当前位置: 仪器信息网 > 行业主题 > >

电子自动数粒仪

仪器信息网电子自动数粒仪专题为您提供2024年最新电子自动数粒仪价格报价、厂家品牌的相关信息, 包括电子自动数粒仪参数、型号等,不管是国产,还是进口品牌的电子自动数粒仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子自动数粒仪相关的耗材配件、试剂标物,还有电子自动数粒仪相关的最新资讯、资料,以及电子自动数粒仪相关的解决方案。

电子自动数粒仪相关的资讯

  • 微电脑自动数粒仪全新升级!操作更方便,数粒更准!
    微电脑自动数粒仪全新升级!操作便捷,数粒准,高效科研!
  • 万深发布万深SC-H手机拍照款自动种子数粒仪新品
    万深SC-H手机拍照款种子自动数粒仪一、 用途:快速便捷地自动计数种子等的数量二、技术指标:可一键化拍照自动数粒,精准获得种子等的数量,并清晰标记以核对正确性。可自动数粒的种粒大小1~20mm,自动数粒误差:玉米、小麦、油菜籽、小米、高粱籽、大豆、红豆、绿豆、蚕豆、白芸豆、大麦、南瓜籽、花生仁、萝卜籽、辣椒籽等近似圆形种粒≤±0.1%。实粒稻谷、芝麻、瓜籽等略长形种粒≤±0.5%,数粒时间约5秒/次,可自动数粒标记各种粒并保存图,数粒结果可输出。背光灯板可选:小灯板的最大数粒区250*200mm,标配灯板的最大数粒区400*250mm,野外用灯板的最大数粒区400*285mm(带5V移动电源可背光照明4小时)。三、供货清单:1套背光灯板(硬件质保1年)+透明种盘、手机APP软件下载使用二维码。在万深官网用手机浏览器扫二维码下载软件(或支付软件扫描+复制链接下载,或者安卓手机直接点链接),可进入试用或使用订购界面。注:需自备能拍照的智能手机应用万深分析仪器 发表的中外学术论文已逾506篇创新点:将种子的自动数粒问题用智能手机的拍照计算来实现,极大地提高了使用方便性。 万深SC-H手机拍照款自动种子数粒仪
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 秋季新品-全自动数粒仪YP-SL30产品规格与应用分享
    全自动数粒仪YP-SL30是一款多功能、智能化的种子计数设备,专为农作物种子、微小工件、药粒等多种物品的快速、准确计数而设计。仪器不仅具备传统数粒仪的功能,还创新性地集成了自动下料、旋转分样、自动称重和数据打印等多项功能,提升了工作效率与用户体验。以下是全自动数粒仪YP-SL30的主要特点和模块化设计亮点。了解更多全自动数粒仪产品详情→https://www.instrument.com.cn/show/C582271.html一、产品特点精准有效的数粒功能全自动数粒仪YP-SL30采用先进的数粒技术,支持对玉米、水稻、小麦、黄豆等多种种子进行快速计数。其灵敏度可调节,适用于不同大小和形状的物品,确保计数的准确性。智能化操作体验配备7寸彩色触摸屏,操作简便,用户可以自定义种子品种名称、振动速度、灵敏度等参数。程序设定后,设备自动完成数粒、分样、称重等步骤,减少人工干预。自动分样与旋转接料设计设备采用旋转多工位设计,支持12个转杯自动分样。每杯计数完成后,转盘会自动跳转至下一个杯子,确保计数和接料过程的无缝衔接。用户可选择自动平均分样或自定义分样,实现灵活的样品处理。智能预设与蜂鸣提示当达到预设的计数值或杯数时,设备会自动停止工作,并通过蜂鸣提示用户操作进程。同时,内置减速程序确保接近预设粒数时,设备自动减速,防止过冲影响精度。二、模块化设计亮点自动数粒仪模块作为核心模块,自动数粒仪可快速计数各种种子和小型物品,确保高精度和高速度。该模块具备无极调速功能,并支持高速和慢速模式的自动切换。自动下料机模块下料机与数粒仪协同工作,确保物料从料仓自动输送至数粒盘,实现连续下料与计数的同步操作。下料过程自动调节,保证整个系统运行的高度协调一致。旋转分样接料仪模块配备12个自动旋转转杯,设备可根据用户设定的样品数量进行分样。转盘自动切换至下一个杯子,减少人为操作,提高了整体工作效率。三、应用领域与扩展功能全自动数粒仪YP-SL30广泛应用于农作物种子的计数,如玉米、稻谷、芝麻等,还可用于微小工件、药粒等物品的计数。其自动称重、数据记录与打印功能,使得设备在种子研究、育种、质量控制等领域表现良好。该设备还支持数据导出和双语显示,适应不同应用场景的需求。全自动数粒仪YP-SL30通过智能化、模块化的设计,将数粒、下料和分样功能集成在一台设备中,为用户提供了一站式解决方案,提升了计数效率和精度。
  • 电子剥离试验机在高粘性材料测试中的特殊配置与操作要求
    在材料科学与工程领域,高粘性材料的性能测试一直是研究与应用的重要环节。特别是在胶粘剂、胶带、不干胶等产品的开发中,剥离强度作为衡量其质量的关键指标,受到了广泛关注。电子剥离试验机作为这一领域的关键测试设备,针对高粘性材料的测试,不仅需要具备高精度和高稳定性,还需一系列特殊配置和严格的操作要求。本文将从设备配置、操作流程、安全保护及数据分析等方面,深入探讨电子剥离试验机在高粘性材料测试中的特殊性与要求。一、电子剥离试验机特殊配置1.1 精密夹持系统高粘性材料在剥离过程中易发生滑移或断裂,因此电子剥离试验机需配备高精度的夹持系统。该系统通常采用特殊设计的夹具,能够牢固夹持试样,确保剥离过程中试样与夹具之间的相对位置不变,从而准确测量剥离力。此外,夹具表面还需进行特殊处理,如增加防滑纹理或采用高摩擦材料,以提高夹持力,减少试样滑移现象的发生。1.2 高精度传感器为了准确测量高粘性材料在剥离过程中的微小力值变化,电子剥离试验机需配备高精度传感器。这些传感器应具备高灵敏度和高分辨率,能够实时采集剥离过程中的力值和位移数据,确保测试结果的准确性和可靠性。同时,传感器还需经过严格校准,以消除系统误差,提高测试精度。1.3 多样化试验模式针对高粘性材料的不同测试需求,电子剥离试验机应提供多样化的试验模式。例如,支持180°剥离、T剥离等多种剥离角度的测试模式,以及不同剥离速率的设置,以满足不同标准和应用场景的要求。此外,试验机还应具备自动清零、过载保护等功能,确保测试过程的安全性和稳定性。二、电子剥离试验机操作流程规范2.1 样品准备在进行高粘性材料的剥离测试前,需严格按照相关标准准备试样。试样的尺寸、形状和表面状态均需符合测试要求。对于高粘性材料,还需特别注意试样的粘贴方式和粘贴强度,以确保测试结果的准确性。同时,需对试样进行必要的预处理,如去除表面污垢或杂质,以减少对测试结果的影响。2.2 仪器校准与设置在启动测试前,必须确保电子剥离试验机已经过全面校准,特别是传感器和测量系统的准确性验证。操作员需根据测试标准,设置合适的剥离角度、剥离速率及数据采样频率等参数。此外,还需检查夹具的紧固状态,确保试样在测试过程中不会发生意外脱落或滑移。2.3 测试执行测试开始时,操作员需平稳启动试验机,避免产生突然的冲击力影响测试结果。在剥离过程中,应密切监控试验机的运行状态和剥离力值的变化,确保数据记录的完整性和准确性。若发现异常现象,如试样断裂位置不符合预期或力值波动异常,应及时停止测试并检查原因。2.4 数据处理与分析测试完成后,需要对采集到的数据进行处理和分析。首先,需剔除异常值或无效数据,确保数据集的准确性和可靠性。随后,利用专业的数据处理软件,对剥离力-位移曲线进行分析,提取关键参数如最大剥离力、剥离能等,并与标准值或预期值进行比较,评估高粘性材料的性能。三、电子剥离试验机安全保护与维护3.1 安全防护电子剥离试验机在工作过程中,需采取必要的安全防护措施,如安装防护罩、设置紧急停止按钮等,以防止操作员受伤或设备损坏。此外,操作员应穿戴适当的个人防护装备,如防护眼镜和手套。3.2 定期维护为确保电子剥离试验机的长期稳定运行和测试精度,需定期进行设备维护。包括清洁设备表面和夹具、检查传感器和传动部件的磨损情况、更换老化的部件等。同时,还需对设备进行定期的校准和验证,以保证测试结果的准确性和可靠性。综上所述,电子剥离试验机在高粘性材料测试中的应用,不仅需要精密的设备配置和严格的操作流程,还需注重安全保护和维护保养。只有这样,才能确保测试结果的准确性和可靠性,为材料科学与工程领域的研究与应用提供有力支持。
