电路虚拟测试仪

仪器信息网电路虚拟测试仪专题为您提供2024年最新电路虚拟测试仪价格报价、厂家品牌的相关信息, 包括电路虚拟测试仪参数、型号等,不管是国产,还是进口品牌的电路虚拟测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电路虚拟测试仪相关的耗材配件、试剂标物,还有电路虚拟测试仪相关的最新资讯、资料,以及电路虚拟测试仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

电路虚拟测试仪相关的厂商

  • 上海摩尼测试仪器有限公司是实验室、便携式和在线分析检测仪器的专业供应商。我们致力为环境监测、教育科研、水文水利、化工制药以及工业实验室等众多领域长期提供世界著名品牌的分析检测仪器设备、解决方案和技术服务。 公司环境分析部现为美国Teledyne Isco、美国Xylem WTW、美国ITS、美国ASA、美国TraceDetect、德国Merck、荷兰Rhosonics等行业知名品牌的特约代理商和技术服务中心。
    留言咨询
  • FISCHER — 让测量变得简便! 现今,FISCHER 的测量和分析仪器广泛应用于世界各个领域,可满足客户对高精度、高可靠性测量和操作简便的需求。我们通过专业的咨询服务为客户提供最佳的解决方案,即从第一次接触开始,不断沟通,直至达到定制化服务的理念。这些紧密合作与我们的创新驱动力不断结合,为形成新的测量解决方案奠定了坚实的基础。 HELMUT FISCHER集团是一家受德国基金会控股、专业生产和销售涂镀层测厚仪、材料分析仪、微纳米压痕仪(微纳米硬度仪)和材料测试仪的全球性集团公司。集团总部位于德国和瑞士,在德国、美国和英国各建有一个工厂、并设立了一个研究院和多个全球用户应用实验室,在全世界设有近50个分公司。??位于德国总部的基地,用于生产、物流、研发及客户应用??南通菲希尔测试仪器有限公司是HELMUT FISCHER集团在中国大陆地区设立的唯一子公司,全权负责FISCHER产品在中国地区的销售、安装、维修、备品备件及技术咨询等业务。FISCHER生产的涂镀层测厚仪主要分为:X射线涂镀层测厚及材料分析仪、β射线测厚仪、电涡流法测厚仪、电磁感应测厚仪、库仑法(多层镍电位差)测厚仪,除此之外还有包括 微纳米压痕仪(微纳米硬度仪)、电导率测试仪、铁素体含量测试仪、孔隙率测试仪 和 针孔测试仪 等在内的多种测试仪器。 FISCHER 公司生产的各类仪器,广泛应用于航天工业、航空工业、造船工业、港口机械、电镀工业、显像管流水线、电子工业(包括印制电路行业、半导体工业)、汽车工业、石油化工、黄金珠宝、手表、大专院校、科研单位、第三方测试机构等众多行业。 南通菲希尔测试仪器有限公司成立于1997年,位于中国上海,至今已在东莞建立了分公司;在北京、西安、青岛、厦门设立了办事处;并在成都、昆山、苏州、南京、宁波等地建立了售后服务点。FISCHER中国的应用实验室更是在2011年获得了ISO/IEC17025:2005认证。 “让用户满意”是公司的一贯宗旨,FISCHER将以一流的服务来赢得用户的信赖。选择FISCHER仪器,为您产品的超高品质提供保障。 认证在 FISCHER,产品和服务的认证和持续改进至关重要。这也是Helmut Fischer GmbH,Institut für Elektronik und Messtechnik 能够通过 ISO 9001 认证的原因。自 1997 年起,我们的质量管理体系已符合 DIN EN ISO 9001:2008 标准。 获得认证的校准实验室 获得认证的校准实验室2003 年,Helmut Fischer 成为了第一个根据 DIN EN ISO/IEC 17025 标准而获得的“表面尺寸”量值认证的德国公司。因此,公司有资格代表德国认证机构 DAkkS 来检验校准标准片,并为其出具证书供用户使用。校准标准片如可用于:例如,对 X 射线荧光仪器进行校准;从而极大地提高了测量的可靠性。 Germany: DIN EN ISO/IEC 17025 USA: ISO/IEC 17025:2005 & ANSI/NCSL Z540-1-1994 Switzerland: ISO 17025 SCS & STS DIN 成员(德国标准化学会) 自 2016 年 3 月 1 日起 FISCHER 成为 DIN 成员。公司自愿遵守标准化自律守则,提升总体经济竞争力。 应用实验室凭借我们在业内多年的经验优势,助力您解决复杂的测量难题。在遍及欧洲、亚洲和美国的七个应用实验室中,我们的技术专家会为客户在正确选择仪器、开发测量方法及确定合适的测量程序方面提供支持。 凭借我们在业内多年的经验优势,助力您解决复杂的测量难题。 所有 Fischer 集团内部的应用实验室之间都已建立联系,同时也与各高校、机构及企业建立了合作关系。这样稳定的知识交流体系能够确保获取到全球最前沿的专业知识,同时也能够应对特殊咨询。除提供客户定制培训(可以在我们的实验室进行也可以在您的公司进行)外,我们的技术专家也非常愿意协助您对测量结果进行分析。 Helmut Fischer 博物馆企业家 Helmut Fischer博士的专业知识、工作热情、发明家精神以及卓越的执行力是公司成功发展的源动力。他的成功故事从 1953 年在斯图加特创建的技术车间开始。现今,Fischer 作为业务遍及全球的大公司,已成为工业测量技术领域的领导者之一。持续改革与永无止境的创新是其从始至终一直坚守的明确目标。Helmut Fischer 研发的首款测量仪器 位于总部的博物馆展示了公司创始人,同时也是公司长期所有人 Helmut Fischer博士的成功人生。参观者们受邀来感受公司从小工厂成长为国际性解决方案提供商的发展历程,以及了解 Fischer产品从最初创意到最终投入市场的整个过程。Helmut Fischer 博物馆的常客:当地的在校学生 ????????更多详情请访问公司官网:http://www.helmutfischer.com.cn
    留言咨询
  • 400-860-5168转0264
    环球分析测试仪器有限公司(UATIL)成立于1982年,总部设在香港,是国外多家知名的高新科技仪器生产制造商在中国的独家总代理。主要产品电化学仪器:电化学工作站、光电化学测试设备 化学合成仪器:全自动反应系统、反应量热仪、超声波结晶系统、平行合成仪、高温高压釜、流动化学系统 萃取及纯化仪器:超临界萃取仪、快速制备色谱、固相萃取、溶剂蒸发仪、气体纯化系统 生命科学仪器:生物反应器、发酵罐、冷冻干燥机、移液工作站、离心浓缩仪 乳品分析仪器:乳品成分分析仪、体细胞计数器、奶牛生产性能测试仪 材料测试仪器:网格应变测试仪、杯凸试验机 惰性环境仪器:手套箱 微流控仪器:单细胞测序、细胞包裹、微流控芯片、微流泵、液滴微流控系统、3D芯片打印机
    留言咨询

