当前位置: 仪器信息网 > 行业主题 > >

电子激光测距仪

仪器信息网电子激光测距仪专题为您提供2024年最新电子激光测距仪价格报价、厂家品牌的相关信息, 包括电子激光测距仪参数、型号等,不管是国产,还是进口品牌的电子激光测距仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子激光测距仪相关的耗材配件、试剂标物,还有电子激光测距仪相关的最新资讯、资料,以及电子激光测距仪相关的解决方案。

电子激光测距仪相关的资讯

  • 全球最大流动卫星激光测距仪在武汉研制成功
    记者从位于武汉的中国地震局地震研究所获悉,全球最大流动卫星激光测距仪近日研制成功。   该仪器长10米、宽2.5米、高3.9米,其望远镜口径达到1米,居世界同类仪器之首,采用半挂车运载,具有白天观测能力。   项目负责人、中国地震局地震研究所研究员郭唐永介绍,该测距仪的研制为国家重大科学工程“中国大陆构造环境监测网络”支持的项目,它可用于观测3.6万公里远的地球同步卫星,测距精度达毫米级。去年底曾在湖北咸宁进行首次流动观测(如图),并成功观测到地球同步卫星。   其观测原理为:仪器通过对卫星发射激光,并根据激光反射回来的时间,来测算卫星运行的高度和轨迹。
  • 452万!河北省特种设备监督检验研究院邯郸分院计划采购激光测距仪等仪器设备
    项目概况仪器设备采购招标项目的潜在投标人应在在河北省公共资源交易信息平台(http://www.hebpr.cn//)自主网上报名,下载招标文件及相关资料,并及时查看有无澄清和修改。获取招标文件,并于2022年05月16日09点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:HBHY(2022)-02-11项目名称:仪器设备采购预算金额:4520000最高限价(如有):A包:2563500元;B包:1956500元。采购需求:采购便携式高温腐蚀度检测仪、激光测距仪、安全阀在线校验仪等共29种仪器设备。合同履行期限:自合同签订之日起30日内;本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目专门面向小微企业采购。3.本项目的特定资格要求:无三、获取招标文件时间:2022年04月25日至2022年04月29日,每天上午9至12,下午14至17(北京时间,法定节假日除外)地点:在河北省公共资源交易信息平台(http://www.hebpr.cn//)自主网上报名,下载招标文件及相关资料,并及时查看有无澄清和修改。方式:其它售价:0四、提交投标文件截止时间、开标时间和地点2022年05月16日09点00分(北京时间)地点:河北省公共资源交易服务平台网上开标大厅五、公告期限自本公告发布之日起5个工作日。十、其他补充事宜1.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加同一合同包下的采购活动;2.凡有意参加本项目的供应商须按 “河北省公共资源交易中心关于招标代理机构及投标人(含政府采购供应商)进行登记注册的通知”及时在河北省公共资源交易中心进行注册并验证。因供应商自身的原因未能及时完成注册并验证通过的,将会导致报名不成功,其后果自行承担。3.投标文件递交办法:1)本次招标为电子招投标,投标文件采用数据电子文件,投标人可通过河北省公共资源交易服务平台在线参与开标。2)投标人应在投标截止时间前通过“河北省公共资源全流程电子交易系统”上传加密的电子投标文件。3)在线递交电子投标文件前,投标人应当使用投标客户端及CA为投标文件加密(编制投标文件需使用河北CA,未办理CA的供应商/投标人,需进行企业CA注册,具体事宜可联系0311-66635531)。4.公告发布媒体:中国河北省政府采购网、河北省公共资源交易平台十一、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:河北省特种设备监督检验研究院邯郸分院地 址:邯郸市丛台区友谊路2号联系方式:0310-31730892.采购代理机构信息(如有)名 称:河北华业招标有限公司地 址:河北省石家庄市红旗大街25号联系方式:0311-830338663.项目联系方式项目联系人:闫宏亮、叶媛电 话:0311-83033866
  • 记国家光电测距仪检测中心
    成立于1988年的国家光电测距仪检测中心(中测国检(北京)测绘仪器检测中心)是目前我国测绘行业惟一获得国家质量监督检验检疫总局专项计量授权的国家级测绘仪器检定机构和新仪器定型鉴定机构,是国家认证认可监督管理委员会直属监督管理的国家级测绘仪器检测中心。其主要业务方向和研究领域包括:   计量检定——以计量法、测绘法为依据,在全国范围内依法开展测距仪、全站仪、经纬仪、GPS接收机、水准仪等测绘仪器的计量检定 受国家质量监督检验检疫总局委托,依法开展国内外测绘仪器新产品的定型鉴定,依法严把进口和国产测绘仪器新产品的质量关   科学研究——以科技创新为主导,建立具有国际先进水平的计量标准装置 利用技术优势,致力于国家测绘计量标准体系建设和完善,引领行业发展和技术进步   技术服务——为国内计量行业提供计量标准建设、软硬件研制等技术支持 为国家重大工程的仪器选型和质量控制提供技术方案和支持。   为保证国家量值统一和测绘成果的准确可靠,检测中心依法面向行业和社会开展测绘仪器计量检定,进行量值传递工作,并为广大客户提供测绘仪器检校、维修、测试及技术咨询等服务。从成立之初至今,累计完成各种种类、型号测绘仪器检测量达5万余台,为保证测绘仪器(尤其是大地测量仪器)质量及国家测绘成果的量值统一作出了重要贡献。   作为国家质量监督检疫检验总局授权的技术机构,检测中心承担着国外进口和国内测绘仪器新产品的定型鉴定工作,自2002年以来共完成国内外各种测绘仪器新产品定型鉴定100多个系列和型号。这项代表技术水平与综合实力最高水准的工作,得到政府部门的大力支持和信任,为国内外测绘仪器新产品的市场准入起到了决定性作用。   经过20多年的不懈努力,检测中心不仅注重硬件设施的投入与建设,而且培养了一支专业技术能力强、综合素质高的检测队伍和具有创新意识的科研队伍,在为社会提供优质计量检定服务的同时,在测绘计量技术研究、计量标准建设和计量标准器具研制及应用等方面一直处于国内领先,部分项目达到国际先进水平,为保证国家测绘成果质量和全国测绘量值统一作出了贡献。
  • 福建省计量院“全站仪测距精度校准能力计量比对”中取得满意结果
    福建省计量科学研究院始建于1960年,现隶属于福建省市场监督管理局,是福建省属社会公益型科研事业单位,是依法设置的全省最高法定计量检定机构。承担国家法定计量检测任务,同时开展计量技术研究,为促进产业创新、提升产品质量提供技术支撑。   日前,由中国计量院作为主导实验室的国家计量比对项目“全站仪测距精度校准能力计量比对”结果公布,福建省计量院5个测段的比对结果|En|值均小于1,比对结果满意。   此次比对在中国计量院昌平科研基地进行,全国共有13个省市的计量和测绘实验室参加比对。通过比对验证了福建省计量院标准长度基线场稳定可靠,人员的技术能力突出,从而可确保我省全站仪测距的准确可靠和量值统一,能够为我省桥梁、隧道、港口、码头等大型工程建设安全生产保驾护航。   全站仪,即全站型电子测距仪(Electronic Total Station),是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。   全广泛应用于测绘、勘测、建筑施工等领域,仪器距离测量准确与否直接关系到工程建设质量和施工运行安全。福建省计量院长度所每年为数百家企业、科研事业单位提供全站仪测距测角技术服务,依托该院的标准长度基线场着力为企业解决了长距离激光测距中存在的难点问题,同时为企业研发新产品、产品升级、技术提升提供技术咨询与测试服务。
  • 中国科学院国家天文台长春人卫站自主研制的近红外单光子探测器成功实现卫星激光测距
    近日,中国科学院国家天文台长春人造卫星观测站自主研制的近红外单光子探测器成功实现了卫星激光测距。长春人卫站激光测距研究室的研究人员利用先进的数值仿真技术、器件工艺以及外围控制驱动技术,自主完成了近红外单光子探测器的结构设计、电路优化以及器件制备。近红外单光子探测器经中科院上海天文台测试并应用于1064nm近红外激光测距系统,成功获取地球同步轨道卫星北斗G1的观测数据,单次测距点数高达31446点,测距精度为1.42cm,与常规的532nm激光测距相比,系统回波探测率提高3-4倍;器件性能与美国PGI研制的同样采用SAGCM设计方案的近红外单光子探测器水平相当。 长春人卫站研制出国内首款近红外激光测距单光子探测器,不仅打破了国外技术封锁及市场垄断,推动我国先进光电探测仪器向小型化、高可靠、高稳定方向持续发展,更为我国自主建设空间碎片测距系统、开展激光测月等国家重大工程任务提供可靠有效的工具和手段。
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon® 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 法如Faro推出全球最精确的大空间激光跟踪仪
    佛罗里达州玛丽湖 2009年9月 22日电 /美通社亚洲/ -- 世界领先的便携式计算机辅助测量设备与成像解决方案制造商供应商法如科技 (纳斯达克: FARO),今天宣布推出其最新款三维激光测量系统设备法如激光跟踪仪 ION:FARO Laser Tracker ION(TM)。 (图片: http://www.newscom.com/cgi-bin/prnh/20090922/FL76690 ) FARO Laser Tracker ION 是目前市场上最先进技术水平的激光跟踪仪,也是迄今最精确的激光跟踪仪,基于最常见测量应用开发而成。这款重量更轻的产品,提供了更大测量范围,并含有最快捷、最精密的测距系统集中式绝对测距仪 (aADM)。 FARO 首席执行官 Jay Freeland 表示:&ldquo FARO 的目标是不断提供能支持我们客户的先进解决方案。这不仅事关提供新产品,还要专注于长期合作关系,使他们拥有全球最好的产品和工艺。在当前的经济环境中,拥有测量结果令人信服的测量工具,同时减少高代价的重复工作并精简流程极为重要。ION 将帮助我们的客户促进他们保持竞争力所需的创新。&rdquo ION 具备的独家专利是 Agile ADM。FARO 跟踪仪产品部产品管理总监 Ken Steffey 表示:&ldquo 集中式Agile ADM 代表着绝对测距仪 (ADM) 技术的最新进展。ION的ADM系统为当今唯一无需使用干涉仪(IFM)而可以迅速进行高密度扫描的系统。这个系统比其它激光跟踪仪中使用的技术更为简化。 FARO 激光跟踪仪取代了卷尺、钢琴丝、铅锤和经纬仪等传统工具,客户已日益了解 FARO激光跟踪仪在校准、机器安装、部件检测、工具组装和设置以及逆向工程中的应用。各种规模的企业很快亲眼见识了使用它后的益处,并获得了全面的投资回报。 这款激光跟踪仪 ION 已于2009年9月22-24日在伊利诺伊州 Rosemont(毗邻芝加哥)的Donald E. Stephens Convention 展览中心举行的&ldquo Quality Expo&rdquo 展览会上进行了首度展示。在9月22日下午1:00(展台号:5125)召开了新闻发布会,以演示这款产品并解答所有问题。 欲知本产品更多信息:点击进入 法如科技 FARO Technologies,Inc. 地址:上海市桂林路396号3号楼1楼 邮编:200233 Tel: 86-21-61917600 Fax:86-21-64948670 网址:www.faroasia.com/china e-mail: chinainfo@faro.com
  • MIT研究团队打造新型红外测距系统,只需10美元成本
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 由Li-Shiuan Peh带领的麻省理工计算机科学与人工智能实验室(CSAIL)研究人员团队,已经开发出一套有趣的新型红外深度感知系统。这套系统能够在户外使用,只需10美元的成本,就能够为智能机添加新技能。基于它,传统的个人代步工具——比如轮椅车和高尔夫球车——都可以轻松升级为自动驾驶车辆。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/e2ae0fd0-c714-40ca-a6f8-ca145065910c.jpg" title=" d53f846893f96d1.jpg" width=" 600" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" line-height: 1.75em "   上面这套原型,用到了普通手机中的摄像头组件,以及拆自仅10美元的测距仪上的商用激光发射器。 /p p style=" line-height: 1.75em "   实际上,类似微软Kinect之类的实惠型测距设备,已经在客厅娱乐之外的很多领域(比如机器人工程),发挥出了远胜于以往的潜力。 /p p style=" line-height: 1.75em "   在拥有现成廉价配件的同时,研究人员们还希望做出一个快速原型,甚至基于此打造出一个能够感知环境和导航的机器人,而无需不断改造必要的技术。 /p p style=" line-height: 1.75em "   遗憾的是,以Kinect为代表的红外系统,对光线条件的要求略有点高。阳光、火焰、热源,都可以轻松让它们抓瞎。 /p p style=" line-height: 1.75em "   相比之下,能够发射高能红外脉冲的商业户外测距仪,已经在过去30年里变得相当普及,其损伤眼睛的风险也被降到了最低。然而这样的系统非常昂贵,动辄上万的花费不是谁都承担得起。 /p p style=" line-height: 1.75em "   MIT的解决方案是测量定时发射的低能脉冲(捕捉4帧视频、2× 测量反射光、2× 只记录周围的红外线),然后用后者减去前者来算出距离。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/7787b238-849f-4e82-9ac9-b75f9a4ee326.jpg" title=" 0d87e0dee312826.jpg" / /p p style=" line-height: 1.75em "   在当前原型中,MIT研究人员用到了30fps的智能机摄像头(延迟约1/8秒--但也限制了这套系统的精度--240fps的摄像头可实现1/60的延时),虽称之为“主动式三测角”(active triangulation),但仍通过相机的2D传感器来测量。 /p p style=" line-height: 1.75em "   CSAIL研究人员表示,在3-4米的范围内(10-12英尺),设备的精度可以达到毫米级。在5米(16英尺)的时候,则减到了6厘米(2.3英寸)。 /p p style=" line-height: 1.75em "   不过,团队已经在一辆由新加坡-麻省理工研究与技术联盟开发的高尔夫球车上安装试验过,在15km/h(9pmh)的速度下都能够实现合适的深度测量。 /p p style=" line-height: 1.75em "   在技术成熟之后,就可以通过“插件式”的方法,轻松打造出一辆自动驾驶的高尔夫球车、电动轮椅、无人送货飞行器、甚至机器人。 /p p style=" line-height: 1.75em "   该团队将在斯德哥尔摩召开的“2016机器人与自动化国际会议”上披露更多细节。 /p p br/ /p
  • 浙江省计量院圆满完成全站仪测距精度校准能力全国计量比对
    近日,浙江省计量院圆满完成由中国计量科学研究院组织的国家计量比对项目“全站仪测距精度校准能力计量比对”,省计量院5个测段的比对结果|En|值均小于0.5,比对结果满意。全站仪,即全站型电子测距仪,是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。广泛应用于地上大型建筑和地下隧道施工等精密工程测量、变形监测领域,因此全站仪测距量值的准确可靠至关重要。此次比对在中国计量院昌平基地进行。比对期间,浙江省计量院克服沙尘暴恶劣天气,积极采取比对措施,确保比对工作井然有序、圆满完成。此次计量比对反映了省计量院计量工作水平稳定可靠、人员技术能力扎实,可确保我省全站仪测距数据准确可靠,能够为我省大型建筑、地下隧道施工以及变形监测等领域安全生产保驾护航。浙江省计量院每年为数百家企业、科研院所提供全站仪测距测角技术服务,并依托高精度测绘地理信息装备测量能力为企业解决设计、研发、生产过程中遇到的测量难题,发挥计量引领作用。
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • 激光精密测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    德国“工业4.0”与”中国制造2025“发展战略,对高端装备中的超精密测量精度要求越来越高。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器。激光束通过分光镜后,分成两束激光(参考光束和测量),分别经两个角锥反射镜反射后平行于出射光返回,通过分光镜后进行叠加(两束激光频率相同、振动方向相同且相位差恒定,即满足干涉条件),产生相长或相消。反射镜每移动半个激光波长,将产生一次完整的明暗干涉现象,通过接收到的明暗条纹变化及电子细分,即可求得距离变化(距离=干涉条纹数*激光半波长)。激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作。激光干涉仪原理构造激光测距仪是利用激光对目标的距离进行准确测定的仪器,根据测量原理分为脉冲法和相位法。脉冲激光测距法由于激光发散角小,激光脉冲持续时间极短,瞬时功率极大可达兆瓦以上,可以达到极远的测程,广泛应用在地形地貌测量、地质勘探、工程施工测量、飞行器高度测量、人造地球卫星相关测距、天体之间距离测量等方面。第二届精密测量技术与先进制造网络会议期间,清华大学与哈尔滨工业大学两位专家将分享激光精密测量技术、仪器及应用。部分报告预告如下,点击报名  》》》清华大学精密仪器系系副主任/副教授 谈宜东《激光干涉精密测量技术、仪器及应用》(点击报名)谈宜东,清华大学精密仪器系长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等多个项目。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表SCI论文100余篇,授权发明专利37项,在国际会议Keynote/Plenary/Invited报告60余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。【报告摘要】 以传统激光干涉为引,介绍清华大学激光精密测量及应用团队在双频激光器、干涉仪及在光刻机中的精密测量应用,并拓展到空间引力波测量。针对传统干涉测量需要配合靶镜的局限性,提出激光回馈测量原理,实现了无靶镜纳米测量,攻克了航空航天、先进制造和国防安全领域的无靶镜测量难题,并开展了多种应用研究,包括:位移测量、激光侦听、高精度激光测距及雷达技术等。哈尔滨工业大学副研究员 杨睿韬《短脉冲光频梳激光测距技术》(点击报名)杨睿韬,哈尔滨工业大学副研究员,博士生导师。研究方向为超精密激光干涉测量,重点攻关短脉冲/光频梳生成与稳频、光梳激光测距等关键技术,承担国家重点研发计划课题/子课题、国自然面上等项目,参与国家科技重大专项、欧盟计量联合研究计划等项目。获中国计量测试学会科技进步一等奖(序4/6)、全国优秀博士学位论文提名等奖项。担任国际SCI期刊Photonics客座编辑。发表学术论文20余篇,申请发明专利10余项,出版专著1部。指导哈工大优秀本科/硕士毕业论文共5人,指导大学生光电设计竞赛国赛一等奖等2项。【报告摘要】 激光测距技术是大范围、高精度空间几何量测量的核心技术基础。短脉冲光频梳的诞生极大的推动了该技术领域的发展,其独特的时域短脉冲序列、频域等间隔梳状多光谱特征,不仅大幅提高了经典的飞行时间、调制波测相、多波长干涉等测距方法的性能,更引领了一系列新型激光测距方法的发展。本报告分析了短脉冲光频梳激光测距方法及趋势,介绍了项目组在短脉冲光频梳激光测距领域的最新进展。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • 全球首款电池驱动式IP54防护标准的绝对激光跟踪仪推出
