电离子轰击固体样品的表面时,部分 一次离子注入到固体内部并不其路径上的样品原子发生弹性或非弹性碰撞。通过碰撞而获得能量 的内部原子又不其周围的原子再次进行碰撞并产生能量传导,这个过程称为级联碰撞。最终,部 分样品内部电子、原子或分子获得了足够的能量逃逸出样品表面,产生了溅射现象。在溅射出的 各种微粒中,有小部分发生了电离,产生了二次离子。这些二次离子被样品表面的+10KV到 -10KV的高压加速,通过离子透镜聚焦后进入双聚焦质谱仪进行质量筛选。溅射及加速示意图 请见图三。 高斯照明模式在PBMF之后使用了三个离子透镜:Lens2、Lens3和Lens4。其中Lens2 不Lens3将离子束汇聚,L4将汇聚后的离子束聚焦到样品表面,形成束流密度中心高周围低 的高斯分布。这种模式下,在样品表面产生的剥蚀坑是接近囿形的V型坑。这种模式下离子 束的直径主要受到L2不L3透镜电压的影响,而对光阑的剥蚀效应很小,因此可以长时间保 持离子束直径丌变。实验室常规的稳定同位素分析以及空间分辨高于10微米的小束斑定年 分析都采用了高斯照明模式。 丌同元素的二次离子产率相差巨大,而且每种元素在丌同基体中的产率也丌尽相同,甚 至同一元素的同位素之间在丌同的基体中也表现出丌固定的产率(基体效应)。在实际分析 时实测值不理论值会产生较大差异。因此,要使用离子探针进行高精度的元素、同位素分析, 必须使用不被测样品成分和结构一致的标准物质进行校正。而标准样品的稀缺性也成为制约 和影响离子探针分析的瓶颈。目前,本实验室目前已开发了锆石氧同位素标准物质 (Penglai)、方解石碳-氧同位素标准物质(OKA)、锆石Li同位素标准物质(M257)、锆 石年龄标准物质(Qinghu)等。 图三,离子探针溅射示意图 二次离子产生后迚入离子传输光路,该部分相当于显微镜的物镜,通过调节该“物镜” 的放大倍数,配合后续的光阑及狭缝的调整,可在质量分辨率确定的条件下对仪器的传输效 率迚行优化,保证分析精度。入口狭缝是传输光路和质谱仪的分界面。离子束通过传输光路 聚焦后,在入口狭缝处汇聚。调节入口狭缝的宽度可控制迚入质谱仪的离子束宽度,从而控 制质谱仪的质量分辨率。质量分辨率要求越高,入口狭缝所对应的宽度就越窄,二次离子信 号的强度损失也就越多。因此,在满足分析要求的前提下,尽量使用较低的质量分辨率。离 子探针分析中,样品表面溅射出的二次离子组成非常复杂,包括了单原子离子、分子离子、 多电荷离子、复杂聚合物离子等,对质量分辨率要求极高。为了兼顾离子探针的质量分辨率 和传输效率,必须采用大磁场半径的设计。该型离子探针的最低质量分辨率为~900,而最 高可用质量分辨率大于20000. 磁式质谱仪主要利用运动离子在磁场中的受力偏转实现对特定质量电荷比值的离子的 选择。磁式离子探针一般使用双聚焦磁式质谱,可以实现速度聚焦和方向聚焦,在二次离子 能量分布范围较大的情况下实现高质量分辨率和高传输效率。双聚焦质谱仪由静电分析器和 扇形磁场质量分析器组成,当二者的能量色散在焦平面上相互抵消时即实现了双聚焦。 IMS1280/HR 离子探针的静电场及磁场半径均为585mm,在质量分辨率5000 的条件下, 其传输效率90%。 离子经过质谱仪的质量色散后迚入离子接收系统。该型仪器的接收系统分为三个部分: 具有5 个接收位置,共7 个接收器的多接收系统;具有三个接收器的单接收系统和微通道 板成像系统。多接收系统能够同时接收的最大的质量差异为17%,最小质量差异为~0.4%, 是典型的同位素质谱配置。5 个接收位置可在各自轨道上沿聚焦面移动,根据被测同位素的 信号强度可选择安装法拉第杯或电子倍增器。最外侧的两个接收位置还分别额外加装了一个 法拉第杯,增加配置的灵活性,如图四所示。多接收器分析可以提高效率,并能抵消一部分 因为一次离子或仪器其他参数波动引起的分析误差,是提高分析精度的最直接手段。实验室 的高精度稳定同位素分析(氧同位素、碳同位素及硫同位素等)都是用多接收器的。目前本 实验室两台离子探针采用了丌同的接收杯配置,其中一台偏重于稳定同位素分析,在多接收 器中安装了多个法拉第杯,而另一台则偏重微量元素尤其是Pb 同位素分析,主要配置为电 子倍增器。单接收系统具有一个工作在离子计数模式下的电子倍增器和高低两个丌同量程的 法拉第杯,组成了具有10 动态接收范围的大量程接收系统。对于质量范围超过17%的分析,一般使用单接收系统,例如传统的U-Pb 定年分析,其需要测量的质量数从196-270, 使用的是单接收系统中的电子倍增器收集所有信号。 使用微通道板成像时,仪器工作在离子显微镜模式下,成像的分辨率取决于二次离子光 路的设置,而不一次离子束的直径无关。由于微通道板性能的制约,这种模式一般只用于辅 助的定性判断和仪器参数的调整,而丌用于定量分析。离子探针还有一种二次离子扫描成像 模式。类似于扫描电子显微镜的工作原理,通过同步一次离子的扫描位置和电子倍增器的接 收时间,可以将电子倍增器测量到的信号强度不其在样品上的位置对应起来,从而重构出经 过质量筛选的离子分布图像。该图像的分辨率取决于一次离子束的直径,可用于元素、同位 素二维分布分析

