当前位置: 仪器信息网 > 行业主题 > >

电子激光经纬仪

仪器信息网电子激光经纬仪专题为您提供2024年最新电子激光经纬仪价格报价、厂家品牌的相关信息, 包括电子激光经纬仪参数、型号等,不管是国产,还是进口品牌的电子激光经纬仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子激光经纬仪相关的耗材配件、试剂标物,还有电子激光经纬仪相关的最新资讯、资料,以及电子激光经纬仪相关的解决方案。

电子激光经纬仪相关的资讯

  • 法如Faro激光跟踪仪让游乐装置生产商倍感安心
    作为全球领先的主题公园设施开发和生产公司之一,Heinrich Mack GmbH & Co在其生产过程中运用了FARO激光跟踪仪。 Mack生产和服务经理Thomas Kern先生的远见是:公司联机生产水平应该调整到零。这个决定是很有必要的,因为他们的部分设备始终需要外包组装。以前,这种生产方法花费颇高,包括脚手架成本。另外,66英尺(20米)的高空生产作业条件不够人性化,尤其是在冬季就更加突出。联机生产水平调整为零以后,轨道就可以按照目标规格进行测量,并在工厂大厅内进行生产。为了确保过程中的质量,使用FARO激光跟踪仪测量轨道,并将数据与目标规格进行对比。 Mack 集中采购/库存和物流经理Jens Hilbert解释说:&ldquo 购买FARO激光跟踪仪是为了对我们的生产过程进行重组,重组的主题是&ldquo 迎合未来需求&rdquo 。我们是利用相应的决策矩阵进行选择后才决定购买激光跟踪仪的。除了三家不同供应商的跟踪仪之外,我们还测试了其它测量设备,例如经纬仪和视距仪。一天结束后,主要出于服务和成本的考虑,我们最终选择了FARO。&rdquo Mack将激光跟踪仪不仅用于轨道生产,还用于车辆测量。由于这款移动式测量仪器也可以带到建筑工地上使用,Mack对于激光跟踪仪将来的其它应用充满期望。目前,激光跟踪仪及其CAM2软件主要用于方差比较、测试和动态测量。Jens Hilbert得出一个积极的结论:&ldquo 对于我们来说重要的是, 在零水平联机生产的基础上发展核心竞争力。FARO激光跟踪仪在这个过程中起到了重要作用。零水平联机生产可以缩短交付时间、提高质量标准,增强交付可靠性和交付能力。最终,我们可以为客户提供符合市场需要的产品。&rdquo 法如科技 FARO Technologies,Inc. 地址:上海市桂林路396号3号楼1楼 邮编:200233 Tel: 86-21-61917600 Fax:86-21-64948670 网址:www.faroasia.com/chinae-mail: chinainfo@faro.com
  • 法如Faro推出全球最精确的大空间激光跟踪仪
    佛罗里达州玛丽湖 2009年9月 22日电 /美通社亚洲/ -- 世界领先的便携式计算机辅助测量设备与成像解决方案制造商供应商法如科技 (纳斯达克: FARO),今天宣布推出其最新款三维激光测量系统设备法如激光跟踪仪 ION:FARO Laser Tracker ION(TM)。 (图片: http://www.newscom.com/cgi-bin/prnh/20090922/FL76690 ) FARO Laser Tracker ION 是目前市场上最先进技术水平的激光跟踪仪,也是迄今最精确的激光跟踪仪,基于最常见测量应用开发而成。这款重量更轻的产品,提供了更大测量范围,并含有最快捷、最精密的测距系统集中式绝对测距仪 (aADM)。 FARO 首席执行官 Jay Freeland 表示:&ldquo FARO 的目标是不断提供能支持我们客户的先进解决方案。这不仅事关提供新产品,还要专注于长期合作关系,使他们拥有全球最好的产品和工艺。在当前的经济环境中,拥有测量结果令人信服的测量工具,同时减少高代价的重复工作并精简流程极为重要。ION 将帮助我们的客户促进他们保持竞争力所需的创新。&rdquo ION 具备的独家专利是 Agile ADM。FARO 跟踪仪产品部产品管理总监 Ken Steffey 表示:&ldquo 集中式Agile ADM 代表着绝对测距仪 (ADM) 技术的最新进展。ION的ADM系统为当今唯一无需使用干涉仪(IFM)而可以迅速进行高密度扫描的系统。这个系统比其它激光跟踪仪中使用的技术更为简化。 FARO 激光跟踪仪取代了卷尺、钢琴丝、铅锤和经纬仪等传统工具,客户已日益了解 FARO激光跟踪仪在校准、机器安装、部件检测、工具组装和设置以及逆向工程中的应用。各种规模的企业很快亲眼见识了使用它后的益处,并获得了全面的投资回报。 这款激光跟踪仪 ION 已于2009年9月22-24日在伊利诺伊州 Rosemont(毗邻芝加哥)的Donald E. Stephens Convention 展览中心举行的&ldquo Quality Expo&rdquo 展览会上进行了首度展示。在9月22日下午1:00(展台号:5125)召开了新闻发布会,以演示这款产品并解答所有问题。 欲知本产品更多信息:点击进入 法如科技 FARO Technologies,Inc. 地址:上海市桂林路396号3号楼1楼 邮编:200233 Tel: 86-21-61917600 Fax:86-21-64948670 网址:www.faroasia.com/china e-mail: chinainfo@faro.com
  • 激光跟踪仪:在大尺寸高端装备中大显身手
    导语:激光跟踪仪作为大尺寸空间几何量精密测量仪器,由于具有较高的技术门槛,国内企业又缺乏深厚的经验积累,导致该产品长期被国外垄断。历经十余年的研发与实践,中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队终于在激光跟踪仪的技术领域有了与国际先进技术比肩的突破性进展。本文将带您了解这个研发团队的激光跟踪仪和它在精密制造中扮演的关键性角色。说起激光跟踪仪,高端装备制造企业对它大概并不陌生,它是一种大尺寸空间几何量精密测量仪器,是大型高端装备制造的核心检测仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点。检测的装备体积越大越能显示出此类产品的优越性,所以它更多出现在航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域等先进制造领域。激光跟踪仪是激光干涉测距技术、激光绝对测距技术、精密测角技术、光电探测技术、精密机械技术、精密跟踪技术、现代数值计算理论等各种先进技术的集大成之作,需要突破百米的测量范围、毫秒级的测量时间、微米级的测量精度以及动态实时跟踪测量等各项技术难点,技术门槛非常高,需要长期的经验积累,几乎不存在弯道超车的可能性。目前,世界范围内主要有美国FARO、美国API、瑞士Leica三家公司生产销售激光跟踪仪,我国当前尚无成熟的激光跟踪仪产品销售。因此,攻克关键技术难点实现激光跟踪仪国产化迫在眉睫。组建团队 攻关激光跟踪仪技术壁垒由于激光跟踪仪的重要性、特殊性和不可替代性,国家层面高度重视激光跟踪仪的自主研发。中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)一直致力于实现激光跟踪仪的国产化。该团队激光跟踪仪的研发历史已有十余年,并阶段性取得骄人成绩:(1)2011年中科院微电子研究所 (原中科院光电研究院激光跟踪仪研发团队)在国内率先开展激光跟踪仪整机研制;(2)2013年推出国内首台原理样机,初步形成具有一定规模的、专业稳定的整机开发团队,引领国内激光跟踪仪的整机与系统关键技术发展,积极追赶国际前沿;(3)2017年推出国际首台三自由度飞秒激光跟踪仪样机,从技术层面上实现了跨越式发展;(4)2021年研制成功国内第一台六自由度激光跟踪仪样机,并通过技术指标测试;(5)2021年三自由度激光跟踪仪进入到产业化阶段,立足海宁集成电路与先进制造研究院,组建了数十人的激光跟踪仪产业化团队,建立激光跟踪仪小批量生产线。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利32项(已授权21项),软件著作权6项,发表研究论文60余篇。2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果荣获中国机械工业技术发明特等奖和中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图1所示。除此以外,该团队还可以根据用户的要求定制解决方案,更加贴近客户的使用需求,解决用户的“非标”问题。图1 ICAM-LT-3DOF型激光跟踪仪图2 ICAM-LT-6DOF型激光跟踪仪干货满满 技术原理深度剖析当三自由度激光跟踪仪工作时,如图2所示,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图3 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,如图3所示,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。图4 六自由度激光跟踪仪原理图多项技术突破 跻身国际先进该团队历经10余年的垂直深耕,在激光跟踪仪领域相继突破了高速激光干涉测距、高精度绝对测距、精密跟踪转台设计、高精度测角、动态伺服跟踪、目标快速识别锁定、多源融合姿态测量、系统误差检测与补偿等多项关键技术,在80m范围内,跟踪测量速度大于4m/s,具有良好的目标快速识别锁定能力,测量精度达到15μm+6ppm,技术性能跻身国际先进行列。优势突出 大尺寸精密测量显身手在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,在实践中可以为为航空航天、汽车制造、重型机械制造、重工与船舶、科学研究、能源、医疗等领域等行业提供可靠的技术保障。(1)航空航天领域在航空航天制造领域,飞行器具有外形尺寸大、外部结构特殊、部件之间相互位置关系要求严格等特点,飞行器的装配通常是在各部件分别安装后再进行总体装配,在部装的某些环节和总装的整个过程中都需要进行严格的几何检测。激光跟踪仪测量的现场性和实时性以及它的高精度可以满足飞机型架和工装的定位安装、飞机外形尺寸的检测、大型零部件的检测以及飞机维修等工程测量需求。例如,测量一架大型飞机的内外形尺寸,首先要确定整架飞机的空间坐标,保证所测量的外形尺寸空间点都在同一坐标系中,可以布置足够的激光跟踪仪测站,这些测站保证了飞机上、下、左、右、前、后等整个外形都在激光跟踪仪测量范围内。其次要保证飞机处于静止状态,测量过程中不能产生移动。激光跟踪仪在每个测站测量某一个区域的飞机外形坐标点,将各个测站下的飞机外形坐标连接起来就构成整架飞机的外形尺寸坐标,对这些点进行处理可形成飞机外形的数字模型。激光跟踪仪扫描范围大,采集数据速度快,数据采集量大,精度高,大大提高了飞机测量的工作效率。(2)汽车制造领域在汽车制造领域,激光跟踪仪用于车身检测、汽车外形测量、汽车工装检具的检测与调整。通过激光跟踪仪采集汽车不同部位的点云数据,再进行拼接得到完整的汽车曲面点云数据,利用三维造型软件得到汽车三维模型。另外,汽车生产线需要以最高级别的自动化程度和准确性进行定期检测,以进行重复性和适产性测试。激光跟踪仪这种移动坐标测量设备适合工业现场使用,在检测工程中使汽车生产的停工期大幅缩短。(3)重型机械制造领域在重型机械制造业中,大尺寸部件的检测和逆向工程常采用激光跟踪仪。在零部件生产中,该系统可以快速精确地检验每个成品零部件的尺寸是否与设计尺寸一致,同时将零部件物理模型迅速数字化,得到的数字化文件可以用各种方法处理从而得出测量结果。在工件模具生产中,激光跟踪仪对工件模型进行扫描测量后建立数据模型,由数据模型生成可被加工中心识别的加工程序,从而加工出模具。三维管片和模具测量系统也是激光跟踪仪的典型工程应用之一,通过跟踪测量成品管片各个表面上的空间点坐标,经过坐标系转换和纠正将表面数据点拟合成平面或曲面,检验管片的尺寸与设计尺寸的偏差,便可判断成品的质量是否合格。与传统的检测方法相比,激光跟踪仪测量速度快,能在短时间内采集大量空间数据点信息,同时可以直接处理数据,给出成果报表,不仅工作效率高,而且大大节省了人力物力。(4)重工与船舶领域在造船工业领域中,激光跟踪仪常用于舰船外形尺寸检测、重要部件安装检测与逆向工程等。例如,船舶制造公司对于甲板都有着极高的要求,每一个拼接块的连接点都必须恰好能够和另外一片拼接块严丝合缝对接,且甲板外侧的外观必须与船体形状严格吻合,如此才能体现船舶的质量和性能。激光跟踪仪能够实时地对长度以及横向曲率进行测量,代替笨重的模板进行现场装配与检测,可使生产时间节约60%-70%,大大提高了船舶的生产效率。(5)能源领域在能源领域,激光跟踪仪常用于大型零部件的高精度加工、尺寸检测和辅助维护。例如,水力发电站中,新的涡轮发电机投入工作之前,必须获得精确的涡轮机转子形状,以便后续的勘测;当进行水力发电站的检测时,需要对在役涡轮机转子开展数字化测量,从而确定涡轮转子的磨损情况。在风力发电站中,对大型风电轮毂叶片外形尺寸进行高精度测量是保证风电轮叶片正常工作的关键。激光跟踪仪能够完成定轴轴径、同轴度、轮毂连接孔位置度的高精度测量,并且仪器轻便灵活、精度高、测量范围大、能够现场测量,已成为风电行业的必然选择。(6)科研领域在科研领域中,激光跟踪仪在粒子加速器的定期检测与调整、重要核心部件安装检测以及机器人制造校准中发挥了重要作用。例如,机器人在工厂机械安装、马达驱动安装、夹具重组等整个生产周期过程中必须保持规定的精度,才能称为高性能工业机器人。机器人设计尺寸与实际生产尺寸的偏差往往较大,主要是由于机械公差和部件安装误差所引起的。在校准机器人的实际应用中,一般有两个工作测量组,一组负责装配机器人,一组则负责检测校准安装部件,激光跟踪仪安置在这两个测量组之间。操作人员通过计算机控制定位,激光跟踪仪可以监测两个工作小组的测量工作。在一组操作人员利用激光跟踪仪检测机器人配件的同时,另一组工作人员负责装配经过检测的工件,装配后再利用激光跟踪仪进行校准。这样,大幅提高了机器人生产安装的工作效率,也节省了人力物力。(7)医疗领域在医疗领域中,质子医疗机在治疗时最重要的是需要准确定位患者体内癌细胞位置,通过控制治疗床移动,将患者需要治疗的部位送到有效的治疗区域内,才能够进行准确有效的治疗。因此医疗机在安装调试时,要求系统能够控制机械臂,将末端工装精确地移动到理论位置。这对测量方案提出了更高标准的要求:能够准确调整病灶中心的位置,X、Y、Z方向偏差要求小于0.1 mm;能够调整连接法兰的姿态精度,RX、RY、RZ要求小于0.1°,同时检测、分析效率要尽可能高。在质子医疗机安装调试过程中,激光跟踪仪可以提供简单便捷的应用方案。首先通过测量固定在墙体上的定位点,建立离子源坐标系,在软件中将机器坐标系定位到离子源坐标系统;通过坐标转换得出病灶中心与工装上定位孔的坐标关系,解算出定位孔的坐标。