    Hexagon计量产业集团推出全球首款电池驱动式IP54防护标准的绝对激光跟踪仪     新型Leica绝对激光跟踪仪AT401集合多项全球首创技术特点:1. 全球首款可由电池驱动、实现无线操作的激光跟踪仪;2.全球第一款具备IP54防护标准(防尘,防水…)认证的激光跟踪仪;3.极致轻便小巧,在同类产品中重量最轻;4.高精度大量程;5.整合了能量锁 (PowerLock)和目标自动识别(ATR)等业内先进功能,使得三维激光跟踪仪的应用操作变得空前的简易。   2010年4月28日,Hexagon计量产业集团宣布了Leica绝对激光跟踪仪AT401正式面市的消息。这一全新的激光跟踪仪拥有先进的电源管理系统,含两块电池,且允许电池热切换,并可以通过以太网供电运行(PoE+) 集成的WiFi,使得AT401成为一台真正的无线移动式测量机。该系统经过IP54等级认证,不受液体、焊接飞溅物、灰尘干扰,甚至适应雨中操作。   AT401含控制系统在内总重仅为8 KG,高度仅为29 cm,极小的外形结构使得AT401可以在大多数国际航班上作为手提行李进行运输。新型Leica 绝对激光跟踪仪AT401树立了行业便携的新标准。   AT401在水平和垂直轴方向都能实现无级旋转,当快捷释放把手被移走时,AT401在垂直方向的全测量范围将达到+/- 145º ,测量范围高达320m。AT401中的绝对测距仪(ADM)在其全精度认定范围内的最大测量不确定度仅为10微米,并配备多项先进的Leica工业测量技术,如能量锁(PowerLock)光束恢复、目标自动识别(ATR)、免维护Piezo驱动和重力传感器的测量级别精度水准等。   Leica AT401绝对激光跟踪仪推动了激光跟踪仪在尺寸、重量、量程、精度和可操作性等多方面的进步,并为激光跟踪仪的精度设立了新标准。目前,激光跟踪仪已经广泛分布于航空航天、工程机械、风电、水电、船舶行业及关注大部件和远距离的科学研究中,而Leica AT401绝对激光跟踪仪的创新将会在此基础上大大拓展激光跟踪仪的应用范围。   关于Hexagon计量产业集团   Hexagon计量产业集团隶属于Hexagon AB集团,其麾下拥有全球领先的计量品牌,如Brown & Sharpe、CE Johansson、CimCore、CogniTens、DEA、Leica工业测量系统 (计量分部)、Leitz、m&h、Optiv、PC-DMIS、QUINDOS、ROMER、Sheffield、Standard Gage和TESA。Hexagon计量产业集团代表着无可匹敌的全球客户群,数以百万计的坐标测量机(CMMs)、便携式测量系统、在机测量系统、光学影像测量系统和手持式量具量仪,以及数以万计的计量软件许可。凭借精密的几何量测量技术,Hexagon计量产业集团帮助客户实现制造过程的全面控制,确保制造的产品能够精确的符合原始设计的需要。该集团为全球客户提供测量机、测量系统以及测量软件,并加之以完善的产品技术支持和售后增值服务。更多信息请登录www.hexagonmetrology.com.cn   海克斯康测量技术(青岛)有限公司   地址:青岛市株洲路188号 邮编:266101   电话:0532-8089 5188 传真:0532-80895030   网址:http://www.hexagonmetrology.com.cn   E-mail:info@chinabnsmc.com
  • 中科院长春光机所:激光技术的“前世今生”
    p   自1960年美国研制成功世界上第一台红宝石激光器,我国也于1961年研制成功国产首台红宝石激光器(诞生于中国科学院长春光学精密机械研究所)以来,激光技术被认为是20世纪继量子物理学、无线电技术、原子能技术、半导体技术、电子计算机技术之后的又一重大科学技术新成就。 br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/fa6ca572-ac36-49a3-8c53-3b3f8b976589.jpg" title=" 1.jpg" / /p p   如今,我们家中用的CD和DVD播放器,办公室的激光打印机和商场的条码扫描器都有激光。人们用激光治疗近视视力,通过光纤网络发送邮件浏览视频。无论我们是否意识到,我们每个人每天都使用激光,但是有多少人真正了解激光是什么,如何工作? /p p   激光,是一种自然界原本不存在的,因受激而发出的,具有方向性好、亮度高、单色性好和相干性好等特性的光。 /p p   激光的产生机理可以溯源到1917年爱因斯坦解释黑体辐射定律时提出的假说,即光的吸收和发射可经由受激吸收、受激辐射和自发辐射三种基本过程。众所周知,任何一种光源的发光都与其物质内部粒子的运动状态有关。当处于低能级上的粒子(原子、分子或离子)吸收了适当频率外来能量(光)被激发而跃迁到相应的高能级上(受激吸收)后,总是力图跃迁到较低的能级去,同时将多余的能量以光子形式释放出来。 /p p   如果光是在没有外来光子作用下自发地释放出来的(自发辐射),此时被释放的光即为普通的光(如电灯、霓虹灯等),其特点是光的频率大小、方向和步调都很不一致。 /p p   但如果是在外来光子直接作用下由高能级向低能级跃迁时将多余的能量以光子形式释放出来(受激辐射),被释放的光子则与外来的入射光子在频率、位相、传播方向等方面完全一致,这就意味着外来光得到了加强,我们称之为光放大。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/ab5eeaa4-0704-4844-ae33-97c5ada732a7.jpg" title=" 2.jpg" / /p p br/ /p p style=" text-align: center " strong 图:激光产生机理:(左)受激吸收,(中)自发辐射,(右)受激发射 /strong /p p br/ /p p   而激光的产生需要满足三个条件:粒子数反转、谐振腔反馈和满足阈值条件。通过受激吸收,使处于高能级的粒子数比处于低能级的越多(粒子数反转),还需要在有源区两端制作出能够反射光子的平行反射面,形成谐振腔,并使增益大于损耗,即相同时间新产生的光子数大于散射吸收掉的光子数。只有满足了这三个条件,才有可能产生激光。 /p p br/ /p p strong 激光的特性 /strong /p p br/ /p p 激光之所以被誉为神奇的光,是因为它有普通光完全不具备的四大特性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/cf4f1592-b99a-4837-8b8b-afb9947bff5f.jpg" title=" 3.jpg" / /p p 1.方向性好& nbsp ——普通光源(太阳、白炽灯或荧光灯)向四面八方发光,而激光的发光方向可以限制在小于几个毫弧度立体角内,这就使得在照射方向上的照度提高千万倍。激光每200千米扩散直径小于1米,若射到距地球3.8× 105km的月球,光束扩散不到2千米,而普通探照灯几千米外就扩散到几十米。 /p p   激光准直、导向和测距就是利用方向性好这一特性。 /p p 2.亮度高& nbsp ——激光是当代最亮的光源,只有氢弹爆炸瞬间强烈的闪光才能与它相比拟。太阳光亮度大约是1.865× 109cd/m2,而一台大功率激光器的输出光亮度可以高出太阳光的亮度7~14个数量级。 /p p   尽管激光的总能量并不一定很大,但由于能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度的高温。激光打孔、切割、焊接和激光外科手术等实际应用就是利用了这一特性。 /p p 3.单色性好& nbsp ——光是一种电磁波。光的颜色取决于它的波长。普通光源发出的光通常包含着各种波长,是各种颜色光的混合。太阳光包含红、登、黄、绿、青、蓝、紫七种颜色的可见光以及红外光、紫外光等不可见光。 /p p   而某种激光的波长只集中在十分窄的光谱波段或频率范围内。如氦氖激光的波长为632.8纳米,其波长变化范围不到万分之一纳米。激光良好的单色性为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。 /p p 4.相干性好& nbsp ——干涉是波动现象的一种属性。基于激光具有高方向性和高单色性的特性,它必然会是相干性极好的光。激光的这一特性使全息照相成为现实。 br/ /p p strong 激光器的类型 /strong /p p   在光源中,实现能级粒子数反转是实现光放大的前提,也就是产生激光的先决条件。要实现粒子数反转,需借助外来光的力量,使大量原来处于低能级的粒子跃迁到高能级上去,这个过程我们称之为“激励”。 /p p   我们通常所说的激光器,就是使光源中的粒子受到激励而产生受激辐射跃迁,实现粒子数反转,然后通过受激辐射而产生光的放大的装置。激光器虽然多种多样,但使命都是通过激励和受激辐射而获得激光。因此激光器通常均由激活介质(即被激励后能产生粒子数反转的工作物质)、激励装置(即能使激活介质发生粒子数反转的能源,泵浦源)和光谐振腔(即能使光束在其中反复振荡和被多次放大的两块平面反射镜)三个部分组成。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/34e5f14c-4b66-43c1-8be3-c64c88a23970.jpg" title=" 4.jpg" style=" width: 590px height: 320px " width=" 590" vspace=" 0" hspace=" 0" height=" 320" border=" 0" / /p p br/ /p p style=" text-align: center " strong 图:激光器的工作原理 /strong /p p   由于我们可以以许多不同的方式激发许多不同种类的原子,我们可以(理论上)制造许多不同种类的激光。 /p p   激光器有多种分类方式,其中最著名的是固体,气体,液体染料,半导体和光纤激光器。固态激光器介质是类似红宝石棒或其他固体结晶材料,并且缠绕在其上的闪光管泵送其充满能量的原子。为了有效地工作,固体必须掺杂,这是一种用杂质离子代替一些原子的过程,使其具有恰当的能级以产生一定精确频率的激光。固态激光器产生高功率光束,通常是非常短的脉冲。相比之下,气体激光器使用惰性气体(即所谓的准分子激光器)或二氧化碳(CO2)作为介质的化合物产生连续的亮光。 CO2激光器功能强大,效率高,常用于工业切割和焊接。液体染料激光器使用有机染料分子的溶液作为介质,主要优点是可用于产生比固态和气体激光器更宽的光频带,甚至可“调谐”以产生不同的频率。 /p p   按波长来分,覆盖的波长范围包括远红外、红外、可见光、紫外直到远紫外,最近还研制出X射线激光器和正在开发的γ射线光器; /p p   按激励方式不同,有光激励(光源或紫外光激励)、气体放电激励、化学反应激励、核反应激励等; /p p   按输出方式不同,有连续的、单脉冲的、连续脉冲的和超短脉冲等; /p p   从功率输出的大小来看,其中连续的输出功率小至微瓦级,最大可达兆瓦级。脉冲输出的能量可从微焦耳至10万以上焦耳,脉冲宽度由毫秒级到皮秒级乃至飞秒级(1000万亿分之一)。 /p p   各式各样激光器满足不同的应用要求。如激光加工和某些军用激光都要求高功率激光或高能量激光(即所谓强激光)。有的希望脉冲时间尽量缩短,以从事某些特快过程的研究。有的还对提高光的单色性、改善输出光的模式、改善光斑的光强分布以及要求波长可调等提出了很高的要求。这些要求促使着激光器的研究者不断探索,从而使激光器的探索深度和应用广度得到前所未有的发展。 /p p strong 蓬勃发展的激光应用 br/ /strong /p p   所谓激光技术,就是探索开发各种产生激光的方法以及探索应用激光的这些特性为人类造福的技术的总称。 /p p   50多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。 /p p 1、激光在信息领域的应用 /p p   半导体激光器和光纤放大器是光纤通信的两项关键技术。 /p p   半导体激光器发出的激光不仅单色性和相干性好,而且光波频率比微波频率又高万倍,故以激光为传递信息的载体,用光纤做信息传递线路的光纤通信,不仅通信质量好、抗干扰能力强、保密性好,而且通信容量比微波通信要提高上万倍。 /p p   利用激光技术进行光存储,使信息的存储发生了革命性的飞跃。一张CD声频光盘的记录密度相当于1000万bit/cm2,可记录78分钟的音乐节目,比密纹唱片要大好几个数量级。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/dedc2b11-657b-46c7-b7c6-323f02c9b1b4.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong 图: CD或DVD播放机中的光盘的激光和镜头。右下方的小圆是半导体激光二极管,而较大的蓝色圆圈是从激光器从光盘的光滑表面反射后读取光的透镜。 /strong /p p   此外,激光打印机、激光传真机、激光照排、激光大屏幕彩色电视、光纤有线电视以及大气激光通讯等均已得到广泛应用。 /p p 2、激光在全息术领域的应用 /p p   光作为一种波动现象,表征它的物理量有波长(同颜色有关)、振幅(同光的强弱有关)和位相(表示波动起点同基准时间的关系)。 /p p   人们利用感光的照相方法,只能记录下波长和振幅,所以无论照得多么逼真,看照片和看真的景物总是不一样。 /p p   而激光具有高相干性,能获取干涉波空间包括相位在内的全部信息。因此,采用激光进行全息摄影,被拍物体的全部信息都被记录在底片上,通过光的衍射,就能复现被摄取物体栩栩如生的立体形象。 /p p   全息照相具有三维成像的特点,可重复记录,而且每一小块全息底片都能再现物体的完整立体形象,可广泛用于精密干涉计量、无损探伤、全息光弹性、微应变分析和振动分析等科学研究。 /p p   其中,利用全息干涉术研究燃气燃烧过程、机械件的振动模式、蜂窝板结构的粘结质量和汽车轮胎皮下缺陷检查等已得到广泛应用。并且,全息照相用作商品和信用卡的防伪标记已形成产业,用全息照相拍摄珍贵艺术品,不仅欣赏起来令人如临其境,而且为艺术品的修复提供了可靠而逼真的依据。正在发展的全息电视还将为人们增添一种新的生活享受。 /p p 3、激光在医疗领域的应用 /p p   激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。 /p p   在激光诊断方面,激光可穿透到组织较深的地方进行诊断,直接反映组织病况,给医生诊断提供了充分依据。 /p p   在激光治疗方面,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学中的许多难题,例如激光手术治疗切口小,对组织基本没有损害或损害极小,毒副作用反应少。目前,激光临床应用领域包括近视矫正、视网膜修补、蛀牙修复、分子级微创手术等,当前激光医学的出色应用研究主要表现在以下方面:光动力疗法治癌;激光治疗心血管疾病;准分子激光角膜成形术;激光美容术;激光纤维内窥镜手术;激光腹腔镜手术;激光胸腔镜手术;激光关节镜手术;激光碎石术;激光外科手术;激光在吻合术上的应用;激光在口腔、颌面外科及牙科方面的应用;弱激光疗法等。目前,激光治疗在基础研究、新技术开发以及新设备研制和生产等诸多方面都保持持续的、强劲的发展势头。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/c865b4af-a3a7-46dd-8f4d-a512edd3bcc7.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 图:激光在口腔医学领域的应用 /strong /p p 4.激光加工 /p p   利用激光的高强度(亮度)聚焦激光束在1 ms内能发射100J的光能量,聚焦起来足以使材料在短时间内融化或汽化,从而对不同特性难以加工的材料进行加工处理,如:焊接、打孔、切割、热处理、光刻等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/9c933388-bd17-4722-8ba2-990a5003e9de.jpg" title=" 7.jpg" style=" width: 600px height: 188px " width=" 600" vspace=" 0" hspace=" 0" height=" 188" border=" 0" / /p p   激光加工具有精度高、畸变小、无接触、能量省等优点,其应用领域几乎可以覆盖整个机械制造业,包括矿山机械、石油化工、电力、铁路、汽车、船舶、冶金、医疗器械、航空、机床、发电、印刷、包装、模具、制药等行业。其中关键零部件和精密设备的磨损和腐蚀都能很好地利用激光熔覆技术进行修复和优化,成为化腐朽为神奇的利器。 /p p 5.精密测量 /p p   精密测量是利用了激光单色性好、相干性强、方向性好的特点。相比于其他测距仪,激光测距具有探测距离远,精度高,抗干扰,保密性好,体积小重量轻的优点。测距仪发出光脉冲,经被测目标反射后,光脉冲回到接收系统,测量发射与接收时间间隔。 /p p   激光同时具有高亮度和高相干性,这使得光的多普勒效应能够在测速方面得到应用。激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,激光雷达与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别,它在军事领域发挥着重要的作用,也成为环境监测的有力武器。 /p p   此外,引力波的探测也是利用激光干涉测量方法,进行中低频波段引力波的直接探测,观测双黑洞并合和极大质量比天体并合时产生的引力波辐射,以及其他的宇宙引力波辐射过程。 /p p   激光是20世纪人类最重大的发明之一,激光技术的应用已广泛深入到工业、农业、军事、医学乃至社会的各个方面,对人类社会的进步正在起着越来越重要的作用,正奇迹般地改变着我们的世界。 /p
  • 小鹏汽车装上激光,寻求打败特斯拉?