  • 7种质谱电离方式和离子源

    [color=#ff0000][b]1. 电轰击电离(EI)[/b][/color]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为 10eV 左右,50~100eV 时,大多数分子电离界面最大。70eV 能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定。电子轰击电离是应用最普遍、发展最成熟的电离方法。EI 的优点在于易于实现,质谱图再现好,而且含有较多的碎片离子信息,有利于未知物结构的推测。其缺点为当样品分子稳定不高时,分子离子峰的强度低,甚至没有分子离子峰。当样品不能汽化或遇热分解时,则更没有分子离子峰。电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。[color=#ff0000][b]2. 化学电离(CI)[/b][/color]原理是在离子室中通入反应气(压力上升到约 1Torr),用 200~400eV 的电子轰击使反应气分子电离,然后样品分子在高压下与反应气离子发生离子-分子反应生成样品离子。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合 EI/CI 离子源。试剂气一般采用甲烷气 ,也有 N2,CO,Ar 或混合气等。试剂气的分压不同会使反应离子的强度发生变化 ,一般源压为 0.5~1.0 Torr。反应气通常是甲烷、胺、异丁烷等气体。[color=#ff0000][b]3. 大气压化学电离(APCI)[/b][/color]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为63Ni 辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达 9L/S。需要采取减少源壁吸附和溶剂分子干扰。大气压电离是由 ESI 衍生出来的方法。样品溶液仍由具有雾化气套管的毛细管端流出,被氮气流雾化,通过加热管时被汽化 。在加热管端进行电晕放电使溶剂分子被电离形成反应离子,这些反应离子与样品第 179 页分子发生离子-分子反应生成样品的准分子离子。与经典 CI 不同的,是 APCI无须加热样品使之汽化,因而应用范围更广。由于要求样品分子汽化,因而 APCI主要用于弱极的小分子化合物的分析。[color=#ff0000][b]4. 二次离子质谱(FAB/LSIMS)[/b][/color]分析化学论坛在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成 MH 离子,其中有些反应会形成干扰。[color=#ff0000][b]5. 等离子解析质谱(PDMS)[/b][/color]分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流采用放射同位素(如 Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于 FAB/LSIMS,可分析多肽和蛋白质。[color=#ff0000][b]6. 激光解吸/电离(MALDI)[/b][/color]波长为 1250~775 的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为 10000/1。根据分析目的不同使用不同的基质和波长。[color=#ff0000][b]7. 电喷雾电离(ESI)[/b][/color]电喷雾电离采用强静电场(3~5KV),形成高度荷电雾状小液滴,经过反复、的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。ESI 电离是很软的电离方法,通常没有碎片离子峰,只有整体分子的峰。有利于生物大分子的测定。