其次,将反射球放置在定位孔上,通过监视窗口功能查看当前位置偏差,实时调整工装,使偏差逐渐缩小至公差要求。该团队研发的激光跟踪仪已在卫星天线变形与位姿测量技术、飞机大型部件装配测量技术、船舶分段对接测量技术、高能加速器准直调节测量技术、工业机器人现场校准技术等领域开展了一系列应用研究,并取得了良好的社会效益。制造业中的智能装备、复杂结构制造、高精密制造和装配的兴起,对于测量系统提出了精度更高、智能化程度更高、适应性更强的要求。激光跟踪仪作为最先进的三坐标及姿态精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。由于激光跟踪仪应用范围广、测量效率高、测量精度高,该仪器在高端制造领域扮演的角色越来越重要。激光跟踪仪的国产化,对于我国的制造业,尤其是高端制造领域,具有十分重大的意义。借势而起 稳扎稳打培育市场目前,国家政策一直在主张推进仪器的国产化,实现国产仪器与进口仪器的同台竞争。中国仪器仪表行业协会与中国和平利用军工技术协会在此方面做了大量的工作,这对国产激光跟踪仪的市场化推进是极大的政策性优势。在国防军工行业,激光跟踪仪的应用主要在导弹的测量、潜艇的测量、战斗机的装配、军舰的测量、天线的装配及外形检测,大型结构件测量检测等。由于进口的高端激光跟踪仪含有摄像头装置,这对我国国防军工行业造成了安全隐患。另外,由于进口激光跟踪仪不对我国展示源代码,不排除进口激光跟踪仪含有潜在的功能,这对我国部分商业秘密也带来了风险。如此种种安全隐患更是急需国产激光跟踪仪技术的开发与产品的应用。这是提供给国内企业的机会更是挑战。该团队也将借助他们国际领先的技术优势、可靠的数据链优势,以及强有力的价格优势和维修服务优势,不遗余力的为客户提供高质量的定制化产品和服务。结束语随着中国先进制造业和高端装备的飞速发展,以激光跟踪仪为代表的高精度、数字化、智能化的精密检测设备已经成为这些领域企业占领行业制高点的制胜法宝。一方面,激光跟踪仪在先进制造和高端装备领域的关键作用日益凸显,成为制造行业的核心仪器,国内对激光跟踪仪的需求量激增,国产化呼声高涨;另一方面,近年来西方对我国的技术限制和打压,使激光跟踪仪的采购和售后具有一定的不确定性,这将影响我国高端装备的发展,所以国家对激光跟踪仪等关键核心仪器的国产化大力支持。显而易见,未来激光跟踪仪的产业化具有极为光明的市场前景。
  • 科技部科学仪器重大专项评审专家谈激光跟踪仪技术及应用
    激光跟踪仪技术及应用周维虎1,周培松2,石俊凯11. 中国科学院微电子研究所2. 海宁集成电路与先进制造研究院一、引言激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。目前,国际上主要有瑞士Leica、美国API和美国FARO三家公司生产销售激光跟踪仪。其中Leica公司凭借自身百年光学仪器制造优势,全球市场占有率最高,目前该公司主推产品型号为AT960,该仪器最大测量距离为80m,空间坐标测量精度为15μm+6μm/m,数据输出速率为1000点/秒;API公司激光跟踪仪小型灵巧,安装和校准快捷,移动方便,便于携带,目前主推产品为Radian系列,其中Radian Pro最大测量距离可达80m,三维坐标测量精度为为10μm+5μm/m;FARO公司财力雄厚,研发投入高,销售网络强大,目前主推产品为Vantage系列,其中VantageS6最大工作范围为80m,角度测量精度为为20μm+5μm/m,数据输出速率为1000点/秒。自1997年开始,国内天津大学、清华大学、中国科学院光电研究院等科研院所先后对激光跟踪测量技术及设备进行了相关研究,其中天津大学最先对单站式结构跟踪仪坐标测量系统进行了研究,并开展了测量功能实验,为激光跟踪仪的后续开发奠定了基础;清华大学对组合式多自由度跟踪测量系统进行了研究,基于三组跟踪测量系统构建空间位置姿态测量系统;中国科学院光电研究院团队(该团队于2018年划转至中科院微电子研究所)自2009年开始研究激光跟踪仪,在中科院装备项目、国家重大仪器设备开发专项、国家重点研发计划、装备发展部、国防科工局等项目的支持下,经过10余年研发和技术积累,实现了激光跟踪仪的自主研制,打破了国外技术封锁和垄断。当前,激光跟踪仪技术正向高精度、小型化、多功能、智能化等方向发展。激光跟踪仪是机器人校准的理想仪器,可以配合机器人实现高精度智能制造。高端激光跟踪仪含有大范围超清摄像头,用于测量过程断光后靶标的自动寻找和测量续接。除此之外,激光跟踪仪结合不同的测量靶标还可以实现隐藏点测量、工件局部形貌高密度扫描测量以及六自由度测量。随着激光跟踪仪在航空航天、舰船、核工业等大型装备制造中的重要性日益凸显,国内用户对仪器国产化的要求越来越高,随着中美贸易战的加剧和发达国家对我国高技术产品的打压,激光跟踪仪国产化替代势在必行。二、激光跟踪仪测量原理激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。2.1三自由度激光跟踪仪如图2.1所示,当激光跟踪仪工作时,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图2.1 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。2.2 六自由度激光跟踪仪图2.2 六自由度激光跟踪仪原理图六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。三、激光跟踪仪产业和市场分析随着我国制造业产业升级和科技领域的迅猛发展,高端制造、精密制造、智能化制造成为我国未来工业和科技领域的主流方向,激光跟踪仪等精密测量仪器具有巨大的应用前景。在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,激光跟踪仪应用领域主要包括航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域。根据国外市场研究机构,2017年全球激光跟踪仪市场规模为2.595亿美元,2020年全球激光跟踪仪市场规模为3.438亿美元,预计2023年有望达到5.216亿美元,2028年有望达到8.364亿美元,市场主要驱动力来自质量控制和检验、对准、逆向工程和跨行业校准的需求。按应用细分,质量控制和检验占据最大的市场份额。这是因为激光跟踪仪被越来越多地用于监控和测量跨行业的质量,如汽车、航空航天和国防。为确保客户的要求和规格,质量控制和检验是汽车、航空航天和国防工业的重要参数。为了做到这一点,这些行业主要依靠激光跟踪仪来检查和监测元器件、组装件和成品质量。激光跟踪仪在建筑产品测量、过程优化和通过快速精确测量提供解决方案方面具有精确度高和易便携等不可替代的优势。按行业细分,汽车、航空航天和国防有望引领整个激光跟踪仪市场。在航空航天和国防行业中,激光跟踪仪用于三维测量、逆向工程、武器系统、轴与导轨对准、雷达罩剖面图、飞行器传动装置,以及许多其他测量产品和服务。在航空航天行业中,激光跟踪仪最常应用于夹具部件检查和机翼部件装配。在汽车行业中,激光跟踪仪被用于自动化生产线校准、铰接线和车身部件对准、大型面板和装配主体面板测量、逆向工程、部件验证表面测量、工业机器人调整、变形和动态测量、质量控制和检验等。按地区细分,欧洲占据激光跟踪仪市场的最大份额。为了满足生产过程中的质量和安全要求,欧洲的原始设备制造商(OEMs)早已经开始使用激光跟踪仪。在汽车行业中,激光跟踪仪也得到了多种应用,例如质量检查、对准和校准。因此,日益增长的汽车行业对激光跟踪仪需求也在逐渐增加。德国、英国和法国有望成为欧洲激光跟踪仪市场的三大贡献国。亚太地区市场预计将获得最高的复合年增长率,该地区市场增长的关键驱动因素是市场参与者对新技术的日益关注和采用,这一地区已成为全球投资的焦点和业务拓展的机会。四、国产激光跟踪仪新成果及应用国内开展激光跟踪仪研发主要有中国科学院微电子研究所周维虎团队、深圳中图仪器公司、海宁集成电路与先进制造研究院等,近年来在国家和地方相关部门的支持下仪器研发取得了快速发展,主要体现在以下方面:1)与绝对测距技术相融合,提高仪器的测量精度和测量方便性。激光跟踪仪都是基于球坐标的测量系统,在没有绝对测距之前,没有测量信息冗余,测量过程中任意一个参数丢失,都直接影响测量数据的准确性。新一代激光跟踪仪都增加了激光绝对测距功能,这使得激光跟踪仪的测量信息有了冗余,保证了测量的精确性,在测量过程中丢失部分信息依然可以完成测量工作;同时,由于被挡光时不需要重回基准点复位,这也提高了使用方便性和测量效率。2)与视觉测量系统相结合,实现六自由度测量功能。激光跟踪仪与视觉测量系统相结合不仅能精确定位目标的三维位置,而且还能通过配合特定的靶镜对目标的空间三维姿态进行检测。不仅如此,视觉测量系统还可以识别目标靶镜,保证光路中断后可以通过视觉方式重建测量光路,且无需用户介入。3)测量靶镜多样化。针对三自由度、六自由度等测量需求需要提供不同的测量靶标,另外,仪器还配有隐藏点靶标、扫描测头等附件,使仪器具有隐藏点测量功能和局部区域扫描功能,不仅使仪器测量复杂结构的能力大大提高,还拓展了系统的通用性。4)自我诊断功能。精密测量要求仪器在各种测量环境下保证稳定的工作状态,所以仪器在测量中对自身状态的检测和诊断显得特别重要,自我诊断能在系统工作时实时显示系统的状态,排除微振、升温、光强不足等因素带来的影响。5)飞秒激光频率梳测距技术。飞秒激光频率梳绝对测距技术能够实现大量程、高精度和快速测量三者的完美统一,是激光测距领域的重大突破,有望为大型零部件外形测量、大型设备装配对接,尤其是未来空间任务提供新的技术支撑,在激光跟踪测距、高精度激光雷达测距、卫星编队位置测量、导航星间链路测距、深空探测、引力波测距等领域具有广阔的应用前景。6)组网协同测量技术。针对大型复杂设备装配测量中被测目标尺寸较大或者存在遮挡,单测站难以完成测量任务的难题,通过激光跟踪仪多次设站或者利用多台跟踪仪组网可实现对于大型复杂装备的测量。组网测量技术基于空间多公共点约束,建立激光跟踪仪多测站平差模型,利用平差的权重、约束条件等进行多测站空间位置和姿态的解算,同时求解出所有被测点的三维坐标,得到空间被测物体关键尺寸和特征信息的最优解。7)功能强大的测量软件。激光跟踪仪软件是测量系统的重要组成部分之一,系统软件通过TCP/IP通讯与硬件进行实时数据交互,对硬件上传的数据进行处理和分析,并控制硬件系统执行相应的测量等控制指令。软件系统为用户操作提供人机交互接口,通过数据库管理可实现用户对测量数据的编辑和输入输出等操作,在此基础上通过三维显示操作可面向用户实现测量数据和拟合数据的直观显示和交互操作。为了进一步提升系统测量精度,激光跟踪仪软件系统利用误差补偿算法对激光跟踪仪测距、测角和几何误差进行实时修正,结合激光跟踪仪硬件系统实现大型复杂工件或设备的高精度测量。近年来由中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)致力于实现激光跟踪仪国产化。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利45项(已授权32项),软件著作权5项,发表研究论文130余篇。 2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果于2020年分别荣获中国机械工业技术发明特等奖、中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图4.1所示。图4.1(a) ICAM-LT-3DOF型激光跟踪仪图4.1(b) ICAM-LT-6DOF型激光跟踪仪ICAM-LT-3DOF型激光跟踪仪与ICAM-LT-6DOF型激光跟踪仪的主要技术指标如表4.1和表4.2所示。表4.1 ICAM-LT-3DOF型激光跟踪仪主要技术指标指标参数最大测量范围(半径)80m空间坐标测量精度15μm+6μm/m水平角测量范围±320°垂直角测量范围-45°~+60°数据采集速度1000 点/秒跟踪速度>4m/s表4.2 ICAM-LT-6DOF型激光跟踪仪主要技术指标指标参数空间坐标测量范围(半径)80m空间坐标测量精度15μm+6μm/m姿态测量范围(半径)25m姿态测量精度≤0.05°水平角测量范围±320°垂直角测量范围±145°角度测量误差≤1’’数据采集速度1000 点/秒跟踪速度>4m/s截至目前,该团队研制的国产激光跟踪仪已在航天五院514所、航空304所、武船公司、中科院高能所、中科院国家空间科学中心、航天科工集团三院三十一所等多个科研院所和企业进行了应用。1)航天领域应用图4.2 激光跟踪仪在航天五院514所应用激光跟踪仪在航天五院514所进行了如下应用:① 紧缩场结构测试:完成紧缩场实验室结构测量,测得最大反射面尺寸10m×15m,最大测量距离35m,最高公差1mm;② 卫星壳体焊接工装结构测量:完成典型零件测量,测得工件尺寸1.5m-3m,测量距离:10m,最高公差0.2mm。在上述测量工作中,使用激光跟踪仪突破了传统测距在测程、精度和测量速度方面难以协调的瓶颈,提高了卫星和空间有效载荷的制造及组装精度。2)航空领域应用图4.3 激光跟踪仪在航空304所应用激光跟踪仪在航空304所进行了如下应用:① 航空工装测试:坐标不确定度达0.05mm,满足航空制造对精度溯源要求;② 飞机水平飞控部件姿态测量:位置传感器测量精度在线校准精度达0.018mm。在上述测量工作中,使用激光跟踪仪主要解决了两个问题:① 解决了大尺寸航空工装测量问题,提供了可供溯源的依据和测量基准,为数字化制造提供了可靠的计量保证;② 解决了飞机水平飞控部件姿态测量问题,实现了飞机部件姿态高精度高效率数字化测量,为航空制造安全提供了保障。3)船舶领域应用图4.4 激光跟踪仪在武船公司应用在船舶领域中,激光跟踪仪在武船公司进行了如下应用:① 与API激光跟踪仪测试数据进行比对,验证本激光跟踪仪的准确性、可靠性、稳定性、可操作性等综合性能;② 对船台建造过程中的分段结构外形尺寸、装配尺寸、位置偏差等进行了测量,突破了大尺寸测量仪器三维坐标测量方法关键技术。根据应用结果,在船舶领域应用激光跟踪仪,建立了相应的应用方法/规程,可逐步推广到船舶建造其他阶段,为船舶建造精度控制提供新的方向。4)大科学装置应用在大科学装置方面,激光跟踪仪在中科院高能所进行了如下应用:① 对北京正负电子对撞机储存环部分设备进行了准直调整,调整精度达0.1mm;② 在中国散裂中子源建设过程中,对隧道控制网进行测量,相对点位测量精度0.08mm,绝对点位测量精度0.05mm。图4.5 激光跟踪仪在中科院高能所应用在上述测量测试工作中,使用激光跟踪仪主要解决了两个问题:① 利用标准杆进行空间测量,大跨度搭接测量控制网,提高了控制网测量精度和效率;② 采用边长法进行高精度设备标定,彻底消除了测角误差的影响,提升了大科学装置安装精度。此外,该团队研发的激光跟踪仪还广泛应用于机器人磨削、航天钻孔及铣削、机器人校准等场景中,如图4.6所示。图4.6 激光跟踪仪在机器人场景的应用机器人磨削(左),航天钻孔及铣削(中),机器人校准(右)随着现代工业技术的迅猛发展,高端制造业对设备尺寸及空间位置精度要求越来越严苛,激光跟踪仪作为最先进的三坐标精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。(点击图片查看专题)