    根据中国汽车工业协会预测中国新能源汽车2023年总销量为900万辆,同比增加35%,渗透率也来到35%,市占率已连续8年全球第一,当中长期关注中国新能源车发展的小伙伴们,对于「蔚小理」一词肯定不陌生,分别代表中国电动车第一梯队三大厂「蔚来」、「小鹏」、「理想」,此三大厂在面对特斯拉挟带FSD自动驾驶的锋芒竞争之下,三大厂也分别发展各家自动驾驶的领域, 例如小鹏的XNGP、蔚来的NAD、理想的NOA,甚至连华为都有自己的ADS,而其中2014年总部位于广东的小鹏汽车(英语:XPeng Motors,NYSE:XPEV,港交所:9868)自今年(2023)3月31日起,下放XNGP第一阶段功能给旗下G9及P7i Max版车主,实现广州、深圳和上海开放城市NGP功能, 同时在全国范围内所有无高清地图的城市开放直行红绿灯识别起停、跨线绕行障碍能力,标榜领先同行一至两年之优势,让自动驾驶系统进入一个相当重要分水岭,也意味着L2级驾驶辅助的功能基本上已经成为标配,只待法律法规的完善,更高等级L3或L4级自动驾驶指日可待。猫腻藏在细节中,什么是X-NPG呢? 身为第一梯队「蔚小里」三巨头之一,为何小鹏汽车自动驾驶副总裁吴新宙赶在采访中表示他们能够领先同行一到两年的自动驾驶技术呢?跟今年3月底小鹏汽车搭载2颗RoboSense速腾聚创M系列激光雷达全新一代智能辅助驾驶系统XNPG的P7i车款横空出世有着密切关系。还记得去年小鹏汽车在G9发布会上预告将推出首全场景辅助驾驶系统X-NPG一事,自驾车领域像炸了锅般的热议。那么,什么是X-NPG呢? 提到X-NPG前,得先说说小鹏既有的高速NGP与城市NGP两个自动驾驶技术,NGP是Navigation Guided Pilot的简称,翻译为中文则是导航辅助驾驶的意思,也就是当用户在小鹏车辆的车机上设置终点并发起导航后,再向下拨杆两下激活功能,车辆则会自动按照导航路线前往目的地。这项技术受限于硬件与算力与即时性问题,须搭配高精度的高级驾驶辅助地图图资来辅助自动驾驶系统,也以因应不同场景的区分为高速NGP与城市NGP两种,高速NGP适用于高速路、城市快速路上,而城市NGP适用于城市主、支干道等复杂情境道路下运用,透过高速NGP与城市NGP两套技术,小鹏汽车已经相当不错的自动驾驶成效。 小鹏汽车先前采用的NGP系统需要搭配高精度的驾驶辅助地图才能发挥有效自动驾驶,但面对没有地图图资覆盖的区域,采用纯NGP系统的车辆就无法启用自动驾驶功能,或面临交通路况变化较为复杂的地区,纯城市NGP的自动驾驶系统,对于路况临场反应上能力上就较为欠缺,有数据显示,相比于高速NGP,城市NGP的代码量是6倍,感知模型数量是4倍,预测/规划/控制相关代码量则提升至88倍,显见其难度骤然倍增,况且城市NGP目前仅开放广州、上海等部分区域,宛如笼中自动驾驶。 然而面对特斯拉FDS无须图资配合的纯视觉辨识自动驾驶系统在此情况下的竞争优势,小鹏汽车于今年随着最新车款小鹏P7i上市,推出的全新一代自动驾驶X-NGP系统,将2颗升级搭载双Orin-X芯片的RoboSense速腾聚创M系列激光雷达整合入一体化的大灯内,克服以往NGP需要辅助地图的限制,达到即时LiDAR激光雷达识别效果,使自动驾驶技术可运用在没有辅助地图图资涵盖的地区,让小鹏汽车自动驾驶再也不是「笼中鹏鸟」,可以「自己」开出广州、深圳、上海等地,而且M系列激光雷达独具智能凝视功能,可以在高速、城区等更多复杂场景,动态切换扫描方式,改变扫描形态,帮助智能辅助驾驶系统自如应对密集车流、人车混行、异形路障等各种复杂场景,精准感知异形路障。在双M系列激光雷达等强大感知硬件的支持下,无论日夜,XNGP可以实现无高精地图环境中全场景智能辅助驾驶,覆盖日常通勤所需的所有动作,可精准判断车道位置、车距和道路障碍物,在城区可以完成通过十字路口、转向掉头、变道超车、绕行障碍、主动避让行人和非机动车等动作,而在高速、城区快速道路上,XNGP全场景智能辅助驾驶更是接近零接管。 小鹏汽车是中国首家在量产车型上搭载激光雷达的车企,其XPILOT 3.5系统配备了两颗激光雷达,分别为美国Velodyne公司的VLP-16和Livox公司的Horizon。这两款激光雷达都是16线的,但采用了不同的扫描方式,VLP-16是旋转式的,Horizon是固态的,通过融合两种激光雷达的数据,大幅提高了感知的精度和实用性。顺道一提的是,理想汽车也将激光雷达和Lidar Pilot功能作为标配。死背地图与理解路况之争: 如今自动驾驶技术发展宛如进入了一个十字路口,有人向左转有人向右转,海外的传统厂商比如BBA目前的路线是坚持开发并实现在ODD限定场景之下的L3级自动驾驶。例如早前奥迪A8L上发布的60km/h以下的L3,奔驰在德国和美国内华达州获取的了L3执照,并且奔驰的L3已经在量产车中搭载,许多知名供应商也走上了这条线路。  而小鹏的XNGP以及理想汽车等多数新进的新能源车辆制造商等,则走上了另外一条道路,在更广阔的的地区范围推广最高级别的辅助驾驶,摆脱高精地图的鸟笼局限,在全局规划和局部规划之间找到最小集合,将自动驾驶技术推往L3甚至L4领域。 在OOD(全稱Operational Design Domain)條件下的限定场景自动驾驶与采用无须高精地图图资的厂商技术之争,宛如学生时代,背诵考古题应试与理解反映学习的两个流派之争,高精地图虽在特定范围内能发挥一定效果,但当前面临的鲜度、监管、成本等问题,短期内,高精地图很难实现全国城市道路的覆盖,比起采用无图资流派而言,更像是一种过渡时期的替代方案;然而采取无图资技术的自动驾驶技术,相当高比例仰赖高性能激光雷达的运用,搭载激光雷达的车辆仿佛拥有了实时产生高精度辅助地图之能力,更是自动驾驶在安全议题上,最底层、有效的一道防线,比起背诵地图,让车辆长出一双千里眼更为安全。激光雷达的未来\不可不知的SPAD 越来越多的车辆自动驾驶技术的生产商,为了朝向L5等级自动驾驶最终目的,走向以激光雷达作为解决方案,而小鹏汽车也在当中开了响亮的第一枪,这个早在你我手中的i-phone就已经实现的激光d-Tof技术市场将快速进入白热化,激光雷达当中关键模块SPAD单光子雪崩式二极体的开发,其性能与成本将是左右自动驾驶技术的关键,除前期就深耕已久的Sony、Canon等国际一线大厂外,随着激光雷达应用场日渐增多,不只仅仅自动驾驶技术领域、手机脸部扫描、连相机、扫地机器人、高尔夫球测距仪等等都加速采用激光雷达,也使得越来越多的厂商投入SPAD的开发,积极布局准备分食这块大饼。 然目前有关于SPAD开发过程中的效率量测,许多厂家仍是以自组量测设备与自架量测环境作为修正开发的依据,此举除耗时费力,增加研发人力的负担,更难以有客观标准结果作为厂商与客户双方沟通及验收依据,光焱科技将十年以上光学经验,依照欧洲机器视觉协会(EMVA)所订定之EMVA1288标准,打造出全球第一台可针对SPAD晶圆及晶片等级的专用量测设备SPD2200,除可量测全光谱光谱响应(SR, Spectral Responsivity)、全光谱量子效率(EQE, External Quantum Efficiency)、全光谱光子探测率(PDP, Photon Detection Probability)、暗计数DCR (Dark Count Rate)崩溃电压BDV (Break-Down Voltage),更针对SPAD的Jitter、Afterpulsing Probability、Diffusion tail、SNR特性进行分析,SPD2200整合了所有先进光学与电学系统,搭配光焱科技多年光感测器测试与分析的经验,提供完整与便利的软体控制介面与分析功能。 SPD2200可帮助您节省系统搭设的时间成本,并大幅减少测试结果不确定性以提升良率,加快产品的开发周期,提升产品的竞争力。SPD2200_新型单光子侦测器特性分析设备
  • 科技部科学仪器重大专项评审专家谈激光跟踪仪技术及应用
    激光跟踪仪技术及应用周维虎1,周培松2,石俊凯11. 中国科学院微电子研究所2. 海宁集成电路与先进制造研究院一、引言激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。目前,国际上主要有瑞士Leica、美国API和美国FARO三家公司生产销售激光跟踪仪。其中Leica公司凭借自身百年光学仪器制造优势,全球市场占有率最高,目前该公司主推产品型号为AT960,该仪器最大测量距离为80m,空间坐标测量精度为15μm+6μm/m,数据输出速率为1000点/秒;API公司激光跟踪仪小型灵巧,安装和校准快捷,移动方便,便于携带,目前主推产品为Radian系列,其中Radian Pro最大测量距离可达80m,三维坐标测量精度为为10μm+5μm/m;FARO公司财力雄厚,研发投入高,销售网络强大,目前主推产品为Vantage系列,其中VantageS6最大工作范围为80m,角度测量精度为为20μm+5μm/m,数据输出速率为1000点/秒。自1997年开始,国内天津大学、清华大学、中国科学院光电研究院等科研院所先后对激光跟踪测量技术及设备进行了相关研究,其中天津大学最先对单站式结构跟踪仪坐标测量系统进行了研究,并开展了测量功能实验,为激光跟踪仪的后续开发奠定了基础;清华大学对组合式多自由度跟踪测量系统进行了研究,基于三组跟踪测量系统构建空间位置姿态测量系统;中国科学院光电研究院团队(该团队于2018年划转至中科院微电子研究所)自2009年开始研究激光跟踪仪,在中科院装备项目、国家重大仪器设备开发专项、国家重点研发计划、装备发展部、国防科工局等项目的支持下,经过10余年研发和技术积累,实现了激光跟踪仪的自主研制,打破了国外技术封锁和垄断。当前,激光跟踪仪技术正向高精度、小型化、多功能、智能化等方向发展。激光跟踪仪是机器人校准的理想仪器,可以配合机器人实现高精度智能制造。高端激光跟踪仪含有大范围超清摄像头,用于测量过程断光后靶标的自动寻找和测量续接。除此之外,激光跟踪仪结合不同的测量靶标还可以实现隐藏点测量、工件局部形貌高密度扫描测量以及六自由度测量。随着激光跟踪仪在航空航天、舰船、核工业等大型装备制造中的重要性日益凸显,国内用户对仪器国产化的要求越来越高,随着中美贸易战的加剧和发达国家对我国高技术产品的打压,激光跟踪仪国产化替代势在必行。二、激光跟踪仪测量原理激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。2.1三自由度激光跟踪仪如图2.1所示,当激光跟踪仪工作时,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图2.1 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。2.2 六自由度激光跟踪仪图2.2 六自由度激光跟踪仪原理图六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。三、激光跟踪仪产业和市场分析随着我国制造业产业升级和科技领域的迅猛发展,高端制造、精密制造、智能化制造成为我国未来工业和科技领域的主流方向,激光跟踪仪等精密测量仪器具有巨大的应用前景。在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,激光跟踪仪应用领域主要包括航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域。根据国外市场研究机构,2017年全球激光跟踪仪市场规模为2.595亿美元,2020年全球激光跟踪仪市场规模为3.438亿美元,预计2023年有望达到5.216亿美元,2028年有望达到8.364亿美元,市场主要驱动力来自质量控制和检验、对准、逆向工程和跨行业校准的需求。按应用细分,质量控制和检验占据最大的市场份额。这是因为激光跟踪仪被越来越多地用于监控和测量跨行业的质量,如汽车、航空航天和国防。为确保客户的要求和规格,质量控制和检验是汽车、航空航天和国防工业的重要参数。为了做到这一点,这些行业主要依靠激光跟踪仪来检查和监测元器件、组装件和成品质量。激光跟踪仪在建筑产品测量、过程优化和通过快速精确测量提供解决方案方面具有精确度高和易便携等不可替代的优势。按行业细分,汽车、航空航天和国防有望引领整个激光跟踪仪市场。在航空航天和国防行业中,激光跟踪仪用于三维测量、逆向工程、武器系统、轴与导轨对准、雷达罩剖面图、飞行器传动装置,以及许多其他测量产品和服务。在航空航天行业中,激光跟踪仪最常应用于夹具部件检查和机翼部件装配。在汽车行业中,激光跟踪仪被用于自动化生产线校准、铰接线和车身部件对准、大型面板和装配主体面板测量、逆向工程、部件验证表面测量、工业机器人调整、变形和动态测量、质量控制和检验等。按地区细分,欧洲占据激光跟踪仪市场的最大份额。为了满足生产过程中的质量和安全要求,欧洲的原始设备制造商(OEMs)早已经开始使用激光跟踪仪。在汽车行业中,激光跟踪仪也得到了多种应用,例如质量检查、对准和校准。因此,日益增长的汽车行业对激光跟踪仪需求也在逐渐增加。德国、英国和法国有望成为欧洲激光跟踪仪市场的三大贡献国。亚太地区市场预计将获得最高的复合年增长率,该地区市场增长的关键驱动因素是市场参与者对新技术的日益关注和采用,这一地区已成为全球投资的焦点和业务拓展的机会。四、国产激光跟踪仪新成果及应用国内开展激光跟踪仪研发主要有中国科学院微电子研究所周维虎团队、深圳中图仪器公司、海宁集成电路与先进制造研究院等,近年来在国家和地方相关部门的支持下仪器研发取得了快速发展,主要体现在以下方面:1)与绝对测距技术相融合,提高仪器的测量精度和测量方便性。激光跟踪仪都是基于球坐标的测量系统,在没有绝对测距之前,没有测量信息冗余,测量过程中任意一个参数丢失,都直接影响测量数据的准确性。新一代激光跟踪仪都增加了激光绝对测距功能,这使得激光跟踪仪的测量信息有了冗余,保证了测量的精确性,在测量过程中丢失部分信息依然可以完成测量工作;同时,由于被挡光时不需要重回基准点复位,这也提高了使用方便性和测量效率。2)与视觉测量系统相结合,实现六自由度测量功能。激光跟踪仪与视觉测量系统相结合不仅能精确定位目标的三维位置,而且还能通过配合特定的靶镜对目标的空间三维姿态进行检测。不仅如此,视觉测量系统还可以识别目标靶镜,保证光路中断后可以通过视觉方式重建测量光路,且无需用户介入。3)测量靶镜多样化。针对三自由度、六自由度等测量需求需要提供不同的测量靶标,另外,仪器还配有隐藏点靶标、扫描测头等附件,使仪器具有隐藏点测量功能和局部区域扫描功能,不仅使仪器测量复杂结构的能力大大提高,还拓展了系统的通用性。4)自我诊断功能。精密测量要求仪器在各种测量环境下保证稳定的工作状态,所以仪器在测量中对自身状态的检测和诊断显得特别重要,自我诊断能在系统工作时实时显示系统的状态,排除微振、升温、光强不足等因素带来的影响。5)飞秒激光频率梳测距技术。飞秒激光频率梳绝对测距技术能够实现大量程、高精度和快速测量三者的完美统一,是激光测距领域的重大突破,有望为大型零部件外形测量、大型设备装配对接,尤其是未来空间任务提供新的技术支撑,在激光跟踪测距、高精度激光雷达测距、卫星编队位置测量、导航星间链路测距、深空探测、引力波测距等领域具有广阔的应用前景。6)组网协同测量技术。针对大型复杂设备装配测量中被测目标尺寸较大或者存在遮挡,单测站难以完成测量任务的难题,通过激光跟踪仪多次设站或者利用多台跟踪仪组网可实现对于大型复杂装备的测量。组网测量技术基于空间多公共点约束,建立激光跟踪仪多测站平差模型,利用平差的权重、约束条件等进行多测站空间位置和姿态的解算,同时求解出所有被测点的三维坐标,得到空间被测物体关键尺寸和特征信息的最优解。7)功能强大的测量软件。激光跟踪仪软件是测量系统的重要组成部分之一,系统软件通过TCP/IP通讯与硬件进行实时数据交互,对硬件上传的数据进行处理和分析,并控制硬件系统执行相应的测量等控制指令。软件系统为用户操作提供人机交互接口,通过数据库管理可实现用户对测量数据的编辑和输入输出等操作,在此基础上通过三维显示操作可面向用户实现测量数据和拟合数据的直观显示和交互操作。为了进一步提升系统测量精度,激光跟踪仪软件系统利用误差补偿算法对激光跟踪仪测距、测角和几何误差进行实时修正,结合激光跟踪仪硬件系统实现大型复杂工件或设备的高精度测量。近年来由中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)致力于实现激光跟踪仪国产化。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利45项(已授权32项),软件著作权5项,发表研究论文130余篇。 2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果于2020年分别荣获中国机械工业技术发明特等奖、中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图4.1所示。图4.1(a) ICAM-LT-3DOF型激光跟踪仪图4.1(b) ICAM-LT-6DOF型激光跟踪仪ICAM-LT-3DOF型激光跟踪仪与ICAM-LT-6DOF型激光跟踪仪的主要技术指标如表4.1和表4.2所示。表4.1 ICAM-LT-3DOF型激光跟踪仪主要技术指标指标参数最大测量范围(半径)80m空间坐标测量精度15μm+6μm/m水平角测量范围±320°垂直角测量范围-45°~+60°数据采集速度1000 点/秒跟踪速度>4m/s表4.2 ICAM-LT-6DOF型激光跟踪仪主要技术指标指标参数空间坐标测量范围(半径)80m空间坐标测量精度15μm+6μm/m姿态测量范围(半径)25m姿态测量精度≤0.05°水平角测量范围±320°垂直角测量范围±145°角度测量误差≤1’’数据采集速度1000 点/秒跟踪速度>4m/s截至目前,该团队研制的国产激光跟踪仪已在航天五院514所、航空304所、武船公司、中科院高能所、中科院国家空间科学中心、航天科工集团三院三十一所等多个科研院所和企业进行了应用。