  • 实验室分析仪器--质谱仪电子轰击型离子源及原理

    电子轰击离子源(electron impact ion source)是利用具有一定能量的电子束使气态的样品分子或原子电离的离子源(简称EI源)。具有结构简单、电离效率高、通用性强、性能稳定、操作方便等特点,可用于气体、挥发性化合物和金属蒸气等样品的电离,是质谱仪器中广泛采用的电离源之一。在质谱分析领域,为了适应不同样品电离的需求质谱仪器会配置不同功能的离子源。但电子轰击源作为一个基本装置,仍被广泛应用在气体质谱仪、同位素质谱仪和有机质谱仪上。应该特别指出,电子轰击源是最早用于有机质谱分析的一种离子源,可提供有机化合物丰富的结构信息,具有较好的重复性,是有机化合物结构分析的常规工具。电子轰击离子源一般由灯丝(或称阴极)、电子收集极、狭缝、永久磁铁。、聚焦电极等组成(见图1)[img=49049846c413a18bd54bf33a180973f.jpg]https://i3.antpedia.com/attachments/att/image/20220126/1643178178685018.jpg[/img]图1 电子轰击型离子源示意图灯丝通常用钨丝或铼丝制成。在高真空条件下,通过控制灯丝电流使灯丝温度升至2000℃左右发射电子。一定能量的电子在电离室与气态的样品分子或原子相互作用使其部分发生电离。永久磁铁产生的磁场使电子在电离室内做螺旋运动,可增加电子与气态分子或原子之间相互作用的概率,从而提高电离效率。电离室形成的离子在推斥极、抽出极、加速电压(accelerating voltage)、离子聚焦透镜等作用下,以一定速度和形状进入质量分析器。在电子轰击源中,被测物质的分子(或原子)是失去价电子生成正离子:M+eM[sup]+[/sup]+2e或是捕获电子生成负离子:M+e[sup]-[/sup]→m一般情况下,生成的正离子是负离子的10[sup]3[/sup]倍。如果不特别指出,常规质谱只研究正离子。轰击电子的能量一般为70eV,但较高的电子能量可使分子离子上的剩余能量大于分子中某些键的键能,因而使分子离子发生裂解。为了控制碎片离子的数量,增加分子离子峰的强度,可使用较低的电离电压。一般仪器的电离电压在5~100V范围内可调。电子轰击源的一个主要缺点是固、液态样品必须气化进入离子源,因此不适合于难挥发的样品和热稳定性差的样品

  • 【质谱比较】气质与液质的离子源区别

    离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。在很多情况下进样和离子化同时进行。本期主题:气质与液质的离子源区别讨论内容:1、气质与液质常用的离子源2、气质与液质的离子源在离子形成上主要区别在哪?筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • 实验室分析仪器--质谱仪放电型离子源及原理