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。   一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。   强强联合   项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。   但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。   为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。   但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。   而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。   上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。   1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。   “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。   从“敢想”到“敢做”   据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。   位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。   针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。   据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。   在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。   据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • 为自由电子激光装置“减负”
    记者从中国科学院上海光学精密机械研究所获悉:强场激光物理国家重点实验室利用自行研制的超强超短激光装置,在国际上率先完成台式化自由电子激光原理的实验验证,对于发展小型化、低成本的自由电子激光器具有里程碑意义,相关研究成果于7月22日作为封面文章发表于国际学术期刊《自然》杂志。  X射线自由电子激光被广泛用于探测物质内部动态结构,研究光与原子、分子和凝聚态物质的相互作用过程,在物理、化学、结构生物学、医学、材料、能源、环境等多学科领域广泛运用。然而,传统的X射线自由电子激光装置动辄几百米、甚至是几公里长的“庞大”规模,造价昂贵、难以普及。研制小型化、低成本的X射线自由电子激光成为该领域重要的发展方向。  该成果的主要完成人、中科院上海光机所研究员王文涛表示,我们的工作是利用新技术把电子加速器的长度缩短,并且把电子束做到稳定、可用,来研制体积小、成本低的自由电子激光器,整个装置长度仅为12米。“打比方说,电子束加速需要‘跑道’,传统方式相当于客机起飞,需要长跑道;我们采取激光加速这一全新方式,可以短距离内把电子束加速至高速度,大大缩短所需距离。”王文涛说。  “该项研究不仅证明了激光可以加速产生可控的、可用的电子束,而且电子束可以进一步用于产生自由电子激光。”中科院上海光机所副所长、强场激光物理国家重点实验室主任冷雨欣说。  用这种加速方式获得的电子束,在品质和稳定性方面尚未达到实际应用的要求,相关研究处于起步阶段,到真正应用还有一段距离。下一步,研究团队将继续提升自由电子激光的输出功率和光子能量,并作为上海超强超短激光实验装置中超快化学与大分子动力学研究平台的重要组成部分,提供开放共享。
  • 福建省计量院“全站仪测距精度校准能力计量比对”中取得满意结果
    福建省计量科学研究院始建于1960年,现隶属于福建省市场监督管理局,是福建省属社会公益型科研事业单位,是依法设置的全省最高法定计量检定机构。承担国家法定计量检测任务,同时开展计量技术研究,为促进产业创新、提升产品质量提供技术支撑。   日前,由中国计量院作为主导实验室的国家计量比对项目“全站仪测距精度校准能力计量比对”结果公布,福建省计量院5个测段的比对结果|En|值均小于1,比对结果满意。   此次比对在中国计量院昌平科研基地进行,全国共有13个省市的计量和测绘实验室参加比对。通过比对验证了福建省计量院标准长度基线场稳定可靠,人员的技术能力突出,从而可确保我省全站仪测距的准确可靠和量值统一,能够为我省桥梁、隧道、港口、码头等大型工程建设安全生产保驾护航。   全站仪,即全站型电子测距仪(Electronic Total Station),是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。   全广泛应用于测绘、勘测、建筑施工等领域,仪器距离测量准确与否直接关系到工程建设质量和施工运行安全。福建省计量院长度所每年为数百家企业、科研事业单位提供全站仪测距测角技术服务,依托该院的标准长度基线场着力为企业解决了长距离激光测距中存在的难点问题,同时为企业研发新产品、产品升级、技术提升提供技术咨询与测试服务。
  • 某单位预算820万元采购试验机、硬度计、探伤仪等13台仪器
    国家发电设备机械零部件产品质量监督检验中心项目检验检测设备采购项目(第二批) 一、项目基本情况项目编号:SCJWY-2022-DY012号预算金额:820.3万元(人民币)其中第1包245万元,第2包179.3万元;第3包201万元;第4包195万元。采购需求:序号设备名称数量及单位备注第1包1电液伺服疲劳试验机1台允许进口产品参与竞争2高频疲劳试验机1台/3高温摩擦磨损试验机1台/第2包1金相显微镜+图像分析系统1台允许进口产品参与竞争2显微硬度计1台允许进口产品参与竞争3自动磨抛机1台允许进口产品参与竞争4现场金相显微镜1台/5金相切割机1台/6镶嵌机1台/第3包1超声波探伤仪1台允许进口产品参与竞争2超声相控阵TOFD检测系统1台允许进口产品参与竞争第4包1激光跟踪仪1台允许进口产品参与竞争2电子经纬仪1台/共计13台二、获取招标文件时间:2022年3月31日至2022年4月7日,每天上午9:00至12:00,下午14:00至17:00。地点:德阳市庐山南路一段81号A栋3楼(雅园小区西门)方式:1、现场获取:投标人现场获取招标文件时应出示针对本项目的单位介绍信原件(须注明项目名称、项目编号、联系人及联系电话、电子邮箱、包号等)、经办人身份证复印件并加盖单位鲜章。2、网络办理:报名投标人请先自行下载公告附件中的报名信息登记表,报名信息登记表填写完整后连同介绍信原件、经办人身份证复印件盖鲜章一同扫描发送至邮箱:2450930965@qq.com。注:报名时间以邮箱收到时间为准,相应纸质资料须邮寄至我公司,报名投标人在收到“报名成功”回复后即报名成功。售价:¥200.0元,本公告包含的招标文件售价总和。三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年4月21日9点30分开标时间:2022年4月21日9点30分地点:德阳市庐山南路一段81号A栋3楼(雅园小区西门)四、联系方式1. 采购人信息名称:德阳市重装检测有限责任公司地址:德阳市天山南路三段138号联系方式:罗先生0838-29078912. 采购代理机构信息名称:四川省君唯源工程项目管理有限责任公司地址:德阳市庐山南路一段81号A栋3楼(雅园小区西门)联系方式:尹女士16608388007五、附件介绍信(模板).docx采购需求.pdf报名登记表.docx
  • 国外垄断局面被打破 我国测绘仪器业迈步高端
    日前举办的第7届测绘仪器设备展览会上有许多新奇的“玩意儿”,国内外厂家“同台竞技”,各家都拿出自己的顶尖产品来展示。大到GPS测量车,小到配套产品乃至校正水准用的小气泡,产业链上的产品可谓应有尽有,且附件类产品都是由我国产品占主导。   自主创新 丰富品种   在光电测量仪器蓬勃发展的今天,除了种类繁多的传统光学仪器和迅猛发展的电子仪器外,还包括激光经纬仪、激光水准仪、激光全站仪等光电测量仪器。   测绘仪器的应用越来越广泛。以高铁轨道测量为例,高速铁路对轨道平顺度要求非常高,对钢轨之间的缝隙、轨道铺设的水平度等都有着严格的标定。因此,在高速铁轨铺设完后,就要用高速轨道测量仪来检验和把关。随着我国高铁建设进程的加快,高铁轨道测量仪也发挥着重要作用。   在展会上记者了解到,近年来,我国测绘仪器产业成熟度越来越高,逐渐打破了测绘仪器长期被国外公司垄断的局面。   据专家介绍,以前,我国的测量仪器设备都是以进口为主。1995年,以南方测绘为代表的自主品牌生产出了我国第一台电子全站仪,由此打开了国产测量仪器追赶世界先进水平的序幕。10多年来,国产自主品牌依托价格优势、灵活的市场营销手段及本土优势,逐渐从低端电子测绘产品向中端市场渗透。南方全站仪产量从2003年的3000台增长到目前的10万台,一举成为世界产量最大。起步较晚的苏一光全站仪,也从1000台发展到年产销量达6000台以上。   从传统光学到电子再到激光,我国水准仪、经纬仪、全站仪等测绘仪器得到迅猛发展,目前已经成为世界测绘仪器的生产基地,测绘仪器实现了国产化。据中国仪器仪表行业协会测绘仪器分会秘书长梁卫鸣介绍,我国生产的中低端测绘仪器在国际上占有90%的市场份额,每年出口量达50万台。从红外到激光,已经实现了全系列产品的生产。   服务为先 做大做强   随着测绘仪器市场的不断扩大,自主品牌之间、自主品牌与进口品牌之间的竞争加剧,也使产品价格有了大幅下降。   竞争在所难免,如何赢得更大的市场?“国内自主品牌的同一水平产品,其性能相差不多,因此,要赢得市场青睐,除增强产品自身品质外,还要靠服务和产品细节优势占领市场。”中海达和华测公司的技术人员都这样对记者表示。   梁卫鸣则认为,“要做强,就要创新,实现从低端向高端迈进。而且,我国的测绘行业要做强的话,不是一家两家就可以完成的,必须多家一起上,共同发展,才能使整个产业都强大起来。”   如今,根据国家发展战略和测绘发展的新思路,我国测绘业正面临着难得的发展机遇和重大挑战。梁卫呜介绍说,目前,以高技术为特征的现代化测绘技术装备正在逐步取代传统测绘仪器,成为测绘仪器发展的主流。因此,测绘仪器国产自主品牌要在竞争中发展、壮大,就要谋求产品的技术创新,走差异化之路。同时,实施走出去战略,积极拓展海外市场,最终实现测绘仪器由大国到强国的跨越。   挑战与机遇并存   在经济全球化趋势下,我国测绘仪器企业已经不可避免地加入到国际竞争的行列。激烈的国际竞争,在给我国民族工业带来冲击的同时,也带来了巨大的发展机遇。   我们看到,世界著名测绘仪器制造厂商已把我国作为一个重要市场,纷纷来设厂。他们利用低廉的制造成本,以技术优势抢占市场。   在二十世纪,我国的测量仪器设备是以进口为主、国产为辅。特别是在电子技术和电脑芯片技术快速发展的推动下,迅速发展出以电子全站仪为代表的新型测量仪器。而我国在最初的15年,由于电子技术和芯片技术的发展滞后,只能以进口方式得到最新的测量技术。   我们也应看到,国际测绘技术从传统技术向信息化技术转变的速度越来越快,特别是精度越来越高的激光雷达、三维扫描、多功能测量系统、航摄小飞机,以及功能越来越强、实用性越来越好的后处理软件开发和应用。这些先进测绘技术正在加速取代传统的测量方式,给依靠生产和销售传统测量仪器为主的企业带来危机感。   挑战面前有机遇。正当国外测绘仪器大行其道之时,国内自主品牌可以借势发力,在家门口近距离地接触、吸收和运用国际资本、先进技能等,使我国测绘仪器从研制到生产,从销售到服务都得到了成长壮大。事实也证明,我国自主开发的测绘仪器已打破了进口测绘仪器独占市场的局面,实现了中低端测绘仪器国产化。   国内测绘仪器市场已逐渐与国际市场接轨,形成了你中有我、我中有你的格局。因此说,竞争可以推动产业发展,推动测绘仪器的进步,抓住机遇,夯实功夫,积极作为,就能实现跨越。
  • 美国海军高能自由电子激光器项目取得进展
    据海军研究署2011年1月19日报道,位于新墨西哥州的洛斯阿拉莫斯国家实验室科学家们在美国海军自由电子激光器项目上取得重大突破:12月20日演示了一台能够生成海军新一代武器系统兆瓦级激光束所需的电子的电子束注入器,这个里程碑式的突破比原计划提前了数月,并于1月20号至21日经过了初步设计评审会的审查。   “电子束注入器按我们所预计的情况运行,”自由电子激光项目的实验室高级项目负责人Dinh Nguyen博士表示。“但到目前为止我们没有足够的证据来支持我们的模式。现在我们非常高兴地看到我们的设计、制造和测试工作终于有结果。现在我们正在开展连续电子束质量的测量工作,希望能创出电子平均电流的世界纪录。”   海军研究署的FEL项目经理Quentin Saulter说,自由电子激光的进步影响巨大。“这是该项目的一个飞跃,也是海军自由电子激光技术的重大飞跃,”索尔特说。 “实际上该小组比进度提前了9个月,为我们在2011年底实现我们的目标提供了充足的时间。”   该项研究是美国海军部未来部署兆瓦级自由电子激光武器系统的重要一步,将革新舰艇防御。Saulter说,“FEL有望为未来美国海军在全球任何海事环境中提供近瞬时的舰艇防御能力。”   美国海军研究署的FEL项目开始于20世纪80年代,是一项基础科学和技术项目,逐渐成熟为一个14千瓦的样机。2010财年,它从基础科研项目转变成创新的海军样机(INP),赢得高级海军官员的支持,以确保其发展成为先进的技术和潜在的采购项目。   激光的工作原理是:从注入器中产生高能电子束,通过一系列强大的磁场,电子束生成强烈的激光。海军研究署希望最早在2018年能在海洋环境中测试100千瓦自由电子激光的能力。
  • 阿秒激光器可为单个电子活动“摄像”