1)航天领域应用图4.2 激光跟踪仪在航天五院514所应用激光跟踪仪在航天五院514所进行了如下应用:① 紧缩场结构测试:完成紧缩场实验室结构测量,测得最大反射面尺寸10m×15m,最大测量距离35m,最高公差1mm;② 卫星壳体焊接工装结构测量:完成典型零件测量,测得工件尺寸1.5m-3m,测量距离:10m,最高公差0.2mm。在上述测量工作中,使用激光跟踪仪突破了传统测距在测程、精度和测量速度方面难以协调的瓶颈,提高了卫星和空间有效载荷的制造及组装精度。2)航空领域应用图4.3 激光跟踪仪在航空304所应用激光跟踪仪在航空304所进行了如下应用:① 航空工装测试:坐标不确定度达0.05mm,满足航空制造对精度溯源要求;② 飞机水平飞控部件姿态测量:位置传感器测量精度在线校准精度达0.018mm。在上述测量工作中,使用激光跟踪仪主要解决了两个问题:① 解决了大尺寸航空工装测量问题,提供了可供溯源的依据和测量基准,为数字化制造提供了可靠的计量保证;② 解决了飞机水平飞控部件姿态测量问题,实现了飞机部件姿态高精度高效率数字化测量,为航空制造安全提供了保障。3)船舶领域应用图4.4 激光跟踪仪在武船公司应用在船舶领域中,激光跟踪仪在武船公司进行了如下应用:① 与API激光跟踪仪测试数据进行比对,验证本激光跟踪仪的准确性、可靠性、稳定性、可操作性等综合性能;② 对船台建造过程中的分段结构外形尺寸、装配尺寸、位置偏差等进行了测量,突破了大尺寸测量仪器三维坐标测量方法关键技术。根据应用结果,在船舶领域应用激光跟踪仪,建立了相应的应用方法/规程,可逐步推广到船舶建造其他阶段,为船舶建造精度控制提供新的方向。4)大科学装置应用在大科学装置方面,激光跟踪仪在中科院高能所进行了如下应用:① 对北京正负电子对撞机储存环部分设备进行了准直调整,调整精度达0.1mm;② 在中国散裂中子源建设过程中,对隧道控制网进行测量,相对点位测量精度0.08mm,绝对点位测量精度0.05mm。图4.5 激光跟踪仪在中科院高能所应用在上述测量测试工作中,使用激光跟踪仪主要解决了两个问题:① 利用标准杆进行空间测量,大跨度搭接测量控制网,提高了控制网测量精度和效率;② 采用边长法进行高精度设备标定,彻底消除了测角误差的影响,提升了大科学装置安装精度。此外,该团队研发的激光跟踪仪还广泛应用于机器人磨削、航天钻孔及铣削、机器人校准等场景中,如图4.6所示。图4.6 激光跟踪仪在机器人场景的应用机器人磨削(左),航天钻孔及铣削(中),机器人校准(右)随着现代工业技术的迅猛发展,高端制造业对设备尺寸及空间位置精度要求越来越严苛,激光跟踪仪作为最先进的三坐标精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。(点击图片查看专题)
  • 激光跟踪仪:在大尺寸高端装备中大显身手
    导语:激光跟踪仪作为大尺寸空间几何量精密测量仪器,由于具有较高的技术门槛,国内企业又缺乏深厚的经验积累,导致该产品长期被国外垄断。历经十余年的研发与实践,中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队终于在激光跟踪仪的技术领域有了与国际先进技术比肩的突破性进展。本文将带您了解这个研发团队的激光跟踪仪和它在精密制造中扮演的关键性角色。说起激光跟踪仪,高端装备制造企业对它大概并不陌生,它是一种大尺寸空间几何量精密测量仪器,是大型高端装备制造的核心检测仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点。检测的装备体积越大越能显示出此类产品的优越性,所以它更多出现在航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域等先进制造领域。激光跟踪仪是激光干涉测距技术、激光绝对测距技术、精密测角技术、光电探测技术、精密机械技术、精密跟踪技术、现代数值计算理论等各种先进技术的集大成之作,需要突破百米的测量范围、毫秒级的测量时间、微米级的测量精度以及动态实时跟踪测量等各项技术难点,技术门槛非常高,需要长期的经验积累,几乎不存在弯道超车的可能性。目前,世界范围内主要有美国FARO、美国API、瑞士Leica三家公司生产销售激光跟踪仪,我国当前尚无成熟的激光跟踪仪产品销售。因此,攻克关键技术难点实现激光跟踪仪国产化迫在眉睫。组建团队 攻关激光跟踪仪技术壁垒由于激光跟踪仪的重要性、特殊性和不可替代性,国家层面高度重视激光跟踪仪的自主研发。中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)一直致力于实现激光跟踪仪的国产化。该团队激光跟踪仪的研发历史已有十余年,并阶段性取得骄人成绩:(1)2011年中科院微电子研究所 (原中科院光电研究院激光跟踪仪研发团队)在国内率先开展激光跟踪仪整机研制;(2)2013年推出国内首台原理样机,初步形成具有一定规模的、专业稳定的整机开发团队,引领国内激光跟踪仪的整机与系统关键技术发展,积极追赶国际前沿;(3)2017年推出国际首台三自由度飞秒激光跟踪仪样机,从技术层面上实现了跨越式发展;(4)2021年研制成功国内第一台六自由度激光跟踪仪样机,并通过技术指标测试;(5)2021年三自由度激光跟踪仪进入到产业化阶段,立足海宁集成电路与先进制造研究院,组建了数十人的激光跟踪仪产业化团队,建立激光跟踪仪小批量生产线。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利32项(已授权21项),软件著作权6项,发表研究论文60余篇。2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果荣获中国机械工业技术发明特等奖和中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图1所示。除此以外,该团队还可以根据用户的要求定制解决方案,更加贴近客户的使用需求,解决用户的“非标”问题。图1 ICAM-LT-3DOF型激光跟踪仪图2 ICAM-LT-6DOF型激光跟踪仪干货满满 技术原理深度剖析当三自由度激光跟踪仪工作时,如图2所示,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图3 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,如图3所示,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。图4 六自由度激光跟踪仪原理图多项技术突破 跻身国际先进该团队历经10余年的垂直深耕,在激光跟踪仪领域相继突破了高速激光干涉测距、高精度绝对测距、精密跟踪转台设计、高精度测角、动态伺服跟踪、目标快速识别锁定、多源融合姿态测量、系统误差检测与补偿等多项关键技术,在80m范围内,跟踪测量速度大于4m/s,具有良好的目标快速识别锁定能力,测量精度达到15μm+6ppm,技术性能跻身国际先进行列。优势突出 大尺寸精密测量显身手在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,在实践中可以为为航空航天、汽车制造、重型机械制造、重工与船舶、科学研究、能源、医疗等领域等行业提供可靠的技术保障。(1)航空航天领域在航空航天制造领域,飞行器具有外形尺寸大、外部结构特殊、部件之间相互位置关系要求严格等特点,飞行器的装配通常是在各部件分别安装后再进行总体装配,在部装的某些环节和总装的整个过程中都需要进行严格的几何检测。激光跟踪仪测量的现场性和实时性以及它的高精度可以满足飞机型架和工装的定位安装、飞机外形尺寸的检测、大型零部件的检测以及飞机维修等工程测量需求。例如,测量一架大型飞机的内外形尺寸,首先要确定整架飞机的空间坐标,保证所测量的外形尺寸空间点都在同一坐标系中,可以布置足够的激光跟踪仪测站,这些测站保证了飞机上、下、左、右、前、后等整个外形都在激光跟踪仪测量范围内。其次要保证飞机处于静止状态,测量过程中不能产生移动。激光跟踪仪在每个测站测量某一个区域的飞机外形坐标点,将各个测站下的飞机外形坐标连接起来就构成整架飞机的外形尺寸坐标,对这些点进行处理可形成飞机外形的数字模型。激光跟踪仪扫描范围大,采集数据速度快,数据采集量大,精度高,大大提高了飞机测量的工作效率。(2)汽车制造领域在汽车制造领域,激光跟踪仪用于车身检测、汽车外形测量、汽车工装检具的检测与调整。通过激光跟踪仪采集汽车不同部位的点云数据,再进行拼接得到完整的汽车曲面点云数据,利用三维造型软件得到汽车三维模型。另外,汽车生产线需要以最高级别的自动化程度和准确性进行定期检测,以进行重复性和适产性测试。激光跟踪仪这种移动坐标测量设备适合工业现场使用,在检测工程中使汽车生产的停工期大幅缩短。(3)重型机械制造领域在重型机械制造业中,大尺寸部件的检测和逆向工程常采用激光跟踪仪。在零部件生产中,该系统可以快速精确地检验每个成品零部件的尺寸是否与设计尺寸一致,同时将零部件物理模型迅速数字化,得到的数字化文件可以用各种方法处理从而得出测量结果。在工件模具生产中,激光跟踪仪对工件模型进行扫描测量后建立数据模型,由数据模型生成可被加工中心识别的加工程序,从而加工出模具。三维管片和模具测量系统也是激光跟踪仪的典型工程应用之一,通过跟踪测量成品管片各个表面上的空间点坐标,经过坐标系转换和纠正将表面数据点拟合成平面或曲面,检验管片的尺寸与设计尺寸的偏差,便可判断成品的质量是否合格。与传统的检测方法相比,激光跟踪仪测量速度快,能在短时间内采集大量空间数据点信息,同时可以直接处理数据,给出成果报表,不仅工作效率高,而且大大节省了人力物力。(4)重工与船舶领域在造船工业领域中,激光跟踪仪常用于舰船外形尺寸检测、重要部件安装检测与逆向工程等。例如,船舶制造公司对于甲板都有着极高的要求,每一个拼接块的连接点都必须恰好能够和另外一片拼接块严丝合缝对接,且甲板外侧的外观必须与船体形状严格吻合,如此才能体现船舶的质量和性能。激光跟踪仪能够实时地对长度以及横向曲率进行测量,代替笨重的模板进行现场装配与检测,可使生产时间节约60%-70%,大大提高了船舶的生产效率。(5)能源领域在能源领域,激光跟踪仪常用于大型零部件的高精度加工、尺寸检测和辅助维护。例如,水力发电站中,新的涡轮发电机投入工作之前,必须获得精确的涡轮机转子形状,以便后续的勘测;当进行水力发电站的检测时,需要对在役涡轮机转子开展数字化测量,从而确定涡轮转子的磨损情况。在风力发电站中,对大型风电轮毂叶片外形尺寸进行高精度测量是保证风电轮叶片正常工作的关键。激光跟踪仪能够完成定轴轴径、同轴度、轮毂连接孔位置度的高精度测量,并且仪器轻便灵活、精度高、测量范围大、能够现场测量,已成为风电行业的必然选择。(6)科研领域在科研领域中,激光跟踪仪在粒子加速器的定期检测与调整、重要核心部件安装检测以及机器人制造校准中发挥了重要作用。例如,机器人在工厂机械安装、马达驱动安装、夹具重组等整个生产周期过程中必须保持规定的精度,才能称为高性能工业机器人。机器人设计尺寸与实际生产尺寸的偏差往往较大,主要是由于机械公差和部件安装误差所引起的。在校准机器人的实际应用中,一般有两个工作测量组,一组负责装配机器人,一组则负责检测校准安装部件,激光跟踪仪安置在这两个测量组之间。操作人员通过计算机控制定位,激光跟踪仪可以监测两个工作小组的测量工作。在一组操作人员利用激光跟踪仪检测机器人配件的同时,另一组工作人员负责装配经过检测的工件,装配后再利用激光跟踪仪进行校准。这样,大幅提高了机器人生产安装的工作效率,也节省了人力物力。(7)医疗领域在医疗领域中,质子医疗机在治疗时最重要的是需要准确定位患者体内癌细胞位置,通过控制治疗床移动,将患者需要治疗的部位送到有效的治疗区域内,才能够进行准确有效的治疗。因此医疗机在安装调试时,要求系统能够控制机械臂,将末端工装精确地移动到理论位置。这对测量方案提出了更高标准的要求:能够准确调整病灶中心的位置,X、Y、Z方向偏差要求小于0.1 mm;能够调整连接法兰的姿态精度,RX、RY、RZ要求小于0.1°,同时检测、分析效率要尽可能高。在质子医疗机安装调试过程中,激光跟踪仪可以提供简单便捷的应用方案。首先通过测量固定在墙体上的定位点,建立离子源坐标系,在软件中将机器坐标系定位到离子源坐标系统;通过坐标转换得出病灶中心与工装上定位孔的坐标关系,解算出定位孔的坐标。其次,将反射球放置在定位孔上,通过监视窗口功能查看当前位置偏差,实时调整工装,使偏差逐渐缩小至公差要求。该团队研发的激光跟踪仪已在卫星天线变形与位姿测量技术、飞机大型部件装配测量技术、船舶分段对接测量技术、高能加速器准直调节测量技术、工业机器人现场校准技术等领域开展了一系列应用研究,并取得了良好的社会效益。制造业中的智能装备、复杂结构制造、高精密制造和装配的兴起,对于测量系统提出了精度更高、智能化程度更高、适应性更强的要求。激光跟踪仪作为最先进的三坐标及姿态精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。由于激光跟踪仪应用范围广、测量效率高、测量精度高,该仪器在高端制造领域扮演的角色越来越重要。激光跟踪仪的国产化,对于我国的制造业,尤其是高端制造领域,具有十分重大的意义。借势而起 稳扎稳打培育市场目前,国家政策一直在主张推进仪器的国产化,实现国产仪器与进口仪器的同台竞争。中国仪器仪表行业协会与中国和平利用军工技术协会在此方面做了大量的工作,这对国产激光跟踪仪的市场化推进是极大的政策性优势。在国防军工行业,激光跟踪仪的应用主要在导弹的测量、潜艇的测量、战斗机的装配、军舰的测量、天线的装配及外形检测,大型结构件测量检测等。由于进口的高端激光跟踪仪含有摄像头装置,这对我国国防军工行业造成了安全隐患。另外,由于进口激光跟踪仪不对我国展示源代码,不排除进口激光跟踪仪含有潜在的功能,这对我国部分商业秘密也带来了风险。如此种种安全隐患更是急需国产激光跟踪仪技术的开发与产品的应用。这是提供给国内企业的机会更是挑战。该团队也将借助他们国际领先的技术优势、可靠的数据链优势,以及强有力的价格优势和维修服务优势,不遗余力的为客户提供高质量的定制化产品和服务。结束语随着中国先进制造业和高端装备的飞速发展,以激光跟踪仪为代表的高精度、数字化、智能化的精密检测设备已经成为这些领域企业占领行业制高点的制胜法宝。一方面,激光跟踪仪在先进制造和高端装备领域的关键作用日益凸显,成为制造行业的核心仪器,国内对激光跟踪仪的需求量激增,国产化呼声高涨;另一方面,近年来西方对我国的技术限制和打压,使激光跟踪仪的采购和售后具有一定的不确定性,这将影响我国高端装备的发展,所以国家对激光跟踪仪等关键核心仪器的国产化大力支持。显而易见,未来激光跟踪仪的产业化具有极为光明的市场前景。
  • 浅谈激光干涉技术及应用现状
    激光干涉技术主要应用光波的空间相干特性。具体而言,对于两束光波或电磁波等横波,当波长相等、且相位差为2π整数倍时,合成波的振幅叠加增强至最大;当相位差为π奇数倍时,合成波的振幅抵消减小至最小。早在十九世纪下半叶,科学家们就已发明了多种原理干涉结构装置用于科学研究,其中最著名的是迈克尔逊-莫雷干涉试验,该实验采用钠光源平均谱线近似单色光进行干涉测量,从而否定了“以太”的假说。图1 迈克尔逊-莫雷干涉试验激光干涉仪的构成真正促进干涉技术巨大进步的契机是1960年激光器的发明。激光由于具有极窄的谱线,因而具有非常优秀的空间相干性。目前激光干涉仪主要的用途包括精准的尺寸和移动距离测量,测量准确度最高可以达到纳米甚至亚纳米量级。在构成上激光干涉仪最常使用的波长为632.8 nm,对于经典的迈克尔逊干涉测量原理,由激光器中出射的单色激光经过50:50半透半反的分束镜后分为2束光束,其中一束经过固定的光程后被反射镜反射,称为参考光束;另外一束光束由于存在被测对象,被反射镜反射后光程发生改变(距离或折射率变化引起),称为测量光束。当两束光被反射后在分束镜第二次合成并随后照射探测器上被接收后,将产生干涉条纹的移动。由之前的光波的叠加性可知,假设测量光路距离变化为316.4 nm,当只存在一去程一回程的情况下,此时干涉条纹相位变化2π。目前商用激光干涉仪普遍采用两去程两回程,同时采用1024倍电子细分卡,因此分辨率可达0.16 nm。图2 激光干涉仪原理构造激光干涉仪的应用现状1. 在工业领域应用随着理论研究的深入和技术的不断进步,激光干涉测量技术目前精彩纷呈,在多个领域中都得到了非常广泛的应用。 包括单频激光干涉仪、双频激光干涉仪、激光平面干涉仪、法布里-珀罗干涉仪、皮米激光干涉仪、多波长干涉测距等。 单频和双频激光干涉仪。测量具有非接触和无损检测的特点,能够在线测量长度、角度和转速等参数,因此已成为各国精密数控机床在线定位精度测量的最主要标准之一。在精密加工过程中,位置精度是机床的重要指标,激光干涉仪通过在线位置测量、实时数据处理实现机床误差修正。另外在集成电路制造中,激光干涉仪也是光刻机在线位移测量的核心部件。图3 激光干涉仪在精密机床中的应用激光平面干涉仪。激光干涉仪不仅可以用于测量长度、角度以及位移,也可以测量物体的表面形貌。测量基本原理为激光菲索(Fizeau)干涉,激光经过扩束后先后经过参考平面和待测平面,两个平面的反射光发生干涉后产生干涉条纹,通过成像系统接收。分析条纹形状即可判断是否存在缺陷。图4 激光平面干涉仪皮米激光干涉仪。现在随着微纳测量分辨率要求的进一步提高,出现了商品化的皮米激光干涉仪。皮米激光干涉仪采用包覆光纤作为激光传输介质,有效减小了空气折射率扰动对测量的影响;同时在干涉方式上干涉仪采用法布里-珀罗(F-P)干涉仪原理,是一种多倍程干涉,进一步提高了分辨率。 图5 皮米激光干涉仪多波长干涉绝对测距。采用单波长干涉测距虽然分辨率可达到纳米级,但是单波长干涉测距是相对测量,且测量时光路不能中断,而多波长干涉能很好解决这个问题。因为在干涉测距中波长就像一把量尺,但如果测量距离大于这把量尺,则需要多次拼接测量。多波长干涉能形成很长的等效波长,使量尺范围大于被测距离,实现绝对距离测量。图6 多波长干涉绝对测距光相控阵雷达。随着自动驾驶技术的高速发展,现在激光干涉技术也应用在光相控阵(OPA)激光雷达(LiDAR)中。激光雷达会产生一系列密集超短激光脉冲扫描周围物体,通过脉冲返回时长差判断距离和轮廓。光相控阵雷达利用光栅干涉原理,可以通过改变不同狭缝中入射光线的相位差来改变光栅后中央条纹(主瓣)位置,从而控制激光雷达光束的指向和转向。 图7 激光干涉技术在光相控阵雷达中的应用2. 在科学研究方面应用激光干涉引力波天文台(LIGO)。LIGO用于验证广义相对论预言的引力场扰动产生的时空扭曲。它本质上是一个超大型迈克尔逊干涉仪,由2条4千米长的互相垂直的臂构成,同时光线还会在臂内折返300次。当引力波会产生空间弯曲,干涉结果也会轻微变化。2017年美国科学家借助LIGO观测到双中子星合并引力波事件并获得了诺贝尔物理学奖。图8 激光干涉引力波天文台(LIGO)激光全息干涉测量技术。利用非共面多光束干涉可以在空间形成二维或三维周期性强度分布,从而被用来制作二维或三维光子晶体;利用全息干涉技术可用于位移及形变测量、应变与应力分析、缺陷或损伤探测、振动模式可视化及测量、晶体和蛋白质生长过程监测、流体中密度场和热对流场的观察与测量。图9 激光全息干涉测量技术作者:中国计量科学研究院副研究员 李琪