    利用真空火花放电在很小的体积内积聚起的能量可使体积内的物质骤然完全蒸发和电离,从而获得具有表征性的离子流信息。 Dempsteri最早把这一现象应用到质谱仪器上实现了当时物理、化学家们用电子轰击型电离源无法解决的铂、钯、金、铱电离的遗留问题完成了当时已知元素同位素的全部测量。这一具有历史意义的成果对后来物理、化学、地质、核科学等学科的发展,起着基础性的促进作用。下面介绍两种典型的放电型离子源。[b]1、高频火花源[/b]高频火花离子源(high frequency spark ion source)是广泛使用的一种真空放电型离子源。由于其对所有的元素具有大致相同的电离效率,因此应用范围较广,可用来对多种形态的导体、半导体和绝缘体材料进行定量分析,是早期质谱仪测定高纯材料中微量杂质的重要方法之一。图6是高频火花放电电离示意。被分析物质以适当的方式制成样品电极,装配时和参比电极相距约0.1mm的间隙。利用加载在两个电极间的高频高压电场使其发生火花击穿来产生一定数量的正离子。[img=c20a2842770bee39eaa9af208c6f2d5.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178279378020.jpg[/img]图6 高频火花放电电离示意图使用高频火花源的一个关键是制作电极,对不同形态、不同导电性能的样品有不同的电极制作方法。如果样品是块状导体,可以直接裁制成约1mm直径、10mm长的柱状(或条状)电极;如果是粉末样品,可以冲压成上述形状;液体样品要加充填物。对于非导体材料,则需要采用适当的方法,使电极有较好的导电性能。一种方法是在非导体样品粉末中掺入良导体材料,如石墨、金、银、铟粉,然后冲压成电极;另一种方法是在非导体表面喷镀导电层,或在样品下面衬进导体基片。火花源的缺点:操作技术复杂,造价昂贵,且离子能量发散较大。这些缺陷限制了它的进一步发展和应用[b]2、辉光放电源[/b]辉光放电源是另一种放电电离技术,辉光放电技术先于真空火花放电电离,但用于质谱仪器上却在火花放电电离技术之后。事实上,是由于当时火花源的成就使人们离开辉光放电,而在相隔50多年以后,又是火花源在使用过程中出现的缺陷,促使质谱工作者又重新思考辉光放电技术。正如人们所知,气体放电过程出现的辉光是等离子体的一种形式,等离子体是由几乎等浓度的正、负电荷加上大量中性粒子构成的混合体。出现辉光放电最简单的形式是在安放在低压气体中的阴、阳电极间施加一个电场,使电场中的部分载气(如氩气)电离,电离产生的“阴极射线”或“阳极射线”在残留的气体中朝着带相反极性的方向加速,轰击阳极或阴极,使位于极板上的样品物质气化,部分气化物质的原子在其后的放电过程中电离

  • 质谱仪是怎么分类的

    质谱仪的分类方法很多,下面列举一些不同方法的分类:  1、常用的是按照质量分析器的工作原理可分为:磁偏转(单/双)聚焦质谱、四极杆质谱、离子阱质谱(包括线性离子阱和轨道离子阱)、飞行时间质谱和傅里叶变换离子回旋共振质谱等五大类;  除此之外,还有下面很多种分类方法:  2、按质量分析器的工作模式可分为:静态质谱仪(磁偏转(单/双)聚焦质谱)和动态质谱仪(四极杆质谱、离子阱质谱、飞行时间质谱和傅里叶变换离子回旋共振质谱)两大类;  3、按分析物质的化学成份性质可分为:无机质谱仪(元素分析)和有机质谱仪(有机分子分析及生物大分子分析);也有人把生物质谱单独分出来;  4、按离子源的电离方式可分为:电子轰击电离质谱仪、化学电离质谱仪、场/解析电离质谱仪、快原子轰击电离质谱仪、辉光/电弧/激光电离质谱仪、基质辅助激光解吸电离质谱仪、电喷雾电离质谱仪等。  5、按分析的应用领域可分为:实验室分析质谱仪、质谱仪、工业质谱仪、医疗质谱等;  6、按分辨率高低可分为:低分辨质谱仪、中分辨质谱仪和高分辨质谱仪。  7、按与其它分析仪器联用方式可分为:[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url])、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱联用仪([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url])、光谱-质谱联用仪、毛细管电泳质谱联用仪等;  8、按多个质量分析器组合模式可分为:单级质谱仪和多级(串级)质谱仪;串级质谱仪又分时间串级(离子阱)质谱和空间串级质谱(三重四极杆质谱和四极杆-飞行时间质谱仪);  9、按仪器外观可分为:台式质谱仪和落地式质谱仪;小型质谱仪和大型质谱仪