    据美国《大众科学》网站8月16日(北京时间)报道,一国际科研团队研制出一种新的阿秒级(1阿秒=10-18秒)激光器,当单个电子参与化学反应时,这种激光器或可为其“摄像”,这是迄今为止最高清、最快速的数据收集活动。一旦取得成功,新激光系统将对从基础化学到复杂的药物研究、化学工程学等领域产生巨大影响。相关研究发表在《自然光子学》杂志上。   该科研团队由澳大利亚、美国、欧洲的科学家组成。科学家们表示,拍摄下电子的“一举一动”并非易事,因为电子的运行速度非常快,在1.51阿秒内就能环绕一个氢原子核旋转一周。为了捕捉到正在活动的电子,人们需要一种能在阿秒层面上发送脉冲的激光器。   此前已有科学家研制出并演示了阿秒激光脉冲,但那些脉冲非常微弱,无法真正测量电子的动态,真正有用的阿秒激光器需要兼具高速度和强脉冲密度。新激光系统满足了这两个需求,并且只需简单的环境设置就可完成任务。   为了获得超强的激光脉冲,人们需要将不同频率的光波精确地混合在一起,使它们能互相加强。知易行难,因为很难让两种不同的激光束精确地同步。为了克服这个问题,科学家们构建了一套环境装置,让单束激光通过一个射束分离器,产生两束不同频率的激光。因具有相同来源,这两束激光能够实现同步。   科学家们还采用了其他辅助手段,让激光脉冲达到了阿秒规模的测量所必需的激光脉冲密度和持续时间。借此,人们能以前所未有的方式观察单个电子的活动。
  • 大塚电子发布大塚电子小角激光散射仪PP-1000新品
    小角激光散射仪 PP-1000 PP-1000小角激光散射仪利应用了小角光激光光散射法(Small Angle Laser Scattering,简称SALS),可以对高分子材料和薄膜进行原位检测,实时解析。与SAXS和SANS的装置相比,检测范围更广。利用偏光板的Hv散射测量可以进行光学各向异性的评价,解析结晶性胶片的球晶半径,Vv散射测量可以进行聚合物混合的相关距离的分析。 特点l 0.33 ~ 45°散射角度的测量,最短测试时间10 毫秒l 检测范围0.1μm ~数十微米l 可以在专用溶液单元中测量溶液样本l Hv散射,Vv散射测量可以在软件上轻松切换 用途l 高分子材料评价→结晶性胶片结晶化温度、球晶直径、结晶化速度配光、光学异方性→聚合物混合相分离过程和相关距离(分散度)→高分子凝胶三维架桥结构的大小→树脂热硬化树脂和UV硬化树脂的硬化速度 l 粒子物性评价粒子直径,凝聚速度 检测原理 小角激光散射仪由光源、偏振系统、样品台和记录系统组成。单色激光照射到样品时发生散射现象,散射光投射到屏幕上并被拍摄下来,得到样品的散射条纹图。操作过程:1.在样品台上放置样品。2.根据想要测量的对象调整检偏片。3.来自样品的散射图案会被相机记录下来。 当起偏片与检偏片的偏振方向正交时,得到的光散射图样叫做Hv散射;当起偏片与检偏片的偏振方向均为垂直方向时,得到的光散射图样叫做Vv散射。从这些散射图形中可以获取球晶半径、相分离结构、分散相颗粒平均粒径、配向状态等信息。l Hv散射 球晶半径解析:R = 4.09 / qmax(R:球晶半径,qmax:散射光强度最大的散射向量) q = 4πn/λsin(θ/ 2)(q:散射向量, λ:介质中的波长,n:样品折射率,θ:散射角) l Vv散射 对聚合物混合的相分离过程的评价连续相与分散相的大小,分散相颗粒平均粒径(分散度)粒子直径的评价相分离构造与相关距离检测 技术参数 应用案例 l PVDF球晶半径分析 溶融温度230℃結晶化温度160℃PP-1000散射图样 偏光显微镜图样 各时间45°方向的散射向量提取 球晶半径计算创新点:1.0.33 ~ 45° 散射角度的测量,最短测试时间10 毫秒 2.检测范围0.1μ m ~数十微米 3.可以在专用溶液单元中测量溶液样本 4.Hv散射,Vv散射测量可以在软件上轻松切换 大塚电子小角激光散射仪PP-1000
  • 李强总理考察长春光机所,要求加快光电技术研发和成果转化
    据新华社报道,中共中央政治局常委、国务院总理李强11月14日至16日在黑龙江、吉林调研,考察了中国科学院长春光机所,参观实验室及新成果展示,要求加快光电技术研发和成果转化,更好助力国家高水平科技自立自强。△图 李强总理考察中国科学院长春光机所关于中国科学院长春光机所中国科学院长春光学精密机械与物理研究所(简称“长春光机所”)始建于1952年,由长春光机所与长春物理所于1999年整合而成,是新中国在光学领域建立的第一个研究所,主要从事发光学、应用光学、光学工程、精密机械与仪器的研发生产。建所70年来,长春光机所在以王大珩院士、徐叙瑢院士等为代表的一批科学家的带领下,研制出中国第一台红宝石激光器、第一台大型电影经纬仪等多种先进仪器设备,创造了十几项“中国第一”。现有18个研究部室,其中国家重点实验室/工程中心6个、中科院重点实验室2个;在职职工2500余人,其中国家级各类领军人才15人,国务院政府特殊津贴获得者37人;设有硕士点9个、博士点7个、博士后流动站3个,在学研究生千余人。
  • “欧洲X射线自由电子激光”项目动工
    位于德国汉堡的“欧洲X射线自由电子激光”项目的核心工程——3条地下隧道30日正式动工,预计2014年完工,2015年可进行首次科研实验。   据德国媒体报道,欧洲X射线自由电子激光设施是世界上首个能产生高强度短脉冲X射线的激光设施。这一大型科研项目由德国牵头,欧洲11个国家共同合作,总耗资达10亿欧元。这3条直径不同的地下隧道总长度接近6公里。   欧洲X射线自由电子激光设施建成后,能产生波长从0.1到6纳米间可调的、极高强度的飞秒(1飞秒等于千万亿分之一秒)级短脉冲X射线相干光。其应用范围将涉及从材料物理学、纳米科学到结构生物学等广泛领域,将为人类认识微观世界打开全新视野。
  • 中国第一世界最亮 大连极紫外自由电子激光光源出光
    大连光源   1月15日,由中科院大连化学物理研究所和上海应用物理研究所联合研制的极紫外自由电子激光装置——大连光源,在经过3个多月的调试后,这个总长100米的大装置发出了世界上最强的极紫外自由电子激光脉冲,单个皮秒激光脉冲产生140万亿个光子,成为世界上最亮且波长完全可调的极紫外自由电子激光光源。  中科院副院长王恩哥评价称:“大连光源是中科院乃至我国的又一项具有极高显示度的重大科技成果。装置中90%的仪器设备均由我国自主研发,标志着我国在这一领域占据了世界领先地位,为我国未来发展更新一代的高重复频率极紫外自由电子激光打下了坚实的基础。”  给分子“拍个电影”  自由电子激光是国际上最先进的新一代先进光源,也是当今世界先进国家竞相发展的重要方向,在科学研究、先进技术、国防科技发展中有着重要的应用前景。先进自由电子激光的发展在前沿科学研究中发挥着越来越重要的作用,特别是近十年来,自由电子激光技术的发展和突破为探索未知物质世界、发现新科学规律、实现技术变革提供了前所未有的研究工具。  “自由电子激光能够给分子‘拍电影’,比如记录化学键断裂的动态过程,具有非常诱人的应用前景。”中科院上海应物所所长赵振堂说。  而要拍好这部“电影”,离不开神奇的极紫外光。  当波长短到100纳米附近时,一个光子所具备的能量就足以电离一个原子或分子而又不会把分子打碎,这个波段的光称为极紫外光。  “在科学实验中,需要探测的原子或分子数量可能非常少,存在时间也非常短,普通的极紫外光源无法满足这个需求,必须要有高亮度的极紫外光源,即极紫外激光。”中科院大连化物所分子反应动力学国家重点实验室研究员戴东旭解释称,“极紫外激光只能在‘特殊物质’中产生,这个‘特殊物质’就是脱离原子核而单独存在的自由状态的电子。”  但是,一台运行在极紫外波段的自由电子激光设备在世界上尚属空白。  这让科学家感到,中国的机会来了。  中国第一 世界最亮  在国家自然科学基金委国家重大仪器专项资助下,由大连化物所和上海应物所联合研制的大连光源项目于2012年初正式启动,2014年10月正式在大连长兴岛开工建设,并于2016年9月底安装完成,首次出光。  至此,大连光源成为我国第一台大型自由电子激光科学研究用户装置,是当今世界上唯一运行在极紫外波段的自由电子激光装置,也是世界上最亮的极紫外光源。  光源的每一个激光脉冲可产生超过100万亿个光子,波长可在极紫外区域完全连续可调,具有完全的相干性 该激光可以工作在飞秒或皮秒脉冲模式,可以用自放大自发辐射或高增益谐波放大模式运行。在这样的极紫外光照射下的区域内,几乎所有的原子和分子都“无处遁形”。  “大连光源属于第四代光源,在化学、能源、物理、生物、环境等重要研究领域有着广泛的应用,我国率先建成这一先进光源,对推动我国乃至世界在这些领域的研究发展有着极其重要的意义。”中科院院士、中科院大连化物所副所长杨学明说,“大连光源的成功研制也为我国未来发展X波段的自由电子激光打下了坚实基础。”  例如,举国关注的雾霾问题,就可以利用大连光源来研究。大气中的化学物质与水分子作用后,形成分子团簇,这些团簇在生长过程中吸附大气中各种污染分子,生长为较大的气溶胶颗粒,并逐渐成长为雾霾。利用大连光源极紫外软电离技术,就可以研究雾霾的生长过程,从根本上理解雾霾形成的机理,为大气污染防治提供科学依据。  在王恩哥看来,在当今世界,大科学工程对于科技发展起着越来越重要的推动作用。大连光源的建成出光,成为我国大科学工程的又一成功范例,将大大促进我国在能源、化学、物理、生物、材料、大气雾霾、光刻等多个重要领域研究水平的提升,为我国科技事业注入新的活力。  一次握手 造就典范  大连光源正式开工建设以来,在两年的时间里完成了基建工程以及主体光源装置的研制,并且在很短的时间内调试成功产生了世界上单脉冲最亮的极紫外激光,创造了我国同类大型科学装置建设的新记录。  这一项目也开创了我国科学研究专家与大科学装置研制专家成功合作的先例,对于未来加快推动大科学装置在科学研究中的应用具有重要的现实意义。  以科学目标为驱动,让大连光源成为我国大科学装置研制的典范。赵振堂告诉《中国科学报》记者,我国早期的大科学装置,往往都是先建好装置,再去找用户,看看哪些科学家能用。“但是大连光源把这个过程反了过来,是科学家先对科研有了需求,再找到工程团队来合作。这要求我们在建装置之前就充分调研,开工之前就要掌握装置的科学目标是什么。”  大连化物所的长处是科学研究,而上海应物所团队在大科学装置建设方面积累了20年的经验,两个团队为了相同的梦想走到了长兴岛,合作顺利得出人意料。  “合作、协同是中科院的优良传统。”赵振堂认为,“现在看来,打破研究所之间藩篱,整合各所力量,集各家之长来建大科学装置,是投入产出比最小、效率最高的一种方式。”  接下来,大连化物所以及上海应物所的项目专家将进一步把大连光源建设成为高水平的实验研究用户装置,为我国乃至世界提供一个独特的科学研究装置。
  • 335万!西安电子科技大学计划采购激光导热仪
    一、项目基本情况项目编号:0617-224121HZ0476(XDH21031D)项目名称:西安电子科技大学激光导热仪采购项目(XDH21031D)预算金额:335.0000000 万元(人民币)采购需求:激光导热仪采购,数量:1套。合同履行期限:合同生效后6个月本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:不适用3.本项目的特定资格要求:除《机电产品国际竞争性招标文件(第一册)》要求投标人提供的证明文件外,投标人还必须提供:1)投标人加盖公章的营业执照复印件(适用于关境内投标人)或企业注册证明复印件(适用于关境外投标人)2)2.1投标人法定代表人授权书原件(适用于关境内投标人)或单位负责人授权书原件(适用于关境外投标人);2.2代理商投标,须具有投标产品制造商出具的授权书(原件),投标产品的授权链应完整、真实、有效;3)投标人银行开户许可证复印件(适用于关境内投标人)4)投标人开户银行在开标日前三个月内开具的资信证明原件或复印件5)投标人应当于招标文件载明的投标截止时间前在必联网(http://www.ebnew.com)或机电产品招标投标电子交易平台(http://www.chinabidding.com)进行成功注册和通过年检,并保证招标人或招标代理机构能够在网上选取投标人;注:境内投标人不含港澳台地区三、获取招标文件时间:2022年03月30日 至 2022年04月07日,每天上午8:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:成长大厦10会议室(地址:中国陕西省西安市南二环西段58号)方式:需持单位介绍信及购买人身份证原件及复印件购买,招标文件每套售价¥500元或85美元,售后不退。发售联系人:刘星(029-89651830);招标文件了解和咨询地点:西安市南二环西段58号成长大厦11层1102售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年04月21日 09点30分(北京时间)开标时间:2022年04月21日 09点30分(北京时间)地点:南二环西段58号成长大厦10层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜/七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:西安电子科技大学     地址:陕西省西安市长安区西沣路兴隆段266号        联系方式:赵老师029-81891893      2.采购代理机构信息名 称:西北(陕西)国际招标有限公司            地 址:陕西省西安市雁塔区南二环西段58号成长大厦10~14层联系方式:卓迪、宋鹏飞、张喆 029-89651851              3.项目联系方式项目联系人:卓迪、宋鹏飞 、张喆电 话:  029-89651851
  • 2020珠峰高程测量启动,国产测绘仪器担主角