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 深达威启动A股IPO辅导,年产300万台仪器仪表
    11月14日,深达威科技(广东)股份有限公司(以下简称“深达威”)在广东证监局进行辅导备案,辅导机构为广发证券股份有限公司。官网显示,深达威成立于2010年(前身为东莞市森威电子有限公司),2023年8月经过股份制改革,更名为深达威科技(广东)股份有限公司。深达威是一家集研发、生产、销售为一体的高新技术企业,主要从事红外测温仪、激光测距仪、噪音计、风速计等工业仪表的研发生产。是广东省"专精特新"企业,拥有近150项国内外专利。深达威专业研发人员近60余人,年产约300万台各类仪器仪表,产品覆盖激光测距仪、激光测距望远镜、无损检测仪、激光测距传感器、环境检测仪等系列,远销全球30多个国家和地区。深达威主营业务模式为自主品牌销售、国际贸易、国内OEM/ODM销售三部分,其中自主品牌"深达威"仪器系列产品在国内市场占有率较高。
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 嫦娥三号探测器大揭秘:携带多种激光仪器
    承担中国探月工程第二步&ldquo 落月&rdquo 任务的嫦娥三号探测器将于今年12月份择机发射,它将实现中国航天器首次在地外天体的软着陆,从嫦娥三号着陆器中释放的月球车还将完成中国首次在月表的巡视探测。   昨日,探月与航天工程中心启动为中国第一辆月球车全球征名的活动,要求名称体现探月理念和月球车特点。参与者除了要选好名称,还要提交一份不多于300字的创意说明和背景阐述,每人最多允许提交5个方案。从昨日开始到10月25日,参与者可以提交方案,11月上旬,将确定最终入选名称。部分获奖者将有机会免费亲临西昌发射中心现场观摩嫦娥三号发射。   目前,包括月球车,以及嫦娥三号着陆器等组件,都已经被运抵西昌卫星发射基地。嫦娥三号已经进入到了发射前在前方发射场的调试、测试、准备阶段。   一、嫦娥三号探测器揭秘   看着像辆车 实为机器人   正在向全球征名的月球车将跟随年底择机发射的嫦娥三号&ldquo 着陆探测器&rdquo 展开对月球表面的探测。探月工程总设计师吴伟仁说,这不仅是我国第一辆月球车,且全部为中国制造,国产率达到100%。   嫦娥三号探测器   二、长相:身背太阳翼 脚踩&ldquo 风火轮&rdquo   月球车的专用名称叫做&ldquo 月面巡视探测器&rdquo ,设计质量是140公斤,由移动、结构与机构、导航控制、综合电子、电源、热控、测控数传和有效载荷等分系统组成。   在活动现场,记者看到了月球车1:2的模型,从模型上看,它的大脑袋上有一个定向天线和几个太阳敏感器,两侧为太阳翼,尾巴上很多天线,右后侧是导航相机和全景相机。它脚踩六个&ldquo 风火轮&rdquo 似的移动装置。腹部的&ldquo 秘器&rdquo 最多:包括红外成像光谱仪、避障相机、机械臂、激光点阵器等。   中国航天科技集团公司宇航部部长赵小津说,从严格意义上来说,月球车并不是一辆车,而是一个长着轮子,能够适应恶劣空间环境并开展空间科学探测的航天器,是一个小型化、低功耗、高集成、高智能的机器人。   据了解,月球车驶下着陆探测器后,可通过地面遥操作控制和自主规划路径,自主导航等开展长期的科学探测。   三、落月靠"3只眼"   嫦娥三号任务是我国探月工程&ldquo 绕、落、回&rdquo 三步走中的第二步,是承前启后的关键一步。在&ldquo 绕月&rdquo 阶段,中科院上海技术物理所、上海光学精密机械所为嫦娥卫星研制了&ldquo 激光眼&rdquo &mdash &mdash 激光高度计,为我国首幅全月面三维图提供了高程,相当于地球上的海拔高度。即使在无可见光的月面环境下,激光计也能&ldquo 拍摄&rdquo 自如。   但比起距离月面一两百公里外的绕月,零距离接触的落月对激光测距精度和速度提出了极高要求。在我国探月初期,嫦娥卫星对月发射一束激光,在月面形成的&ldquo 激光足印&rdquo 约有120米方圆范围,而嫦娥三号激光测距的&ldquo 足印&rdquo 将小到米级,测量精度进一步提高,可实时监测嫦娥三号着陆器距离月面的高度。   除了这束&ldquo 大激光&rdquo ,&ldquo 嫦娥&rdquo 还有一道灵敏度极高的&ldquo 小激光&rdquo 。当&ldquo 嫦娥&rdquo 向月面释放着陆器,着陆器将在接近月面时,通过激光三维成像,进一步&ldquo 观察地形&rdquo ,获取正下方图像。如下方不适合降落,它就马上换一块地方,确保着陆点相对更为平坦。这种接近&ldquo 现场直播&rdquo 的实时成像需在数秒内完成,为此中科院上海技物所研制的三维成像系统采用了多源激光并扫、实时成像方法,这种实测方式是在着陆月球时首次应用。   两只&ldquo 激光眼&rdquo 之外,&ldquo 嫦娥&rdquo 另有一只&ldquo 红外眼&rdquo &mdash &mdash 红外成像光谱仪。这台仪器置于俗称&ldquo 月球车&rdquo 的月面巡视器上,当巡视器从着陆器中驶出,便开启这一关键探测设备。这只&ldquo 眼睛&rdquo 不但能在可见光范围获得上百个光学波段的图像,还能用来探索可见光之外的&ldquo 光&rdquo ,捕捉月球物质资源放出的红外线光谱。因为每种物质都有其独特的&ldquo 红外图谱&rdquo ,红外成像光谱仪以极高的光谱分辨率&ldquo 拍摄&rdquo 月表物质,并能通过计算机直接将物质分门别类。   对于登月任务以及其后实施的返回任务,卫星发射重量越轻越好,因此&ldquo 嫦娥&rdquo 严格控制体重。相关项目负责人上海技物所研究员王建宇透露,此次星载的红外成像光谱仪只有5公斤多,是&ldquo 嫦娥&rdquo 3只眼中最轻的,而机载的同类光谱仪重量可达百公斤。今后,这种超轻型成像光谱仪器还能用于火星、小行星等更遥远的深空探测任务。   四、性能:耐极限温度 能爬坡越障   月球车以太阳能为能源,能够耐受月球表面真空、强辐射,以及从正150摄氏度到负180摄氏度,温差超过300摄氏度的极限温度和环境。工作时的舱内温度可以控制在零下20摄氏度至零上50摄氏度之间。   月球车凭借六个轮子可实现前进、后退、原地转向、行进间转向、20度爬坡、20厘米越障。   &ldquo 月面松软、崎岖不平、障碍物很多。月球车能够对月面环境和障碍进行感知和识别,然后对巡视的路径进行规划。月球车在月面巡视时采取自主导航和地面遥控的组合模式。&rdquo 探月工程副总指挥、探月与航天工程中心主任李本正说。   五、作息:大干3个月 一觉14天   月球上的一天相当于地球上的27天多,月球昼夜间隔相当于地球上14天。李本正说,月球车具备月球表面环境的生存能力,该休息的时候自动进入休眠状态,然后又能自动唤醒重新工作。据新华视点消息,月球车在月球上是连续工作14天,然后&ldquo 睡&rdquo 14天再重新工作。   在月球表面巡视的3个月中,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析,开展月壤厚度和结构的科学探测,对月表物质主要元素进行现场分析。它传回来的数据,将帮助人们更直接、更准确地了解神秘的月亮。   六、月球车探月过程:   1、动身   今年12月,中国将在西昌卫星中心用长征-3B增强型火箭发射&ldquo 嫦娥三号&rdquo 。   2、着陆   当&ldquo 嫦娥三号&rdquo 完成发射、飞行到达月球时,着陆探测器采取不同制导方式,从距月面15公里处开始动力下降,经过主动减速、调整接近、悬停避障等飞行阶段,实现路径优、燃料省、误差小的安全着陆。   &ldquo 到达月球轨道后,月球车将由着陆器背负,由变推力液体火箭发射器控制,通过各种光学、微波等敏感器测量,在月球表面百米高度上进行悬停和平移,以规避岩石和深坑等障碍,选择最佳着陆点缓慢降落月球表面。&rdquo 中国航天科技集团公司宇航部部长赵小津说。   3、准备   着陆器为月球车充电,对月球车进行初始化 之后月球车与地面建立通信链路,控制连接解锁机构解锁,走上转移机构 着陆探测器将控制转移机构运动到月面,月球车驶离转移机构,开始勘查。   4、勘查   为期3个月,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析 开展月壤厚度和结构的科学探测 对月表物质主要元素进行现场分析。
  • 研究生利用激光遥感制作实时监测雾霾探测仪
    历经连续多天的雾霾天气,北京终于拨霾见日,大快人心。然而,民众对空气质量的担忧恐慌情绪,却不会像雾霾一样散去。面对日益紧迫的雾霾问题,除了戴上防霾口罩,我们又能做些什么?......雾霾之下,没有看客,我们每个人都应该积极行动起来,你知道吗?西安的一群大学生为我们做了一个良好的表率。  前不久,西安理工大研究生代晨昱和同学们发明了一款便携式雾霾空间分布激光探测仪,可以实时监测大气污染物的仪器,打破了传统环保部门测量大气污染物的方法,将激光遥感技术应用到了雾霾监测领域。据悉,该仪器还荣获了陕西省大学生课外学术科技作品大赛一等奖。  打破陈规 用激光遥感监测领域  目前,相关部门监测大气污染物主要采用的是直接称重、多点监测、人工取样等方法,上述方法都仅是单点测量。例如直接称重法,是抽取等量空气将污染物停留在过滤膜上,直接称其重量,计算单位体积中的污染物浓度。而多点监测需要架设许多仪器,不仅耗时耗力,还不具有实时性。因为大气是流动的,往往当工作人员把仪器上的数据整理出来时,污染源的位置、雾霾污染的空间分布等已经发生了变化。  实际上,城市每个区域的PM2.5数值都不一样,而且数据也是不断变化的,这就让代晨昱萌生了用专业知识发明一种可以实时监测大气污染物的仪器的想法。经过近两年努力,他和同学们完成了设计发明工作。探测仪弥补了现有雾霾探测仪无法进行大面积探测的缺陷,大大拓展了探测距离。这款仪器的夜间探测距离为10-20 km,白天探测距离为5-8km。  探测仪整体系统主要由激光发射系统、光学接收系统、光电探测系统、数据采集处理系统及三维扫描控制系统五部分组成。代晨昱解释,这套系统主要运用了光散射和光测距两大原理。由激光发射系统发出脉冲激光进入大气,激光与大气中的雾霾颗粒发生散射后,由光学接收系统接收后向散射回波信号,再由光电探测系统将光信号转换为电信号,最后由数据采集处理系统利用模拟探测方式完成数据采集与处理。  实时监测,雾霾无处逃遁  这款便携式雾霾空间分布激光探测仪,相较于单点测量,扩大了探测范围,还可对污染源的位置、污染程度、污染物的扩散方式及传播途径进行实时监测,继而对雾霾污染的出现提前预警,使有关部门前移工作关口,采取应对措施缓解污染问题。弥补了现有雾霾探测仪无法进行大面积探测的缺陷,大大拓展了探测距离。这款仪器的夜间探测距离为10-20 km,白天探测距离为5-8km。  以城区面积约为860余平方公里的西安市为例,实验表明,4-6台探测仪就可以实现整个西安市区的覆盖探测,工作效率着实提升了不少。  代晨昱表示,这款仪器可以与现有的颗粒物监测仪器设备配合工作,不仅可以弥补现有仪器的缺陷,配合工作后测试出来的结果精度更高。他们也期待可以和有关单位部门、企业合作,为治污减霾贡献出自己的一份力量。  年轻的大学生也懂得要以己之力,为社会贡献一份力量。身为地理信息行业的从业者,手握各种地理空间技术,在这场休戚与共的雾霾反击战中,也应多思考,多行动,多出力,守护苍穹之下的那片蓝天。
  • 环境监测总站1852万仪器大单揭晓
    采购人名称:中国环境监测总站   项目名称:三峡工程生态与环境监测系统监测设备能力建设项目   招标编号:0701-114140080024/01/02/03/04/05   采购内容:生态与环境监测系统监测设备   采购方式:公开招标   招标公告日期:2011年9月30日   定标日期:2011年11月23日   采购内容:   招标编号:0701-114140080024/01(第一包):实验室大型设备   中标人名称及中标金额(人民币):哈尔滨海洁科技发展有限公司 3,660,000.00 序号 货 物 名 称 数 量(台/套) 是否可采购进口产品 1 气相色谱—三重四极杆质谱联用仪 1 是 2 DNA 遗传分析系统 1 是 3 原子荧光光度计 1 否 原子吸收分光光度计 1 否 4 流动注射水质分析仪 1 是   招标编号:0701-114140080024/02(第二包):实验室小型设备   中标人名称及中标金额(人民币):北京圣海通科技有限公司 3,657,800.00 序号 货物名称 数量(台/套) 是否可采购进口产品 1 氮气、氢气、空气一体发生器 1 否 2 全自动固相萃取系统 1 是 旋转蒸发仪 1 是 紫外光分光光度计 1 否 3 旋转蒸发仪 1 否 生物安全柜 1 否 实验室用高压蒸汽灭菌器 1 否 梯度PCR仪 1 是 酶标仪 2 是 超低温冰箱 1 否 液氮罐 5 否 4 紫外光分光光度计 4 否 红外测油仪 3 否 实验室纯水器 4 否 电子天平 2 否 悬浮物抽滤装置 4 否 5 紫外光分光光度计 1 否 电子天平 2 否 人工气候箱 1 否 恒温干燥箱 1 否 数显振荡机 1 是 大容量通用台式离心机 1 是 火焰光度计 1 否 凯氏定氮仪 1 是 6 火焰光度计 1 是 土样粉碎机 1 否 多面手型自动电位滴定仪 1 是 7 电子天平 10 否 电子天平 7 否 电子天平 2 否 8 电源控制器 5 否 温湿传感器 5 否 UPS电源 4 否 9 土样粉碎机 1 否 多面手型自动电位滴定仪 1 是 10 微型光纤光谱仪 1 是 双通道温度记录仪 10 否 11 营养盐自动分析仪 1 是   招标编号:0701-114140080024/03(第三包):现场监测设备   中标人名称及中标金额(人民币):北京圣海通科技有限公司 5,655,800.00 序号 货物名称 数量(台/套) 是否可采购进口产品 1 便携式多参数测定仪 3 是 2 差分GPS(基准站、移动站、手簿) 2 是 便携式pH/溶解氧/电导率测试仪 1 是 3 便携式测油仪 1 是 噪声统计分析仪 4 否 便携式多参数分析仪 4 否 烟气分析仪 4 是 不透光烟度计 4 否 皂膜流量计 4 否 4 GPS 5 否 5 余氯检测仪 6 否 6 GPS 5 否 便携式电导率 10 是 便携式酸度计 10 是 便携式溶氧仪 7 是 全球定位仪 7 否 便携式盐度计 2 是 便携式浊度仪 7 是 7 土壤水分、温度速测仪 1 是 土壤养分速测仪 1 否 土壤水分测量系统 1 是 土壤取样器 1 是 8 土壤养分速测仪 2 否 土壤取样器 4 否 海拔罗盘仪 2 是 土壤原位pH计 1 是 水分速测仪 1 是 土壤类型识别器 2 是 9 GPS手持机 4 是 10 全尺寸便携式等比例水质自动采样器 4 是 11 土壤水分速测仪 2 是 土壤团粒分析仪 1 是 双环入渗仪 1 是 便携式土壤pH计 2 否 土壤剖面水分水势测量系统 1 否 地表径流自动采样装置 1 是 全自动便携式光合仪 1 是 植物水势仪 1 是 12 地下水位、电导率、温度三参数 自动监测与记录仪(套件) 1 是 剖面土壤水分测量系统 1 是 剖面土壤水分/盐分/温度动态测量仪 1 是 便携式EC计 4 是 土壤水分温度盐分速测仪 1 是 土壤水分特征曲线测定仪 1 是 土壤养分速测仪 1 否   招标编号:0701-114140080024/04(第四包):气象水文及光学仪器设备   中标人名称及中标金额(人民币):北京圣海通科技有限公司 5,552,000.00 序号 货物名称 数量(台/套) 是否可采购进口产品 1 便携式超声波水深仪 2 是 摄像机 1 是 2 摄像机 1 是 激光测距仪 2 否 数码相机 1 否 数码相机 2 否 红外监控数码照相机 50 否 望远镜 1 是 望远镜 2 是 镜头:超长焦定焦镜头 1 是 中焦变焦镜头 1 是 标准变焦镜头 1 是 防抖微距镜头 2 是 3 超声波流量计 12 否 4 野外自动气象监测站 8 否 六要素自动气象站 5 否 5 暗视野显微镜(带摄像装置) 2 是 6 激光测距仪 2 是 显微镜 6 是 解剖镜 7 否 数码相机 10 否 旋杯式流速仪 5 否 7 体式显微成像系统 1 是 声学多普勒流量剖面仪 1 是 8 地下水位自动监测与记录仪 1 是 自动气象观测场 1 否 9 激光超声波树木测高测距仪 4 是 电子测树仪 2 是 测径仪 2 是 小型自动气象站 2 是 手持气象站 2 是 电子计数器 2是 冠层分析仪 1 是 植物生长测量仪 6 是 10 小型便携自动气象站 2 是 顶喷式人工降雨模拟器 1 否 11 无人值守自动观测系统 2 否 12 CTD系统 1 是 13 碳通量分析系统 1 是 涡度相关仪 1 是   招标编号:0701-114140080024/05(第五包):办公用品   中标人名称及中标金额(人民币):北京燕禹水务科技有限公司 426,020.00 序号 货物名称 数量(台/套) 是否可采购进口产品 1 笔记本电脑 2 否 笔记本电脑 3 否 激光打印机 1 否 扫描仪 1 否 彩色激光多功能一体机 1 否 2 笔记本电脑 7 否 笔记本电脑 7 否 台式电脑 2 否 3 数据作图电脑 1 否 数据存储服务器 1 否   招标代理机构名称:中技国际招标公司   采购代理机构地址:北京市丰台区西三环中路90号通用技术大厦   采购代理机构联系方式:联系人:陈建勇、李彤   电话:63348558/63348561 传真: 63373570