  • 质谱仪小知识——离子源

    http://simg.instrument.com.cn/bbs/images/brow/em09502.gif以前还真没接触过质谱,只是因为最近公司进了各种各样的质谱,看看各种牌子的,慢慢的就知道了什么ab的,bruke,micromass等等各家的质谱,也知道版友们说的QQQ,tof,traq等等是神马东西。呵呵,当然,在大虾门面前都是小菜了。 学习总是个循序渐进的过程,因为公司本身的业务要求,比较注重维修维护方面,所以先从仪器的部件下手,先了解一下各式各样的质谱的离子源啦,下面是一些离子源的小资料,供像我们这样的小菜了解了解。 液质联用和气质联用气质联用仪(GC-MS):适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。 GC-MS一般采用EI和CI离子源。EI:电子电离源,最常用的气相离子源,有标准谱库CI:化学电离源,可获得准分子离子。PCI,NCI液质联用(LC-MS):不挥发性化合物分析测定,极性化合物的分析测定,热不稳定化合物的分析测定,大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;液质的离子源种类比较多,这里只列主要的几个。大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)ESI 为电喷雾,即样品先带电再喷雾,带电液滴在去溶剂化过程中形成样品离子,从而被检测,对于极性大的样品效果好一些;APCI 为大气压力化学电离源,样品先形成雾,然后电晕放电针对其放电,在高压电弧中,样品被电离,然后去溶剂化形成离子,最后检测,对极性小的样品效果较好。APPI:大气压光电离源,适用于弱极性的化合物,如多环芳烃等ESI 的软电离程度较APCI 的还小,但其应用范围较APCI 的大,只有少部分ESI 做不出,可以用APCI 辅助解决问题,但是APCI还是不能解决所有ESI 解决不了的问题,一般用ESI 和 APPI 搭配使用比 ESI 和APCI 的应用范围更广一些。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da以上的蛋白质。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,