电路虚拟测试仪相关的仪器

  • 单介绍医学仿真实验室是由省内多所医学院校长期坚持在教学与临床一线的专家悉心指导而创建的。现已经建成机能学、诊断学、形态学、解剖学等基于计算机虚拟现实和仿真技术的网络化虚拟实验与教学系统。产品描述 医学机能仿真实验室是由省内多所医学院校长期坚持在教学与临床一线的专家悉心指导而创建的。现已经建成机能学、诊断学、形态学、解剖学等基于计算机虚拟现实和仿真技术的网络化虚拟实验与教学系统。医学仿真实验室分为虚拟实验和虚拟教学两大模块,虚拟实验采用人机交互的方式实施实验,具有过程仿真、虚拟现实、三维动画、智能语言特点;虚拟教学可根据教学需求定制实验,通过系统的动态开放性实施交互教学,内建的题库系统,提供在线自测自评功能,这些都可以充分调动学生的学习兴趣。技术参数:技术参数:1、采用网络化的体系结构(C/S结构),可以直接连接到校园网或Internet网络上;2、具有完整的知识结构,包括:三维实验室浏览、实验基础知识介绍,实验动物介绍,实验设备和实验器械介绍,模拟实验操作过程,模拟实验波形操作等 3、实验基础知识包括生理、药理、病生、机能、信号采集系统,传感器、实验室常用试剂等方面的知识4、实验仪器介绍包含不低于20种生理药理仪器介绍,包含镇痛类、抗焦虑类,疲劳类,心血管类药理设备以及行为学实验仪器设备,介绍方式为3D动画和录像 5、包含生理、药理、病生、人体实验以及综合性实验的各类大型经典实验项目,数量达90个6、客户可根据自己的实验项目增加虚拟实验,可对药品特性进行编辑 7、生理实验项目:刺激强度与肌肉收缩的反应关系、刺激频率与肌肉收缩之间的关系、神经干动作电位的引导实验、神经兴奋传输速度的测定、神经干不应期的测定、减压神经放电、膈神经放电、大脑皮层诱发点位、离体蛙心灌流、期前收缩与代偿间歇、心肌细胞动作电位、家兔血压调节、家兔呼吸运动调节、尿生成的影响因素、消化道平滑肌生理特性8、药理实验项目:**对动物学习记忆的影响、酸枣对小鼠的镇定作用、安定的抗惊厥作用、***的镇痛作用、地塞米松对实验大鼠脚趾肿胀的**作用、苯海拉明药效实验、神经体液因素及**对心血管活动的影响、**急性毒性实验、**半衰期的测定、给药剂量对**血浓度的影响、给药途径对**血浓度的影响、**在体内的分布、肝肾功能状态对**血浓度的影响、多次给药对**血浓度的影响9、病生实验项目:急性心力衰竭、心率失常、急性缺氧、急性失血性休克、急性高血钾症10、人体实验项目:人体指脉信号的测定、人体全导联心电信号的测定、ABO血型的测定、人体前臂肌电的测定、人体握力的测定、人体心音图的记录和测定简介11、综合实验:家兔呼吸运动调节、影响尿生成的因素及****、神经体液因素及**对心血管活动的影响12、每个实验项目包含实验简介,实验原理,实验录像,实验模拟操作以及实验模拟波形5个方面的内容13、实验项目中的波形模拟可以和动物的反应同步,比如在刺激强度与反应的关系实验中,波形上的变化和蟾蜍腓肠肌的收缩反应应同步表现,波形模拟高度逼真,比如对血压波形的模拟要表现出心室收缩与心房切迹,还要表现出叠加在血压波形上的呼吸波形(二级波)14、进行各种药理学参数的计算,比如PA2,LD50,半衰期等,使学生在进行药理学实验的同时理解各种药理学参数的意义及计算方法,帮助学生建立科研的思维能力系统具有开发性,用户可以将自己的实验图片,实验录像,实验原理和操作的文字加入到系统中,从而扩充系统的适用性15、新版本增加了常用的药品的虚拟配置,如:生理盐水的配置 性能特点:无论开放多少实验,都无需增加额外的投资虚拟的动物、器材、试剂使得实验经费在为压缩带教老师和实验准备从开放实验中解放出来拓展实验项目可以在虚拟实验中定制完成采用动态开放模式,所有实验器材及手术操作视频无限扩展紧密贴近教学,可以借助实验平台构建自己的实验体系内建的题库系统,可以在线处测自评,为学生提供一个良好的平台采用仿真化学习、抓住了学生的兴趣,提高学生的学习热情。多校共建的模式使得实验体系内容得以不断更新、完备根据自我需求构建虚拟实验室,成为实验积累、特色展示的一个良好的交流平台一、医学机能虚拟实验室 机能学虚拟实验室是基于计算机仿真技术的网络化实验教学系统,包括以计算机仿真技术为核心的生物仿真引擎、处理因素数据、虚拟环境界面和网络化硬件平台等部分。在计算机系统中建立的虚拟实验环境使实验者可以像在真实的环境中一样运用各种虚拟实验器械和设备,对“实验动物或标本”进行虚拟操作,完成预定实验,机能学虚拟实验从功能上包括仪器介绍、手术操作、仿真实验(仿真实战、虚拟实验)、模拟测试、求知**确定和后台数据管理、用户管理等模块。 1、采用网络化的体系结构(C/S结构),可以直接连接到校园网或Internet网络上;2、具有完整的知识结构,包括:实验基础知识介绍,实验动物介绍,实验设备和实验器械介绍,模拟实验操作过程,模拟实验波形等方面的内容;3、实验基础知识包括生理、药理、病生、机能、信号采集系统,传感器、实验室常用试剂等方面的知识;4、实验仪器介绍包含不低于20种生理药理仪器介绍,包含镇痛类、抗焦虑类,疲劳类,心血管类药理设备以及行为学实验仪器设备,介绍方式为Flas***和录像,拓展学生思路;5、至少包含对不低于10种常见实验动物的用途、生理指标等方面的介绍;6、包含生理、药理、病生、人体实验以及综合性实验的各类大型实验项目不低于90个,实验项目包括:6.1生理实验项目:刺激强度与肌肉收缩的反应关系、刺激频率与肌肉收缩之间的关系、神经干动作电位的引导实验、神经兴奋传输速度的测定、神经干不应期的测定、减压神经放电、膈神经放电、大脑皮层诱发点位、离体蛙心灌流、期前收缩与代偿间歇、心肌细胞动作电位、家兔血压调节、家兔呼吸运动调节、尿生成的影响因素、消化道平滑肌生理特性。6.2药理实验项目:**对动物学习记忆的影响、酸枣对小鼠的镇定作用、安定的抗惊厥作用、***的镇痛作用、地塞米松对实验大鼠脚趾肿胀的**作用、苯海拉明药效实验、神经体液因素及**对心血管活动的影响、**急性毒性实验、**半衰期的测定、给药剂量对**血浓度的影响、给药途径对**血浓度的影响、**在体内的分布、肝肾功能状态对**血浓度的影响、多次给药对**血浓度的影响。6.3病生实验项目:急性心力衰竭、心率失常、急性缺氧、急性失血性休克、急性高血钾症。6.4人体实验项目:人体指脉信号的测定、人体全导联心电信号的测定、ABO血型的测定、人体前臂肌电的测定、人体握力的测定、人体心音图的记录和测定简介。6.5综合实验:家兔呼吸运动调节、影响尿生成的因素及****、神经体液因素及**对心血管活动的影响。7、每个实验项目包含实验简介,实验原理,实验录像,实验模拟操作以及实验模拟波形5个方面的内容;8、实验项目中的波形模拟可以和动物的反应同步,比如在刺激强度与反应的关系实验中,波形上的变化和蟾蜍腓肠肌的收缩反应应同步表现;9、波形模拟高度逼真,比如对血压波形的模拟要表现出心室收缩与心房切迹,还要表现出叠加在血压波形上的呼吸波形(二级波);10、进行各种药理学参数的计算,比如PA2,LD50,半衰期等,使学生在进行药理学实验的同时理解各种药理学参数的意义及计算方法,帮助学生建立科研的思维能力;11、系统具有开发性,用户可以将自己的实验图片,实验录像,实验原理和操作的文字加入到系统中,从而扩充系统的适用性。12、配置:医学机能虚拟实验室客户端软件16套、医学机能虚拟实验室服务器端软件1套。二、诊断学虚拟实验室诊断学虚拟实验是一个C/S模式的系统。该系统以虚拟病人为主体,管理员(老师)可以通过网络登陆服务器后台管理程序,设置虚拟病人的各种体征参数。当学生通过网络在学生端登陆后,即可对已经设置好的虚拟病人进行病史采集(问诊)、心电检查、体格检查以及化验检查等四个方面的虚拟检查。学生通过对检查结果的分析,判断虚拟病人的患病情况,从而达到考察学生综合运用诊断学知识的目的。三、形态学虚拟实验室该系统实现了显微镜的虚拟操作,仿真镜读片,拓展了显微镜的分辨率和测量等功能,解决了显微镜和片库的资源短缺和协调问题,设计了实验视频点播和考试与自测,该仿真实验系统由学生端、老师端、管理端三大部分组成。学生端分为两大部分共五个模块:一、教学与自学:视频点播、虚拟操作、仿真读片、课堂自测,二、考试模块:模拟考试;老师端集教学与实验数据管理为一体,共有七个模块组成:视频管理、虚拟操作、数码教学、片库管理、试卷管理、考试管理、试卷评阅;管理端则对登陆用户进行授权管理、功能分组、信息查看、按需排序等。
    留言咨询
  • NI myRIO虚拟仪器实验平台NI myRIO虚拟仪器系统是融合实时操作系统和FPGA技术的虚拟仪器平台。 NI myRIO 是为学生设计的嵌入式开发平台,能帮助他们在一个学期内完成“真实工程系统设计”。NI myRIO 支持 667 MHz 双核 ARM C ortex-A9 可编程处理器和可定制的现场可编程门阵列(FPGA),使学生可以快速开发系统、解决复杂设计难题。这些都可以通过小巧方便的 NI myRIO 实现。NI myRIO 作为可重配置、可重复使用的教学工具,帮助学生学习众多工程概念,完成设计项目。通过 实时应用、FPGA、内置 WiFi 功能,学生可以远程部署应用,“无头”(无需远程电脑连接)操作。三个连接端口(两个MXP和一个与 NI myDAQ接口相同的 MSP 端口)负责发送接收来自传感器和电路的信号,以支持学生搭建的系统。共有40条数字 I/O 线,支持SPI、PWM 输出、正交编码器输入、UART和I2C,以及8个单端模拟输入,2个差分模 拟输入,4个单端模拟输出和2个对地参考模拟输出,方便通过编程控制连接各种传感器及外围设备。所有这些功能都已经在默认的 FPGA 配置中预设好, 帮助学生即刻开始着手真实工程——例如无线控制 智能车或嵌入式生物医电设备设计。NI myRIO 易于设置,方便学生判断运行状态。设备出厂时已配置好 FPGA,初学者可以直接运行基础功能,无需为 FPGA 编程。同时也支持对FPGA自定义, 并重新配置I/O。NI myRIO 的可扩展性使学生在入门的嵌入式系统到毕业设计或课外创新项目中均可使用。可用于实时嵌入式控制、机电一体化、机器人、视觉处理等课程教学和学生课外创新实践中。NI myRIO便携式虚拟实验仪器,口袋实验室设备NI myRIO虚拟仪器系统采集卡板载资源:Xilinx FPGA和双核ARM Cortex™ -A9微处理器;三个连接端口(两个MXP和一个与 NI myDAQ接口相同的 MSP 端口);10条模拟输入线(8个单端+2个差分);6条模拟输出线(4个单端+2个对地参考);40条数字I/O线(支持SPI、PWM 输出、正交编码器输入、UART和I2C);拥有板载WiFi、LED 、按钮及加速度计;可使用LabVIEW或C进行编程; 标准实验内容:流水灯控制与显示实验交通灯控制与显示实验 共阳数码管控制与显示实验独立按键实验 波段开关实验 继电器控制实验 五向摇杆实验光敏电阻实验 热敏电阻实验电位器实验 蜂鸣器/扬声器实验 霍尔元件检测实验旋转编码器实验直流电机实验
    留言咨询
  • 真三维虚拟演播室系统 VSM虚拟演播室制作 1、独特的高精度跟踪技术 8M频响的采集电路保证系统高精度高速度的跟踪指标。 摄像机机位数目可扩展,每个机位可**地对虚拟摄像机进行跟踪。 系统采用机械跟踪方式,同时实现对机位前后、左右、上下移动和变焦、平摇、俯仰、旋转任意运 动的高精度跟踪和高摄像机在演播室里可360度任意旋转和移动,实现高速度高精度跟踪。 系统跟踪不受舞台灯光、电磁波、声波及热光源的影响。 节目主持人在蓝箱中任意走动时跟踪精度和跟踪速度不受影响。 多个主持人同时在蓝箱中活动时,每个主持人均能与虚拟场景保持正确的跟踪关系。 多个虚拟大屏幕、多个虚拟物体、多个虚拟机位在跟踪中均能与虚拟演播室、节目主持人保持正确 的空间位置关系和 空间关系。 每个摄像机对虚拟场景的跟踪完全***。 经过任意多次的切换,每个摄像机对虚拟场景的跟踪效果丝毫不受影响。VSM虚拟演播室便携式一体机系统,具有独特的虚拟大屏幕任意位置播放效果系统的虚拟大屏幕电 视墙可以播放在虚拟场景的任意物体表面或者空中,可以在时 间线上编辑控制,也可以无限制循环 播放。三维虚拟场景中的所有虚拟物体的纹理贴图可以实时更换。 独特的虚拟相机浏览功能由于系统具有***的渲染能力,VSM虚拟演播室系统可以实现大幅面、大 场景的精细化建模,因此VSM虚拟演播室系统添加了 虚拟相机浏览功能,虚拟摄象机可以在场景中 沿任意轨迹浏览,并可在时间线上任意编辑。 VSM虚拟抠像系统是一款真正的3维抠像系统,区别于市面上的2.5维,2维虚拟抠像系统,在一个 虚拟场景里真正实现摇臂推拉摇移的效果,实现不同节目的无缝过渡,VSM更是一款真正的4K虚 拟抠像系统,指标达到12G SDI(4096×2160)区别于市面上的6G SDI(3840*2160)使得抠像效 果更佳,边缘处理更加细腻。、
    留言咨询