  • 江西食药局600万元仪器耗材采购结果揭晓
    依据江西省政府采购办(2011)部门640号函批复,江西省国投招标代理有限公司(以下简称“采购代理机构”)受江西省食品药品监督管理局(以下简称“采购人”)委托就仪器设备(招标编号:JXGT1206-3)进行公开招标采购。开标仪式于2012年6月7日9:30分在南昌公共资源交易中心四楼7号开标厅举行。经评委会评审、采购人确定,中标结果如下: 标段号 品目号 项目编号 品目 中标供应商 中标金额 标段一 品目1 11B640001 食用油品质检测仪(进口产品) 江西省立康科技有限公司 ¥6056368元 品目2 11B640002 中心温度计(进口产品) 品目3 11B640003 光照度计(进口产品) 品目4 11B640004 红外测温仪(进口产品) 品目5 11B640005 环境温度连续检测记录仪(进口产品) 品目6 11B640006 消毒间紫外线辅照度计(国产产品) 品目7 11B640007 室内外电子温湿度计(国产产品) 品目8 11B640008 笔式电导仪(国产产品) 品目9 11B640009 便携式激光测距仪(进口产品) 品目10 11B640010 酸度计(进口产品) 品目11 11B640011 ATP测量仪(进口产品) 品目12 11B640012 ATP拭子(进口产品) 品目13 11B640017 笔记本电脑(国产产品) 品目14 11B640018 照相机(国产产品) 标段二 品目15 11B640013 食品微生物采样检测箱(国产产品) 品目16 11B640014 食品卫生便携式检测箱(国产产品) 标段三 品目17 11B640015 配套耗材、试剂(国产产品) 品目18 11B640016 配套耗材、试剂(国产产品)   本公告自发布之日起七个工作日内若无异议,将向中标供应商发出《中标通知书》。   采购人:江西省食品药品监督管理局   招标代理机构:江西省国投招标代理有限公司   地址:南昌市福州路98号金昌利大厦A605室   联系人:宋苑珍   电 话:0791-86391579、86391578 邮 编:330006   传 真:0791-86391579   电子函件: jxsgtzb@vip.163.com   二〇一二年六月八日
  • 激光多普勒测速技术发展及应用漫谈(1)
    仪器信息网讯 2020年 12月1日23时11分,嫦娥五号探测器稳稳软着陆在月球,落月过程中,中国科学院上海技术物理研究所研制的激光测距测速敏感器发挥着重要作用,该多普勒激光测速精度可达0.1米/秒,将三个方向的多普勒激光测速的结果反馈给导航系统,确保航天器着陆更平稳。据悉,这也是多普勒激光测速技术首次在太空导航上得到应用。嫦娥五号激光测距测速敏感器和激光三维成像敏感器激光多普勒测速是什么?激光多普勒测速仪发展史又是怎样?本期,我们邀请北京航天光新科技有限公司 CEO 杨开健分享激光多普勒测速技术发展及应用。杨开健 北京航天光新科技有限公司 创始人兼CEO 1.激光多普勒测速仪原理激光多普勒测速仪基于光学多普勒效应利用多普勒频移实现对物体线速度的非接触测量。多普勒效应(Doppler effect)主要内容为:当声源与接收器(或观察者)之间存在相对运动时,使得接收器(或观察者)收到的声音频率,和声源发出的声音频率不同(出现频差)的现象。接收器接收的频率和声源发出的声波频率之间的差值就叫多普勒频率,其大小同声源与接收器之间的相对运动速度的大小、方向有关。多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括电磁波。当然光波也具有多普勒效应。如图所示,激光多普勒测速仪出射的激光束入射到运动物体上,部分散射光仪器接收。由于仪器相对于物体有一定的运动速度,根据多普勒效应可知,仪器接收到散射光的频率与出射激光的频率不同,分别是和,这里指仪器出射激光的频率,指多普勒频率。多普勒频率与物体的运动速度有关,通过探测多普勒频率即可计算出物体的运动速度。激光多普勒测速仪原理示意图2.激光多普勒测速仪发展史——解决不同时代用户的需求痛点1964年Yeh和Commins首次观察水流中粒子的散射光频移,并证实了可利用激光多普勒频移技术来确定流动速度,Foreman和George,Golesfecion和Kreid,Pike,Huffaker等人进一步论述了多普勒技术原理、特点及其应用,使该项技术初步得以实用化,不仅可以测量液体流速,还可以测量气体的流速。70年代是激光多普勒技术发展最为活跃的一个时期,Durst和Whitelaw提出的集成光单元有了进一步的发展,使得该系统的光路结构更为紧凑。光束扩展、偏振分离、频率分离、光学移频等近代光学技术在激光多普勒技术中得到了广泛的应用,信号处理采用了计数处理、光子相关及其它一些方法使激光多普勒技术测量范围更广泛,它的精度高、线性度好、动态响应快、测量范围大、非接触测量等优点得到了长足的发展。1975年在丹麦首都哥本哈根举行的“激光多普勒测速国际讨论会”标志着这一技术的成熟。80年代,激光多普勒技术进入了实际应用的新阶段,它在无干扰的液体和气体测量中成为一种非常有用的工具。可应用于各种复杂流动的测试,如:湍流、剪切流、管道内流、分离流、边界层流等。随着大量实际工程、机械测试的需要,目前,固态表面的激光多普勒技术也越来越受到重视:A. E. Smart,C. J. Moore等把该项技术应用到航空发动机的研究上 清华大学利用激光多普勒技术分析磁头的运行姿态溯;美、德开始激光光栅多普勒测量的研究,由光栅衍射主极大光束形成的多普勒信号,具有信噪比高、抗干扰能力强等优点,可用于各种机械的振动测量,但使用时须将光栅和测量目标相连接,限制了它的适用范围;F. Durst和M. Zare提出了PDA(相位多普勒)技术;他们研究发现,球形粒子对两束相交光束散射,会在周围光场形成明暗相间的干涉条纹。当用两个探测器接收多普勒信号时,两路信号之间存在的相位差与粒子大小成呈线性关系。这一技术被广泛应用于粒子大小的测量中,目前也被用于折射率的测量中;天津大学进行将激光多普勒技术用于固体表面面内位移远距离测量研究。3.从应用有限到技术逐渐商品化激光多普勒技术虽被证明是一种非常有用的技术,但它的仪器化产品在过去相当一段时期内受气体激光器体积庞大、信号处理技术相对落后的限制,在机械工业和大型工程领域的实际应用比较有限。近年来,许多微光学元件己经商品化,激光二极管的应用也为实现仪器小型化提供了便利条件,微小透镜取代了传统的透镜。计算机和数字信号处理技术的结合增大了振动量测量和分析的实时性和自动化程度,信号时域波形分析法、函数分析法、调和分析法等技术的成熟大大提高了测量的准确性和实用性。特别是随着传感技术和信息技术的发展,产生了一些新的测量方法,将多传感数据实时综合处理及分析变为可能,信号处理过程实现了信息化和综合化。半导体技术使得信号处理器体积减小的同时可靠性得到大大增强。这些技术的涌现,使得激光多普勒技术向着小型化、数字化、多维化、实用化、商品化等方向发展。目前,世界上许多国家已经有成熟的激光多普勒测速产品,如美国、德国、英国、丹麦、瑞典、新加坡等。应用于工业测量领域的光路结构大部分是双光束差动结构,该结构具有易对准、接收口径大等优点。该技术已经可以在钢铁、有色金属的轧机生产线的在线测量,或者用在线缆、造纸、印刷等行业的生产线的速度测量和长度累计。补充:国内激光多普勒技术研究现状据公开资料表明,国内目前从事激光多普勒技术研究的单位越来越多,清华大学、中国科学技术大学、大连理工大学、电子科技大学、国防科技大学、中国科学院上海技术物理研究所等单位都展开了激光多普勒测速技术研究。本网根据相关资料整理如下:(图源网络公开整理)欢迎广大业内人士分享更多科学技术干货内容,请投稿至liuld@instrument.com.cn
  • 国家海洋局2590万仪器设备项目结果公布
    采购人: 国家海洋局北海分局   招标代理机构: 山东法正招标代理有限公司青岛分公司   项目名称:国家海洋局北海分局2013年度海洋仪器设备招标项目   项目编号:SDFZQ20130619-017   开标日期:2013年7月11日上午9:30   采购方式:公开招标 包号 名称 中标人名称 中标金额 1 声速剖面仪 上海精导科学仪器有限公司 ¥3.903万元 2 激光测距仪 青岛百澳兰博工贸有限公司 ¥3.789万元 3 营养盐传感器 上海海奕环境科技有限公司 ¥65万元 4 超低本底液体闪烁计数仪 青岛诚业工贸有限公司 ¥134.7 万元 8 研究级倒置显微镜系统 青岛金海洋科学仪器有限公司 ¥19.92万元 9 激光二氧化碳气体分析仪 北京华信空天科技有限公司 ¥43.985万元 10 argo浮标 天津安珀科技有限公司 ¥79.3万元 11 罗经和姿态传感器 无锡市海鹰加科海洋技术有限责任公司 ¥63.9万元 12 电火花剖面系统 无锡市海鹰加科海洋技术有限责任公司 ¥93.9 万元13 声学多普勒流速剖面仪(ADCP) 劳雷(北京)仪器有限公司 ¥30.76 万元 14 CTD采水系统 劳雷(北京)仪器有限公司 ¥37.72万元 15 纯水/超纯水一体机 济南业杨科技有限公司 ¥12.99万元 16 高分辨率三维成像声纳 北京美科天瑞科技发展有限公司 ¥118.5万元 17 大幅面数码航摄仪 中航四维(北京)航空遥感技术有限公司 ¥1197.36万元 18 傅里叶变换红外光谱仪 青岛诚业工贸有限公司 ¥29万元 19 波浪补偿仪 无锡市海鹰加科海洋技术有限责任公司 ¥12.3万元 20 海洋磁力仪 青岛国海基业勘测仪器有限公司 ¥26.85万元 21 6000米深海数码相机 广州浩瀚电子科技有限公司 ¥38.67万元 22 水位计 青岛国海基业勘测仪器有限公司 ¥2.33万元 23 10000米光电复合缆 青岛海陆环境科仪有限公司 ¥318.8万元 24 船用实验室纯水机 青岛海陆环境科仪有限公司 ¥14万元 25 8000米CTD钢缆 青岛海陆环境科仪有限公司 ¥28.2万元 26 多波束测深系统 无锡市海鹰加科海洋技术有限责任公司 ¥147.6万元 28 六联真空抽滤装置 济南业杨科技有限公司 ¥2.88万元 29 红外光谱仪 青岛诚业工贸有限公司 ¥25.6万元 30 高精度盐度计 青岛赛尚科贸有限公司 ¥37.8万元   为体现&ldquo 公开、公平、公正&rdquo 的原则,现对以上中标结果公示3天,如投标人对中标结果有异议,应在公示期内以书面形式向招标人提出。若无异议,招标人将在中标公示期后发出中标通知书。   招标代理机构联系人:赵江娟 周世翔 电话:68658103 传真:68658103   山东法正招标代理有限公司青岛分公司   2013年7月12日
  • 北京是卓科技发布激光雷达监测无人机新品
    无人机自动分析识别检测系统方案一、方案背景低空无人机(Unmanned Aerial Vehicle缩写 UAV )也称为无人航空器或遥控驾驶航空器,是一种由无线电遥控设备控制,或由预编程序操纵的非载人飞行器。无人机具有机动灵活的特点,它体积小,重量轻,可随时运输和携带。它对起降的要求低,随时飞降。无人机一般在云下低空平稳飞行,弥补了卫星光学遥感和普通航空摄影经常受云层遮挡获取不到影像的缺陷。除了具有广阔的军事应用前景外,用无人机替代有人飞机执行高风险任务,也是当今国际航天领域一个重要发展方向。特别是在近几年国际局部战争中无人机被大量地使用。对无人机的监管存在盲区,无人机的大量使用更是给公共安全带来隐患。本来是为合法用途使用的无人机越来越多的被用于犯罪目的。公众已经日渐强烈的意识到了无人机可能造成的危害。无人机能窥探隐私/技术;无人机能影响民航 – 接近撞机;无人机可能会出现在敏感地区、关键位置和政府设施区域;无人机甚至能自动射击… … 最近两年,全国已发生多起无人机空中逼停飞机事件,成为民航飞行的“隐形杀shou”。2013年底,北京一家公司在没航拍资质、未申请空域的情况下航空测绘,造成多架次民航飞机避让延误。2017年浙江萧山机场、绵阳机场,此次成都机场都是由于不明无人机,导致了数百架飞机延误,数万人滞留,给国家和人民带来的损失是数以亿计的。二、无人机监测与反制现状2.1无人机控制链路介绍无人机如何控制呢?无人机使用无线链路进行远程控制和视频数据回传,超过90% 的无人机使用ISM频段 (2.4GHz) 操作,包括跳频, Wi-Fi等, 其中控制链路采用:常用的频率为 ISM 频段: 2.4 GHz, 5.8 GHz很少使用: 433 MHz, 比2.4GHz传播距离更远少量使用过时的遥控频段: 27 MHz, 35 MHz, 72 MHz (使用 PCM 或模拟编码),这类无人机逐步消失了。无人机根据价格水平有不同的控制方式,比如一些低成本的无人机采用蓝牙技术(ISM2.4GHz);大部分无人机采用Wi-Fi或跳频(ISM2.4GHz);也有部分高端无人机采用基于预设路径的卫星导航。 2.2无人机主要监控方式各国对无人机的监控主要的手段分为两种方式:行政监管、技术防范。2.2.1行政监管:日本为了加强无人机管理,实施了新的《航空法》,规定人口集中的地区一律禁止飞无人机,防止无人机引发事故或被用于犯罪,违者将处以50万日元的罚款;英国对无人机使用也作出规定,航空法第166条第三款规定,小型无人机操作员必须保持时时刻刻能看见无人机,对无人机能够完全掌控,在飞行时应与其它飞行器、人群、车辆以及建筑保持一定的距离,以免发生碰撞事故。2.2.2技术防范从技术角度来说。目前,国外无人机反制技术大致有信号干扰、雷达探测、激光炮击落、综合型技术等几大类。(1)信号干扰:无人机工作时需要知道自己的精确位置,但无人机自身无法获得足够精确坐标数据,因此,无人机上通过安装GPS信号接收机,采用GPS卫星导航系统与惯性导航系统相结合的方式进行飞行控制。信号干扰技术是通过影响无人机的GPS信号接收机,使其只能依靠基于陀螺仪的惯性导航系统,而无法获得足够精确的自身坐标数据。美国DroneDefender电波枪打击技术美国俄亥俄州非盈利开发机构“巴特尔”(Batfeoe)最近推出了一种DroneDefender反无人机设备。DroneDefender设备前端上部安装了一根白色的杆状天线。这种设备采用非破坏性技术,是首款能移动、精准、快速阻止可疑无人机靠近的专用设备。用户只需将其指向空中的无人机,扣下扳机,就可以将目标“击落”。该设备只对实时遥控型无人机或依靠GPS导航的无人机有效(如常见的四轴飞行器和六轴飞行器),打击范围约400米;欧洲空客集团反无人机系统,空中客车防务及航天公司研发了一种反无人机系统,采用干扰技术对目标信号的频率进行干扰,而不会影响到周围其他频率的信号。该系统可远距离侦察在争议地区飞行的非法无人机并实施打击,同时又能尽可能地减少对其他物体的影响。该系统具备信号分析技术和干扰功能,并配有雷达、红外相机和定向仪,可以侦察到5至10公里范围内的无人机,还可对无人机的威胁性做出判断。基于庞大的信息库信息,该系统还可以对无人机的信号进行分析,一旦发现问题,系统就会通过干扰台切断无人机与其操作人员之间的联系,然后定向仪会追踪到无人机操作人员的具体位置,便于实施抓捕行动。(2)雷达探测:瑞典“长颈鹿”雷达系统,据美国H JS Jane’s国防、安全情报网站2015年9月1 6日报道,瑞典萨博公司在苏格兰的西弗瑞格(WestFreuqh)靶场演示验证了其“长颈鹿”捷变多波束(AMB)雷达系统对低空、低速小型目标的探测能力。此次试验名为“布里斯托15”,显示了该雷达对低空、低速小型目标强大的探测能力(ELSS),该雷达在执行全部空中监视任务的同时,能够执行反无人飞机系统(UAS)作战任务。在“布里斯托15”试验中,雷达散射截面精确到0.001平方米,增强了对低空、低速小型目标的探测能力,可自动识别低空、低速小型目标并对其进行跟踪,业余爱好者操作低速、小型四轴无人飞机系统。“长颈鹿”捷变多波束雷达系统属于地面和海洋的二维或三维G/H波段被动电子扫描阵列雷达家族系列,可在提供海岸监视能力的同时,对固定翼飞机、直升机、地面目标、干扰机和弹道目标进行分类与跟踪;意大利“猎鹰盾”系统2015年9月15日,在英国伦敦举办的英国军警装备展DSEI上,意大利芬梅卡尼卡集团SeIex ES公司展示了其研发的“猎鹰盾”无人机系统。该系统能够定位、辨识和控制对公共安全或是私人构成威胁的远程微型或者小型无人机,即所谓的“流氓无人机”。