  • 1046万!中国科学院自动化研究所等离子聚焦离子束扫描电子显微镜采购项目
    一、项目基本情况项目编号:OITC-G230571925项目名称:中国科学院自动化研究所等离子聚焦离子束扫描电子显微镜采购项目预算金额:1046.000000 万元(人民币)最高限价(如有):1046.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1等离子聚焦离子束扫描电子显微镜1是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月28日 至 2023年10月11日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院自动化研究所     地址:北京市海淀区中关村东路95号        联系方式:010-82544573      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、曹山010-68290529            3.项目联系方式项目联系人:窦志超、曹山电 话:  010-68290529
  • 杭州电子秤实现自动检定效率提高10倍
    从杭州市质检院获悉,由该院负责完成的科技项目《移动式电子秤现场自动检定装置的研制》顺利通过鉴定与验收。该项目填补了国内相应自动检定装置的空白,电子秤检定自动化成果达到国内领先水平。项目获国家发明专利1项、实用新型专利两项,发表论文3篇。   据项目主要完成人厉志飞介绍,该项目系统地解决了应用标准砝码自动检定电子秤的难题,实现了电子秤自动检定,研究了不同称量点标准砝码的加载或卸载等关键技术,满足了国家计量检定规程JJG539-1997《数字指示秤》的要求,电子秤检定效率提高10倍以上,具有很好的应用前景及推广价值。项目采用LabVIEW作为软件开发平台,通过PC机和PLC通讯,控制标准砝码的自动加卸载,利用图像识别技术,实时读取电子秤上的示值,同时自动获取数据,自动生成检定原始记录,自动出具检定结果通知书或计量检定证书。   据了解,项目成果已在法定计量检定机构及衡器制造企业得到初步试用,为电子秤检定(检验)技术水平的提升及产品质量监管提供了有效的技术支撑。
  • 梅特勒托利多自动化化学仪器需求电子调查及抽奖活动详情
    梅特勒托利多于2009年5月份进行了自动化化学仪器需求电子调查,得到了广大客户的积极参与,并收到大量反馈。此活动已于5月31日结束。 根据事先承诺,我们抽取了3名幸运者,各获得精美琉璃制品一个,如图。 获奖名单公布如下: 姓名 省 市 史颖 河北 石家庄 叶丹阳 湖北 襄樊 王爱民 上海 上海
  • 纤维电子器件连续自动化制备技术及设备研制
    成果名称 纤维电子器件连续自动化制备技术及设备研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 纤维电子器件是近年来在国际上兴起的热点研究领域。它是在纤维上集成光、电、热、磁等功能,并最终可以直接以纤维形态应用的新形态电子器件。目前国际上报道的真正意义上的纤维电子器件包括纤维太阳能电池、纳米压电机、纤维电容器、纤维发光二极管等。这些光电子器件的最终应用形态是纤维状的,故可以利用成熟的纺织工业技术生产各种便携式、可穿戴的电子设备。因此,如何将纤维电子器件的制备方法与最终织物制造工艺相结合,实现从基本材料到纤维器件再到织物电子设备的制备是一个亟待解决的重大课题,也是国际、国内相关技术领域的一个空白和潜在的原创性产业技术开发机会。 2012年,北京大学化学学院邹德春教授申请的&ldquo 纤维电子器件连续自动化制备技术及设备研制&rdquo 项目获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金的支持下,通过相关部件的购买和材料的加工,该课题组开展了富有成效的工作,包括:(1)纤维基底表面连续处理技术的研究;(2)功能超薄膜纤维基底上的连续沉积、生长技术的研究;(3)由功能纤维自动组装纤维电子器件技术研究;(4)纤维电子器件制备系统的计算机控制。通过以上工作,相关原理样机试制成功,项目顺利结题。 应用前景: 该项目的成果和经验可以发展成为工业化制备纤维电子设备的蓝本,为将来的纤维太阳能电池在内等多种纤维电子器件的规模化生产奠定了基础。
  • 解决方案 | 疫苗研发——病毒颗粒数检测(qPCR)自动化体系构建方案
    随着基因工程技术的发展,病毒载体在目的基因的导入和表达中得到了广泛应用。由于其效率高、适用细胞种类多、瞬时表达等特点,已经广泛应用于疫苗研发领域,对病毒颗粒数进行实时的检测是工艺中的关键环节,病毒的定量检测对于疫苗的指导研发和质量控制具有重要意义。目前进行病毒定量的方法主要是实时荧光定量PCR方法(Real-time fluorescence quantitative polymerase chain reaction , RT-qPCR),通过荧光定量的方法对模版拷贝数进行定量, 每个模板的Ct值与该模板起始拷贝数的对数存在线性关系,利用已知起始拷贝数的标准品可作出标准曲线,最后通过标准曲线对未知模板进行定量分析,从而反映完整病毒颗粒数。实时荧光定量PCR法目前已经发展成为病毒定量检测使用最广泛的技术之一,具有特异性好、灵敏度高、污染小等优势。但实时荧光定量PCR法前期体系构建样品制备繁琐且不稳定,极占实验员时间和精力的同时也影响定量结果。睿科Vitae 100 全自动化PCR体系构建系统能够实现体系构建流程自动化,移液准确且稳定,实验结果满足需求,解放双手的同时保证了样品检测结果的可靠性。整体实验流程病毒颗粒数检测(qPCR)整体实验流程应用场景睿科生化为某疫苗公司腺病毒颗粒数检测提供自动化体系构建方案,具体方案如下:实验流程疫苗公司腺病毒颗粒数检测自动化体系构建流程实验结果标准曲线图样品扩增图标准曲线图,根据主要Slope数值判断曲线的点稀释是否准确,结果显示,与客户手动操作的slope值(Slope=-3.376)一致,R² =0.999代表曲线偏离,标准曲线配置符合要求。样品扩增图,底部ROX所在区域越集中,即体系分装越准确。结果显示,体系构建分装准确,符合要求。产品优势Vitae 100全自动PCR体系构建系统1、机械臂定位准确到0.05mm,移液精确度CV≤2%,数据稳定可靠;2、仪器能有效解决疫苗研发过程中,样品检测和产品放行人工操作不稳定的困境;3、加样过程自动化,体系构建全程用时25min,节省时间和人力;4、配备紫外消毒灯和HEPA过滤装置,保证操作安全性。
  • 1310万!中山大学电子束离子束双束电子显微镜和多普勒干涉原子力显微镜采购项目
    项目编号:中大招(货)[2022]680号、中大招(货)[2022]689号项目名称:中山大学物理学院电子束离子束双束电子显微镜采购项目、中山大学物理学院多普勒干涉原子力显微镜采购项目预算金额:1310.0000000 万元(人民币)采购需求:1、招标采购项目内容及数量:电子束离子束双束电子显微镜,1台(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。项目预算及经费来源:项目预算 7600000.00 元人民币。经费来源为财政性资金。2、招标采购项目内容及数量:多普勒干涉原子力显微镜,1套(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。项目预算及经费来源:项目预算 5500000.00 元人民币。经费来源为财政性资金。合同履行期限:收到发货通知后240日内完成交货及安装。本项目( 不接受 )联合体投标。中大招(货)[2022]680号_中山大学物理学院电子束离子束双束电子显微镜采购项目(正稿).pdf中大招(货)[2022]689号_中山大学物理学院多普勒干涉原子力显微镜采购项目(正稿).pdf