电路虚拟测试仪相关的资讯

  • 测试仪器发展的四大阶段
    仪器仪表是信息的源头, 是人类获取有关自然界知识、 认识世界的工具。 信息高速公路作为信息社会的基础结构,奠定了它在人与自然的逻辑关系中的桥梁和纽带的地位。 测试仪器位于信息高速公路与自然之间的环域, 是信息高速公路中信息的重要来源。 纵观仪器技术的发展,其历经了模拟仪器、 数字仪器、 智能仪器和虚拟仪器等几个主要阶段,如图。( 1)模拟仪器:20世纪 50 年代以前, 电测量技术主要是模拟测量, 此类仪器的基本结构是电磁机械式, 主要是借助指针来显示测量结果。( 2)数字仪器:20 世纪 50 年代, 数字技术的引入和集成电路的出现, 使电测仪器由模拟式逐渐演化为数字式, 其特点是将模拟信号测量转化为数字信号测量, 并以数字方式输出最终结果, 适用于快速响应和较高准确度的测量。 这类仪器目前相当普及, 如数字电压表、 数字频率计等。( 3)智能仪器:出现于 20 世纪 70年代, 是现代测试技术与计算机技术相结合的产物。 它是含有微计算机或微处理器的测试仪器, 测量结果具有存储、 运算、 逻辑判断及自动操作、自动控制等功能, 即具有一定智能作用, 故将其称之为 “ 智能仪器” 。 智能仪器将传统数字仪器中控制环节、 数据采集与处理、 自调零、 自校准、 自动调节量程等功能改由微处理器完成, 从而提高测量精度和速度。( 4)虚拟仪器:这一概念早在 20 世纪 70 年代就已提出,但真正得以实现则是在 PCI、 GPIB、 VXI、 PXI 等总线标准出现之后才变为可能, 并随着卡式仪器、 VXI 总线仪器、 PXI 总线仪器等的推出而得到迅速发展。 虚拟仪器是在计算机基础上通过增加相关硬件和软件构建而成的、 具有可视化界面的仪器。 虚拟仪器是现代计算机技术与仪器技术完美结合的产物,软件在仪器的开发和使用的全过程中起着至关重要的作用, 可以说没有了软件就没有虚拟仪器。 它基于 “ 软件就是仪器” 的思想, 利用最新的计算机技术来实现和扩展传统仪器的功能,真正实现由用户自己设计和定义满足自己特殊要求的仪器。以太网的发展为基于网络的测试系统提供了平台, 也成就了 LXI [12 - 13] 的诞生。 2004 年 9 月 VXI 科技公司和安捷伦联合推出一种新的基于工业以太网的总线规范—LXI。 LXI 标准用以太网作为系统的骨干, 无需 VXI 或 PXI 方式的机箱。 LXI联盟于 2005 年 10月通过了 IEEE1588 协议, 为 LXI 网络化虚拟仪器的设计与实现提供了标准。 未来的总线将会向专业化和大众化方向发展, 因此, 在 LXI 仪器还未完全占领市场之前,VXI、 PXI 和 USB等都将成为市场的主流总线技术。随着信息高速公路和仪器技术的进一步发展与结合, 基于Internet 的远程测控是现代测试技术和虚拟仪器技术的发展方向之一。 以 Internet 为代表的网络技术的成熟以及它与仪器技术的结合, 为仪器技术的发展带来了前所未有的空间和机遇, 可以肯定, 网络化测试技术的时代已经来临。
  • 国产高端测试仪器市场困局何解
    当今时代,科技迅猛发展、芯片量呈几何倍数增长,芯片已经进入融合的时代。从无人驾驶到虚拟现实、从人工智能到云计算、从5G到物联网,一颗芯片上承载的功能越来越多,芯片工艺越来越复杂,新器件类型层出不穷,众多驱动因素的推动对半导体测试技术不断提出新的要求。行业需要更加面向未来需求的测试系统和方案,来打破传统仪器固有的不足和局限。以半导体器件测试来看,在先进器件研究过程中,新材料、新结构与新工艺的应用都可能带来未知的变化。研究者不但要关注精确的静态电流电压特性,更希望观察到细微快速的动态行为。同时随着半导体尺寸不断减小,一些现象需要在极短的时间内才能观察到,例如MOS器件的BTI效应,因此,对包括短脉冲测试(PIV)在内的新技术提出了要求。前不久,概伦电子与北京大学集成电路学院及上海交通大学电子信息与电气工程学院联合研发的新一代高精度快速波形发生与测量套件FS-Pro HP-FWGMK正式发布,填补了其半导体参数测试系统FS-Pro在短脉冲测试的空缺,同时也填补了国内短脉冲测试技术的空缺。高端测试仪器FS-Pro“如虎添翼”据了解,此次发布的最新一代高精度快速波形发生与测量套件FS-Pro HP-FWGMK由黄如院士在北京大学和上海交通大学的团队与概伦电子联合研发。作为短脉冲测试技术的先行者,黄如院士团队经过了十余年的努力,在实践过程中掌握了一整套短脉冲产生、测量以及分析技术。概伦电子基于其提供的包括测试方法、电路原型、方案框架、版图设计及PIV应用在内的指导意见继续精细开发,满足高增益与高带宽的同时,有效抑制放大电路的非线性失真,最终实现了最小脉宽130ns的高精度测量。概伦电子FS-Pro半导体参数测试系统(图源:概伦电子)概伦电子的半导体参数测试系统FS-Pro是一款功能全面、配置灵活的半导体器件电学特性分析设备,在一个系统中实现了电流电压(IV)测试、电容电压(CV)测试、脉冲式IV测试、任意线性波形发生与测量、高速时域信号釆集以及低频噪声测试能力。此次增加短脉冲IV(PIV)技术后,FS-Pro更是如虎添翼,几乎所有半导体器件的低频特性表征都可以在FS-Pro测试系统中完成,可广泛应用于各种半导体器件、LED材料、二维材料器件、金属材料、新型先进材料与器件测试等。其全面而强大的参数测试分析能力极大地加速了半导体器件与工艺的研发和评估进程,并可无缝的与概伦电子低频噪声测试系统9812系列集成。据了解,概伦电子噪声测试系统9812系列是全球半导体行业业内低频噪声测试的“ 黄金标准”,为半导体行业先进工艺研发、器件建模和高端电路设计提供了更加完整而又高效的低频噪声测试及分析解决方案,可以满足各种不同工艺平台下半导体器件和集成电路低频噪声测试的需求。FS-Pro快速的DC测试能力进一步提升了9812系列产品的噪声测试效率和吞吐量,性能相较同类型产品获得大幅度提升,并将在噪声测试的业内领先技术扩展到通用半导体参数测试。基于在产线测试与科研应用方面的优异表现,FS-Pro全面的测试能力在科研学术界受到了广泛关注和认可,已被数十所国内外高校及科研机构所选用,同时也被众多芯片设计公司、代工厂和IDM公司所釆用。国产高端测试仪器新突破纵观行业现状,测试测量仪器属于高端科研仪器设备,需要长时间积累,特别考验一个国家基础技术的厚度。由于国内本土测量仪器行业起步较晚,主营电子测试测量仪器的企业数量少,发展情况也不尽相同,目前我国的产品结构主要集中在中低端,大部分企业仍处于仿制研发的阶段,仅有小部分企业走向应用研发的转型之路。根据数据显示,中国电子测量仪器的市场规模由2016年的28.72亿美元增至2021年的50.39亿美元,预计2022年将进一步达到53.14亿美元。面对国内如此巨大的市场需求,以及受国外隐形技术壁垒等因素制约,国内市场仍被掌握在国外仪器仪表厂商手中,高端产品依赖进口,行业类第一梯队公司主要为是德科技((Keysight)、泰克(Tektronix)、罗德与施瓦茨(R&S)等欧美企业。国内测量仪器与国际水平相比,在产品结构、高端产品的技术水平、市场占有率等方面存在较大差距,亟待国内本土企业填补高端仪器的技术和市场空白。在这种情况下,提高企业的研发力度成为了电子测量仪器行业发展的关键点之一。同时伴随着强烈的自主可控需求,国产高端测试测量仪器市场在近几年迎来高速增长。概伦电子的半导体参数测试系统FS-Pro作为高端测试仪器的代表之一,在先进器件和材料等领域的测试表现非常出色,集 IV、CV、1/f noise及PIV测试等于一体,高精度、低成本、综合的半导体器件表征分析能力灵活满足各种用户的不同测试需求,大大节省了测试设备采购开支。
  • 中国虚拟仪器之父应怀樵:攻克十大世界性难题