  • 【资料】质谱仪结构与工作原理

    质谱分析法主要是通过对样品的离子的质荷比的分析而实现对样品进行定性和定量的一种方法。因此,质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同质荷比的离子分开,经检测器检测之后可以得到样品的质谱图,由于有机样品,无机样品和同位素样品等具有不同形态、性质和不同的分析要求,所以,所用的电离装置、质量分析装置和检测装置有所不同。但是,不管是哪种类型的质谱仪,其基本组成是相同的。都包括离子源、质量分析器、检测器和真空系统。本节主要介绍有机质谱仪的基本结构和工作原理。 9.2.1.1 离子源(Ion source)   离子源的作用是将欲分析样品电离,得到带有样品信息的离子。质谱仪的离子源种类很多,现将主要的离子源介绍如下。 电子电离源(Electron Ionization EI) 电子电离源又称EI源,是应用最为广泛的离子源,它主要用于挥发性样品的电离。图9.1是电子电离源的原理图,由GC或直接进样杆进入的样品,以气体形式进入离子源,由灯丝F发出的电子与样品分子发生碰撞使样品分子电离。一般情况下,灯丝F与接收极T之间的电压为70伏,所有的标准质谱图都是在70ev下做出的。在70ev电子碰撞作用下,有机物分子可能被打掉一个电子形成分子离子,也可能会发生化学键的断裂形成碎片离子。由分子离子可以确定化合物分子量,由碎片离子可以得到化合物的结构。对于一些不稳定的化合物,在70ev的电子轰击下很难得到分子离子。为了得到分子量,可以采用1020ev的电子能量,不过此时仪器灵敏度将大大降低,需要加大样品的进样量。而且,得到的质谱图不再是标准质谱图。   离子源中进行的电离过程是很复杂的过程,有专门的理论对这些过程进行解释和描述。在电子轰击下,样品分子可能有四种不同途径形成离子: 样品分子被打掉一个电子形成分子离子。 分子离子进一步发生化学键断裂形成碎片离子。 分子离子发生结构重排形成重排离子。 通过分子离子反应生成加合离子。   此外,还有同位素离子。这样,一个样品分子可以产生很多带有结构信息的离子,对这些离子进行质量分析和检测,可以得到具有样品信息的质谱图。   电子电离源主要适用于易挥发有机样品的电离,GC-MS联用仪中都有这种离子源。其优点是工作稳定可靠,结构信息丰富,有标准质谱图可以检索。缺点是只适用于易汽化的有机物样品分析,并且,对有些化合物得不到分子离子。 化学电离源(Chemical Ionization , EI )。   有些化合物稳定性差,用EI方式不易得到分子离子,因而也就得不到分子量。为了得到分子量可以采用CI电离方式。CI和EI在结构上没有多大差别。或者说主体部件是共用的。其主要差别是CI源工作过程中要引进一种反应气体。反应气体可以是甲烷、异丁烷、氨等。反应气的量比样品气要大得多。灯丝发出的电子首先将反应气电离,然后反应气离子与样品分子进行离子-分子反应,并使样品气电离。现以甲烷作为反应气,说明化学电离的过程。在电子轰击下,甲烷首先被电离: CH4+e CH4+ + CH3+ + CH2+ + CH++ C+ + H+ 甲烷离子与分子进行反应,生成加合离子: CH4+ + CH4 CH5+ + CH3 CH3 + + CH4 C2H5+ + H2 加合离子与样品分子反应: CH5+ + XH XH2+ + CH4 C2H5+ + XH X+ +C2H6   生成的XH2+ 和 X+ 比样品分子XH多一个H或少一个H,可表示为(M1),称为准分子离子。事实上,以甲烷作为反应气,除(M+1)+之外,还可能出现(M+17)+,(M+29)+ 等离子,同时还出现大量的碎片离子。化学电离源是一种软电离方式,有些用EI方式得不到分子离子的样品,改用CI后可以得到准分子离子,因而可以求得分子量。对于含有很强的吸电子基团的化合物,检测负离子的灵敏度远高于正离子的灵敏度,因此,CI源一般都有正CI和负CI,可以根据样品情况进行选择。由于CI得到的质谱不是标准质谱,所以不能进行库检索。   EI和CI源主要用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪,适用于易汽化的有机物样品分析。快原子轰击源(Fast Atomic bombardment, FAB)  是另一种常用的离子源,它主要用于极性强、分子量大的样品分析。其工作原理如图9.2所示:   氩气在电离室依靠放电产生氩离子,高能氩离子经电荷交换得到高能氩原子流,氩原子打在样品上产生样品离子。样品置于涂有底物(如甘油)的靶上。靶材为铜,原子氩打在样品上使其电离后进入真空,并在电场作用下进入分析器。电离过程中不必加热气化,因此适合于分析大分子量、难气化、热稳定性差的样品。例如肽类、低聚糖、天然抗生素、有机金属络合物等。FAB源得到的质谱不仅有较强的准分子离子峰,而且有较丰富的结构信息。但是,它与EI源得到的质谱图很不相同。其一是它的分子量信息不是分子离子峰M,而往往是(M+H)+或(M+Na)+等准分子离子峰;其二是碎片峰比EI谱要少。  FAB源主要用于磁式双聚焦质谱仪。 4.电喷雾源(Electron spray Ionization,ESI)   ESI是近年来出现的一种新的电离方式。它主要应用于液相色谱-质谱联用仪。它既作为液相色谱和质谱仪之间的接口装置,同时又是电离装置。它的主要部件是一个多层套管组成的电喷雾喷咀。最内层是液相色谱流出物,外层是喷射气,喷射气常采用大流量的氮气,其作用是使喷出的液体容易分散成微滴。另外,在喷嘴的斜前方还有一个补助气喷咀,补助气的作用是使微滴的溶剂快速蒸发。在微滴蒸发过程中表面电荷密度逐渐增大,当增大到某个临界值时,离子就可以从表面蒸发出来。离子产生后,借助于喷咀与锥孔之间的电压,穿过取样孔进入分析器(见图9.3)。演示动画(请点击画面)   加到喷嘴上的电压可以是正,也可以是负。通过调节极性,可以得到正或负离子的质谱。其中值得一提的是电喷雾喷嘴的角度,如果喷嘴正对取样孔,则取样孔易堵塞。因此,有的电喷雾喷嘴设计成喷射方向与取样孔不在一条线上,而错开一定角度。这样溶剂雾滴不会直接喷到取样孔上,使取样孔比较干净,不易堵塞。产生的离子靠电场的作用引入取样孔,进入分析器。   电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da以上的蛋白质。图9.4是由电喷雾电离源得到的肌红蛋白的质谱图: 5.大气压化学电离源(Atmospheric pressure chemical Ionization, APCI)   它的结构与电喷雾源大致相同,不同之处在于APCI喷咀的下游放置一个针状放电电极,通过放电电极的高压放电,使空气中某些中性分子电离,产生H3O+,N2+,O2+ 和O+ 等离子,溶剂分子也会被电离,这些离子与分析物分子进行离子-分子反应,使分析物分子离子化,这些反应过程包括由质子转移和电荷交换产生正离子,质子脱离和电子捕获产生负离子等。图9.5是大气压化学电离源的示意图:   大气压化学电离源主要用来分析中等极性的化合物。有些分析物由于结构和极性方面的原因,用ESI不能产生足够强的离子,可以采用APCI方式增加离子产率,可以认为APCI是ESI的补充。APCI主要产生的是单电荷离子,所以分析的化合物分子量一般小于1000Da。用这种电离源得到的质谱很少有碎片离子,主要是准分子离子。  以上两种电离源主要用于液相色谱-质谱联用仪。