  • 国内专业级全自动电子天平在精科诞生
    被列入上海市重大技术装备研制项目,在国内率先用软件替代硬件、采用多点拟合非线性校正的核心技术的FB214全自动电子天平,在上海精密科学仪器有限公司天平事业部开发成功,日前通过了上海市经济和信息化委员会的验收。   精科公司天平事业部是2008年上半年承接此项目的,经过两年的技术攻关,使FB214全自动电子天平达到了国内同行业领先水平,一些技术指标接近国际当代水平。该产品具有“温度漂移触发自动校准和时间设定触发自动校准”两大自动校准的控制系统 这个控制系统,使天平不仅能检测到磁钢内部温度变化在0.3℃时自动触发天平以完成内部的自动校准,而且还能在天平开机工作到了设定触发校准的时间自动触发天平,以完成内部的自动校准 该系统能使FB214全自动电子天平示值误差始终保持在一个很小的范围内,保证了天平称量结果的准确。   市经济和信息化委员会的专家认为,精科公司FB214全自动电子天平的自动校准系统的研制成功,“标志着我国已经能够设计和制造专业级校准技术的分析电子天平,缩小了与国外高档电子天平的差距”。     市经济和信息化委员会专家在精科公司召开FB214全自动电子天平项目验收会议   专家在检测FB214全自动电子天平
  • 微电子超纯水应用中总有机碳TOC监测的操作、校准和自动归零的指导
    在微电子超纯水(UPW)应用中,水系统中的总有机碳(TOC)浓度极低,通常为亚ppb级。本文介绍如何优化微电子超纯水应用中的在线TOC分析,包括操作步骤指导。Sievers等厂商生产的分析仪,检测限均在0.02至0.03 ppb之间。典型的超纯水系统的TOC浓度在0.2至0.4 ppb之间,或者说仅比分析仪的检测限高一个数量级。当要测量的TOC浓度非常接近分析仪的检测限时,我们可以优化分析仪的性能以获得理想的测量结果,但此时的校准方法必需有别于测量高TOC时所采用的校准方法。硬件选择Sievers专门为微电子应用设计了两款TOC分析仪 — Sievers® M9e和M500e。虽然这两款分析仪有着相似的低浓度测量性能,但Sievers M9e使用酸剂和氧化剂,因而能测量2.5 ppm(2.5 ppm是Sievers M500e的测量上限)以上的TOC值,还能测量高IC值,或测量pH不是中性的水样。酸剂和氧化剂会向样品中引入痕量有机物,本文稍后介绍对此的空白校正程序。如果不是特别需要使用酸剂和氧化剂,我们建议您在应用中使用Sievers M500e分析仪。Sievers M500e有两种配置可供选择 —“集成在线取样器(iOS,Integrated On-line Sampler)”和“不锈钢取样块(Stainless Steel Sample Block)”。iOS可以进行在线测量,并能在不切断样品连接的情况下将吸样样品或参考标样送入分析仪,非常便捷。iOS对校准和确认校准特别有用。由于后面提到的原因,对于测量低ppb和亚ppb的TOC分析仪来说,传统的校准意义不大。因此,我们建议在低ppb和亚ppb应用中使用配置不锈钢取样块的Sievers M500e。取样块不仅能降低仪器成本,而且能形成更适合低ppb和亚ppb应用的封闭式取样系统。校准和自动归零影响分析仪校准的两个因素是“增益(gain)”和“偏移(offset)”。“增益”影响校准曲线的斜率,“偏移”影响校准曲线通过零点的位置。这两种因素对仪器分析性能的影响力的大小取决于超纯水系统的TOC浓度和分析仪的测量范围之间的关系。超纯水系统的TOC浓度越接近分析仪的检测限(或接近于零),自动归零在优化分析仪性能时所起的作用就越大,而校准的作用就越小(见图1)。图1:TOC校准可以用低ppb或亚ppb TOC校准标样来校准要测量的范围吗?用于制备校准标样的样瓶,即便经过最严格的清洁,认证的TOC都仅低于10 ppb,因此无法用于制备亚ppb校准标样。此外,样瓶和校准标样的制备过程会给标样带来TOC误差(通常会增加几个ppb的TOC),因此校准标样仅在称重误差和测量误差可以忽略不计的几百ppb以上的范围有效。当分析仪在校准点附近工作时,调整上述浓度(如1 ppm校准)下的校准(增益)会对报告结果的准确性产生正面影响,但当分析仪在低于校准点几个数量级的浓度(接近于零)下工作时,调整校准就对报告结果的影响非常小。从图1中可以看出,将校准曲线移至最坏情况的校准上限或下限时,对亚ppb下的仪器响应没有影响。TOC自动归零在低浓度下,改变零点或“偏移”对仪器性能的影响最大,最能保证测量的可靠性,最有利于“仪器到仪器”的一致性(见图2)。图2:TOC自动归零Sievers M9e和M500e用自动归零(Auto-Zero)来确保分析仪在没有TOC的情况下报告为零。分析仪的手册对自动归零有详细的说明。自动归零非常有用,能够帮助优化分析仪的低TOC测量性能,并有利于达到“仪器到仪器”的一致性。Sievers M9e和M500e的TOC自动归零策略在漂洗新安装的分析仪或进行维护工作时,分析仪的零点都会受影响。水系统的特性(例如水系统中的无机碳含量)也会对零点产生较小影响。因此,我们建议进行以下自动归零过程,以保持分析仪的最佳性能:在安装新分析仪后的漂洗期间,应每天运行自动归零,运行一周左右。在第一周之后到第一个月结束前,每周运行一次自动归零。在第一个月之后,每月运行一次自动归零,并保持此运行频率,因为预计以后不会有明显变化。在进行日常维护(包括更换紫外灯、样品管、去离子树脂盒等)之后,应漂洗分析仪一整天,然后进行自动归零。此时无需进行校准。如果此时进行校准,校准虽没有坏处,但也没有好处,还会延长预防性维护后(post-PM,post-Preventative Maintenance)的漂洗时间,因为系统需要时间从接触ppm浓度的校准标样后恢复过来。在进行初次预防性维护后的自动归零之后,可以在一周后重复运行自动归零程序,然后恢复到典型的每月自动归零常规操作。如果将分析仪移动到新位置,应在读数稳定后运行自动归零。与日常维护一样,可以在一周后再次运行自动归零,然后恢复典型的每月自动归零常规操作。如果进行了重要的维修工作(即更换主要部件),应在维修后进行校准,以确保分析仪的基本性能不变。对于配置了不锈钢取样块的分析仪,可以临时安装iOS以便进行校准。Sievers维修技术人员都经过培训,具备执行此项服务的能力。Sievers M9e和M500e分析仪的电导率自动归零Sievers M9e和M500e也具有电导率自动归零功能。TC和IC通道的温度和电导池只接触到含有少量CO2的去离子水,因而无需针对电导率的增加而进行校准。随着时间推移,当离子污染物从电导池浸出时,电导池的偏移就会发生变化。电导率自动归零校准任务能够调整TC和IC池的偏移。与TOC自动归零不同,电导率自动归零无需经常进行。我们建议在诊断负TOC值时运行电导率自动归零。只可由技术支持或现场服务工程师来运行电导率自动归零。Sievers M9eTOC分析仪试剂空白不使用试剂的Sievers M500e专用于测量亚ppb级的TOC值。Sievers M9e常用于高TOC应用,包括需要添加氧化剂来测量ppm级的TOC应用,或需要酸化样品和去除IC的高浓度无机碳的系统监测。在有些应用中,样品的TOC很低,但电导率或IC很高,这时就需要使用Sievers M9e的功能来进行理想的TOC测量。超纯水应用无需使用氧化剂,本文讨论的操作程序只适用于酸剂。Sievers M9e使用电子级酸剂,但电子级酸剂也会向样品中引入痕量的有机污染物,这些有机物对低浓度读数的影响虽小,但仍不可忽视。Sievers M9e(固件1.06及更高版本)带有自动酸剂空白(Reagent Blank)程序,能测量酸剂实际产生的有机污染物的量,并根据所选流量来应用偏移量,从而将有机污染物从报告的TOC值中扣除。各个酸剂盒所产生的痕量有机污染物稍有不同,每次在安装新酸剂盒后,都需要运行试剂空白程序。◆ ◆ ◆联系我们,了解更多!