该公司称,这种设备的市场价值可能达数亿英镑;“猎鹰盾”系统利用摄像机、雷达和先进的电子设备监控无人机接收和传输的信号,从而对其进行追踪并确定其类型。一旦锁定目标,“猎鹰盾”就会利用其专有技术控制无人机,甚至将其坠毁。与其他企业利用电子战击毁无人机的系统相比,“猎鹰盾”优势在于,在精准击落“流氓”无人机的同时,可以有效避免对周边建筑物等环境造成伤害。此外,发送无线电信号控制无人机时,还不会妨碍紧急救援服务甚至移动通讯等其他重要信号的传输;墨西哥JAMMER公司防卫系统墨西哥JAMMER公司开发了Tamce Bloqueador Direccional Anti-Drone防卫系统,用于家庭防空。系统的干扰功率为20瓦,可压制几百毫瓦的无人机。启动开关后,干扰器可以干扰2.4G和5.8G信号,这对于大部分消费级无人机来说,遥控信号和图传信号都会丢失,丢失了信号后无人机只能返航或者原地降落;美国Drone Shield公司监测系统美国无人机探测系统制造商Drone Shield研发出了利用雷达或麦克风来监测无人机的技术。它内置了Raspberry Pi、信号处理器、麦克风、分析软件、无人机声音特性的数据库,通过监听周围环境的声音,通过声音对比确定是否有无人机。当有无人机在附近时,通过邮件或者短信发出警报。从原理上来看,预警技术并不难,因此监控的准确性和低误报率就非常关键,在这方面,Drone Shield拥有自己的专利技术。据悉,美国当局已经利用这种系统来为监狱、体育赛事和政府大楼提供安保。(3)综合型技术:英国反无人机防御系统AUDS,2015年10月,英国广播公司、美国国土安全新闻网、俄罗斯卫星网等网站分别对英国完全集成的“反无人机防御系统(AUDS)”进行报道。该系统俗称电磁干扰射线枪,由英国的三家防务技术公司(Blighter Surveillance Systems,Chess Dynamics和Enterprise Control Systems公司)联合研发,可以探测、跟踪并摧毁小型和大型无人机。该系统可以全天24小时开机,全自动运行。首先使用雷达和光学仪器(即雷达探测系统)搜索无人机,当雷达或光学系统探测到目标后,动态定位和视频追踪系统进行跟踪,随后定向射频干扰系统开始工作,发射定向的大功率干扰射频,干扰无人机自控系统,切断无人机与后方控制中心之间的数据联接或无线电通讯,致使无人机无法自主飞行,导致坠毁、迫降或者返航。AUDS系统的售价约为100万美元,可以安装在车载平台上,部署到军事前线、偏远边境或城市地区执行反无人机任务。该系统由三个子系统和一套总控设备组成。三个子系统分别是雷达探测系统、动态定位和视频追踪系统、定向射频干扰装置。雷达探测系统由Blighter公司研制,据称可探测反射面积0.01平方米大小的目标,最远探测距离可达8公里,并通过选配不同的天线来实现俯仰角度和水平旋转角度的变化;动态定位和视频追踪系统由CHESS dynamic公司开发,由一个可以旋转的机械平台加上高分辨的摄像机和热成像相机组成,以实现视频追踪,可以选装光学干扰装置发出高密度光束;定向射频干扰装置由Enterprise Control Systems公司研发,它使用高增益四频段天线来对准目标发出电波,可以使在C2频道下工作的无线遥控装置失灵,无法接收到指令的无人机只能盘旋不动,直到电力耗尽坠毁。报道称,该系统于2015年5月首次公开亮相,并在欧洲(如英国、法国)和北美(如美国)野外与城市等不同地形环境中进行了测试;泰利斯公司组合装备泰利斯公司正在推出一种由雷达、声像探测器、定向仪、射频和视频定位器和激光扫描装置组成的组合设备。对非法无人机的压制任务由动能杀伤武器完成,也可以通过激光干扰、选择性干扰、GPS电子欺骗、电磁脉冲来完成,还可以用另外一架装备干扰设备的无人机进行拦截。泰利斯公司已经针对4旋翼无人机和其他小型无人机进行过反无人机的技术试验。(4)其他技术:无线电控制采用接收器追踪并确定无人机,使用足够强大的电子信号照射无人机,夺取其无线电控制权。操作过程中,一旦无人机不能接收信号,就会坠毁,通过借助阻截无人机使用的传输代码,进而控制无人机,令其返航。美国联邦航空管理局(FAA) 与信息技术公司CACI推出了SkyTracker系统,该系统可在敏感地带如机场周围构建电子边界线。CACI表示,该系统可利用无人机无线电线路来识别和定位在禁飞或受保护空域内飞行的无人机,还可定位无人机的操纵人员。CACI网站提到:“CACI系统可精确定位黑飞无人机,并可将同一空域内其它无人机与此区别出来。”CACI称,SkyTracker还可有效地阻止指定无人机;微波干扰,微波武器又叫射频武器,这种武器可利用高能量的电磁波辐射去攻击和毁伤目标。与激光武器相比,微波武器作用距离远,受气候影响小,火力控制方便。军事专家们预测,随着新技术、新材料的不断发展,微波武器将会发挥越来越多的作用。俄罗斯联合仪表制造集团已制成超高频率微波炮,可用于帮助地对空导弹“山毛榉”攻击无人机及高精度武器电子设备。微波炮射程超过10公里,将其安装在特殊平台上可实现360度全方位防御。该款武器除了可搭配“山毛榉”地对空导弹用于防空外,还可检测俄军电子系统抗微波辐射能力;声波干扰,声波干扰技术就是利用声波使陀螺仪发生共振,输出错误信息,从而导致无人机坠落。研究人员发现,如果声音足够强(例如达到140分贝),声波可以击落40米外的无人机。韩国2015年8月公开了一种利用声波干扰陀螺仪击落无人机的技术。研究人员给无人机接上非常小的商用扬声器,扬声器距离陀螺仪4英寸(约10厘米)左右,然后通过笔记本电脑无线控制扬声器发声。当发出与陀螺仪匹配的噪声时,一架本来正常飞行的无人机会忽然从空中坠落。当然,在真实的攻击场景中是不可能把扬声器接到无人机上的,这种方法还不是真正有效的反无人机措施。目前存在的难点在于瞄准和跟踪,未来可能与跟踪雷达配合使用。三、系统实现 目前国内低慢小目标探测需求突现,其中蕴藏的巨大市场需求。本系统依托激光雷达技术,多无人机进行实时在线监测。该系统可以全天24小时开机,全自动运行。首先使用激光雷达和光学仪器(即雷达探测系统)搜索无人机,当雷达或光学系统探测到目标后,动态定位和视频追踪系统进行跟踪。 整套系统由三部分组成:激光雷达探测系统、旋转云台、动态定位和视频追踪系统、定向射频干扰系统。光电设备,先由激光雷达,最远探测距离可达20公里,最小分辨率可达0.01m2大小的目标,发现目标后,动态视频追踪系统根据目标距离自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,提高系统检测的准确性及无人机的移动趋势;定向射频干扰系统根据无人机运行轨迹及距离,定向发射射频干扰或捕捉网等手段,对无人机进行干扰及捕捉。系统可以安装在车载平台上,部署到军事前线、偏远边境或城市地区执行反无人机任务。四、优势比较到目前为止,大多数雷达都是所谓的脉冲雷达。例如,这适用于几乎所有用于空中交通管制的雷达。脉冲雷达以固定的间隔发射短而强大的脉冲,并且该脉冲的一些被物体反射。通过测量发送和接收反射信号之间的时间,可以计算到物体的距离。脉冲雷达系统擅长检测大面积天空内的物体,并确定与物体的距离。另一方面,它们不太适合确定物体的速度和方向。多普勒雷达系统传输恒定信号。利用多普勒效应,当发射它的物体远离观察者时,信号的波长增加,而当物体向观察者移动时,信号的波长减小。正是这种效应导致救护车警报器在驶过后发出不同的声音。物体移动得越快,效果越强。因此,多普勒雷达可以基于从物体反弹回来的信号波长的变化以非常高的精度确定物体的速度。还可以以非常高的精度确定物体的运动方向。多普勒雷达系统提供了有关被检测物体的更多信息。另一方面,教科书会说多普勒雷达在覆盖大片天空和确定物体距离方面不如脉冲雷达。无人机的飞行速度非常慢。这使得它们难以使用脉冲雷达进行检测,也不适用于多普勒雷达系统。因为即使整个无人机移动缓慢,转子也会快速移动,并在多普勒雷达中产生独特的信号。“除了它们的小尺寸以及它们可以飞得极低的事实之外,无人机还带来了其他一些挑战。无人机尤其具有极强的机动性。熟练的操作员可以利用它来将无人机隐藏在不相关的物体之间,如树木,建筑物,鸟类等。这需要雷达集成的光学系统。通过组合雷达和光学传感器,跟踪无人机同时避免误报,例如当一只鸟飞过时更加可行。光学传感器还有助于识别无人机。激光雷达,采用不可见光对空域进行360°全方位不间断探测,整个系统具有以下优势:1、测量精度更高:激光雷达在测距领域拥有突出优势,测量更加准确。2、全机型覆盖式监测:激光雷达通过发出的光路对空域进行不间断扫描,当无人机出现在空域后,根据反射光的区别进行监测。完全覆盖全部无人机机型,从根本上解决了依靠不同频段监测对应频段无人机的弊端,真正实现了全机型覆盖式监测。3、高可靠性:动态视频追踪系统根据目标距离不同自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,大大提高系统检测的准确性,降低系统误报记录,可靠性高。五、系统结构图 创新点:通过组合雷达和光学传感器,跟踪无人机同时避免误报,例如当一只鸟飞过时进行区分。光学传感器还有助于识别无人机。 激光雷达,采用不可见光对空域进行360° 全方位不间断探测,整个系统具有以下优势: 1、测量精度更高:激光雷达在测距领域拥有突出优势,测量更加准确。 2、全机型覆盖式监测:激光雷达通过发出的光路对空域进行不间断扫描,当无人机出现在空域后,根据反射光的区别进行监测。完全覆盖全部无人机机型,从根本上解决了依靠不同频段监测对应频段无人机的弊端,真正实现了全机型覆盖式监测。 3、高可靠性:动态视频追踪系统根据目标距离不同自动调节光学摄像机和热成像相机焦距,依靠旋转云台进行动态定位及视频追踪,大大提高系统检测的准确性,降低系统误报记录,可靠性高。
  • 世界七大顶级光学巨头
    全球顶级的光学巨头有蔡司、莱卡、尼康、奥林巴斯,这四家是显微镜4大厂商,提供最顶级显微镜产品,同时也不局限于显微镜,它们还生产或曾经生产照相机、望远镜等光学产品。一、卡尔蔡司(德国)卡尔蔡司从1846年创立,至今已有170多年历史,在全球形成了半导体制造技术、工业质量与研究、医疗技术和光学消费品市场四大业务部门,卡尔蔡司是世界领先的光学与光电行业科技集团。蔡司已成为全球领先的光刻光学元件的代名词,尤其在芯片领域,其元件被用于制造半导体组件。在镜片及相机镜头和双筒望远镜等领域,一直引领世界潮流。200年前,一个名为卡尔蔡司的德国人创办了一家精密机械及光学仪器车间,后来公司在先进的光学系统设计和制造领域获得全球认可,迅速成长为全球光学领域的引领者。事实上,卡尔蔡司一百多年的发展历程中经历了很多挫折。值得一提的是,二战后公司被迫一分为二,一半在西德,一半在东德。虽然如此,卡尔蔡司在五十年代仍然恢复了传统产品的生产,同时大力研发新产品,快速恢复了基础。有趣的是,这两家公司不仅成为各自地域的光学带头人,而且成为在全球光学市场上的竞争对手。因为它们都致力于研究光学、精密机械和电子学原理的结合,给全球带来了全新性能的高科技产品。到了九十年代,两家公司再次合并,而合并后卡尔蔡司比以往任何时期都要强大。德国蔡司镜头是镜头领域公认的“贵族”。摄影爱好者的都知道,莱卡相机和蔡司镜头是真正的“烧钱”玩具。比如闻名遐迩的哈勃望远镜中直径2.4米的镜头、韦伯望远镜直径2.6米的镜头都是由德国蔡司制作的。甚至于地球上所谓“最强大脑”——大物理学家爱因斯坦的眼镜也都是蔡司的产品。爱因斯坦曾经不止一次夸赞蔡司质量。再比如二战德军潜艇2的潜望镜、俾斯麦战列舰的炮镜等都是德国蔡司的东西。可以说,蔡司是现代光学的祖师爷。德国光学领先世界。德国光学镜头在全球各种领域发挥十分重要作用,比如著名的光刻机镜头领域,德国蔡司独占鳌头。即使在民用相机领域,日本相机的机身与德国光学的结合十分普遍,比如日本美能达与徕卡、日本雅西卡京瓷与蔡司、日本索尼与蔡司、日本松下与徕卡。日本人对于德国镜头的崇拜情怀由来已久。甚至连COSINA公司都收购了德国老牌的福伦达品牌。在德国,除了蔡司,徕卡,德国的施耐德,罗敦司得也是享誉世界的著名光学厂家。尤其是其为中大画幅系统提供的镜头十分著名。德国著名的施耐德能够制造大画幅非球面镜头,水平及实力世界一流水平。德国镜头创造了传奇,德国镜头在世界上是出类拔萃的存在。尽管德国镜头出类拔萃,但并非意味着价格就很贵,比如曾经的东德镜头物美价廉,即使是东德的蔡司依然是白菜价。大部分德国镜头的价格几乎都是良心价,仅有少部分精工细作的产品比较昂贵,但是相比于同等级别的日本镜头,德国镜头的性价比显然要更高很多。尽管如此,在民用的相机镜头领域,日本光学技术已经迎头赶上。20世纪上半叶,德国相机光学就已经确立了世界霸主地位,尽管同时代还有英国,法国,美国等光学厂家,但德国人在设计上的不断改进,材料的不断升级,使得德国在全球逐渐垄断及掌控了光学设计的话语权。值得一提的是,德国在大画幅、120和135的领域,德国光学几乎是力霸全球,而当时,全球只有德国能制造出复杂的,功能多样的高性能镜头。虽然法国,英国,美国在这段时间里能够制造一些高水平镜头,但整体上世界镜头市场几乎是德国的天下。这种情况一直持续到战后。值得一提的是,20世纪上半叶,日本人投身到相机制造产业及光学产业,但当时日本人主要以模仿德国产品为主,无论是机械还是光学都采用模仿手段。日积月累,日本在机械上开始有了突破和创新,特别是在电子技术领域成就十分突出,但日本在光学领域长期以来依然是以模仿德国设计,并且大量采用德国材料及其替代品。德国镜头在全球仍然保持着相当高的设计水准,德国蔡司的OTUS镜头、徕卡的微单镜头、M口上的50 2.0AA,仍然代表着民用光学的世界最高水平。值得一提的是,德国拥有全欧洲最大的光子学产业,曾占欧洲大陆产值的41%以上。在许多光子学应用领域中,德国是公认的全球第一。德国的光子学已经发展成为德国最重要的未来产业之一,并成为创新和增长的发动机。自2005年以来,德国光电子产业的增长速度曾经是其国内和全球GDP的两倍(每年6%到7%),尤其在全球光子学市场上占有约6%的份额。 据VDMA(欧洲最大的工业协会——德国机械设备制造业联合会)预测,到2020年这一数字将上升到390亿欧元左右。德国公司在包括激光技术、照明、显微镜和成像在内的许多光子学领域始终处于世界领先地位。比如重要的图像处理和测量技术(占22%的全球该行业的市场份额)、医疗技术和生命科学(19%)、光学元件和系统(18%)、生产技术(15%)代表了德国主要的光电子产业。从德国的出口率来看,70%左右的出口配额证明了德国自主创新的光电产品的国际竞争力。生产技术部门的出口率特别高,达到80%,医疗技术和生命科学部门的出口率也在70%以上。德国光子学公司的出口配额远远高于传统制造业公司(在2015年达到48%)。值得一提的是,德国公司在研发上的平均支出占总收入的9%,促使光子学成为德国研究最密集的领域之一。全世界大约有28%的产品是在欧洲生产的。对内窥镜、显微镜、成像系统和激光治疗系统的巨大需求,大大加强了德国在该领域的突出表现。据VDMA统计,德国的年平均增长率为6.6%,人口老龄化和对微创手术、现场诊断以及眼科激光治疗的需求增加是重要驱动因素。由于德国在显微镜、内窥镜和医学成像系统技术方面的实力,德国曾占欧洲总产值份额的50%以上。二、徕卡(德国)徕卡(Leica),是由一家同名的德国公司生产的照相机的品牌,由徕茨(Leitz)和照相机(camera)的前音节组成。公司的原名为恩斯特徕茨公司。目前拆分为三家公司:徕卡相机股份公司、徕卡地理系统股份公司和徕卡微系统有限公司,分别生产照相机、地质勘测设备和显微镜。"徕卡"品牌由徕卡微系统股份公司持有,并授权另两家公司使用。徕卡相机最初问世于1913年,是世界上最早35mm的照相机。值得一提的是,昂贵的价格是徕卡的品牌标志,并且代表一种精湛的制作,一种深厚底蕴的文化。享誉世界的徕卡相机是由德国徕茨公司生产的。它以结构合理,加工精良,质量可靠而闻名全球。值得一提的是,在20-50年代,德国一直雄踞世界照相机王国的宝座。徕卡相机成为当时世界各国竞相仿制生产的名牌相机,在世界上享有极高的声誉。在二十世纪五十年代到六十年代期间,徕卡相机已相继研制出了2型、3型相机。其中2G相机仅出了15台,而这15台相机还没有在市场上销售过,同时也没有独立编号。因此徕卡2G相机成了收藏爱好者追捧的精品。1954年M系列开始生产,它是G系列的改良品,到目前为止,徕卡M系列仍在出新产品。徕卡相机的突出特点:坚固、耐用、性能好,因此它成了军用相机的不二首选。特别是在第二次世界大战中,徕卡相机成了当时随军记者的重要工具。与民用徕卡相机不同的是,军用徕卡相机一般在编号的后边再带一个K字母。徕卡军用相机一般是白色、黑色、深灰色和草绿色。直到今天徕卡相机仍然是相机收藏中的佼佼者。徕卡市场突出定位:精密,坚固,品质卓越是徕卡的重要利器,尤其在其所擅长的领域里,可以说所向披靡,无可比拟。徕卡M6曾经被不少徕卡迷认为是仅次于M3的经典机型。不仅是因为它是徕卡M系列中唯一一款全钛机身的的相机,同时还被誉为:"相机史上最强大的连动测距相机",也是徕卡相机销售史上销量最高的一款机型。徕卡也是全球领先的测量产品供应商,徕卡测量系统拥有悠久的创新传统,并继续致力于打造未来的测量技术。