    p   5月初,中国2020珠峰高程测量正式启动。测量登山队由国测一大队和中国登山队组成。高程测量即海拔测量。今年是人类首次从北坡成功登顶珠峰60周年、中国首次精确测定并公布珠峰高程45周年,开展此次珠峰高程测量具有重要的历史意义。自然资源部组织了中国测绘科学研究院、陕西测绘地理信息局及中国地质调查局等单位编制珠峰高程测量技术设计书和实施方案。根据方案,本次测量将综合运用GNSS卫星测量、精密水准测量、光电测距、雪深雷达测量、重力测量、天文测量、卫星遥感、似大地水准面精化等多种传统和现代测绘技术,精确测定珠峰高程。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/cfa49acc-84f4-4ef8-abfc-58a378b57f74.jpg" title=" 0506news pic2.jpg" alt=" 0506news pic2.jpg" / /p p style=" text-align: center " strong 珠穆朗玛峰 /strong /p p   据了解,本次珠峰高程测量工作将重点在以下几方面实现技术创新和突破:一是依托北斗卫星导航系统,开展测量工作 strong 二是国产测绘仪器装备全面担纲本次测量任务 /strong 三是应用航空重力技术,提升测量精度 四是利用实景三维技术,直观展示珠峰自然资源状况 五是测绘队员登顶观测,获取可靠测量数据。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/d225e173-285e-45dd-93d2-05c0dcccfde7.jpg" title=" news0506.jpg" alt=" news0506.jpg" / /p p style=" text-align: center " strong 珠峰高程测量队员扛着仪器前往测量点 /strong /p p style=" text-align: right " span style=" font-size: 14px " strong (图片来源:新华社) /strong /span /p p   测绘仪器,简单讲就是为测绘作业设计制造的数据采集、处理、输出等仪器和装置。一般包括各种定向、测距、测角、测高、测图以及摄影测量等方面的仪器。常见的测绘仪器有测量水平角和竖直角的经纬仪;测量两点间高差的水准仪;地面人工测绘大比例尺地形图的平板仪;用电磁波运载测距信号测量两点间距离的电磁波测距仪;快速进行测距、测角、计算、记录等多功能的全站仪;将陀螺仪和经纬仪组合在一起,用以测定真方位角的仪器陀螺经纬仪;装有激光发射器的各种激光测量仪器;利用连通管测定两点间微小高差的液体静力水准;由摄影机和经纬仪组装而成的供地面摄影测量野外作业用的摄影经纬仪;用于测定立体像对上同名点的像片平面直角坐标和坐标差(视差)的仪器立体坐标量测仪;用于地籍测量和空中三角测量,可获取数字地面模型、断面图、进行地面摄影测量以及修测更新地图立体测图仪和将具有倾斜和地面起伏的中心投影相片变换成正射影像图的正射投影仪等。 /p p   此次珠峰高程测量的成果可用于地球动力学板块运动等领域研究。精确的峰顶雪深、气象和风速等数据,将为冰川监测、生态环境保护等方面的研究提供第一手资料。GNSS测量、水准测量、重力测量的成果结合以前相关资料,不仅可以准确地分析目前地壳运动变化影响情况,同时也可为后续的似大地水准面模型建立提供准确的重力异常数据。重力测量成果可用于珠峰地区区域地球重力场模型的建立和冰川变化、地震、地壳运动等问题的研究。 /p
  • 上海高研院在全相干自由电子激光研究方面取得突破进展
    中国科学院上海高等研究院自由电子激光团队在全相干自由电子激光研究方面取得重要突破,基于上海软X射线自由电子激光装置成功验证了由我国自主提出的回声谐波级联自由电子激光新机制,并获得了具有优异性能的软X射线相干辐射。近日,相关研究成果以“Coherent and ultra-short soft X-ray pulses from echo-enabled harmonic cascade free-electron lasers”为题发表在光学顶级期刊Optica上。 X射线自由电子激光是国际上最先进的光源大科学装置之一。目前国际上绝大部分X射线自由电子激光都是基于自放大自发辐射机制(SASE),SASE具有极高的峰值亮度和飞秒级超短脉宽等优异性能,但SASE由噪声起振,其辐射脉冲的相干性和稳定性不高,还不是X射线波段的“激光”。国际自由电子激光领域最重要的发展方向之一就是产生具备常规激光品质的全相干X射线辐射,其重要途径就是采用外种子型自由电子激光运行机制。外种子型自由电子激光的辐射继承了种子激光的特性,具备全相干、相位可控和与外部泵浦激光精确同步等优异特性。然而,受到种子激光波长和脉宽的限制,外种子型自由电子激光的短波长覆盖范围和脉冲长度调节范围有限。为进一步拓展外种子型自由电子激光的短波长覆盖范围,国际上近些年正在大力发展回声谐波产生等新型自由电子激光运行模式。 回声谐波级联自由电子激光具有优异的光谱性能:左图为常规级联模式,右图为回声谐波级联模式采用回声谐波级联可实现X射线脉冲长度调节和超快脉冲产生 外种子型自由电子激光是我国发展高增益自由电子激光的主要技术路线之一,目前我国全部四台高增益自由电子激光装置都采用了外种子运行模式。基于上海深紫外自由电子激光装置和上海软X射线自由电子激光装置,我们已先后实现了国际上首个回声型自由电子激光出光放大和首个极紫外波段回声型自由电子激光饱和放大。为进一步将外种子型自由电子激光向短波长推进,我院自由电子激光团队自主提出了回声谐波级联的全相干自由电子激光新机制,随后,这一机制被上海软X射线自由电子激光装置作为基本方案采用,并完成了从原理验证到软X射线波段出光放大的全过程。研究结果表明,与传统外种子型运行机制相比,这一新机制具有十分优异的光谱特性,通过采用我们自主发展的超快X射线脉冲诊断技术(DOI: https://doi.org/10.1016/j.fmre.2022.01.027),我们还验证了这一新机制在脉冲长度控制和超快脉冲产生方面的优越性能。这些研究成果为产生亚纳米波段的全相干自由电子激光提供了切实可行的技术路线,并将为X射线非线性光学和超快物理化学等领域提供了理想的研究工具。 目前,意大利的FERMI-FEL装置和瑞士的SwissFEL装置均提出采用这一新机制进一步提升其辐射性能的计划。 该工作得到了国家重点研发计划项目、国家优秀青年基金项目、国家自然科学基金面上项目和上海市人才计划项目的支持。 全文链接:https://doi.org/10.1364/OPTICA.466064
  • 近日,市场监管总局办公厅发布《关于做好注册计量师注册有关工作的通知》
    近日,市场监管总局办公厅发布《关于做好注册计量师注册有关工作的通知》,最新的国家计量专业项目分类表在附件中一同发布。为方便量友查询使用,特转发国家计量专业项目分类表供量友参考。 国家计量专业项目分类表 长度-计量专业项目分类表编号项目子项目规程/规范名称规程/规范号010100激光波长——633nm稳频激光器检定规程JJG 353010200量块——量块检定规程 JJG 146 010301线纹标准线纹尺三等标准金属线纹尺检定规程JJG 71高等别线纹尺检定规程JJG 7324m因瓦基线尺检定规程JJG 306标准钢卷尺检定规程JJG 741分辨力板检定规程 JJG 827容栅数显标尺校准规范JJF 1280显微标尺校准规范JJF 1917010302工作线纹尺钢直尺检定规程JJG 1木直(折)尺检定规程JJG 2钢卷尺检定规程JJG 4纤维卷尺、测绳检定规程JJG 5套管尺检定规程JJG 473线缆计米器检定规程JJG 987π尺校准规范JJF 1423010401角度角度标准器角度块检定规程JJG 70正多面棱体检定规程 JJG 283多齿分度台检定规程JJG 472光学角规检定规程JJG 850010402角度角度常规测量仪器光学数显分度头检定规程JJG 57测角仪检定规程JJG 97水平仪检定器检定规程JJG 191自准直仪检定规程JJG 202小角度检查仪检定规程JJG 300旋光标准石英管检定规程JJG 864刀具预调测量仪检定规程JJG 938激光小角度测量仪检定规程JJG 998测微准直望远镜校准规范JJF 1077光学测角比较仪校准规范JJF 1078光学倾斜仪校准规范JJF 1083光学、数显分度台校准规范JJF 1114光电轴角编码器校准规范JJF 1115直角尺检查仪校准规范JJF 1140三轴转台校准规范JJF 1669倾角仪校准规范JJF 1915010403角度专用 测量仪四轮定位仪校准装置校准规范JJF 1489微机电(MEMS)陀螺仪校准规范JJF 1535捷联式惯性航姿仪校准规范JJF 1536陀螺仪动态特性校准规范JJF 1537钻孔测斜仪校准规范JJF 1550010501直线度和平面度直线度刀口形直尺检定规程JJG 63平尺校准规范JJF 1097010502直线度和平面度平面度平晶检定规程JJG 28平板检定规程JJG 117平面等倾干涉仪检定规程JJG 661研磨面平尺检定规程JJG 740平面等厚干涉仪校准规范JJF 1100010600表面粗糙度——干涉显微镜检定规程JJG 77光切显微镜校准规范JJF 1092表面粗糙度比较样块校准规范JJF 1099触针式表面粗糙度测量仪校准规范JJF 1105010701万能量具游标类量具通用卡尺检定规程JJG 30高度卡尺检定规程JJG 31电机线圈游标卡尺检定规程JJG 566010702微分类量具千分尺检定规程JJG 21内径千分尺检定规程JJG 22深度千分尺检定规程JJG 24杠杆千分尺、杠杆卡规检定规程JJG 26奇数沟千分尺检定规程JJG 182带表千分尺检定规程 JJG 427大尺寸外径千分尺校准规范JJF 1088整体式内径千分尺(6000mm~10000mm)校准规范JJF 1215测量内尺寸千分尺校准规范 JJF 1411010703指示表类 量具指示表(指针式、数显式)检定规程JJG 34杠杆表检定规程JJG 35010703万能量具指示表类 量具机械式比较仪检定规程 JJG 39百分表式卡规检定规程JJG 109扭簧比较仪检定规程JJG 118大量程百分表检定规程JJG 379深度指示表检定规程JJG 830内径表校准规范JJF 1102带表卡规校准规范JJF 1253010704角度量具直角尺检定规程JJG 7正弦规检定规程 JJG 37电子水平仪和合像水平仪检定规程JJG 103方箱检定规程JJG 194多刃刀具角度规检定规程JJG 275方形角尺检定规程JJG 1046框式水平仪和条式水平仪校准规范JJF 1084水平尺校准规范JJF 1085电子水平尺校准规范JJF 1119组合式角度尺校准规范JJF 1132通用角度尺校准规范JJF 1959010705量规类量具半径样板检定规程JJG 58塞尺检定规程JJG 62圆锥量规检定规程JJG 177光滑极限量规检定规程JJG 343标准环规检定规程JJG 894010705万能量具量规类量具针规、三针校准规范JJF 1207电子塞规校准规范JJF 1310楔形塞尺校准规范JJF 1548010801长度通用测量仪器长度常规测量仪器光学计检定规程 JJG 45工具显微镜检定规程JJG 56线纹比较仪检定规程JJG 72接触式干涉仪检定规程 JJG 101指示类量具检定仪检定规程JJG 201光栅线位移测量装置检定规程JJG 341量块光波干涉仪检定规程JJG 371读数、测量显微镜检定规程JJG 571激光干涉仪检定规程JJG 739感应同步器检定规程JJG 836测长机校准规范 JJF 1066投影仪校准规范 JJF 1093测长仪校准规范JJF 1189激光测径仪校准规范JJF 1250激光千分尺平行度检查仪校准规范JJF 1252数显测高仪校准规范JJF 1254量块比较仪校准规范JJF 1304线位移传感器校准规范JJF 1305扫描探针显微镜校准规范JJF 1351角位移传感器校准规范JJF 1352010801长度通用测量仪器长度常规测量仪器生物显微镜校准规范JJF 1402地面激光扫描仪校准规范JJF 1406数字式激光球面干涉仪校准规范JJF 1739凸轮轴测量仪校准规范JJF 1795微小孔径测量仪校准规范JJF 1806球径仪校准规范JJF 1831直线度测量仪校准规范JJF 1890激光干涉比长仪校准规范JJF 1913金相显微镜校准规范JJF 1914光学轴类测量仪校准规范JJF 1933010802坐标测量 仪器皮革面积测量机检定规程JJG 413图形面积量算仪检定规程JJG 660标准玻璃网格板检定规程JJG 832坐标测量机校准规范JJF 1064激光跟踪三维坐标测量系统校准规范JJF 1242坐标定位测量系统校准规范JJF 1251步距规校准规范JJF 1258影像测量仪校准规范JJF 1318关节臂式坐标测量机校准规范JJF 1408坐标测量球校准规范JJF 1422标准球棒校准规范JJF 1859基于结构光扫描的光学三维测量系统 校准规范JJF 1951010803测微仪气动测量仪检定规程JJG 356010803长度通用测量仪器测微仪斜块式测微仪检定器检定规程 JJG 525引伸计标定器校准规范JJF 1096电感测微仪校准规范JJF 1331激光测微仪校准规范JJF 1663光栅式测微仪校准规范JJF 1682电容式测微仪校准规范JJF 1944010804形状测量仪圆度、圆柱度测量仪检定规程JJG 429表面轮廓表校准规范 JJF 1476圆度定标块校准规范 JJF 1485010805测厚仪X射线测厚仪检定规程JJG 480磁性、电涡流式覆层厚度测量仪检定 规程JJG 818超声波测厚仪校准规范JJF 1126厚度表校准规范JJF 1255X射线荧光镀层测厚仪校准规范JJF 1306湿膜厚度测量规校准规范 JJF 1484橡胶、塑料薄膜测厚仪校准规范 JJF 1488掠入射X射线反射膜厚测量仪器校准 规范JJF 1613电解式(库仑)测厚仪校准规范JJF 1707010901齿轮测量齿轮标准器齿轮渐开线样板检定规程JJG 332齿轮螺旋线样板检定规程JJG 408标准齿轮检定规程JJG 1008010902齿轮测量 仪器跳动检查仪校准规范JJF 1109手持式齿距比较仪校准规范JJF 1121010902齿轮测量齿轮测量 仪器齿轮螺旋线测量仪器校准规范JJF 1122基圆齿距比较仪校准规范JJF 1123齿轮渐开线测量仪器校准规范JJF 1124滚刀检查仪校准规范JJF 1125铣刀磨后检查仪校准规范JJF 1138齿轮齿距测量仪校准规范JJF 1209齿轮双面啮合测量仪校准规范JJF 1233齿轮测量中心校准规范JJF 1561010903齿轮测量 量具公法线千分尺检定规程JJG 82齿厚卡尺校准规范JJF 1072圆柱直齿渐开线花键量规校准规范JJF 1557011001螺纹测量螺纹测量仪器石油螺纹单项参数检查仪校准规范JJF 1063丝杠动态行程测量仪校准规范JJF 1410螺纹量规扫描测量仪校准规范JJF 1950011002螺纹测量量具螺纹千分尺检定规程JJG 25螺纹样板检定规程JJG 60石油螺纹工作量规校准规范JJF 1108圆柱螺纹量规校准规范JJF 1345011100轴承测量——轴承内外径检查仪检定规程JJG 471球轴承轴向游隙测量仪检定规程JJG 626深沟球轴承跳动测量仪检定规程JJG 784深沟球轴承套圈滚道直径、位置测量仪检定规程JJG 785轴承套圈厚度变动量检查仪检定规程JJG 819011100轴承测量——滚动轴承宽度测量仪检定规程JJG 885滚动轴承径向游隙测量仪校准规范JJF 1089轴承套圈角度标准件测量仪校准规范JJF 1113圆锥滚子轴承套圈滚道直径、角度测量仪校准规范JJF 1545轴承圆锥滚子直径、角度和直线度比较测量仪校准规范JJF 1684011201测绘仪器及检定装置测绘仪器检定装置 经纬仪检定装置检定规程JJG 949水准仪检定装置检定规程JJG 960长度基线场校准规范JJF 1214011202测绘仪器水准标尺检定规程JJG 8全站型电子速测仪检定规程JJG 100光学经纬仪检定规程JJG 414水准仪检定规程JJG 425光电测距仪检定规程JJG 703超声波测距仪检定规程JJG 928手持式激光测距仪检定规程JJG 966工业测量型全站仪检定规程JJG 1152垂准仪校准规范JJF 1081平板仪校准规范JJF 1082全球定位系统(GPS)接收机(测地型和导航型)校准规范JJF 1118激光扫平仪校准规范JJF 1166脉冲激光测距仪校准规范JJF 1324工具经纬仪校准规范JJF 1349陀螺经纬仪校准规范JJF 1350011202测绘仪器及检定装置测绘仪器非接触式测距测速仪校准规范JJF 1612望远镜式测距仪校准规范JJF 1704011301长度其它测量仪器长度工程专用仪器焊接检验尺检定规程JJG 704刮板细度计检定规程项目子项目规程/规范名称规程/规范号020101质量天平