  • 东深电子灌区自动化建设项目获水利部稽查组领导高度肯定
    2016年5月5日至12日,由水利部特派员房玲娣(组长)一行8人的稽察督查组到海南省对松涛大型灌区续建配套与节水改造项目建设情况进行稽察。 在调研稽查过程中,稽查组专家对松涛灌区续建配套与节水改造项目建设情况进行了全面了解,除灌区基础建设工程外,特别关注了聚光科技子公司东深电子承建的松涛灌区信息化工程项目建设情况并予以了高度肯定。稽查组专家强调,灌区水利工程信息化对海南省整个水利系统的发展有着重大意义,提高大型灌区信息监控和综合管理能力势在必行。松涛灌区信息化工程应该树立海南省灌区信息化标杆,打造灌区自动化精品工程。稽查组展开稽查督查座谈会(组长:房玲娣) 东深电子在灌区自动化及信息化监控领域具有丰富的项目经验,先后承建过高州灌区、山西尊村灌区等大型灌区的自动化建设工作,现今已形成一整套完善的解决方案。 东深灌区智能化监测与管理系统集信息采集、业务管理为一体。通过建立灌区水位、流量、水质等水情监测系统,泵站、闸门等水利设施自动控制系统,并在此基础上实现智能化业务管理系统,解决了灌区工作人员在信息采集、量测水管理、水费计收、配水调水等方面的管理问题。实现了灌区水资源的合理配置、优化调度、高效利用的目标。东深灌区信息化系统结构图
  • 全自动碳硫分析仪、元素分析仪的概述
    全自动碳硫分析仪、元素分析仪的概述 南京第四分析仪器有限公司成立于1976年,是国内金属分析仪器的首创厂家。专业生产高频红外碳硫分析仪红外碳硫分析仪 红外分析仪 碳硫分析仪 金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪 铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪 炉前快速碳硅分析仪 碳硅当量仪 铁水分析仪等,分析仪器的种类很多,欢迎来电垂询,电话:025-57332233 57330555 传真:025-57552266 QR-5型全自动电脑碳硫分析仪采用中国国标法测定(碳采用气体容量法、硫采用碘量法)原理设置而成,品牌电脑控制,配备电子天平实现了不定量称样测定,Windows界面下的全中文菜单式操作,并可贮存8条工作曲线,使用进口传感器,确保数据精密采集。检测结果可自动或手动打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标 。 QR-5型全自动电脑碳硫分析仪主要技术参数 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒 测量精度: 符合GB223.69-2008,GB223.68-1997标准 QR-5型全自动电脑碳硫分析仪主要特点 采用气体容量法定碳,碘量法定硫。碳、硫测定均为全自动; 利用微机系统进行智能程序控制,精密数据采集; Windows界面下的中文菜单操作; 碳硫元素同时可保存八条标样曲线,测试结果长时间大容量保存,并具有自动、手动两种打印方式,且可任意查询分析数据; 配套电子天平,实现不定量称样。 全自动碳硫分析仪、元素分析仪的概述 南京第四分析仪器有限公司成立于1976年,是国内金属分析仪器的首创厂家。专业生产高频红外碳硫分析仪红外碳硫分析仪 红外分析仪 碳硫分析仪 金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪 铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪 炉前快速碳硅分析仪 碳硅当量仪 铁水分析仪等,分析仪器的种类很多,欢迎来电垂询,电话:025-57332233 57330555 传真:025-57552266 QR-5型全自动电脑碳硫分析仪采用中国国标法测定(碳采用气体容量法、硫采用碘量法)原理设置而成,品牌电脑控制,配备电子天平实现了不定量称样测定,Windows界面下的全中文菜单式操作,并可贮存8条工作曲线,使用进口传感器,确保数据精密采集。检测结果可自动或手动打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标 。 QR-5型全自动电脑碳硫分析仪主要技术参数 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒 测量精度: 符合GB223.69-2008,GB223.68-1997标准 QR-5型全自动电脑碳硫分析仪主要特点 采用气体容量法定碳,碘量法定硫。碳、硫测定均为全自动; 利用微机系统进行智能程序控制,精密数据采集; Windows界面下的中文菜单操作; 碳硫元素同时可保存八条标样曲线,测试结果长时间大容量保存,并具有自动、手动两种打印方式,且可任意查询分析数据; 配套电子天平,实现不定量称样。
  • 电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统
    这里是TESCAN电镜学堂第四期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!扫描电子显微镜主要由电子光学系统、信号收集处理系统、真空系统、图像处理显示和记录系统、样品室样品台、电源系统和计算机控制系统等组成。第一节 电子光学系统电子光学系统主要是给扫描电镜提供一定能量可控的并且有足够强度的,束斑大小可调节的,扫描范围可根据需要选择的,形状完美对称的,并且稳定的电子束。电子光学系统主要由电子枪、电磁聚光镜、光阑、扫描系统、消像散器、物镜和各类对中线圈组成,如图3-1。图3-1 SEM的电子光学系统§1. 电子枪(Electron Gun)电子枪是产生具有确定能量电子束的部件,是由阴极(灯丝)、栅极和阳极组成。灯丝主要有钨灯丝、LaB6和场发射三类。① 钨灯丝电子枪:如图3-2,灯丝是钨丝,在加热到2100K左右,电子能克服大约平均4.5eV的逸出功而逃离,钨灯丝是利用热效应来发射电子。不过钨灯丝发射电子效率比较低,要达到实用的电流密度,需要较大的钨丝发射面积,一般钨丝电子源直径为几十微米。这样大的电子源直径很难进一步提高分辨率。还有,钨灯丝亮度差、电流密度低、单色性也不好,所以钨灯丝目前最高只能达到3nm的分辨率,实际使用的放大倍数均在十万倍以下。不过由于钨灯丝价格便宜,所以钨灯丝电镜得到了广泛的应用。图3-2 钨灯丝电子枪② LaB6电子枪:要提高扫描电镜的分辨率,就要提高电子枪的亮度。而一些金属氧化物或者硼化物在加热到高温之后(1500~2000K),也能克服平均逸出功2.4eV而发射热电子,比如LaB6,曲率半径为几微米。LaB6灯丝亮度能比钨灯丝提高数倍。因此LaB6灯丝电镜有比钨灯丝更好的分辨率。除了LaB6外,类似的还有CeB6等材料。不过目前在扫描电镜领域,LaB6灯丝价格并不便宜,性能相对钨灯丝提升有限,另外就是场发射的流行,使得LaB6灯丝的使用并不多见。图3-3 LaB6电子枪② 场发射电子枪:1972年,拥有更高亮度、更小电子束直径的场发射扫描电镜(FE-SEM)实现商品化,将扫描电镜的分辨率推向了新的高度。场发射电子枪的发射体是钨单晶,并有一个极细的尖端,其曲率半径为几十纳米到100nm左右,在钨单晶的尖端加上强电场,利用量子隧道效应就能使其发射电子。图3-4为场发射电子枪的结构示意图。钨单晶为负电位,第一阳极也称取出电极,比阴极正几千伏,以吸引电子,第二阳极为零电位,以加速电子并形成10nm左右的电子源直径。图3-5为场发射电子枪的钨单晶灯丝结构,只有钨灯丝支撑的非常小的尖端为单晶。图3-4 场发射电子枪结构示意图图3-5 场发射电子枪W单晶尖端场发射电子枪又分为冷场发射和热场发射。热场发射的钨阴极需要加热到1800K左右,尖端发射面为或取向,单晶表面有一层氧化锆(如图3-6),以降低电子发射的功函数(约为2.7eV)。图3-6 热场发射电子枪钨单晶尖端冷场发射不需加热,室温下就能进行工作,其钨单晶为取向,逸出功最小,利用量子隧道效应发射电子。