    5月24日,北京东方振动和噪声技术研究所名誉所长应怀樵在第十五届北京科博会“2012中国战略性新兴产业发展论坛”上,作题为《云智慧时代第三次工业革命正在走来——“从软件制造仪器”到“软件制造一切”》的主题演讲。   科学无国界,而科学家是有国界的,这句话在“中国虚拟仪器之父”应怀樵身上,就是近半个世纪的岁月里,他始终以“砍柴樵夫”般的坚韧与顽强,跋涉在为中华崛起而奋斗的科学高峰上,即使古稀之年,面对“3次中风、4次心梗、7次至阎王殿”的生命挑战,依然以超人的毅力、坚定的信念,战胜病魔,执著奋进在创世界一流的“虚拟仪器”科研阵地上。   而支撑他的则是中国科学界应为人类文明进步作出更大贡献的使命感与荣誉感!正是怀着振兴中华、造福人类的理想追求,他数十年如一日,呕心沥血,将全部精力投入虚拟仪器(VI)科学研究之中,自主创新112项新技术,攻克十大世界性难题并填补国内空白,特别是对“传递函数的测试及实时控制和反演关键技术”的成功突破,为提高虚拟仪器测量精度和范围开创新途径,被认为“可与‘光纤之父’诺奖得主高锟教授的‘光纤通信’成果相提并论”,使中美两国同步创造的虚拟仪器达到可问鼎诺贝尔物理学奖的,具有世界性重大意义的成果,是中华民族继四大发明之后,对人类文明有重要意义和影响的现代发明之一。   生命熔铸:“虚拟仪器之父”是怎样炼成的   1941年7月,应怀樵出生于浙江绍兴,这里人文底蕴深厚,而无论是早年受笃信佛教的母亲的熏陶,还是得益蔡元培曾担任校长的小学优良的教学传统,都使他从小树立了为民族崛起而读书的远大理想。   1959年,应怀樵就读浙江大学理论物理专业,后应国家需要全班调整为应用力学专业。1964年,大学毕业后,他被分配到中国铁道科学院,致力于高速列车风洞课题研究,并到清华学习风洞测试分析技术。1965年,他参与我国核爆炸防护工程研究,接触到震动噪声和频谱分析,开始了虚拟仪器科研生涯,而早年五次转换专业,则练就他扎实的学术功底和多学科交叉研究课题的优势。更重要的是,科技水平对国家命运的深刻影响更使他深感责任重大。成为世界一流的科学家,为国争光成为他深埋心中的梦想。而他也毫不讳言对诺奖的钟情,在他看来,诺奖不仅是一种崇高的荣誉,更是激励创新、造福人类的精神泉源。   在他看来,以“四大发明”为标志,中华民族曾为人类科技进步作出重要贡献,然而近代以来却落伍了,应怀樵认为,伴随中华民族的伟大复兴,中国科学家理应在高科技领域取得原创的重大突破,向诺奖冲刺。这不仅是一个科学家的荣誉,更是中华民族屹立世界民族之林的时代要求。   正是怀着这样一份强烈的使命感和荣誉感,应怀樵走过了一条不平凡的科研探索之路。要成为世界一流的科学家,首先要有敏锐、超前发现重大课题的科研能力。应怀樵介绍说,所谓“‘虚拟仪器’其实并非是传统的仪器,它是指集数据采集和信号调理器、信号处理技术与PC机技术于一体的软件制造仪器”。事实上,1965年他参加国防核爆炸防护工程课题——地下铁道核爆炸震动噪声与动力学测试分析的研究,当他遇到地铁道床的下沉残余位移(OHz)用硬件无法获得的难题时,就萌生了虚拟仪器的大胆构想——“用数字算法和软件取代硬件”,1973年他尝试用数字计算机的软件数字积分取代传统硬件模拟积分的方法解决上述难题,1979年获得成功,成为虚拟仪器的最早成功范例。同年于杭州召开的国防科委核试验全国防护工程学术会上,他提出虚拟仪器的核心概念——“软件制造仪器”,获得主持会议的中科院力学所所长郑哲敏院士、清华大学副校长张维院士、同济大学校长李国豪院士的赞扬和支持,比美国NI公司“软件是仪器”的概念提出早7年。   成为世界一流科学家,还要有瞄准国际前沿,不断自我超越的创新意志。据了解,科学仪器与实验技术发展至今已走过模拟式、数字式、智能式三个阶段,从1983年~1986年,开始出现第四代仪器即虚拟仪器(简称VI)。而应怀樵的研究始终走在国际前列。1979年,他编撰的具有该领域应用成果的国内首部专著《振动测试和分析》出版发行,并不断自我超越:1982年《CZ测震仪与测振技术》出版发行,1983年出版了具有中国虚拟仪器早期构思实例框图的《波形和频谱分析与随机数据处理》。1985年他自筹资金创建东方振动和噪声技术研究所(简称东方所),开始系统从事虚拟仪器库、移动实验室技术研究,提出“把实验室拎着走”的目标,正式立题“DASP虚拟仪器库—振动噪声、模态分析移动实验室技术”研究,为此,他自立课题、自筹资金开始研究“PC卡泰”(PCCATAI)—微机卡式自动采集测试分析仪器。他还是国内外最早提出“用软件制造仪器”、“用软硬件相结合”来取代传统仪器的学者。此后,依靠持续创新,他带领团队突破了虚拟仪器的核心技术,开发出适合便携机和笔记本使用的小型数采卡和大容量数据采集分析(LCAS)软件,研制成功台式和笔记本式大容量智能数据采集和信号处理系统以及DASP“达世普”虚拟仪器库系统。这是我国最早研制成功的虚拟仪器产品,实现“把实验室拎着走”的目标。   1988年9月16日,中国虚拟仪器应用于火箭激振钱塘江大桥模态实验圆满成功。1993年3月,该仪器参加北京新技术展览会,并远赴加拿大参展获一致好评。1995年用于“长三捆”火箭全箭模态实验,1996年用于神舟载人飞船移动发射平台模态实验。2004年用于航天员超重训练设备臂架系统模态分析。2007年,在第二届全国虚拟仪器学术交流大会上,东方所的卓越贡献受到高度评价,应怀樵被誉为“中国虚拟仪器之父”。   产业报国:让DASP虚拟仪器库运行在每个实验台   伴随经济全球化及信息时代的来临,如何在世界高科技领域拥有一席之地,如何将中国的高科技产品行销全世界,正成为中华民族是否真正崛起的重要标志。   数十载春秋,对十大世界性难题原创性的解决让其成为具有中华民族自主知识产权关键技术的经历为应怀樵平添几分豪迈与自信。   一是基于平台式设计的VI库技术。用软件制造仪器,软硬件结合取代传统仪器,这一具有里程碑式划时代意义的新路线对仪器制造业和测试技术界产生巨大影响,代表了我国在VI研发方面的最高水平。   二是变时基(VTB)传递函数(导纳)测量分析方法。达到国际领先水平,获国家发明专利。已完成神舟飞船750吨移动发射平台、“长三捆”大型运载火箭、航天员超重训练机模态实验等数十项国家重点项目,效果优良。   三是高精度频率、幅值、相位和阻尼测量技术。东方所原创的高精度频率计和幅值计,比国外常规方法提高精度100万倍,具有重大国际影响力。   四是超低频信号快速测量技术,达到国际领先水平。   五是原创倒熵熵、倒熵富、倒富熵等三种倒熵谱分析方法,达到倒谱分析的国际领先水平。   六是FFT/DFT分析方法,成为目前频谱细化主要方法之一,达到国际领先。   七是振动全息AVD“一入三出”实时测试分析创新技术,原创性地提出了全程微积分方法,实现AVD“一入三出”振动全息实时动态连续测量,达到国际领先。   八是自动化模态分析方法。一般人员通过简单操作即可获得专家级的模态分析结果。   九是24位“双核”变幅基A/D高精度超量程160dB数采仪技术达到国内首创,国际领先。   十是突破传递函数的测试及实时控制和反演关键技术为提高仪器测量精度和范围开辟新途径。此技术是一项世界难题,可极大扩展仪器的频率测试范围,提高测试精度,极具国际竞争力。   仅仅拥有一流的成果还远远不够,在应怀樵眼里,诺贝尔不仅是一位杰出的科学家,还是一代企业家,对科学及人类进步事业的热爱,和凭借巨额财富设立的诺贝尔奖,使他成功激励了一代又一代热爱科学与进步的杰出人物,为人类文明的进步作出不可磨灭的贡献。为此,当虚拟仪器技术攀上科学顶峰的时候,应怀樵直面7次与死神擦肩而过的生命危机,依然没有停止探索与奋进的脚步,开始积极思考中国虚拟仪器的产业化之路,树立起“让INV系统走进每一个实验室,让DASP软件运行在每个实验台上”的宏大目标。   为此目标,他在建所之初就提出“勤奋、创新、坚持、自强、和谐”的十字座右铭和完全自由的判断与讨论的“玻尔所”精神和“六要三不要”的处事准则等基础上,发展成为涵盖精神追求、道德情操的18条共336字法则及幸福六大原则的企业文化,加强了东方所的文化凝聚力。   以此为纽带,东方所不断加强人才队伍建设,一方面加强与全国重点高校合作,为国家培养出大批专业急需人才,以及行业高端人才,该所研究团队也扩大到40余人,拥有博士、硕士数十名,成为虚拟仪器领域一支重要力量。同时他还成功组织和主持了23届全国振动与噪声高技术学术会议,1997年至今主编《现代振动与噪声技术》九卷等十多部专著及《倒熵谱研究》等150多篇论文报告。同时,不断创新软硬件研发,推出CPCI式INV3020和LAN以太网式INV3060、USB式INV3018系列新产品,无线INV9500、手持式INV3080等硬件新产品和DASP的最新软件版本,积极推动产品市场化。   “软件制造仪器,软硬件结合取代传统仪器”能省掉大量昂贵和笨重的硬件材料和人力物力、设备、厂房和能源,便于生产和携带。这是一条划时代的新途径,是科学仪器和测试领域的一次突破和革命,是21世纪的仪器的重要发展方向,是中华民族原创的具有自主知识产权的重大发明之一。中国虚拟仪器DASP软件和INV移动实验室系统是与美国NI同步并行研发的,其中自主创新112项新技术,其中20多项达国际领先水平,是研发最早且核心技术搞得最好的科研成果。   截至目前,该成果产品累计销往2000多家用户,经济效益超过1亿元,打破了此类仪器长期依赖进口的局面,为国家节省外汇数亿美元。目前,已广泛用于国防军工、航天航空等许多部门,参与完成上百项国家重大工程项目测试。若在国内全面推广,其经济价值按我国2007年仪器产值估算,按软件取代硬件30%到一半计算,将产生600亿元到1000亿元/年的巨大价值,为促进技术变革和推动新兴产业形成,造福国计民生发挥重大作用。   面对激烈的国际竞争与广阔的国际市场,应怀樵认为中国虚拟仪器产业化之路任重道远,“达到世界普及”,这是一个目标,更是一种信念!以领先的科技与执著的信念支撑,应怀樵和他的虚拟仪器产业化之路必将迎来胜利曙光!而作为科学家,应怀樵瞄准国际前沿的战略思考从未停止,随着“云计算”和“物联网”时代的到来,他又在国内外率先提出实验室网络云时代——“云智慧仪器实验室”与“云智慧故障诊断中心”和“智慧仪器”的构想,提议国家尽快开展相关研究。   正如诺奖的创立者曾经践行的,科学精神与产业之路的生命熔铸将带给人类更加美好的未来!或许,这正是以不竭的生命激情与创新意志跋涉于科学与产业化之路的“中国虚拟仪器之父”应怀樵教授所真正钟情的。