  • 深紫外自由电子激光装置实验获重大进展
    记者从中国科学院上海应用物理研究所获悉,经过多年技术积累和艰苦努力,上海深紫外自由电子激光装置(SDUV-FEL)实验取得重大进展,我国自由电子激光实验研究步入世界先进行列。   自由电子激光是激光家族的一个新成员,被国际上公认为新一代光源,有着重要的应用前景。高增益自由电子激光在亮度、相干性和时间结构上,都大大优于第三代同步辐射光源,是国际上竞相发展的新一代大科学装置。   自由电子激光的工作模式主要有“自放大自发辐射(SASE)”和“高增益谐波产生(HGHG)”两种。其中,“高增益谐波产生(HGHG)”工作模式需要短脉冲激光和高品质电子束流的精确相互作用,技术比较复杂,但是性能较“自放大自发辐射(SASE)”工作模式更好。   经过多年的技术积累和艰苦努力,上海深紫外自由电子激光装置于2010年12月中旬成功进行了高增益谐波产生自由电子激光放大与饱和的实验,这是上海深紫外自由电子激光装置成功进行了自放大自发辐射实验和外种子自由电子激光调制实验之后,所取得的又一重大进展。   目前,我国已成为继美国之后世界上第二个实现高增益谐波产生自由电子激光放大与饱和的国家,这表明我国已经基本掌握了相关主要关键技术,为我国未来的X射线自由电子激光大科学装置的发展奠定了坚实基础。   中国科学院上海应用物理研究所是我国大科学装置“上海光源”的建设和运行单位。“上海光源”是目前世界上性能最好的第三代中能同步辐射光源之一。目前,中科院上海应用物理研究所正积极开展自由电子激光新一代大科学装置的预研。
  • 黑龙江质监局拟采购4316万元分析仪器
    黑龙江省政府采购中心按照黑龙江省政府采购管理办公室下达的采购计划,依据《政府采购法》及相关法规,对黑龙江省质量技术监督局分析仪器采购及服务进行国内公开招标,现欢迎国内合格的供应商参加投标。   一、项目编号: SC[2012]1360   二、项目名称: 黑龙江省质量技术监督局分析仪器采购及服务   三、资金来源及构成: 预算内资金(20800000元) 自筹(619250元)万元   四、招标内容: 项目名称 数量 采购预算(元) SC[2012]1360B0001 合计 3626000 原子荧光光度计 37 台 3626000 SC[2012]1360B0002 合计 3827000 紫外分光光度计 25 台 475000 离心机 22 台 220000 旋转蒸发器 11 台 220000 电子天平 27 台 270000 电导率仪 13 台 26000 离子色谱仪 8 台 1200000 拍击式均质器 16 台 144000 均质器 2 台 18000 PH计 12 台 60000 恒温鼓风干燥箱 14 台 140000 真空干燥箱 6 台 30000 恒温振荡水浴锅 17 台 85000 马弗炉 13 台 208000 超声波清洗机 9 台 81000 微波消解仪 13 台 650000 SC[2012]1360B0003 合计 3698000 酶标仪 32 台 608000 超纯水设备 23 台 690000 生物安全柜 43 台 946000 霉菌培养箱 33 台 198000生化培养箱 38 台 380000 生物显微镜 30 台 180000 超净工作台 22 台 220000 高压灭菌器 23 台 460000 菌落计数器 16 台 16000 SC[2012]1360B0004 合计 2380000 定氮仪 29 台 522000 布拉班德粘度计 2 台 700000 白度仪 9 台 18000 浊度计 10 台 80000 烟点测试仪 4 台 40000 全自动脂肪测定仪 9 台 432000 二氧化碳测定仪 12 台 60000 调速多用振荡器 1 台 2000 石墨炉原子吸收冷却水循环装置 1 台 16000 谷物选筛 1 台 1000 磁性金属物测定仪 1 台 4000 石墨消解仪 1 台 35000 精密真空压力表标准装置 1 台 30000 验光机检定装置 1 台 20000 智能液体密度计 1 台 20000 荧光分子光谱仪 1 台 100000 紫外可见分光光度计 1 台 50000 GPC凝胶色谱净化系统 1 台 250000 SC[2012]1360B0007 合计 2292450 粉质仪 1 台 150000 旋光仪 1 台 10000 粘度计 1 台 8000 气相色谱升级色谱检测器(电子捕获ECD检测器) 1 台 30000 微机屏显电液伺服万能试验机 1 台 110000 水质分析仪 1 台 15000 面筋指数测定仪 2 台 11200 氮磷钙测定仪 1 台 20000 碘含量测定仪 1 台 20000冻融试验机 1 台 78000 定流仪 1 台 30000 超声波测厚仪 1 台 35000 千分之一电子天平 1 台 4000 百分之一电子天平 1 台 3500 温湿度测定仪 1 台 26000 管式电炉 1 台 18000 激光粒度仪 1 台 92000 小型精米机 1 台 5000 数字精密压力表 1 台 3750 液体比重天平 1 台 6000 自控型不锈钢电热蒸馏水器 1 台 3000 6合1蜂蜜快速检测仪 1 台 50000 全自动低温冻融试验机 1 台 38000 乳成分分析仪 1 台 50000 全自动滴定仪 2 台 22000 液体密度计 1 台 20000 EBC色度仪 1 台 10000 冰点仪 1 台 30000 万能压力试验机 1 台 200000 罗维朋比色计 2 台 6000 自动旋光仪 1 台 10000 啤酒浊度泡沫检测仪 1 台 30000 粘度计 1 台 4000 阿贝折射仪 1 台 6000 恒温电热板 1 台 6000 水泥胶砂搅拌机 1 台 3500 验光机客观式模拟眼 1 台 80000 万能材料试验机 1 台 150000 热能表检测仪 1 台 240000 焦度计 1 台 60000 检验光机(主观) 1 台 50000 验光镜片箱 1 台 10000 超声体模 1 台60000 心电图机检定仪 1 台 42000 声级计(噪声仪) 1 台 5000 光学经纬仪 1 台 12000 激光自动安平扫平仪 1 台 5500 电梯限速器测速仪 1 台 12000 激光自动安平垂准仪 1 台 10000 水准仪 1 台 2500 钢丝绳电脑探伤仪 1 台 40500 钳形电流表 1 台 2000 电梯导轨共面测试仪 1 台 10000 测速仪 1 台 10000 电梯加速度测试仪 1 台 32000 接地电阻测试仪 1 台 8000 经纬仪 1 台 10000 全站仪 1 台 35000 自动激光铅直仪 1 台 52000 X射线探伤仪 1 台 58000 管道防腐层检测仪 1 台 50000 埋地管线泄漏检测仪 1 台 30000 便携式金相仪 1 台 22000 导轨垂直度测量仪 1 台 30000 SC[2012]1360B0008 合计 2307440 罗维朋比色计 2 台 5880 谷物选筛仪 1 台 420 电动筛选器 1 台 2300 实验室砻谷机 1 台 430 实验室碾米机 1 台 880 洗眼器 1 台 1980 超高压压力源 1 台 13000 水介质压力源 1 台 12000 数字精密压力表(0-60Mpa) 2 台 7500 数字精密压力表(0-10Mpa) 2 台 7500 数字微欧计 1 台 2200 指针式接地电阻测试仪 1 台 1650 检衡设备 1 台 466600 氮吹仪 1 台 5000 电子容重器 1 台 4000 岩石切磨两用机 1 台 15000 岩石取芯机 1 台 12500 实验用颚式破碎机 1 台 10000 肖氏硬度D型 1 台 12000 蒸煮箱 1台 4800 碳化箱 1 台 32000 便携式红外线气体分析仪 1 台 20000 高压气体压力源 1 台 13800 数字接地电阻测试仪 1 台 4700 50L流量罐 1 台 6000 掌上型医用X射线诊断机无线检定装置 1 台 72000 B超检定装置 1 台 28800 门窗保温性能检测仪 1 台140000 门窗物理性能检测仪 3 台 360000 门窗机械性能检测仪 2 台 160000 塑料门窗角强度试验机 3 台 21000 屏显式液压万能试验机 1 台 65000 微机控制电子万能试验机 1 台 25000 塑料门窗冲击试验机 2 台 10000 量热仪 1 台 28000 自动工业分析仪 1 台 85000 微机定硫仪 1 台 26000 微电脑粘接指数测定仪 1 台 3000 微机胶质层测定仪 1 台 35000 自动标准振筛机 1 台 3000 颚式破碎机 1 台 3000 贵金属分析测定仪 1 台 198000 建材冻融试验台 1 台 85000 匀浆机 1 台 10000 振荡器 1 台 23000 压力机 1 台 96000 拉力机(电子2000N) 1 台 52000 导热系数测定仪 1 台 51000 氧指数检测仪 1 台 12000 可燃性能检测仪 1 台 18000 验粉筛 1 台 3300 磁力搅拌器 1 台 600 调速多用振荡器 1 台 2000 面筋仪 1 台 5600 磁性金属物检测器 1 台 1000 检红砖用蒸煮箱 1 台 3000 数显式200T压力试验机 1 台 20000 SC[2012]1360B0009 合计 1793860 恒温磁力搅拌器(液晶屏) 1 台 5000 自控型不锈钢电热蒸馏水器 1 台 2300 氮、氢、空发生器 1 台 26000 防腐加热板 1 台 5600 台式恒温振荡器 1 台 17000 降落数值测定仪 1 台 13000 往复式调速多用振荡器 1 台 1000 实验室粉碎磨 1 台 5000 高速粉碎机 1 台 1000 粮食快速测水仪 1 台 1800 红外水分测定仪 1 台 22000 落地式全温振荡器 1 台 30000 SPE固相萃取装置 1 台 12000 匀浆机 1 台 13500 超级恒温水浴 1 台 1650 阿贝折光仪 1 台 13000 氮气吹扫浓缩仪 1 台 4300 实验室高速粉碎机 1 台 1000 磁力搅拌器 1 台 210 磁性金属测定仪 1 台 2500验粉筛1 台 3700 谷物选筛 1 台 400 低温冰柜 1 台 5900 双三元梯度液相色谱 1 台 743000 全自动原子荧光光度计 1 台 373000 实时荧光定量PCR仪 1 台 490000 SC[2012]1360B0010 合计 1494500 多点温湿度测试仪主机 2 台 31200 多点温湿度测试仪配湿度传感器 5 台 20800 多点温湿度测试仪配电偶传感器(高温) 10 台 9100 热电偶热电阻测试仪 2 台 18200 标准铂电阻温度计 1 台 7200 特斯拉计检定装置 1 台 280000 标准铂铑10铂热电偶 2 台 16600 医用输液泵校准装置 1 台 127200 变比电桥检测装置 1 台 117000 智能环境测试仪 1 台 26000 照度计, 1 台 2800 声级计 1 台 5800 数字电压表 1 台 59800 数字液体流量计 1 台 35000 气体流量测量装置 1 台 67000 气溶胶发生器 1 台 60000 直流电源 1 台 3200 多齿分度台 1 台 45500 发动机转速表校准装置 1 台 30000 失真度测量仪 1 台 9800 转速频率计 1 台 27800 E2等级无磁不锈钢砝码 1 台 15900 尘埃粒子计数器校准装置(含标准粒子发生装置、基准粒子计数器、空气流量测试仪、空压机、空气干燥器) 1 台 478600 总计 21419250   投标截止时间:2012年11月19日,上午9时30分。   开标时间:2012年11月19日,上午9时30分。   此前,黑龙江省质监局还采购2175万元液相、气相、原吸等产品,在30日开标中,因实质性响应不足三家原因,根据《政府采购法》有关规定,本项目做废标处理。 项目名称 数量 采购预算(元) SC[2012]1252B0001 合计 4650000 气相色谱 31 台 4650000 SC[2012]1252B0002 合计 12300000 液相色谱 41 台 12300000 SC[2012]1252B0003 合计 4800000 原子吸收分光光度计 32 台 4800000 总计 21750000
  • X射线自由电子激光试验装置项目通过国家验收
    p style=" text-align: justify text-indent: 2em " 2020年11月4日,国家重大科技基础设施X射线自由电子激光试验装置项目通过国家验收。& nbsp /p p style=" text-align: justify text-indent: 2em " X射线自由电子激光试验装置由中国科学院和教育部共同建设,中科院上海应用物理研究所为法人单位,北京大学为共建单位。装置主体由一台8亿4千万电子伏特的高性能电子直线加速器和一台可以实现多种先进运行模式的自由电子激光放大器组成。装置位于上海市浦东新区,将与上海光源、国家蛋白质科学研究(上海)设施、上海超强超短激光装置等组成张江综合性国家科学中心大科学设施集群的核心,成为我国光子科学研究的国之重器。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/92306bfb-33dc-43d6-92d0-665d8bc5c468.jpg" title=" W020201111573040934245.jpg" alt=" W020201111573040934245.jpg" / /p p /p p style=" text-align: justify text-indent: 2em " X射线自由电子激光试验装置项目经过5年半的紧张建设和精细调试,高质量地建成了我国首台X射线波段自由电子激光试验装置;并成功地研制了射频超导加速单元。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 目前,全球建成的X射线自由电子激光装置仅有8台,其它7台分别位于德国(两台)、美国、日本、韩国、意大利和瑞士。以X射线自由电子激光试验装置为基础,建设的我国首台X射线波段自由电子激光用户装置,将为我国开展能源、材料、生物等领域科学前沿问题的探索提供强有力的工具;同时,也为我国继续开展自由电子激光新原理的探索和验证、关键技术的研究提供了不可替代的实验平台。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 国家验收委员会专家认为,X射线自由电子激光试验装置的各项指标均达到或优于批复的验收指标。建设单位掌握了自由电子激光装置设计、加工集成、安装和调试以及射频超导加速单元等关键核心技术,取得了一系列重大技术成果。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 在建设过程中,项目自主研制了一系列关键核心设备,其中C波段加速单元的平均运行梯度达到了国际同类装置最高水平,条带型束流位置测量系统的分辨率达到国际先进水平;发展了腔式束流位置探测器和基于偏转腔的束团相空间测量以及XFEL脉冲重构系统,达到国际先进水平;同时实现了超导腔研制的全国产化,垂直测试加速梯度和无载品质因数达到国际先进水平。基于高精度、多维度束流测量和反馈技术,实现了高稳定、高品质的电子束团和FEL辐射产生;在调试过程中,首创了EEHG-HGHG混合级联型的自由电子激光先进运行模式,辐射带宽和中心波长稳定性显著优于传统级联。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 国家验收委员会专家认为,X射线自由电子激光试验装置的建设队伍通过自主研制和国内外合作,实现了集成创新和原始创新,有力地推动了我国自由电子激光领域的发展,实现了重大的突破,同时为硬X射线自由电子激光装置的建设提供了技术和人才储备。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/2cbee46d-2c88-4f1f-b510-62ff735bc909.jpg" title=" W020201111573041002981.jpg" alt=" W020201111573041002981.jpg" / /p p br/ /p