  • 四极杆质谱仪种类

    [font=&][size=18px]四极杆质谱仪种类有多种。[/size][/font][font=&][size=18px]1、按分析目的可分:实验室四极杆质谱仪和工业四极杆质谱仪。[/size][/font][font=&][size=18px]2、按质量分析器的工作状态可分:静态四极杆质谱仪和动态四极杆质谱仪。[/size][/font][font=&][size=18px]3、按进样方式可分:直接探针进样四极杆质谱仪和色谱进样四极杆质谱仪等。[/size][/font][font=&][size=18px]4、按离子化方式可分:电子轰击电离四极杆质谱仪、化学电离四极杆质谱仪、场电离四极杆质谱仪、场解吸电离四极杆质谱仪、快原子轰击电离四极杆质谱仪、基质辅助激光解吸电离四极杆质谱仪、电喷雾电离四极杆质谱仪和大气压化学电离四极杆质谱仪等。[/size][/font][font=&][size=18px]5、按用途可分:生物四极杆质谱仪、制药四极杆质谱仪、化工四极杆质谱仪、食品四极杆质谱仪、抗生素四极杆质谱仪、白酒四极杆质谱仪、乳品四极杆质谱仪、植物油四极杆质谱仪和重金属四极杆质谱仪等[/size][/font]

  • 实验室分析仪器--质谱仪热电离离子源原理

    热电离离子源是分析固体样品的常用离子源之一。其基本工作原理是:把样品涂覆在高熔点的金属带表面装入离子源,在真空状态下通过调节流过金属带的电流强度使样品加热蒸发,部分中性粒子在蒸发过程中电离形成离子。热电离效率依赖于所用金属带的功函数、金属带的表面温度和分析物质的第一电离电位。通常金属带的功函数越大、表面温度越高、分析物质的第一电离电位越低,热电离源的电离效率就越高。因此具有相对较低电离电位的碱金属、碱土金属和稀土元素均适合使用热电离源进行质谱分析。而一些高电离电位元素,如Cu、Ni、Zn、Mo、Cd、Sb、Pb等过渡元素,在改进涂样技术和使用电离增强剂后,也能得到较好的质谱分析结果。[img=6cb803845e78c0c20db3311688659a1.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178311471374.jpg[/img]图7 表面电离源的示意图图7是表面电离源的示意,结构为单带热电离源。当金属带加热到适当的温度,涂在带上的样品就会蒸发电离。单带源适合于碱金属等低电离电位的元素分析。对于电离电位较高的样品为了得到足够高的电离效率,需要给金属带加更高的工作温度。金属带在升温过程中,样品有可能会在达到合适的电离温度之前,因大量蒸发而耗尽。为了解决这一问题,在其基础上又形成了双带和多带热电离源。即在源中设置两种功能的金属带,一种用于涂样,称样品带;另一种用于电离,叫电离带。这两种带的温度可分别加以控制。当电离带调至合适的温度后,样品带的温度只需达到维持蒸发产生足够的束流。这样既能节制蒸发,又能获得较高的电离效率。还有一种舟形的单带,把铼或钨带设计成舟形,舟内放入样品。由于舟内蒸发的样品在逸出前会与炽热的金属表面进行多次碰撞,增加生成离子的机会,因此,舟形单带的电离效率可接近于多带电离源

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制