冷场电子束直径,发射电流密度、能量扩展(单色性)都优于热场发射,所以冷场电镜在分辨率上比热场更有优势。不过冷场电镜的束流较小(一般为2nA),稳定性较差,每个几小时需要加热(Flash)一次,对需要长时间工作和大束流分析有不良影响。不过目前Hitachi最新的冷场SEM,束流已经能达到20nA,稳定性也比以往提高了很多,能够满足一些短时间EBSD采集的需要,不过对于WDS、阴极荧光等分析还不够。热场发射虽然电子束直径、能量扩展不及冷场,但是随着技术的发展,其分辨率也越来越接近冷场的水平,有的甚至还超越了冷场。特别是热场电镜束流大,稳定性好,有着非常广阔的应用范围。从各个电镜厂商对待冷场和热场的态度来看,欧美系厂商钟情于热场电镜,而日系厂商则倾向于冷场电镜。不过目前日系中的日本电子也越来越多的推出热场电镜,日立也逐步推出热场电镜,不过其性能与自家的冷场电镜相比还有较大差距。① 各种类型电子源对比:各类电子源的对比如表3-1。表3-1 不同电子源的主要参数SEM的分辨率与入射到试样上的电子束直径密切相关,电子束直径越小,分辨率越高。最小的电子束直径D的表达式为:其中D为交叉点电子束在理想情况下的最后的束斑直径,CS为球差系数、CC为色差系数、ΔV/V0为能量扩展、I为电子束流、B为电子源亮度,a为电子束张角。由此可以看出,不同类型的电子源,其亮度、单色性、原始发射直径具有较大的差异,最终导致聚焦后的电子束斑有明显的不同,从而使得不同电子源的电镜的分辨率也有如此大的差异。通常扫描电镜也根据其电子源的类型,分为钨灯丝SEM和冷场发射SEM、热场发射SEM。§2. 电磁透镜电磁透镜主要是对电子束起汇聚作用,类似光学中的凸透镜。电磁透镜主要有静电透镜和磁透镜两种。① 静电透镜一些特定形状的并成旋转对称的等电位曲面簇可以使得电子束在库仑力的作用下进行聚焦,形成这些等电位曲面簇的装置就是静电透镜,如图3-7。图3-7 静电透镜静电透镜在扫描电镜中使用相对较少。不过电子枪外的栅极和阳极之间,自然就形成了一个静电透镜。另外一些特殊型号的电镜在某些地方采用了所谓的静电透镜设计。② 磁透镜电子束在旋转对称的磁场中会受到洛伦兹力的作用,进而产生聚焦作用。能使产生这种旋转对称非均匀磁场并使得电子束聚焦成像的线圈装置,就是磁透镜,如图3-8。图3-8 磁透镜磁透镜主要有两部分组成,如图3-9。第一部分是软磁材料(如纯铁)制成的中心穿孔的柱体对称芯子,被称为极靴。第二部分是环形极靴的铜线圈,当电流通过线圈的时,极靴被磁化,并在心腔内建立磁场,对电子束产生聚焦作用。图3-9 磁透镜结构磁透镜主要包括聚光镜和物镜,靠近电子枪的透镜是聚光镜,靠近试样的是物镜,如图3-10。一般聚光镜是强励磁透镜,而物镜是弱励磁透镜。图3-10 聚光镜和物镜聚光镜的主要功能是控制电子束直径和束流大小。聚光镜电流改变时,聚光镜对电子束的聚焦能力不一样,从而造成电子束发散角不同,电子束电流密度也随之不同。然后配合光阑,可以改变电子束直径和束流的大小,如图3-11。当然,有的电镜不止一级聚光镜,也有的电镜通过改变物理光阑的大小来改变束流和束斑大小。图3-11 聚光镜改变电流密度、束斑和束流物镜的主要功能是对电子束做最终聚焦,将电子束再次缩小并聚焦到凸凹不平的试样表面上。虽然电磁透镜和凸透镜非常像似,不过电子束轨迹和光学中的光线还是有较大差别的。几何光学中的光线在过凸透镜的时候是折线;而电子束在过磁透镜的时候,由于洛伦兹力的作用,其轨迹是既旋转又折射,两种运动同时进行,如图3-12。图3-12 电子束在过磁透镜时的轨迹§3. 光阑一般聚光镜和物镜之间都有光阑,其作用是挡掉大散射角的杂散电子,避免轴外电子对焦形成不良的电子束斑,使得通过的电子都满足旁轴条件,从而提高电子束的质量,使入射到试样上的电子束直径尽可能小。电镜中的光阑和很多光学器件里面的孔径光阑或者狭缝非常类似。光阑一般大小在几十微米左右,并根据不同的需要选择不同大小的光阑。有的型号的SEM是通过改变光阑的孔径来改变束流和束斑大小。一般物镜光阑都是卡在一个物理支架上,如图3-13。图3-13 物理光阑的支架在电镜的维护中光阑的状况十分重要。如果光阑合轴不佳,那将会产生巨大的像散,引入额外的像差,导致分辨率的降低。更有甚者,图像都无法完全消除像散。另外光阑偏离也会导致电子束不能通过光阑或者部分通过光阑,从而使得电子束完全没有信号,或者信号大幅度降低,有时候通过的束斑也不能保持对称的圆形,如图3-14,从而使得电镜图像质量迅速下降。还有,物镜光阑使用时间长了还会吸附其它物质从而受到污染,光阑孔不再完美对称,从而也会引起额外的像差,信号的衰弱和图像质量的降低。图3-14 光阑偏离后遮挡电子束因此,光阑的清洁和良好的合轴,对扫描电镜的图像质量来说至关重要。光阑的对中调节目前有手动旋拧和电动马达调节两种方式。TESCAN在电镜的设计上比较有前瞻性,所有型号的电镜都采用了中间镜技术,利用电磁线圈代替了传统的物镜光阑。中间镜是电磁线圈,可以受到软件的自动控制,并且连续可调,所以TESCAN的中间镜相当于是一个孔径可以连续可变的无极孔径光阑,而且能实现很多自动功能。 §4. 扫描系统① 扫描系统扫描系统是扫描电镜中必不可少的部件,作用是使电子束偏转,使其在试样表面进行有规律的扫描,如图3-15。图3-15 扫描线圈改变电子束方向扫描系统由扫描发生器和扫描线圈组成。扫描发生器对扫描线圈发出周期性的脉冲信号,如图3-16,扫描线圈通过产生相应的电场力使得电子束进行偏转。通过对X方向和Y方向的脉冲周期不同,从而控制电子束在样品表面进行矩形的扫描运动。此外,扫描电镜的像素分辨率可由X、Y方向的周期比例进行控制;扫描的速度由脉冲频率控制;扫描范围大小由脉冲振幅进行控制;另外改变X、Y方向脉冲周期比例以及脉冲的相位关系,还可以控制电子束的扫描方向,即进行图像的旋转。图3-16 扫描发生器的脉冲信号另外,从扫描发生器对扫描线圈的脉冲信号控制就可以看出,电子束在样品表面并不是完全连续的扫描,而是像素化的逐点扫描。即在一个点驻留一个处理时间后,跳到下一个像素点。值得注意的是扫描电镜的放大率由扫描系统决定,扫描范围越大,相应的放大率越小;反之,扫描的区域越小,放大率越大。显示器观察到的图像和电子束扫描的区域相对应,SEM的放大倍数也是由电子束在试样上的扫描范围确定。① 放大率的问题有关放大率,目前不同的电镜上有不同的形式,即所谓的照片放大率和屏幕放大率,不同的厂家或行业有各自使用上的习惯,故而所用的放大率没有明确说明而显得不一样。这只是放大率的选择定义不一样而已,并不存在放大率不同的问题。首先是照片放大率。照片放大率使用较早,在数字化还不发达的年代,扫描电镜照片均是用照片冲洗出来。业内普遍用宝丽来的5英寸照片进行冲洗。所用冲洗出来的照片的实际长度除以照片对应样品区域的实际大小之间的比值,即为照片放大率。不过随着数字化的到来,扫描电镜用冲洗出来的方式进行观察已经被淘汰,扫描电镜几乎完全是采用显示器直接观察。所以此时用显示器上的长度除以样品对应区域的实际大小,即为屏幕放大率。同样的扫描区域,照片放大率和屏幕放大率会显示为不同的数值。不过不管采用何种放大倍数,在通常的图片浏览方式下,其放大率通常都不准确。对于照片放大率来说,只有将电镜图像冲印成5英寸宝丽来照片时观察,其实际放大倍数才和照片放大率一致,否则其它情况都会存在偏差;对屏幕放大率来说,只有将电镜照片在控制电镜的电脑上,按照1:1的比例进行观察时,实际放大倍数才和屏幕放大率一致。否则照片在电脑上观察时放大、缩小、或者自适应屏幕,或者照片被打印成文档、或者被投影出来、或者不同的显示器之间会有不同的像素点距,都会造成实际放大率和照片上标出的放大率不同。不过不管如何偏差,照片上的标尺始终一致。所以在针对放大率倍数发生争执时,首先要弄清楚照片上标的放大倍数为何种类型,尽量回避放大率的定义,改用视野宽度或者标尺来进行比对。 §5. 物镜扫描电镜的物镜也是一组电磁透镜,励磁相对较弱,主要用于电子束的最后对焦,其焦距范围可以从一两毫米到几厘米范围内做连续微小的变化。