  • 中科院长春光机所落户青岛 歌尔长光研究院正式启动
    p   6月2日,青岛歌尔长光研究院正式启动,标志着中国科学院长春光学精密机械与物理研究所正式落户我市,中科院在青研发机构增至12家。 /p p   青岛歌尔长光研究院是由歌尔集团与中科院长春光机所共同出资建立,研究院下设“长光歌尔联合实验室”、“长光歌尔联合研发中心”以及“长光歌尔技术培训学院”。其中,“联合实验室”以前沿技术研究为主,在长春、青岛两地挂牌 “联合研发中心”陆续规划建立智能仪器与装备研究中心、Camera研究中心、机器视觉研究中心及微光机电研发中心等,主要在青岛建设 “技术培训学院”以长春光机所的师资资源及运营模式为基础,在青岛组织开展以面向本地化及市场化需求为目的培训活动。 /p p   长春光机所是我国光学领域第一个研究所,在发光学、应用光学、光学工程、精密机械与仪器等领域攻克了多项关键技术,取得了以神舟系列有效载荷为代表的一批重大科研成果,研制出中国第一台红宝石激光器、第一台大型电影经纬仪等多种先进仪器设备,创造了十几项“中国第一”,为我国国防建设、经济发展和社会进步做出了突出贡献。 /p p   下一步,青岛歌尔长光研究院将结合长春光机所在高端光学传感器、光学精密仪器与装备等领域的技术、人才优势,歌尔集团在智能声学、智能娱乐、智能穿戴、智能家居等领域的产业、市场和技术优势,面向光学技术、海洋探测及智能制造三大重点方向布局,在我市打造国内一流的光学领域科技创新基地、人才培养基地和产学研孵化平台,为推进我市新旧动能转换,加快经济结构转型升级提供强大的动力源。 /p
  • 硬X射线自由电子激光装置启动建设
    p   上海张江综合性国家科学中心又一重大装置项目——“硬X射线自由电子激光装置”日前获批启动。据悉,该项目作为《国家重大科技基础设施建设“十三五”规划》优先布局的、国内迄今为止投资最大的重大科技基础设施项目,在国家发展改革委、上海市和中科院的共同关心与支持下,在项目各参建单位的共同努力下,取得了阶段性成果。 /p p   该装置选址在上海张江综合性国家科学中心核心区域,总长约3.1公里,将建设埋深29米的地下隧道,包含超导直线加速器隧道、波荡器隧道、光束线隧道等10条隧道及5个工作井。装置主要由四部分组成:超导加速器、光束线、实验站和配套的公用设施。加速器装置包括一台能量达到100兆电子伏特的电子注入器、一台能量8为兆电子伏特的连续波超导直线加速器,以及3条产生的X射线光子能量范围为0.4~25千电子伏特的高重复频率自由电子激光放大器。 /p p   据了解,硬X射线自由电子激光具有更高的亮度、更短的脉冲结构和更好的相干性,提供的X射线峰值亮度比第三代同步辐射光源高109倍。同时,其具备纳米级的超高空间分辨能力和飞秒级的超快时间分辨能力,可将对微观世界的研究从拍“分子照片”提升到拍“分子电影”的水平,同时满足面向物质、单分子、超强超短单颗粒成像以及极端光物理等多个实验站的需求。 /p p   专家表示,该装置建成后,将成为世界上最高效和最先进的自由电子激光用户装置之一,为物理、化学、生命科学、材料科学、能源科学等多学科提供高分辨成像、超快过程探索、先进结构解析等尖端研究手段。张江地区也将成为集聚同步辐射光源、软X射线自由电子激光、硬X射线自由电子激光和超强超短激光于同一区域的国际光子科学研究高地。 /p p /p
  • 云南研制天文地动仪 望破解地震预测难题
    中国科学院云南天文台正在秘密研究“天文地动仪”,这种仪器有望破解千年地震难题——提前预测地震的到来……   多功能经纬仪原理   (1)本项目研制的多功能天文经纬仪,是一种用于观测恒星位置的望远镜,恒星离地球非常遥远,它们在天空中的位置固定不变。    处于地面某一位置的望远镜,在正常情况下,地球引力g是垂直向下的,望远镜中有个水银盘,水银面的垂直方向与引力平行指向天顶,望远镜在固定时刻观测到某一恒星在天顶位置A出现。    当地下地震孕育区M受到周围应力作用,导致物质密度反常,引力方向偏移到f方向,使望远镜中的水银面指向天顶的方向发生偏移,望远镜在固定时刻观测到某一恒星在天顶的位置偏移到B,我们就可以获得偏转角θ。      在一定区域内设置多个望远镜,在地下某一区域M的物质密度发生改变时,它会导致多个望远镜的水银面方向产生偏移,通过观测某一恒星在固定时刻的位置,可以测量引力的偏转角α和β,从而可算出密度异常区的位置。地震孕育区通常存在物质密度异常,引起地面的重力异常,该仪器能够探测产生一定程度重力异常的区域,为地震专家和政府决策提供重要信息。   (2)该仪器还能测定瞬时天文大气折射,建立多方位大气折射实测模型。由于以记录电磁波传播时间为基本数据的空间大地测量技术,包括卫星激光测距、全球定位系统GPS和甚长基线射电干涉测量VLBI,都受到大气折射延迟的影响,目前仅能用理论模型或经验模型作修正,导致测量距离的误差比较大。利用多功能天文经纬仪,建立天文大气折射实测模型,转换建立起大气折射延迟实测模型,它将能使距离的测量精度接近于理论精度水平。另外,研制的仪器在航天发射和国防上也有应用价值,用该仪器和相应的测量方法可以为卫星发射和导弹基地建立本地大气折射实测模型,提高卫星发射和导弹制导系统的时间、方向和定位精度。   去年以来,王建成就一直带着一个科研小组加班加点、夜以继日地投入到一项秘密研究课题中。   王建成是中国科学院云南天文台副台长。与此前的一些研究目的不同,这次虽然同样是“看天”,但最终却是为了“探地”。   当发现甘肃舟曲1000多人死于泥石流灾害的主要原因之一是汶川“512”地震震松了舟曲山体时,王建成心中又增添了些许沉重:“我们现在希望少受外界干扰,静心和高效地研制仪器,使仪器尽快应用和推广。”王建成所说的仪器,正是他们一年多来潜心研究、能通过寻找和监测地下物质密度的异常变化,为预测地震提供有效信息的“多功能经纬仪”。张衡发明的“地动仪”在1700年前神秘失踪,今天,云南天文专家正尝试利用一种叫做“多功能经纬仪”的仪器,用天文观测的方法对地震进行精确预报。   可以想见,这种“天文地动仪”一旦研制成功,将会是人类对抗自然灾害的历史上最大的一次“地震”!   现实   上天容易入地难   众所周知,地震预测是全世界公认的难题,预测地震的仪器都具有“不可入性”,由于地震专家不能直接观测地球内部,以致对地震的孕育过程和影响这一过程的种种因素缺乏观测数据。   市防震减灾局副局长靳树才介绍,一般而言,地震的震源都在地下十多公里以下,有的深达几百公里,依托现有的技术水平,要打钻下去,直接观测,基本不可能。现阶段,地震预测主要依靠电磁波、磁辐射、地下水化学分析、放射性元素、大地倾斜、重力变化等,通过综合分析各种数据来作预报。但这些数据与地震的关系都是间接的,同时受干扰因素较多。如对地下水的观察,不仅要了解地下水变化的原因,还要了解地下水所处的构造部位、水的补给源、正常动态、可能引起水位变化的降雨及工业用水、农田灌水、气候变化、季节变化、补给源变化等干扰因素,以至引起地震发生的变化量非常小,不具有独特性,很容易淹没在其它干扰因素中,要将它们有效甄别提取出来,难度很大。   有人说汶川地震前青蛙曾有异常行为。靳树才说,动物的异常行为和地震有关联,但没有直接的、必然的联系。青蛙行为异常完全有可能是由其他原因引起的。更何况,青蛙不会告诉你将会在哪里、什么时间、发生几级地震。   “我们需的是准确、科学的预报。”靳树才说。   启发   东汉“地动仪”带来灵感   1800多年前,在张衡所处的东汉时代,地震比较频繁。经过长年研究,张衡发明了一个测报地震的仪器,叫做“地动仪”。   据史书记载,地动仪是用青铜制造的,形状有点像一个酒坛,四围刻铸着八条龙,龙头向八个方向伸着。每条龙的嘴里含了一颗小铜球:龙头下面,蹲了一个铜制的蛤蟆,对准龙嘴张着嘴。哪个方向发生了地震,朝着那个方向的龙嘴就会自动张开来,把铜球吐出。铜球掉在蛤蟆的嘴里,发出响亮的声音,就给人发出地震的警报。   汉顺帝阳嘉三年十一月壬寅(公元134年12月13日),地动仪的一个龙机突然发动,吐出了铜球,掉进了那个蟾蜍的嘴里。当时在京师(洛阳)的人们却丝毫没有感觉到地震的迹象,于是有人开始议论纷纷,责怪地动仪不灵验。没过几天,陇西(今甘肃省天水地区)有人飞马来报,证实那里前几天确实发生了地震,于是人们开始对张衡的高超技术极为信服。陇西距洛阳有一千多里,地动仪标示无误,说明它的测震灵敏度是比较高的。   遗憾的是,凝聚中华民族智慧的地动仪没有保存下来,1700多年前,地动仪神秘消失。   “应该可以用天文观测的技术和仪器来提高地震预测的准确度。”祖先的智慧、先进的科技启发和驱动着云南天文学家投入到了看似不可能的“天文地动仪”研制中。   原理   精准把脉重力变化   据了解,虽然地震孕律具有很大的复杂性,但通过研究,世界各国专家普遍认为地震孕育区受多种应力的作用,积累大量能量,引起周围重力变化。监测到重力变化,就能发现地下能量的异常聚集,地震部门现在已经能用重力仪测出重力变化大小,但却测不出重力方向。   王建成介绍,“多功能经纬仪”这一项目是通过云南天文台独创的低纬子午环的观测原理和仪器误差测量方法,研制出一架达到高精度要求的小型、轻便、全自动的“多功能天文经纬仪”样机。这种“多功能经纬仪”本来是天文上用于精确观测恒星位置变化的望远镜,而恒星位置变化是重力变化的一面“镜子”,如果同时启动多台“多功能经纬仪”监测,就能测量出重力方向,由此寻找和监测到引起重力变化的源头,为地震专家预测地震提供可靠信息。   2009年1月24日和2010年2月4日,省委常委、市委书记仇和等领导在连续两次专程登门拜访中国科学院、中国工程院在昆的院士时,都对我国恒星物理研究专家、云南天文台黄润乾院士以及云南天文台副台长、项目组长王建成介绍的多功能经纬仪项目研究情况给予了高度评价和极大地支持。   王建成表示,项目已开始总体方案设计和研讨,今年10月底完成总体设计和论证,项目研究组正排除一切干扰,不舍昼夜、严谨高效地加紧研制,计划2011年底验收,力争早日投入应用和推广。他透露,明年底样机研制成功后,即可建立多台测量仪组成的监测网,布置到我省地震断裂带周围,寻找和监测地下物质密度的异常变化区域,通过监测地下物质密度的异常变化,为预测地震提供新的有效信息。   希望   能像预测台风一样预测地震   靳树才表示,感谢其他行业专家对地震预测的关注,为地震预报献计献策,身体力行地做研制工作。   他认为“多功能经纬仪”项目是符合科学规律的,但同时,他对引起地下重力变化的力量是否就足够使地表发生形变表示不确定。因为使地表发生形变的因素也很多,比如说重型货车经过时,在路边就能感到颠簸,这就是一种形变,重型货车对路面产生的压力都远远大于重力变化的力量。所以,这对地震观测条件提出了高要求,要尽量避开环境和人为干扰,而选择环境比较安静、工农业生产干扰小、无环境污染的地区。仪器具体安装位置要选择地质条件较好的岩石,而不是松软的土层,尽量减少干扰因素。   对未来能够准确预报地震,靳树才充满了信心,他说, 地震预测具有时代性。虽然很难,但随着人类科技进步,终有一天能解决。“退回200年前,台风的预测也只能凭经验,而现在什么时候登陆,在哪里登陆,都已在人类的严密监控下,因为我们有了卫星。”他说。   至于“多功能经纬仪”,靳树才也充满期待:“仪器究竟能发挥多大作用?现在尚不能确定。待仪器研制成功后,我们将成立专门研究小组,总结规律性东西,认真观测,积累经验,在实践中提出改进建议。”
  • “光剑”出鞘:软X射线自由电子激光装置调试工作取得系列进展
    近日,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置调试工作取得系列进展。继实现532米X射线自由电子激光装置的全线调试贯通、带光运行后,装置于6月21日凌晨首次实现了2.4纳米单发激光脉冲的相干衍射成像,获得了首批实验数据,并完成了对衍射图样的快速图像重建。该成果体现了活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置整体性能的先进性,标志着我国在软X射线自由电子激光研制和使用方面步入国际先进行列。基于该成果,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置成为了国际上仅有的两个已实现“水窗”波段相干衍射成像实验的自由电子激光装置之一。“水窗”是指波长在2.3纳米到4.4纳米范围的软X射线波段。在此波段内,水不吸收X射线,对X射线相对透明。但是碳元素等构成生物细胞的重要元素,仍会与X射线相互作用,因而水窗波段的X射线可用于活体生物细胞的显微成像等,具有重要的科学意义和应用价值。在水窗波段,自由电子激光脉冲的峰值亮度比同步辐射高十亿倍以上,具备横向和纵向相干性,能够为物理、生物、化学等学科提供研究工具,还可为在建的上海硬X射线自由电子激光装置技术研发提供支撑。作为我国首台X射线自由电子激光装置,上海软X射线自由电子激光装置由活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置共同构成,两个项目同步建设,有机衔接。该装置将与已建成的上海同步辐射光源、超强超短激光装置和在建的硬X射线自由电子激光装置等一起,在浦东张江构建具有全球影响力的光子科学设施集群和光子科学研究中心。活细胞结构与功能成像等线站工程由上海科技大学、中国科学院上海应用物理研究所、中科院上海高等研究院团队共同建设,项目于2016年11月开工建设,含用户波荡器束线、活细胞成像束线、生物成像实验站、活细胞荧光超分辨显微镜站、超快物理实验站、超快化学实验站、分子动态成像实验站及实验辅助设施,预计在2021年内完成验收。活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置由国家发展和改革委员会与上海市政府共同出资建设。自2021年6月2日首次实现生物成像实验站通光后,上海科技大学和上海高研院的项目团队密切协作、昼夜调试,不断创造项目贯通调试和运行的加速度,取得了首批相干衍射实验数据,实现了数据的快速图样重组,为今后开展生物活体细胞成像、新材料动态结构分析以及多物理场原位成像等前沿科学研究打下了基础。装置拟于明年面向全世界开放运行。图1.标准样品圆孔、方孔及鹦鹉螺图案的相干衍射图样图2.上海软X射线自由电子激光装置图3.用户波荡器束线图4.用户大厅图5.生物成像实验站