其获得举世瞩目的成就:比如1921 T2,全球第一台光学经纬仪(Wild)1923 A1,全球第一台模拟摄影测量立体绘图仪(Wild)1925 C2,全球第一部航空摄影相机(Wild1969 DI10,全球第一台红外测距仪(Wild)1977 TC1,全球首款具有机载数据处理功能的全站仪(Wild)1984 ERDAS推出全球第一个基于PC的遥感软件WM101,全球第一台测量型GPS接收机(Wild-Magnavox)1986 DIOR3000,全球第一台无反射镜测距仪(Wild)1990 NA2000,全球第一台数字水准仪(Wild-Leitz)1991 SMART 310,全球第一台工业激光跟踪仪(徕卡)1991 System 200,全球第一台采用快速静态测量技术的GPS产品1993 DISTO™ 全球第一台手持激光测距仪1998 TPS300 / 1100系列产品,全球第一台具有同轴无反射棱镜测距功能的全站仪1999 Cyrax2500 全球首台可在1秒钟内采集1000个点的三维激光扫描仪2000 Cyclone 独特的三维激光扫描数据处理和可视化软件3D高精度TPS和GPS机械引导系统ADS40,全球第一台航空数字传感器2001 SurveyEngine可直接生成ESRI兼容的数据Spider GPS参考站软件2002 CloudWorx三维CAD插件,可在CAD系统中处理HDS三维点云数据2003 HDS™ ,实现高分辨率的快速测量和三维可视化GS20,亚米级专业GIS数据采集系统2004 T-probe和T-scan,All-In-One(全合一)工业测量解决方案DISTO™ -Plus,全球第一台使用蓝牙技术,并提供制图和电子数据处理两个免费软件包的手持激光测距仪System1200 全球第一个GPS/TPS全面兼容的测量系统GRX1200 GPS参考站接收机2005 SmartStation,全球第一台真正集成GPS的全站仪,取名超站仪SpiderNET GPS参考站网软件徕卡公司拥有6大业务系统:工程测量系统 是徕卡测量系统最大的业务部门。地学空间影像测量系统:为用户提供基于影像的测量解决方案,业务范围从遥感和航空测量到GIS(地理信息系统)。工业测量系统:能够帮助工业用户(如汽车和航空航天业)精确地测量大型部件,精度可达到微级(1um)精度,并能直接在CAD系统中处理数据。大众测量系统:发明了具有革命性的Leica DISTO,"徕卡迪士通"手持式激光测距仪。HDS高清晰测量系统: 使徕卡测量系统迅速进入新兴的三维数据市场。特种仪器系统:包括Polymeca AG。三、尼康(日本)尼康(Nikon),是日本的一家著名相机制造商,成立于1917年,当时名为日本光学工业株式会社。1988年该公司依托其照相机品牌,更名为尼康株式会社。"尼康(Nikon)"的名称,从1946年开始使用,是"日本光学"日文读音(Nippon Kogaku)的罗马字母缩写,并且融合了德文中蔡司照相机ZeissIkon中kon的写法。尼康最主要产品有:尼克尔(Nikkor)相机镜头、尼康水下照相机(Nikonos)、尼康F系列的135胶卷单反相机、还有尼康D系列的数码单反相机,消费性数码相机Coolpix系列。尼康也是世界一流的分步重复半导体生产设备(分档器)的制造商。公司同时还生产护目镜,眼科检查设备,双筒望远镜,显微镜,勘测器材。尼康是全球著名的光学产品设计和制造商,具有当今世界尖端的光学科技水平。其光学产品以优异的性能著称于世。尼康光学科技在影像、光纤、半导体、视光、科考等人类生产、生活的各个领域发挥着重要作用。尼康品牌具有高品质,高科技,高精密度的形象。尼康镜片具有先进光学技术、高清晰,高透光率,先进镀膜技术等特点。尼康在镜片的高折射率材料、非球面技术、个性化光学设计、光学镀膜等方面处于世界领先地位。尼康SEE系列镜片和镀膜是尼康尖端光学技术的代表。日本NIKON公司是世界专业运动光学产品生产者,拥有几十年专业镜片制造经验和世界领先的镀膜技术NIKON不断追求创新。将最新的现代科技应用于运动光学领域,结实的橡胶外壳,内部氮压系统,防雨,防雾镜片,防水压,精确涂施的镜片涂层技术。尼康是世界上仅有的三家能够制造商用光刻机的公司,在这个领域,许多人只知道尼康的相机做得好,却不知道尼康光刻机同样享誉全球。光刻机作为整个集成电路制造最关键的设备,其设备的性能直接影响到整个微电子产业的发展。全球目前最先进的沉浸式光刻机也只有ASML、尼康和佳能三家能够生产,并且单台价格高达几千万美元。尼康的G-line、I-line步进式光刻机(stepper)、投影式光刻机在全球晶圆厂大量使用。Arete Research LLC公司的分析师Jagadish Iyer曾经在一份报告中指出:Intel之前最终决定22nm光刻工艺设备的供应商,最终入围的是荷兰ASML Holding NV和日本尼康两家。其实在更早的45nm世代,ASML和尼康也曾双双成为Intel的光刻设备供应商,但在32nm节点上Intel首次应用了沉浸式光刻技术,只有尼康一家提供相关设备。尼康获得的主要荣誉:2009数码单镜反光相机D3荣获「亚洲最具影响力设计2009」铜奖 2009尼康D5000数码单镜反光相机荣获DIWA金奖 2009尼康D3X数码单镜反光相机荣获欧洲EISA大奖 2009 尼康D700荣获"CAMERA GRAND PRIX 2009读者评选大奖"。2010 尼康D3100及COOLPIX S1100pj荣获德国iF产品设计奖 2010 尼康COOLPIX S8000轻便数码相机荣获2010年「亚洲最具影响力设计」优异设计奖 2010 尼康AF-S尼克尔35mm f/1.4G镜头荣获photokina STAR 2010大奖 2010 尼康D3S数码单镜反光相机、AF-S尼克尔300mm f/2.8G ED VR II镜头荣获欧洲EISA大奖 2010 COOLPIX S1000pj及尼康D5000荣获"red dot award: product design 2010"大奖 2010 尼康D300S及尼康D5000获颁"5th Annual CNET Asia Readers' Choice 2009/10 Awards"。2011 五款尼康产品荣获"iF设计奖2012" 2011 尼康D7000数码单镜反光相机荣获EISA大奖 2011 尼康D7000荣获"CameraGP2011读者评选大奖" 2011 尼康获颁两项TIPA Awards 2011 (尼康D7000 & COOLPIX P300) 2011 尼康D7000, COOLPIX P7000, COOLPIX S1100pj, EDG 8x42荣获"red dot award: product design 2011"大奖 2011 尼康D5000、尼康D3100、COOLPIX S8100及COOLPIX L110获颁CNET Asia Readers' Choice 2010/11 Awards 2011 尼康D3100数码单镜反光相机继荣获德国iF产品设计奖后,再赢得iF创意设计奖2012 两款尼康数码单镜反光相机D4及D800荣获欧洲EISA大奖 2012 尼康数码单镜反光相机D800荣获"Camera GP2012 Camera of the Year及Readers Awards 2012 三款尼康产品荣获"TIPA Awards 2012"大奖 2012 四款尼康产品荣获"red dot award: product design 2012"大奖。四、奥林巴斯(日本)奥林巴斯(Olympus Corporation),创立于1919 年。1920年在日本成功地将显微镜商品化,尤其在癌症防治领域发挥着极其重要作用的内窥镜,1950 年由奥林巴斯在世界上首次开发。奥林巴斯株式会社已成为日本乃至世界精密、光学技术的代表企业之一,其事业领域包括医疗、影像、生命科学产业三大业务领域。奥林巴斯是世界相机领域的巨头,特别是在2001年实现了μ系列相机全球销量超过2000万台的辉煌业绩。在中国,奥林巴斯曾经连续八年牢牢地站在"民用相机全国销量第一"的位置上。奥林巴斯集团在显微镜、医疗仪器、传统相机、数码相机、打印机等图像解决方案产品以及高科技生命工程学等领域同样取得了辉煌的成绩。比如内窥镜从开发初期的胃窥镜发展至纤维内镜、电子内镜,迄今不仅在检查、诊断方面、而且在诊断和治疗方面也已成为不可缺少的设备。奥林巴斯的内窥镜深得医学界的信赖,在全世界拥有百分之八十的市场份额。1950年,奥林巴斯在世界上首次实现胃镜实用化。之后,始终以"安心与安全"为宗旨,不断追求减轻患者负担的新产品,为实现最佳医疗做出贡献。在生命科学领域,奥林巴斯以生物科学研究为目标。以先进技术,支持中国生物科学事业发展。以优质服务,提供给用户贴心的全方位支持。奥林巴斯品牌创立始于1919年,1921年自主研发了日本第一台光学显微镜"旭"。九十年来,奥林巴斯凭借"光学-数字技术"的核心竞争力,始终走在行业的最前沿,向生命科学领域提供了精密、专业的显微镜产品,曾经连续30年雄居中国和日本显微镜市场销售额第一。奥林巴斯FSX100以"卓越的图像""超简单的操作"和"良好人机工程"为核心理念,化繁为简,使任何人都可以轻易得获得稳定精准的显微图像。比如全球首台全内置式激光扫描共聚焦显微镜FV 10i通过全内置一体化的设计获得了紧凑的结构和具有高度稳定性的系统,更使昔日激光共聚焦显微镜复杂的操作和维护成为了历史,体现了人性化的设计理念。比如拥有多光子激光扫描技术的FV1000-MPE能深入地观察到厚标本或者在体标本的内部核心,对神经科学和人造器官组织工程的研究产生了极其深远的影响,开启了显微镜深度观察的新时代。奥林巴斯显微镜产品始终代表着行业的先进水平,广泛地应用于生命科学以及工业领域的研究,深受广大用户和科研机构的好评。值得一提的是,2013年度R&D100大奖(R&D 100 Awards)的获奖名单中,奥林巴斯IX3系列倒置显微镜凭借其易操作性、更高的成像精度和灵活的功能拓展性,赢得了美国专家评审委员会的认可,成功跻身2013年度全球最具代表性的100项先进科技成果之林,获得成像类产品大奖。 2013年9月,奥林巴斯成功推出了新时代FVMPE-RS全新多光子扫描显微镜,高速高灵敏度双光子成像技术、空间精确红外光刺激和可见光光刺激及更深的成像深度,更长波长光校准及透过率系统,FVMPE-RS堪称迄今为止最先进的多色多光子显微镜系统,将会成为生命科学研究的有力支持。五、富士胶片(日本)富士胶片株式会社,1934年创建,已发展成为世界上规模最大的综合性影像、信息、文件处理类产品及服务的制造和供应商之一。 总部位于日本东京。富士集团包括富士胶片株式会社、224家子公司和40家从事研发、制造、软件开发、市场和采购及相关经营活动的关联公司, 分布于世界200多个国家和地区, 海外销售额已接近合并报表净销售总额的50%。富士胶片有三大事业领域:1.包含传统和数码两大产品群(胶片、照相机、相纸、化学药品、冲扩设备等)的影像事业领域 2. 包含印刷系统、医疗系统、液晶材料、记录媒体等系列产品的信息事业领域 3. 由富士胶片的子公司富士施乐公司生产和销售的文件处理设备(复印机、打印机、多功能数码文印中心、耗材等)构成的文件事业领域。世界胶卷市场的70%曾经被美国的柯达公司占领。但在日本国内,富士胶卷的市场占有率曾达到约70%,超过了柯达公司,占绝对优势。值得一提的是,1976年9月,该公司生产的高感光彩色胶卷F-Ⅱ400先于柯达公司在市场出售,轰动了世界。从技术水平来看,富士胶卷的一部分技术已超过了柯达公司。世界上的照相行业历来以保守技术秘密。尤其是日本的胶卷世界,在战后想引进外国技术,最终都没有获得成功。日本是完全依靠自己的力量来发展技术,并达到当今世界先进水平,十分值得引人注目。尤其是富士胶卷,在胶卷、照相纸印刷、办公用机械设备、ME等领域内,开发了世界水平的先进技术,称为"技术的富士胶卷"。世界上在冲洗彩色胶卷系统方面,柯达方式占绝对优势。但在技术不公开的情况下,富士胶卷能在国内维持70%的市场占有率,无疑这是十分惊人的。其秘密是该公司除了有较强的技术外,还有较强的市场推销能力。特别是在国际市场方面,逐步巩固其地位,加紧追赶柯达公司。富士胶卷的技术水平已有一部分超过了柯达公司。早在1976年9月,该公司发表了高感光度彩色胶卷F-Ⅱ400新产品,而柯达公司于1977年5月才发表同性能的产品,这比日本另一家小西六照相工业的产品还晚2个月。日本的照相工业,特别是富士胶卷的技术力量之强,快速闻名于全世界。该公司在生产技术方面,也超过了柯达公司,其质量高、信誉好,在照相业界受到高度评价。富士胶卷对研究开发技术十分重视,每年的研究开发费占销售额的比率为5~6%。在全球化学工业中是首屈一指的。富士胶卷从事开发研究的人员曾经达2500人左右。特别是在全体职工中,4个人就有1个人从事研究开发工作。富士胶卷公司的研究开发体制是总公司的机构,有专利部、技术情况室、设备技术部、开发部,实际工作部门有生产技术部、机器开发部、磁性记录研究所、富士言研究所,朝霞研究所、NS研究所、足柄研究所等。富士胶卷的技术,是以照相化学、照相光学、彩色画像评价技术等影像情报或彩色情报等的处理技术的基础上发展起来的。胶卷、洗相纸、"感压纸"、录像带(YTR)等是传达情报的媒体,而薄膜涂料技术发挥了重要的作用。六、佳能(日本)佳能(Canon ),是日本的一家全球领先的生产影像与信息产品的综合集团。佳能的产品系列共分布于三大领域:个人产品、办公设备和工业设备,主要产品包括照相机及镜头、数码相机、打印机、复印机、传真机、扫描仪、广播设备、医疗器材及半导体生产设备等。佳能总部位于日本东京,并在美洲、欧洲、亚洲及日本设有4大区域性销售总部,在世界各地拥有子公司200家,雇员超过10万人。2018年9月5日,佳能正式发布EOS R系统、EOS R全画幅专微和RF镜头 。1937年,凭借光学技术起家、并以制造世界一流相机作为目标的佳能公司成立。此后,佳能不断研发新技术,并在20世纪70年代初研制出日本第一台普通纸复印机。80年代,佳能首次开发成功气泡喷墨打印技术,并且将其产品推向全世界。对技术研发的重视和投入,使佳能能够数十年不断发展壮大,并且成为同行业的领导者。佳能在美国专利商标局公布的2012年在美国专利注册数量排名中名列第三。佳能公司的创始人是位日本医学博士,取此名的灵感出自他抬头眺望天空而来。佳能公司原来的名字叫"精机光学研究所",是一个精密光学仪器研究所。其初衷只是为了研究高品质相机的发展。佳能原有一个十分英语化的名字KWANON,公司以此命名其第一架35毫米测距式相机。迄今为止,世界上只有唯一一架KWANON相机幸存。在1936年,公司用汉莎佳能(HANSA CANON)为品牌的相机正式上市了,其CANON一词含有"盛典、规范、标准"的意味。从此,佳能成为举世闻名的相机品牌和公司的象征。
  • 三维激光扫描技术,给古建筑做个“透视”
    在山西五台山南台西麓的树林中,千年古刹佛光寺静静矗立。作为国务院公布的第一批全国重点文物保护单位,佛光寺已列入世界遗产目录。其中,建于公元857年的佛光寺东大殿是我国现存最为完整、体量最大的唐代木结构建筑,也是研究唐代木结构建筑最为重要的“标准器”。   据清华大学建筑设计研究院文化遗产保护研究所等编写出版的《佛光寺东大殿勘察研究报告》描述,佛光寺东大殿背靠陡崖,50年代曾由于崖体倒塌使大殿后墙局部遭到破坏,同时存在局部基础不均匀下沉和木构建糟朽、断裂等问题。   “清华大学文化遗产保护研究所承担了佛光寺东大殿精确测绘等工作。我们希望对东大殿用三维激光扫描的精确测量方法,来确定建筑结构变形,通过对变形的量化分析,得到东大殿结构是否安全的结论。”清华大学建筑学院副院长吕舟教授说。   20世纪30年代,梁思成、林徽因根据敦煌第61窟中的“大五台山图”发现了佛光寺东大殿,作为至今国内已知的唯一唐朝木建筑,这座珍贵的建筑对我国建筑史研究具有极重要的意义。   自梁思成开展佛光寺调研的1937年至今70多年里,建筑历史界多次踏勘、测量东大殿。但测量手段基本以皮尺、钢尺的手工测量为主,数据取舍到0.5厘米。   吕舟说,前人所做的测绘已取得巨大成果,但由于以往测量工具和测绘手段的限制,难以达到更高精度,误差量也难以控制,测量结果不一。在本次勘察中,使用了三维激光扫描配合全站型电子速测仪定位,全站仪可给出控制点的空间相对坐标,为扫描结果的三维空间形象提供坐标 再加上局部的手工测量,从而得到一套精确、客观的东大殿数据。如今,在古代建筑测绘领域,三维激光扫描已是一项常用的技术。   据介绍,与传统测绘技术相比,三维激光扫描的优势在于数据全面性和准确性,可以在电脑中像做透视一样进行切片测量,从而测量无法直接测量的位置,完成实测不可能完成的工作,并尽可能测量到所有数据,再通过数理统计推断出最符合的原始设计尺寸 全站仪所获得数据精确,角度误差为秒级,测距误差为毫米级 观测速度快,采集单个点仅需几秒钟 工作距离最远可达数百米等。   吕舟说,“通过三维激光扫描获得东大殿精确测绘数据后,东大殿一些法式制度上的规律开始清楚地呈现在我们面前,使重建或复原东大殿,消除结构变形影响的标准形态成为可能。”通过对三维激光扫描点云切片与复原的东大殿标准结构剖面相比较,就可得到东大殿准确的结构变形情况,对东大殿结构安全做出判断。这也是我国第一次把三维激光扫描应用于木结构文物建筑的结构安全评估。   以文物保护为目的的测绘要求准确地反映文物建筑的现状,包括残损、构件错置、改动、变形的情况,手工测绘中难以准确、清晰地表现出文物建筑现状,或有可能在测绘过程中被忽略。“三维激光扫描为解决这一问题提供了可能性。”吕舟说。   东大殿被称为我国古代建筑遗存中最为珍稀的一座,其所蕴含的设计思想、结构尺度和加工做法在非物质遗存方面具有非凡价值。因此,吕舟表示,以精密测绘入手,通过运用精密测量工具与传统测绘相结合的方法,取长补短,力求在使用目前最先进的技术条件下,得到尽可能精确而全面的测绘结果等。在该结果基础上,绘制东大殿复原理想设计图。   “在上述工作的基础上,我们才能提出了东大殿保护工作计划以及初步的修缮建议等。”吕舟说。   据国家“指南针计划—中国古代发明创造的价值挖掘与展示”专项,在“古代著名的遗址、墓葬、古建筑和土木工程设计、建造材料技术等方面”,“进行系统的专项调查、整理挖掘、研究展示、抢救传承”。   文物建筑测绘国家文物局重点科研基地(天津大学)主任吴葱教授说,除三维激光扫描技术和全站仪外,他们还将多基线数字近景摄影测量系统、固定翼无人机、无人直升机等新技术应用于古建筑测量中,精确测绘了柬埔寨吴哥古迹、天坛、故宫、颐和园、山西应县木塔、辽宁义县奉国寺等20多处古建筑。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制