① 物镜的类型:物镜技术是相对来说比较复杂,不同型号的电镜可能其它部件设计相似,但是在物镜技术上可能有较大的差异。目前场发射的物镜通常认为有三种物镜模式,即所谓的全浸没式、半磁浸没式和无磁场式,如图3-17。或者各厂家有自己特定的名称,但是业界没有统一的说法,不过其本质是一样的。图3-17 全浸没式(左)、无磁场式(中)、半磁浸没式(右)透镜A.全浸没式:也被称为In-LensOBJ Lens,其特点是整个试样浸没在物镜极靴以及磁场中,顾名思义叫全浸没模式。但是其试样必须做的非常小,插入到镜筒里面,和TEM比较类似。这种电镜在市场里面非常少,没有引起人们的足够重视。B.无磁场式:也叫Out-lensOBJ Lens,这也是电镜最早发展起来的,大部分钨灯丝电镜都是这种类型的物镜。此类电镜的特点是物镜磁场开口在极靴里面,所以物镜产生的磁场基本在极靴里面,样品附近没有磁场。但是绝对不漏磁是不可能的,只要极靴留有让电子束穿下来的空隙,就必然会有少量磁场的泄露。这对任何一家电镜厂商来说都是一样,大家只能减少漏磁,而不可能彻底杜绝漏磁,因为磁力线总是闭合的。采用这种物镜模式的电镜漏磁很少,做磁性样品是没有问题的。特别是TESCAN的极靴都采用了高导磁材料,进一步减少了漏磁。TESCAN的VEGA、MIRA、LYRA系列均是采用此种物镜。C. 半磁浸没式:为了进一步提高分辨率,厂商对物镜做了一些改进。比较典型的就是半浸没式物镜,也叫semi-in-lens OBJ Lens。因为全浸没式物镜极少,基本别人忽视,所以有时候也把半浸没式物镜称为浸没式物镜。半浸没式物镜的特点是极靴的磁场开口是在极靴外面,故意将样品浸没在磁场中,以减少物镜的球差,同时产生的电子信号会在磁场的作用下飞到极靴里面去,探测器在极靴里面进行探测。这种物镜最大的优点是提高了分辨率,但是缺点是对磁性样品的观察能力相对较弱。为了弥补无磁场物镜分辨率的不足和半浸没物镜不能做磁性样品的缺点,半磁浸没物镜的电镜一般将无磁场式物镜和半磁浸没式物镜相结合,形成了多工作模式。从而兼顾无磁场和半浸没式的优点,做特别高的分辨率时,使用浸没式物镜(如TESCAN MAIA3和GAIA3的Resolution模式),做磁性样品的时候,关闭浸没式物镜使用一般的物镜(如TESCAN的Field模式)。从另一个角度来说,在使用无磁场模式物镜时,对应的虚拟透镜位置在镜筒内,距离样品位置较远;使用半浸没式物镜时,对应的透镜位置在极靴下,距离样品很近。根据光学成像的阿贝理论也可以看出,半浸没式物镜的分辨率相对更高,如图3-18。图3-18 无磁场式(左)和半磁浸没式(右)透镜对应的位置① 物镜的像差电磁透镜在理想情况下和光学透镜类似,必须满足高斯成像公式,但是光学不可避免的存在色差和像差以及衍射效应,在电子光学中一样存在。再加上制造精度达不到理论水平,磁透镜可能存在一定的缺陷,比如磁场不严格轴对称分布等,再加上灯丝色差的存在,从而使得束斑扩大而降低分辨率。所以减少物镜像差也一直是电镜在不断发展的核心技术。A.衍射的影响:由于高能电子束的波长远小于扫描电镜分辨率,所以衍射因子对分辨率的影响较小。图3-19 球差、色差、衍射的对束斑的影响B.色差的影响:色差是指电子束中的不同电子能量并不完全相同,能量范围有一定的展宽,在经过电磁透镜后焦点也不相同,导致束斑扩大。不同的电子源色差像差很大,也造成了分辨率的巨大差异。C.像差的影响:像差相对来说比较复杂,在传统光学理论中,由于成像公式都是基于旁轴理论,所以在数学计算上做了一定的近似。不过如果更严格的考虑光学成像,就会发现在光学成像中存在五种像差。a. 球差:电子在经过透镜时,近光轴的电子和远光轴电子受到的折射程度不同,从而引起束斑的扩大。而电镜中的电子束不可能细成完美的一条线,总会有一定的截面积,故而球差总是存在。不过球差对扫描电镜的影响相对较小,对透射电镜的影响较大。b. 畸变:原来横平竖直的直线在经过透镜成像后,直线变成曲线,根据直线弯折的情况分为枕形畸变和桶形畸变,如图3-20。不过在扫描电镜中因为倍数较大,所以畸变不宜察觉,但是在最低倍率下能观察到物镜的畸变。特别是扫描电镜的视场往往有限,有的型号的电镜具有了“鱼眼模式”,虽然增加了视场但却增加了畸变。TESCAN的电镜很有特点,利用了独特的技术,既保证了大视野,又将畸变减小到了最低甚至忽略不计,如图3-21。图3-20 透镜的畸变图3-21鱼眼模式和TESCAN的视野模式c. 像散:像散是由透镜磁场非旋转对称引起的一种像差,使得本应呈圆形的电子束交叉点变成椭圆。这样一个的束斑不再是完美对称的圆形,会严重影响电镜的图像质量。以前很多地方都说极靴加工精度、极靴材料不均匀、透镜内线圈不对称或者镜头和光阑受到污染,都会产生像散。但是,像散更是光学中的一种固有像差,即使极靴加工完美,镜头、光阑没有污染,也同样会有像散。当然由于加工及污染的问题,会进一步加大像散的影响。在光学理论中,不在光轴上的物点经过透镜后,用屏去截得到的光斑一般不再是圆形。其中有三个特殊位置如图3-23,一个叫做明晰圆位置,这里的光斑依然是圆形;而另外两个特殊的位置称为子午与弧矢,这里截到的是两条正交的直线;其它任意位置截到的是一个会随位置而变化的椭圆。图3-22 电镜中的消像散图3-23 光学理论中的像散 对于电子束来说也一样,原来圆形的束斑在经过电磁透镜后,会因为像散的存在变得不再是完美的圆形,引起图像质量的降低。要消除像散需要有消像散线圈,它可以产生一个与引入像散方向相反、大小相等的磁场来抵消像散,为了能更好的抵消各个方向的像散,消散线圈一般都是两组共八级线圈,构成一个米字形,如图3-24。如果电镜的像散没有消除,那么图像质量会受到极大的影响。图3-24 八级消像散线圈d. 慧差和像场弯曲:慧差也总是存在的,只是在扫描电镜中不易被发觉,不过在聚焦离子束中对中状况不好时可以发现慧差的存在;由于扫描电镜的成像方式和TEM等需要感光器件的仪器不同,像场弯曲在扫描电镜中也很难发现。慧差和像场弯曲在扫描电镜中都可以忽略。 福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】哪种物镜设计的扫描电镜可以观测磁性样品(特指可充磁性样品)?↓ 往期课程,请关注微信“TESCAN公司”查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
  • 韩立:电子束曝光机是半导体制造的基础设备
    p style=" text-align: justify text-indent: 2em " 10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。 /p p style=" text-align: justify text-indent: 2em " 会议期间,来自中国科学院电工研究所的韩立研究员做了《电子束曝光及相关技术的研究》的报告。 /p p style=" text-align: center text-indent: 0em " script src=" https://p.bokecc.com/player?vid=7657F36C41DF1A879C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-align: justify text-indent: 2em " 据介绍,电子束曝光(EBL)始于上世纪60年代,是在电子显微镜的基础上发展起来的用于微电路研究和制造的曝光技术,是半导体微电子制造及纳米科技的关键设备、基础设备。电子束曝光是由高能量电子束和光刻胶相互作用,使胶由长(短)链变成断(长)链,实现曝光,相比于光刻机具有更高的分辨率,主要用于制作光刻掩模版、硅片直写和纳米科学技术研究。电子束曝光主要有可变矩形电子束曝光系统、电子束投影光刻技术、大规模平行电子束成像三种技术。 /p p style=" text-align: justify text-indent: 2em " 韩立在报告中谈到,电子束曝光是电子光学、机械、电子技术、计算机及半导体工艺集成,包含了检测与定位、环境控制、超高真空、计算机控制、系统控制软件、多功能图形发生器、激光定位工件台和电子光学柱8个子系统,其中电子光柱体、图形发生器和激光工件台是关键部件。 /p p style=" text-align: justify text-indent: 2em " 电子光柱体主要作用是通过控制束斑、束流、加速电压、最小线宽、写场尺寸和扫描频率,来实现束斑小,亮度高,速度快的曝光。但这些参数控制往往相互矛盾,对此韩立介绍了电工所和日本电子的解决方案。 /p p style=" text-align: justify text-indent: 2em " 图形发生器主要用于解决复杂图形控制难题,以提高扫描速率、生产率和图形复杂度。如果直接对曝光点位进行曝光,数据量太大而难以处理,因此需要将复杂的原始图形切割成基本图形,这样就能用简单的参数来实现控制。为保证控制精度,图形发生器从单束发展到多束,同时用激光束来补偿位置的偏移。 /p p style=" text-align: justify text-indent: 2em " 激光工件台以平面镜激光干涉仪作为整个系统的测量基准,主要有光栅扫描和矢量扫描两种工作方式。工件台主要性能指标包括了加工精度、拼接精度和套刻精度,主要通过结合激光干涉仪来实现。 /p p style=" text-align: justify text-indent: 2em " 目前,我国电子束曝光机严重依赖进口,但国外已禁止对中国出售最新型号的设备。对此,韩立结合在电工所多年的电子束曝光技术研发经历和应用推广情况,深入探讨了如何在电子束曝光机研制中取得突破,提出了自己的一些真知灼见。 /p
  • 一种有望替代电子束光刻的新技术
    目前光刻技术存在被美国“卡脖子”,不只是工业用的,包括科研用的电子束曝光机也只能购买到落后国外两三代的产品。而电子束曝光是由高能量电子束和光刻胶相互作用,使胶由长(短)链变成断(长)链,实现曝光,相比于光刻机具有更高的分辨率,主要用于制作光刻掩模版、硅片直写和纳米科学技术研究,是半导体微电子制造及纳米科技的关键设备、基础设备。3D纳米结构高速直写机的技术起源光刻技术严重制约着我国半导体工业及科研领域的发展。近年来,一种基于热扫描探针光刻技术的产品3D纳米结构高速直写机有望替代电子束曝光机。3D纳米结构高速直写机(NanoFrazor)的主要技术起源于上世纪九十年代,由诺贝尔奖获得者Binnig教授在IBM Zurich实验室所主导的千足虫计划。该计划原本的目标是用类似原子力显微镜探针的热探针达到1Gb/s的高速数据存储读写。图1为千足虫计划中,制备的热探针的扫描电子显微图像。[1]图1. 千足虫计划所制备的热探针的扫描电子显微图像。[1]2010年后,研究团队逐渐把研究热点从数据的高速读写逐渐转向了扫描热探针用于高精度灰度光刻技术(t-SPL)。随着t-SPL技术的逐渐成熟,2014年推出了首款商业化高精度3D纳米结构高速直写机,NanoFrazor Explore 图2b)。为满足市场的不同需求,2017年推出台式系统NanoFrazor Scholar,图2a)。[2]图2 不同型号的NanoFrazor。a)为台式NanoFrazor Scholar系统,b)为旗舰型NanoFrazor Explore。[2]随后,于2019年无掩模激光直写系统被成功地整合到了旗舰型NanoFrazor Explore系统中,实现了在NanoFrazor中从微米加工到纳米加工的无缝衔接。有望替代电子束光刻技术目前NanoFrazor的技术主要用于科研院所的高端纳米器件制备,已有集成激光直写的系统以加快大尺寸大面积微纳米结构的刻写。由10根探针组成的探针阵列已经在Beta客户端测试中。在和IBM苏黎世的合作项目中已经开始了用于工业批量生产的全自动系统的原型设计。。NanoFrazor的优势体现在以下几个方面。首先,NanoFrazor是首款实现3D纳米结构直写的光刻设备,其垂直分辨率可高达1nm。因此,此设备不仅可以制备在2D方向上高分辨率复杂图案的无掩模刻写,还可以制备3D复杂纳米结构,例如复杂的光学傅里叶表面结构,图3所示。[3]图3,用NanoFrazor制备的光学傅里叶表面结构。[3]第二,由于NanoFrazor的光刻原理是通过热探针直接在热敏胶上进行刻写,与热探针接触的胶体部分被直接分解,与电子束曝光(EBL)技术相比所制备的图案不会被临近场效应所影响。因此使用t-SPL技术制备的器件,光刻胶可以被去除的非常干净,从而改善半导体材料和金属电极的接触情况,提高电子器件的性能。图4为NanoFrazor工艺中所用的热敏胶和EBL工艺中所用的光敏胶在去胶工艺后的光刻胶表面残留情况。[4]图4 采用t-SPL技术和EBL技术去胶后光刻胶表面残留对比,图中比例尺为500nm。[4]第三, 由于NanoFrazor所采用的的t-SPL光刻技术,避免了电子注入对材料的损伤,特别适合电子敏感类材料相关器件的制备。与此同时NanoFrazor针尖虽然温度很高,但是和样品的接触面积只有纳米尺度,所以样品表面不会受到高温影响,样品表面温度升高小于50度。第四,传统光刻技术中,需要通过显影才能观察到光刻图案。而使用t-SPL技术进行光刻时,热敏胶直接被热探针分解,然后再通过同步成像系统可以立即得到刻蚀图案的形貌。同时使用闭环控制刻写深度,保证纵向1nm的刻写精度。在实际使用中,可以对样品表面已有的微结构成像,实时设计套刻图案进行刻写,非常适合科学科研和新品研发。此外,相比于传统的电子束刻蚀等技术产品,NanoFrazor可以在常温常压环境中使用,维护简单费用低。其主要耗材为热探针,耗材费用将低于目前通用的电子束刻蚀系统的耗材维护费用。科研领域的得力干将目前情况来看,国内和国外的主要用户都集中在科研院所。这一特点在推广尚属早期的国内市场尤为突出。QD中国正在尽全力把NanoFrazor和相关技术介绍给中国区的用户。NanoFrazor在国内的高精度3D光刻领域暂无竞争对手,在2D光刻领域与EBL存在着某些重叠。NanoFrazor产于中立国瑞士,受国际政治影响较小。热敏胶由德国AllResist公司生产销售,热探针目前仍然由IBM苏黎世供应,计划明年由德国IMS公司生产提供,不存在卡脖子问题。凭借强大的性能,NanoFrazor帮助科研人员在多领域中取得了一系列优秀成果。在光学方面,苏黎世联邦理工的Nolan Lassaline等人使用NanoFrazor制备了周期性和非周期性的光学表面结构。[3] 制备的多元线性光栅允许利用傅里叶光谱工程精确调控光信号。实验表面,使用NanoFrazor制备的任意3D表面的方法,将为光学设备(生物传感器,激光器,超表面和调制器)以及光子学的新兴区域(拓扑结构,转换光学器件和半导体谷电子学)带来新的机遇。该论文已于2020年经发表于Nature。在电子学方面,纽约城市大学的Xiaorui Zheng等人利用NanoFrazor制备了基于MoS2的场效应管。[4] 他们的研究结果表明,使用t-SPL技术制备的器件很好地解决了困扰EBL工艺的非欧姆接触和高肖脱基势垒等问题。器件的综合电子学性能也远优于传统工艺所制备的器件。该论文于2019年发表于Nature Electronics。在3D微纳加工方面,IBM使用NanoFrazor制备的纳米微流控系统控制纳米颗粒的输运方向,并成功分离不同大小尺寸的纳米颗粒,直径相差1nm的纳米颗粒可以用此方法进行分离[6]。该方法可以用于分离样品中的病毒等纳米物体。该论文于2018年发表于Science。IBM苏黎世研究院的Pires等人利用NanoFrazor的3D加工工艺,成功地制备出了高度仅为25nm的瑞士最高峰马特宏峰,如图5所示。[5] 后经吉尼斯世界纪录认证为世界上最小的马特宏峰。优于新颖的加工工艺和优异的3D加工精度,该论文与2010年发表于Science。