  • 我国首台高平均功率太赫兹自由电子激光饱和出光
    p   由我国科学家自主研发的国内首台高平均功率太赫兹自由电子激光装置,日前在四川成都首次饱和出光。经第三方检测,实验真实可靠且装置运行稳定。我国太赫兹源从此正式进入自由电子激光时代。 /p p   8月29日,由中国工程物理研究院应用电子学研究所牵头的高平均功率太赫兹自由电子激光装置(CTFEL)首次饱和出光,并实现稳定运行。9月20日,经过专家组现场测试和中国兵器工业第205研究所第三方检测,CTFEL装置太赫兹频率在1.99THz、2.41THz和2.92THz三个频率点稳定运行,平均功率均大于10W,最高达到17.9W 微脉冲峰值功率均大于0.5MW,最高达到0.84MW。通过调节电子束能量和磁场强度,可以实现输出激光频率连续可调。 /p p   太赫兹(THz)辐射通常指频率在0.1THz—10THz区间的电磁辐射,波段位于微波和红外光之间,是人类尚未完全认识并很好加以利用的最后一个波(光)谱区间。物质的太赫兹光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,研究有关物质在这一波段的光谱响应,探索其结构性质及其所揭示的新的物理内容已成为一个新的研究方向。自由电子激光(FEL)由于具有频率连续可调、功率大、线宽窄、方向性好、偏振强等优点,使得在同一台装置上实现太赫兹波段全覆盖的大功率理想太赫兹源成为了可能,故自由电子激光是目前该波段最有前途的高功率可调谐相干光源。 /p p   CTFEL装置是依托科技部支持的国家重大科学仪器设备开发专项“相干强太赫兹源科学仪器设备开发”项目,于2011年立项启动。作为一种新型相干强太赫兹光源,CTFEL装置在材料、生物医学等领域有着重要应用前景。 /p
  • 纪念中国仪器仪表学科奠基人王大珩先生诞辰100周年
    在纪念德高望重的王大珩先生诞辰100周年之际,许多仪器界的朋友心中都充满着美好的回忆。王老先生光灿的一生,光辉的实践,爱国奉献的感人业绩,一直在激励和鼓舞着我们。我们对王老充满着无限的敬仰和深深的怀念!  王老在多个领域对我国科技事业、学术思想和创新的发展都做出了很大贡献,其贡献是全方位的、战略性的,影响深刻而久远。王老为国家培养了众多领域的技术领军人才和光学领域的学术接班人。王老还是国际上光学领域的战略型科学家,曾担任国际光学委员会、国际计量委员会委员,并代表国家参加国际太空会议等。  王老1948年回国,参加了大连大学建设。1950年负责创建中国科学院仪器馆,先后创建中科院五个光学研究所(安光所、长光所、西光所、四川光电所、上光所)。王老率领研究团队研发了50年代仪器界有名的“八大件”(一秒精度大地测量经纬仪、一微米精度万能工具显微镜、大型石英摄谱仪、中型电子显微镜、中子晶体谱仪、地形测量用多臂航摄投影仪、光电测距仪、高温金相显微镜等高水平的先进的光学仪器)和一批重大的国防测量仪器设备、“两弹一星”的测量设备等。1956年,王老参加了国家《十二年科学技术发展规划》中仪器仪表规划的制定以及《国家中长期科学和技术发展规划纲要》制定工作。据不完全统计,王老领衔并联合其他院士向中央、国务院提出的重大咨询性、战略性建议多达20多项,例如863高技术、建立卫星地面站、建立中国工程院、国家信息网络、月球探测、发展我国航空事业及微系统、开展激光核聚变研究、海洋高技术等等。特别是1995年以后,关于仪器仪表方面就有6次建议,对将科学仪器创新发展放在国家发展战略地位、优先发展领域,列入国家重点科技计划,进入国家各种计划,进入“知识创新工程”以及十三五国家设立重大科研仪器研制和科学仪器设备开发专项起到了重大的作用。  为了仪器仪表发展的需要,1996年王老倡议组织《现代仪表技术与设计》编写工作,并担任主编。王老在此书中提出将创新设计、现代设计科学理念和商品化设计融合的“综合化设计”理论,提出仪器仪表是工业信息化产业,是信息技术的源头,仪器技术是信息技术的源头技术等理念。王老还特意建议将此书免费赠送给相关大学的图书馆。  王老一生奋斗的历程中,对我国科学仪器创新发展倾注了极大的心血,对科学仪器技术与科学研究,社会经济发展、国家安全、民众健康、精神文明建设、高技术产业发展的关系,进行了系统全面的研究,提出了很多独到的、精辟的创新思想,受到政府和社会各界广泛的赞同。王老在科学仪器技术与仪器设备发展上呕心沥血、鞠躬尽瘁。王老于80岁到92岁期间还先后担任了11次香山科学会议执行主席,对不同学术领域仪器学科与技术前沿和重大问题提出新的学术思想和发展建议。特别是2007年(当时王老已92岁高龄),由王老发起,联合另外两位院士向时任国务院总理温家宝提交“加强创新方法工作”的建议,提出了“自主创新、方法先行”的观点,同年国家成立了我国“创新方法研究会科学工具专业委员会”。  王老是我国仪器仪表工业发展的领航人,他的学术思想是仪器界同仁们的思想宝库,让我们发扬王老的爱国奉献,敢为天下先的精神,形成仪器界万众创新、协同创新、开拓科学仪器发展新时代,早日实现仪器强国的中国梦。  美国火箭之父罗伯特戈达德曾说,“一个人的净价值是他在同行中获得尊敬的总和”。王老在仪器仪表界获得的净价值是最高的,最大的,最美的。王老开创的事业,我们后人将会不懈地继续下去,他的精神将与我们同在并不断鞭策我们前行!  王大珩(1915.2.26─2011.7.21)  原籍江苏吴县(今苏州市),生于日本东京。1936年清华大学物理系毕业,“两弹一星功勋奖章”获得者,中国科学院、中国工程院院士。  王大珩主持制成了中国第一台激光器,第一台大型光测装备和许多国防光学仪器。七十年代主持制定了全国第一个遥感科学规划,领导了综合性的航空遥感试验。1986年3月和陈芳允、杨嘉墀、王淦昌等4名科学家向中央提出“发展中国的战略性高技术”的建议,得到邓小平同志批准,由此国务院发出了“高技术发展计划纲要”的通知,这一“纲要”被称为“863计划”。1992年与其他五位学部委员倡议并促成中国工程院的成立。1999年荣获“两弹一星功勋奖章”。2011年7月21日在北京逝世,享年96岁。中国仪器仪表学会 发布于2015年3月3日
  • 中国仪器仪表学科奠基人——纪念王大珩先生诞辰100周年
    在纪念德高望重的王大珩先生诞辰100周年之际,许多仪器界的朋友心中都充满着美好的回忆。王老先生光灿的一生,光辉的实践,爱国奉献的感人业绩,一直在激励和鼓舞着我们。我们对王老充满着无限的敬仰和深深的怀念!   王老在多个领域对我国科技事业、学术思想和创新的发展都做出了很大贡献,其贡献是全方位的、战略性的,影响深刻而久远。王老为国家培养了众多领域的技术领军人才和光学领域的学术接班人。王老还是国际上光学领域的战略型科学家,曾担任国际光学委员会、国际计量委员会委员,并代表国家参加国际太空会议等。   王老1948年回国,参加了大连大学建设。1950年负责创建中国科学院仪器馆,先后创建中科院五个光学研究所(安光所、长光所、西光所、四川光电所、上光所)。王老率领研究团队研发了50年代仪器界有名的&ldquo 八大件&rdquo (一秒精度大地测量经纬仪、一微米精度万能工具显微镜、大型石英摄谱仪、中型电子显微镜、中子晶体谱仪、地形测量用多臂航摄投影仪、光电测距仪、高温金相显微镜等高水平的先进的光学仪器)和一批重大的国防测量仪器设备、&ldquo 两弹一星&rdquo 的测量设备等。1956年,王老参加了国家《十二年科学技术发展规划》中仪器仪表规划的制定以及《国家中长期科学和技术发展规划纲要》制定工作。据不完全统计,王老领衔并联合其他院士向中央、国务院提出的重大咨询性、战略性建议多达20多项,例如863高技术、建立卫星地面站、建立中国工程院、国家信息网络、月球探测、发展我国航空事业及微系统、开展激光核聚变研究、海洋高技术等等。特别是1995年以后,关于仪器仪表方面就有6次建议,对将科学仪器创新发展放在国家发展战略地位、优先发展领域,列入国家重点科技计划,进入国家各种计划,进入&ldquo 知识创新工程&rdquo 以及十三五国家设立重大科研仪器研制和科学仪器设备开发专项起到了重大的作用。   为了仪器仪表发展的需要,1996年王老倡议组织《现代仪表技术与设计》编写工作,并担任主编。王老在此书中提出将创新设计、现代设计科学理念和商品化设计融合的&ldquo 综合化设计&rdquo 理论,提出仪器仪表是工业信息化产业,是信息技术的源头,仪器技术是信息技术的源头技术等理念。王老还特意建议将此书免费赠送给相关大学的图书馆。   王老一生奋斗的历程中,对我国科学仪器创新发展倾注了极大的心血,对科学仪器技术与科学研究,社会经济发展、国家安全、民众健康、精神文明建设、高技术产业发展的关系,进行了系统全面的研究,提出了很多独到的、精辟的创新思想,受到政府和社会各界广泛的赞同。王老在科学仪器技术与仪器设备发展上呕心沥血、鞠躬尽瘁。王老于80岁到92岁期间还先后担任了11次香山科学会议执行主席,对不同学术领域仪器学科与技术前沿和重大问题提出新的学术思想和发展建议。特别是2007年(当时王老已92岁高龄),由王老发起,联合另外两位院士向时任国务院总理温家宝提交&ldquo 加强创新方法工作&rdquo 的建议,提出了&ldquo 自主创新、方法先行&rdquo 的观点,同年国家成立了我国&ldquo 创新方法研究会科学工具专业委员会&rdquo 。   王老是我国仪器仪表工业发展的领航人,他的学术思想是仪器界同仁们的思想宝库,让我们发扬王老的爱国奉献,敢为天下先的精神,形成仪器界万众创新、协同创新、开拓科学仪器发展新时代,早日实现仪器强国的中国梦。   美国火箭之父罗伯特· 戈达德曾说,&ldquo 一个人的净价值是他在同行中获得尊敬的总和&rdquo 。王老在仪器仪表界获得的净价值是最高的,最大的,最美的。王老开创的事业,我们后人将会不懈地继续下去,他的精神将与我们同在并不断鞭策我们前行! 王大珩(1915.2.26─2011.7.21) 原籍江苏吴县(今苏州市),生于日本东京。1936年清华大学物理系毕业,&ldquo 两弹一星功勋奖章&rdquo 获得者,中国科学院、中国工程院院士。 王大珩主持制成了中国第一台激光器,第一台大型光测装备和许多国防光学仪器。七十年代主持制定了全国第一个遥感科学规划,领导了综合性的航空遥感试验。1986年3月和陈芳允、杨嘉墀、王淦昌等4名科学家向中央提出&ldquo 发展中国的战略性高技术&rdquo 的建议,得到邓小平同志批准,由此国务院发出了&ldquo 高技术发展计划纲要&rdquo 的通知,这一&ldquo 纲要&rdquo 被称为&ldquo 863计划&rdquo 。1992年与其他五位学部委员倡议并促成中国工程院的成立。1999年荣获&ldquo 两弹一星功勋奖章&rdquo 。2011年7月21日在北京逝世,享年96岁。
  • 王大珩:中国光学事业的先行者
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/noimg/cbea94a1-6c5a-4de6-9759-3881ac011e6d.jpg" title=" 2015225105237.jpg" / /p p   中国第一锅光学玻璃、第一台电子显微镜、第一台激光器、第一台大型光测装备的主持制作,第一个遥感科学规划的主持制订,中国工程院的建立...这些成就都离不开一个名字,王大珩——中国光学事业的先行者,一位用毕生精力推动中国光学事业发展的科学家。 /p p   1915年2月26日,王大珩出生于日本,祖籍江苏省吴县。他的父亲王应伟是一位天文与气象学家,早年旅居日本,回国后先后在北京观象台和青岛观象台工作。王大珩在读中学的时候,就常去观象台跟随父亲观测天文和气象,对使用科学仪器产生了极大的兴趣。这些少年时代的科学熏陶,对王大珩后来研究应用光学和光学玻璃,致力于中国的光学事业与仪器制造业有深远的影响。 /p p   1936年,王大珩从清华大学物理系毕业。两年后,他顺利考入留英公费生赴英国帝国理工学院攻读应用光学。随后,他又转入雪菲尔大学,在世界著名的玻璃学专家W.E.S特纳(Turner)教授指导下专攻光学玻璃。 /p p   王大珩是我国现代国防光学技术及光学工程的开拓者和奠基人之一。在他领导下,开拓与发展了靶场光学测试技术、激光技术及太阳地面模拟等国防光学技术领域。除此之外,他在我国中程地地导弹发射实验任务中任总工程师,提出工程总体方案,解决关键技术问题,一次研制成功,性能达到当时同类仪器的国际水平,满足了国防尖端武器试验的急需。他在G179、718经纬仪和船体变形测量系统,170跟踪望远镜,331电影经纬仪等研制任务中,对总体方案和技术路线进行指导,解决了许多关键技术问题。他还创办了中国科学仪器馆,后来发展成为了长春精密机械研究所。1986年,他又和王淦昌、陈芳允、杨嘉墀联名,提出发展高技术的建议(“863”计划)。 /p p   王大珩是光学技术发展的功臣,他以毕生之力开拓了中国光学事业发展的广阔天地 他用智慧之光为科技事业和国家发展殚精竭虑、指引方向。他胸怀坦荡,品德刚毅,用自己的言行为我们树立了一个标杆和旗帜。 /p p    a href=" http://www.instrument.com.cn/news/subject/201003/?SubjectID=126" target=" _blank" title=" 专题:缅怀中国仪器仪表奠基人王大珩院士" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 专题:缅怀中国仪器仪表奠基人王大珩院士 /span /a /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制