电路虚拟测试仪相关的方案

  • inTEST 热流仪集成电路 IC 卡高低温测试
    集成电路 IC 卡在出厂前必须经过环境测试,用来模拟集成电路在不同工作环境中的性能,inTEST-Temptronic 高低温测试机凭借封装级和晶片级集成电路专用高低温测试机协助厂商完成例如高低温循环测试 Thermal cycle、冷热冲击测试 Thermal stock、老化测试等试验。inTEST-Temptronic 高低温测试机每秒可快速升温/降温 18 度、测试温度精度高达±1℃,特别适合大规模集成电路的高低温电性能检测。
  • 上海伯东美国Temptronic集成电路IC卡高低温测试应用
    上海伯东代理美国 inTEST-Temptronic 高低温测试机用于集成电路IC卡高低温测试,inTEST-Temptronic 高低温测试机每秒可快速升温/降温 18 度、测试温度精度高达±1℃,特别适合大规模集成电路的高低温电性能检测。
  • 电子元器件检测实验室专业测试仪器设备解决方案
    在电子电路中,除了接触最多的电子元器件( 例如电阻,电感,电容,二极管,三极管,集成电路等) 以外,还有其他常用电子元器件,如电声器件,开关及接插件等。电子元器件的检测是家电维修的一项基本功,安防行业很多工程维护维修技术也实际是来自于家电的维护维修技术,或是借鉴或同质。如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。Delta德尔塔仪器专业为电子元器件的检测提供整套测试仪器,我们可以各类电子、电器制造厂商提供一下检验测试项目的专业仪器设备:集成电路测试:成品测试、老化筛选、失效分析等;破坏性物理分析:外部目检、X射线检查、粒子噪声(PIND)试验、密封性试验、内部气体成分分析、内部目检、内引线键合强度、扫描电镜、芯片剪切强度;可靠性寿命和老化筛选:老化筛选试验、稳态寿命试验、加速寿命试验、可靠性强化试验;环境试验:正弦振动、随机振动、机械冲击、碰撞(或连续冲击)、恒定加速度、跌落、出点动态监测、温度-振动-湿热三应力试验、高低温低气压、温度循环、热冲击、耐湿、高压蒸煮、盐雾或循环盐雾、霉菌、淋雨、气体腐蚀、沙尘、热真空、强加速稳态湿热(HAST);物理性试验:物理尺寸、耐溶剂性、引出端强度、可焊性、耐焊接热、封盖扭矩、镀层厚度、阻燃性试验。电子元器件测试仪器应用测试产品类型:半导体集成电路、混合集成电路、微波电路及组件、半导体分立器件、真空电子器件、光电子器件、通用元件、机电元件及组件、特种元件、外壳、电子功能材料及专用设备等。诸如安规继电器、电动器热保护器、压缩机用电动机热保护器、压力敏感电自动控制器、定时器和定时开关、电动水阀、温度敏感控制器、热断路器、电动用起动继电器、湿度敏感控制器、安规电容器、陶瓷电容器、贴片电容、交流电动机电容器、微波炉电容器、电磁炉用高压电容器、小型熔断器、电磁发热线圈盘、高压变压器、高压熔断器等元器件进行各项指标合格性测试。

电路虚拟测试仪相关的资料

电路虚拟测试仪相关的试剂

电路虚拟测试仪相关的论坛

  • 虚拟仪器技术在测控调闸系统中的应用

    摘要:本文描述了基于虚拟仪器思想在实际测控系统中的应用。通过选用多功能数据采集卡和信号调理电路组成自动测试系统,软件开发以专业测控工具LabWindows/CVI为平台,实现了数据采集、分析和处理。使整个测控系统既经济又便于操作,同时易于改进和功能扩展。同时,与基于传统的开发平台的测控系统进行了比较。   关键词:虚拟仪器;Labwindows/CVI;数据采集      1、引言      虚拟仪器是以一种全新的理念来设计和发展的仪器,它是20世纪90年代发展起来的一项新技术。虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种自动测试、过程控制、仪器设计、数据分析和自动化的应用。灵活高效的软件能帮助您创建完全自定义的用户界面,其基本思想是在仪器设计或测试系统中尽可能用软件代替硬件,即“软件就是仪器”,它是在通用计算机平台上,根据用户需求来定义和设计仪器的测试功能,其实质是充分利用计算机的最新技术来实现和扩展传统仪器的功能,这种测试仪器的硬件功能软件化,给测试仪器带来了深刻的变化,因此虚拟仪器代表了当前测试仪器发展的方向之一。      2、虚拟仪器的特点和构成      2.1虚拟仪器的特点   与传统仪器相比,虚拟仪器具有高效、开放、易用灵活、功能强大、性价比高、可操作性好等明显优点。      2.2虚拟仪器的构成   虚拟仪器的构建主要从硬件电路的设计、软件开发与设计两个方面考虑。   根据目前我们所完成的测试设备,硬件电路的设计一般是选择现有的各种不同功能的板卡以及信号调理板来搭建。所选用板卡的功能包括:高速数据采集和信号转换;信号输出与控制;数据的A/D转换。将具有一种或多种功能的板卡结合信号调理板组建起来,就能构成任何一种虚拟仪器。例如使用高速数据采集板卡和高速实时数据处理就能构成1台示波器、1台数字化仪或 1台频谱分析仪;使用数字量信号输入/输出板卡和实时数据处理就能构成1台函数发生器、1台信号源或1台控制器。      3、虚拟仪器在实际测控系统中的应用      3.1虚拟仪器在航空机载电子测控系统中的应用   测控系统在航空机载成件中起着举足轻重的作用,提高和完善测控系统的精度和测试能力对于整个飞机性能分析具有重要的意义。我们主要完成了基于虚拟仪器的各型继电器盒、各型开关盒测控系统的测试。使用数字采集板及工控机并在LabWindows/CVI开发平台中实现了对整个测试的电压采集、对各型继电器盒的逻辑状态及延时时间进行输出存储和分析。  3.1.1 测试系统组成   整个测控系统由美国NI公司的LabWindows/CVI8.0,研华的1块PCI_1751 48路数字量输入/输出板,2块PCI_1754 64路数字量输入板、2块PCLD_785B 24通道继电器输出板、6块PCLD_782 24通道光电隔离数字量输入板,1块PCL_818L 16通道A/D转换板、若干信号调理板及工控机组成。   测控系统的数据采集和处理采用虚拟仪器测量平台。测控部分主要作用是参与被测产品的控制、测试数据处理和量化,驱动测试数据显示;工控机通过数字量输出板,经继电器输出板变换为被测产品的模拟控制信号;从被测产品采集来的电气逻辑信号经光电隔离数字量输入板转换为数字量信号,通过数字量输入板输至工控机;另外,利用A/D转换板来显示电压;利用系统时钟来完成被测产品的时间继电器延时时间的测试。   3.1.2 基于虚拟仪器的航空机载电子系统测控平台   该平台整体系统采用美国国家仪器公司的虚拟仪器专用开发平台LabWindows/CVI系统。由于CVI在标准C语言(Ansi C)的基础上增加了仪器控制和工具函数库的虚拟仪器开发软件,它的集成化开发平台、交互式编程方法、丰富的面板功能和库函数使其自身功能更加强大,应用更加方便,界面完全能够虚拟真实实物进行设计,使得人机对话界面直观、友好。   由于测试的产品种类多,归属性强,因此系统测控平台的用户界面采用下拉菜单式,所需测试的产品一目了然,选用方便。      3.2基于虚拟仪器的测控平台在测控系统中的应用所使用的几个关键技术   3.2.1 通过采用系统时钟的方法提高软件测时时间   在测试过程中要获得延时继电器的时间,一种方法是采用定时器/计数器板专门进行计数,另一种方法是采用系统时钟进行计数。由于所需测试的时间为秒级,要求误差为20%,采用后一种方法完全能达到,一是可以节约成本,二是选购的计算机可不必多配置一个插槽,节省了空间。在程序中使用了以下函数来获取高精度时间,它的精度可以达到毫秒级。   3.2.2 在测控系统中运用了数据库管理技术   由于Lab Windows/CVI开发平台能够方便使用NI公司开发的SQL工具包,使得大量的测试数据能够以数据库的形式存储、查询。   在测控系统中,可以通过所设置的产品名称、件号、时间、测试结果、温湿度、试验者、质控者等字段来进行保存,完成了一套产品的履历记录,通过查询产品的件号、时间等就可以调出每个产品的测试记录,这样就解脱了人工管理的诸多不便,提高了工作效率。   3.2.3 调用ActiveX自动化编程技术并打印生成了Excel表格   ActiveX自动化是一种能将单个应用程序和其他应用程序结合在一起的方法。通过Lab Windows/CVI提供的ActiveX控件可以直接调用Excel程序,并使用这些控件提供的函数对从Excel表格进行操作,从数据库中读取测试数据,转换并填入单元格,最后自动生成产品正式履历表并进行打印。      3.3 基于虚拟仪器的测控平台与一般测控平台比较   采用LabWindows/CVI开发工具使得不同的信号可以统一在同一个程序里面实现方便的采集与保存。继电器盒测试系统以前有一个运用Visual C++开发的测试平台,和基于虚拟仪器的测控平台相比,它们在本系统中功能的实现和维护都存在很大的差距。   首先运用Visual C++开发的测试平台不如使用LabWindows/CVI开发的基于虚拟仪器的测控平台简单方便[url=http://www.dttjf.c

  • 【资料】嵌入式系统的虚拟仪器成测试系统新思路

    1引言  计算机及其接口技术的发展和传统测试测量仪器系统暴露出来的不足,使得基于计算机的虚拟仪器设备越来越成为测试测量仪器的主导。虚拟仪器系统以其平台通用性、可扩充、易升级和高度的智能性获得了广泛的工业应用。在PC和工业控制计算机中插入基于PC总线(ISA,PCI)的数采板卡构成硬件系统,编写Windows系统平台的驱动程序和软面板实现软件功能,成为业界的主要解决方案。  但是在野战和恶劣环境下测试任务的实践过程中,我们发现基于PC或工控机的虚拟仪器暴露出很多问题,如:体积大,不便于携行;插卡式结构,接触易松动、不紧固;以机械硬盘为主要存储介质,抗震性能差等等。  以32位嵌入式微处理器和嵌入式操作系统为特征的嵌入式计算平台使计算进入了后PC时代。嵌入式系统的小体积、高可靠能够满足实现野战和恶劣环境下的便携虚拟仪器的需要。基于嵌入式计算平台,设计虚拟仪器系统成为构建测试系统的新思路。  通过构建基于PC104总线嵌入式计算平台,加入仪器卡及其功能程序,我们实现了针对雷达电子装备的多种测试仪器。构建基于嵌入式系统的虚拟仪器需要解决的技术问题集中在系统平台的构建、接口和驱动程序的设计以及软面板设计等方面。  2硬件系统组成  硬件系统包括嵌入式主板、仪器功能板、Flash存储介质(DOC或CF卡)、液晶显示屏、触摸屏和信号接口等。如图1所示。其中液晶显示屏、触摸屏实现人机交互,信号接口用于耦合测试信号、嵌入式主板作为控制和计算单元,仪器功能板实现具体仪器的功能。  部件按叠放的顺序依次为触摸屏、液晶显示屏、PC104主板、示波器卡、万用表卡功能板卡和嵌入式主板之间通过PC104总线以叠栈的方式实现机械和电气的互连。采用这种方式有如下好处:  1.电气接触高度紧密。电路板之间通过多排插针深入连接,比ISA和PCI的插槽连接要紧密得多。  2.机械结构牢固。电路板之间用四个螺柱紧紧相连,使得板卡之间的机械连接非常牢固,不会存在晃动现象。  3.PC104插针的电气特性与ISA完全兼容,PC104Plus插针的电气特性与PCI完全兼容,使得基于ISA或PCI总线设计的功能板卡可以从电原理上重用,有利于系统改造过程的平稳过渡。  摈弃硬盘而采用DOC或CF卡作为外存储介质也能大大提高系统抗震动和冲击能力。  采用如上所述的硬件系统能为小型、可靠的虚拟仪器系统提供硬件保障,但由此带来的系统存储容量小和资源受限等问题为软件系统的设计带来了困难。必须采用嵌入式操作系统,软件编程必须考虑体积小,效率高。  3软件系统设计  我们采用嵌入式Linux作为操作系统,在linux平台下编写仪器的驱动程序。利用TinyX和GTK+作为图形界面解决方案实现仪器软面板。  3.1.嵌入式linux系统  采用开源的linux系统,并通过编译选项裁减不需要的功能模块,得到大小为500K左右的内核模块。用busybox取代shell,在系统中加入glibc.o等库构建一个4M的Linux运行系统。关于嵌入式Linux系统的构建文献有详细的介绍和指导。  3.2.linux下的io编程  仪器卡的驱动程序采用端口读写来实现。Linux下对端口的操作方法在usr/include/asm/io.h中。由于端口读写函数是一些inline宏,所以在编写端口读写程序时只需要加入:#include不需要包含任何附加的库文件。另外由于gcc编译器的一个限制,在编写包含端口读写代码的程序时,要么打开编译器优化选项(使用gcc?O1或更高选项),要么在#include之前加上:#defineexternstatic  在读写端口之前,必须首先通过ioperm()函数取得对该端口读写的权限。该函数的使用如下:  ioperm(from,num,turn_on)  如果turn_on=1,则表示要获取从from开始的共num个端口的读写权限。如ioperm(0x300,5,1)就表示获取从端口0x300到0x304共5个端口的读写权。最后一个参数turn_on表示是否获取读写权(turn_on=1表示获取,turn_on=0表示释放)。一般在程序的硬件初始化阶段调用ioperm()函数。  ioperm()函数需要以root身份运行或使用seuid赋予该程序root权限。  端口的读取使用inb(port)和inw(port)函数来完成,其中inb(port)读取8位端口,inw(port)读取16位端口。  对8位和16位端口的写操作分别用函数outb(value,port)和outw(value,port)来完成。其中各函数的第一个参数表示要写的数值,第二个参数表示端口地址。  宏inb_p(),outb_p(),inw_p()和outw_p()的作用与对应的上述四个端口读写函数一样,只是在端口操作后附加一定时间的延时以保证读写可靠。可以通过在#include前加上:#defineREALLY_SLOW_IO获得约4微秒的延时。  3.3.基于TinyX和Gtk+的软面板编程  仪器软面板的设计涉及linux下GUI的选择和编程,考虑到XWindows的成熟性和与桌面系统的一致性,我们选用精简的XWindows系统TinyX作为底层GUI解决方案。使用Gtk+1.2库作为控件集来开发仪器软面板程序。  基于TinyX和Gtk+库的图形界面开发方案使得软面板的开发与桌面环境下基于Gnome的开发比较接近,很多的桌面环境下的linux工具可以直接使用。  Gtk+图形库是GNOME桌面系统的底层基础,它包含比较完整的GUI控件集合(GtkWidgets)。基于面向对象的方法,GTK+用C语言实现了一套对象系统和消息及回调机制,并将整个图形控件集纳于对象框架中,使得控件集的扩充比较方便。  针对虚拟仪器领域的应用需求,可以构建常见的GUI单元的控件集。我们以GtkWidgets的形式开发了示波器,信号源等仪器的面板控件和一些关键的GUI单元控件。这些都有利于用户的二次开发和软件单元的重用。  4结论  基于嵌入式主板和嵌入式软件环境,我们给出一个构造虚拟仪器的通用解决方案。同时,通过构建基于TinyX和Gtk+库的GUI环境,再加上我们自主开发的一系列面板单元控件,我们提供了对虚拟仪器软面板开发的支持。  基于以上的方案,我们开发了集示波器、万用表和微波信号源等仪器功能于一体的雷达故障检测仪。  部队野战环境下的实践表明该系统机械结构牢固、可靠性高,携带使用方便。

  • 【资料】protues虚拟实验室

    protues虚拟实验室  随着电子技术的不断发展, 电子类课程在高教中的地位日趋重要。而作为该类课程教学重要组成部分的实验教学,也越来越受到了人们的重视。它对于提高教学质量,培养学生的实际动手能力及创新思维能力具有无可比拟的作用。长期以来,高教研究者、工作者一直为此探索,并希望找到一个行之有效的方法。为此,人们借助现有的电子技术手段,建立了多种门类的实验平台(如电路分析实验室、模拟电子线路实验室、数字电路实验室、信号与系统实验室等),并在此平台上开设了相应的实验课程。尽管如此,这些措施并未达到预期的效果。特别是在电子技术高速发展的今天,这些方法及手段已经显得不再适宜,建立一套新的实验手段及方法已成为高教研究者、工作者的共识。  2 现有实验室存在的问题  目前,现有的电子类实验室大多存在以下问题:  1)不利于管理及维护。  现有电子类实验室种类多、如电路实验室、电子线路实验室、数字电路实验室、单片机实验室、微机原理实验室、ARM实验室(或嵌入式系统实验室)、信号系统实验室、数字信号处理实验室等;在每一类实验室中,设备种类多、数量大(如,各类信号源设备、各类测试仪器仪表、各种实验箱等)。种类繁多的设备,加上分批进行的学生实验,对于有限的师资力量而言,有效的管理工程制图桌及维护无疑成为十分艰巨的任务。  2)不利于保持实验室的先进性,也不利于保护前期的投资  由于现代电子技术的飞速发展,各种新设备、新器件层出不穷,这就往往造成这样一种现状,某一种实验设备可能刚到用户的手中就面临落后的,就更不用说在2-3年后被淘汰是多么的正常。因此,基于硬件设备手段建立的实验室面临着随时可能落后的现状,要想保护其前期投资更是难上加难。  3)不利于提高实验效果。  现有电子类实验室大多采取一种封闭式的实验教学模式,即在规定的课时时间内,学生在规定的场地内,进行规定的实验内容(由于实验设备能力的限制造成),这种封闭式的实验教学模式,一方面由于时间及场地的限制,往往造成学生不能有充够的时间深入了解及研究实验的内容,学生对实验的兴趣也被这些限制所扼杀。另一方面,固定式的验证实验内容也限制了学生的思维空间,扼杀了学生创新思维能力的培养。因此,其实验效果很难提高,这种做法实际上背离了现代实验教学改革中提出的“优化课内,强化课外”的实验教学意识。  4)实验内容彼此孤立,不利于培养学生“从概念到产品“认识的形成。  现有的各种电子类教学实验,基本是进行固定程式的验证式实验,实验所用的元器件,线路板已选好,学生所做的工作仅是对实验箱连连线,使用一下测试仪器、仪表,建立学生的相应概念而已。很难满足现代实验教学改革提出的三个实验层次即“基础性实验、综合性实验、创新性实验”的目标,目前的实验平台不能满足这样的训练,即:学生从有一个概念(或想法)开始,然后着手教学电梯模型电路原理图的设计、编写程序代码、调试、PCB设计,最后形成产品的整个开发过程的训练。学生通过传统实验手段所得到的训练是片面的、局部的,其对产品开发过程的认识并不深刻,这也是导致学生所学不能所用的根本原因所在。  5)不利于开展创新性研究。  开展创新性研究的前提是实验环境的丰富资源及其灵活可变性。但目前基于硬件的实验平台往往采取一种定式的实验或研究环境,即教师只能在有限的几种器件或线路实验板之上进行实验内容的设定或研究,学生也同样如此,这对于开展创新性研究极为不利。  6)不利于培养学生的实验兴趣及创新思维能力。  学生对某一课程实验的兴趣往往需要一段较长时间的培养才能产生,但现有的课程实验由于场地不能随时、随地对学生开放,并且开放的时间也非常有限,这就不能激发学生的实验兴趣,另外其创新思维能力的培养也受到同样的限制。  3 PROTEUS实验室建设的必要性  3.1 PROTEUS实验室概念  利用计算机仿真技术,在计算机网络平台上,学习电路分析、模拟电路、数字电路、嵌入式系统(单片机应用系统、ARM应用系统)、微机原理与接口技术等课程,并进行电路设计、仿真、调试等通常在相应实验室完成的实验。一个计算机网络硬件平台(或一台计算机)、一套电子仿真软件,再加上一本虚拟实验教程,就可相当于一个设备先进的实验室。以虚代实、以软代硬,即为虚拟实验室的本质。  Proteus实验室采用Proteus仿真软件和相应的硬件平台构成一个从虚拟到实际,从软件到硬件,从概念到产品的全过程设计的多功能实验平台。它主要用于电路分析、模拟电路、数字电路、嵌入式系统(单片机应用系统、ARM应用系统)等课程的实验、研究等。  3.2 PROTEUS仿真软件简介  Proteus是一种功能强大的电子设计自动化软件,提供智能原理图设计系统、SPICE模拟电路、数字电路及MCU器件混合仿真系统和PCB设计系统功能。其不仅可以仿真传统的电路分析实验、模拟电子线路实验、数字电路实验等,而且可以仿真嵌入式系统的实验,其最大的特色在于可以提供嵌入式系统(单片机应用系统、ARM应用系统)的仿真实验,这也是其它任何仿真软件无力所及的。例如,其教学用数控车床支持单片机和周边设备,可以仿真51系列、8086、AVR、PIC、Motorola的68系列等常用的MCU,并提供周边设备的仿真,例如373、led、示波器等。Proteus提供了大量的元件库,有RAM、ROM、键盘、马达、LED、LCD、AD/DA、部分SPI器件、部分IIC器件等。在编译方面,它也支持Keil和MPLAB等多种编译器。  3.3 PROTEUS实验室的优点  Proteus实验室的主要优点总结如下:  1)多功能型实验室  其不仅可以仿真电路分析实验、模拟电子线路实验、数字电路实验,而且可以仿真嵌入式系统的实验,其最大的特色在于可以提供嵌入式系统(单片机应用系统、ARM应用系统)的仿真实验,因此,它完全可以称之为一个多功能的实验平台。  2)开放型实验室   由于其硬件是基于网络平台的,如一个单位内的局域网、或企业网、或校园网(或单机板,基于一台PC)或Internet用户。因此其实验用户可以不受传统实验室的时间、空间、及实验内容的限制。用户可以跨越时间、空间及实验内容的约束,尽情释放自己的实验兴趣及创新思维;此外,这也使得设备的利用率得到最大的发挥。  3)先进型实验室  由于Proteus实验室主要由其Proteus仿真软件实现,其内置:  ①万种以上的元器件(数字的、模拟的、交流的和直流的)及多达30多个元件库;  ②多种现实存在的虚拟仪器仪表,如示波器、频谱分析仪,电压表、电流表、图表分析、逻辑分析仪、虚拟终端等。这些虚拟仪器仪表具有理想的参数指标,例如会计模拟实验室极高的输入阻抗、极低的输出阻抗,可尽可能减少仪器对测量结果的影响。  ③丰富的测试信号源用于电路的测试,这些测试信号包括模拟信号和数字信号。[co

电路虚拟测试仪相关的耗材

  • 医药包装物理性能测试仪PMT-05普创paratronix
    产品介绍: PMT-05 医药包装物理性能测试仪是针对医用材料物理性能测试开发的一款多功能集成仪器,可进行器身密合性检测(预灌封注射器密合性检测)、铝塑瓶盖开启力、安瓿瓶折断力、胶塞穿刺力、注射针刚性、针座结合牢度、铝箔板材拉伸以及定力值和定位移测试。扩展还可进行其他项目测试。本仪器应用于注射剂瓶和输液瓶铝盖、丁基胶塞、铝塑组合盖、聚丙烯组合盖、薄膜、复合膜、药用铝箔、PVC硬片、预灌封注射器、一次性注射器等药品包装材料,进行接桥链接力、穿刺力、滑动性、开启力、拉伸强度、热合强度、人体内导管导丝摩擦力等试验。 医药包装物理性能测试仪采用进口品牌高精度传感器,测试结果精确稳定,无极调速可满足不同实验对试验速度的要求。仪器支持多种试验模式,配合不同试验夹具可满足不同实验要求,夹具更换方便快捷。广泛应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位。 产品特点:● 进口微型计算机控制技术,开放式结构,友好人机界面操作,使用简单方便● 多种操作模式任意选择,增加定力值、定位移模式,操作更简单方便● 精密丝杆传动,优质不锈钢导轨及合理布局,确保仪器运行平稳● 采用进口高精度测力传感器,测量精度为 0.5 级● 采用精密微分电机驱动,传动更平稳,噪音更低,定位更准确,测试结果重复性更好● 液晶中文显示,全自动测量,具有测试数据统计处理功能● 高速微型打印机输出,打印快速,噪音低,不需更换色带,更换纸卷方便● 内置专用校准程序,便于计量、校准部门(第三方)对仪器进行校准● 高清彩色大屏幕显示曲线、文字,视觉更清晰● 可配备电脑软件,双向操作 技术参数:测量范围 5kg 25kg 50kg (任选一个或多个)测量单位 N kg ib测量精度 0.5 级试验行程 1000mm测试模式 开启力测试、折断力测试、穿刺力测试、拉压力测试、针管刚性测试、定力值测试、定位移测试、剥离力测试、活塞滑动性能测试、器身密合性测试、人体内导管导丝摩擦力测试试验速度 1-600mm/min 无级变速外形尺寸 470(L) X 450(B) X 970(H) mm重 量 约 90kg电 源 AC220V±22V,50Hz标准配置 主机 、拉伸夹具选购配置 开启力夹具、穿刺夹具、折断力夹具、滑动性能夹具、电脑软件、电脑设置标准:YBB00242004-2015、YBB00402003-2015、 YBB00042005-2015、YBB00052005-2015、 YBB00332004-2015 、YBB00332002-2015、YBB00112004-2015、GB-14232.1-2004、GB-15811-2016、GB-15810-2001、GB/T-1962.1-2001、GB-2637-1995、ASTM D882医药包装物理性能测试仪PMT-05普创paratronix 医药包装物理性能测试仪PMT-05普创paratronix
  • 拉脱法附着力测试仪
    拉脱法附着力测试仪 测量金属、混凝土和其他基材上的涂层附着力-自我对中功能给附着力测量带来新的意义。 容易使用 便携、人手操作,仪器可在任何场合下使用,不需要外部电源,在实验室和现场测试皆宜。 又大、又易于阅读的刻度(Ø 94 mm) 价廉,一次性使用的底盘消除了重复使用所需的加热、清洁或刷洗工序。 每个工具箱均包括测试所需的所有东西。 可 靠 每一个PosiTest附着力测试仪的压力系统都经过较准,可达到所使 NIST具追朔性载荷单元± 1%的精度。 优质,精确的表盘指示器。 一年保修 符合ASTM D 4541,ISO 4624标准 通 用 自我对中底盘可测量光滑或不平表面且不会影响测试结果。 多种型号可选,用于测量不同基材上的涂层附着力。 20mm的底盘用于金属、塑料和木质基材,50mm底盘用于石质基材,如混凝土等。 客户若需适合特别测量需要的其它尺寸底盘可联系供应商索取进一步细节。 AT-C型包括独特的钻孔模板,将测量区域从周围涂层隔开,用于测试厚涂层。 刻度盘具有MPa和PSI读数。 器包括: 手动液压泵 调速控制器 铝制测试底盘 磨耗板 20mm底盘切割工具(仅AT-P、AT-M和AT-CM配) 钻孔模板和10个钻头,用于厚涂层(仅AT-C和AT-CM配) 粘着剂 粘着剂混合棒和盘 (5个) 粘着剂兼容性测试棉棒 (5个) 说明书 校准证书,具NIST追朔性 坚固、轻型的携带箱 订货指引 型号 PosiTest AT-C PosiTest AT-P PosiTest AT-M PosiTest AT-CM 典型应用 混凝土上涂层 塑料、木头、金属上清漆层 金属上涂层 混凝土和金属上涂层 附着力范围 0-500 PSI 0-3.5 MPa 0-1000 PSI 0-7 MPa 0-3100 PSI 0-21 MPa 结合了AT-C和AT-M型号 分辨率 3.2 PSI 0.03MPa 10 PSI 0.1MPa 20 PSI 0.2MPa 底盘尺寸(mm)* 50 20 20 * 还有其它尺寸的底盘可满足客户需要--联系供应商以获得详细资料。
  • HL-6301 土壤湿度测试仪
    HL-6301 土壤湿度测试仪 HL-6301 土壤湿度测试仪本款仪器是园艺的好帮手,可以测试土壤的湿度,无需电池.工作原理: 通过土壤中有机营养物质的电解值测出植物土壤水份情况, 把探针插入根部就可读出,无需电池.精确有效的测出植物土壤里的湿度;准确掌握各种植物生长的适宜条件;把探针插入根部土壤中就可读出准确的土壤湿度,MOIST是水份键,对应表上的是MOIST, DRY是干, WET是湿,数值1-3(红色部分)说明需要浇水, 4-7(绿色部分)是合适的,请根据植物的品种调整浇水时间, 8-10(蓝色部分)说明太湿了. 使用时注意插电极时不能碰到石头,不要用力过猛,否则容易伤害电极.用完后把电极洗干净. 如何测量湿度 1.将探棒尽量垂直插入被测土壤中。在测试盆栽植物土壤时,不要使探棒离植物过近,以免伤及植物根系; 2.在探棒插入被测土壤的过程中,你会发现刻度盘内指针所指位置不稳定,这是因土壤湿度不均匀所至。所以请测试两遍以最终确定结果; 3.读取结果; 4.将探棒从被测土壤中取出,请不要拉、拽白色连接线,以免使用时出现接触不良等故障; 5.用棉布将探棒完全擦净,以备下次使用。 如何读取结果 1.湿度标度尺上的数字1-10代表湿度的逐渐递增。没有任何植物可以长时间在1和10代表的两种湿度环境下正常生长。在附表中为您提供了所列植物的湿度环境要求。如果所测结果高于表中规定要求,在此情况下您不需继续浇水;若结果低于规定要求,提醒您应立即浇水。 2.浇灌次数(参考说明书): &mdash * 1周需检查一次 &mdash ** 每4到5天需检查一次 &mdash *** 3天需检查一次仪器读数表 3.特殊水分要求 以下数字代表: i 每天向叶面洒水; ii 不要让土壤变干; iii 保持土壤湿润,但不应过于潮湿; iv 土壤应始终保持湿润; v 在浇灌间隙可令土壤变干; vi 在浇灌前4到5天应使土壤变干; vii 在植物休眠期间应逐渐减少施水量; viii 将水倒入盆栽托盘中;不需洒水在叶子表面。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制