图5 利用NanoFrazor制备的高度仅有25nm的世界最小马特宏峰。[5]在二维材料研究方面,NanoFrazor的热探针可以直接用于二维材料的掺杂[7],切割[8]和应力调制[9],开创了二维材料器件制备的新方法。论文于2020年发表于Nature Communications, Advanced Materials和NanoLetters等期刊上。目前国内用户对NanoFrazor在实验上的表现十分满意,已有国内用户在Advanced Materials等顶级期刊发表文章。关于QUANTUM量子科学仪器QUANTUM量子科学仪器贸易(北京)有限公司(以下简称QDC)是世界知名的科学仪器制造商——美国 Quantum Design International 公司(以下简称QD Inc.)在全世界设立的诸多子公司之一。QD Inc.生产的 SQUID 磁学测量系统 (MPMS) 和材料综合物理性质测量系统 (PPMS) 已经成为世界公认的顶级测量平台,广泛的分布于世界上几乎所有材料、物理、化学、纳米等研究领域尖端的实验室。同时QD Inc.还利用自己遍布世界的专业营销和售后队伍打造一个代理分销网络,与世界其他领先的设备制造商合作,为其提供遍布全球的专业产品销售和售后服务网络,2007 年QD Inc.并购了欧洲最大的仪器分销商德国 LOT 公司,使得QD Inc.全球代理分销和售后网络变得更加完整和强大。由于在华业务的不断发展,QD Inc.于2004年在中国注册成立了全资中国子公司QDC。经过10多年的耕耘发展,目前QDC拥有一支高素质的科学技术服务队伍,其中技术销售及售后技术支持团队全部由硕士学历以上人才组成(其中近70%为博士学历),多年来为中国的顶级实验室和科研机构提供专业科学仪器设备、技术支持、以及科技咨询服务。这些优秀的雇员都曾被派往美国总部及欧美日等尖端科研仪器厂家进行专业系统的培训,经过公司十多年的培养,成为具有丰富的科学实验仪器应用经验的专家。他们为中国的研究机构带来了最尖端的产品和最新的科技动态,为中国科研人员的研究工作提供了强有力的支持。QDC作为引进先进技术设备进入中国的桥梁,靠着过硬的尖端产品、坚实的技术实力、一流的服务质量赢得了中国广大科研客户的赞誉。Quantum Design中国子公司还积极致力于发展与中国本地科学家的合作,并将先进的实验室技术通过技术转移进行商业化。目前Quantum Design中国子公司正立足于公司本部产品,积极致力于材料物理、纳米表征和测量技术、生物及生命科学技术领域的新业务。Quantum Design中国子公司已逐渐成为中国与世界进行先进技术、先进仪器交流的一个重要桥头堡。引用文献1. Eleftheriou, E., et al., Millipede-a MEMS-based scanning-probe data-storage system. IEEE transactions on magnetics, 2003. 39(2): p. 938-945.2. https://heidelberg-instruments.com/product/nanofrazor-explore/ .3. Lassaline, N., et al., Optical fourier surfaces. Nature, 2020. 582(7813): p. 506-510.4. Zheng, X., et al., Patterning metal contacts on monolayer MoS 2 with vanishing Schottky barriers using thermal nanolithography. Nature Electronics, 2019. 2(1): p. 17-25.5. Pires, D., et al., Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science, 2010. 328(5979): p. 732-735.6. Skaug et al., Nanofluidic rocking Brownian motors. Science, 2018. 359: p. 1505-1508.7. Zheng, X, et al., Spatial defects nanoengineering for bipolar conductivity in MoS2. Nature Communications, 2020. 11:3463.8. Liu, et al., Thermomechanical Nanocutting of 2D Materials. Advanced Materials.9. Liu, et al., Thermomechanical Nanostraining of Two-Dimensional Materials. NanoLetters.关注Quantum Design中国官方微信公众号,了解更多前沿资讯!(Quantum Design 中国 供稿)
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
  • 广州市黄埔水务局、水利规划设计院考察团一行参观东深电子群控自动化项目
    2017年7月23日,广州市黄埔水务局和广州市水利规划设计院领导一行,到顺德区勒流镇参观考察了由聚光科技下属子公司深圳市东深电子股份有限公司(以下简称“东深电子”)承建的顺德区勒流闸(站)群控自动化项目。  参观团对顺德区勒流闸(站)群控自动化项目进行了全面了解,同时高度肯定了东深电子在信息化项目建设中的成果。参观团表示,此次参观顺德区勒流闸(站)群控项目有很大的收获,为后续黄埔区水利水务自动化信息化项目建设提供了有利的参考。考察团一行参观东深电子群控自动化项目仪器讲解  东深电子在闸(泵)站联合调度领域具有丰富的项目经验,先后承建过中顺大围闸泵站集中监控与调度系统、广州市市桥河水系闸站群联合优化调度与监控系统建设等项目,现今已形成一整套完善的解决方案。闸(泵)站群联合调度系统  服务对象:防办、水利枢纽、县、镇级水利设施运行管理等部门。  系统简介:系统以水闸、泵站为监控对象,在采集各水闸、电排站的运行状态信息的基础上,综合区域内各种水情信息、水质信息、调度目标和调度原则,做出调度方案,通过自动化控制系统,实现对水闸、泵站的远程集中监控和联合调度,达到区域内防洪排涝,水环境调度、水量分配等水资源统一管理目标。  系统特点:  1.构建同一时间序列上分区表达水位、流量、降雨、风情、咸情、水闸泵站工情等多元水文信息的综合数据服务,方便用户对信息的统一把握。  2.综合考虑区域内闸泵站,通过优化调度模型,实现闸站群联合调度模型,为用户提供调度决策支持,提高调度决策的科学性、合理性。  3.采用分层分布的架构,即使单个节点发生故障,也不会影响到整个系统,保障系统安全运行。  4.将声音、视频、数据等多媒体综合集成到监控平台,便于用户在计算机控制时实现视频联动。调度中心监控系统闸门自动控制中控室模拟屏
  • 澳大利亚研制纳米电子束曝光系统
    本报讯 据澳大利亚莫纳什大学网站报道,澳大利亚研究人员正在研制世界最强大的纳米设备之一——电子束曝光系统(EBL)。该系统可标记纳米级的物体,还可在比人发直径小1万倍的粒子上进行书写或者蚀刻。   电子束曝光技术可直接刻画精细的图案,是实验室制作微小纳米电子元件的最佳选择。这款耗资数百万美元的曝光系统将在澳大利亚亮相,并有能力以很高的速度和定位精度制出超高分辨率的纳米图形。该系统将被放置在即将完工的墨尔本纳米制造中心(MCN)内,并将于明年3月正式揭幕。   MCN的临时负责人阿彼得凯恩博士表示,该设备将帮助科学家和工程师发展下一代微技术,在面积小于10纳米的物体表面上实现文字和符号的书写和蚀刻。此外,这种强大的技术正越来越多地应用于钞票诈骗防伪、微流体设备制造和X射线光学元件的研制中,还可以支持澳大利亚同步加速器的工作。   凯恩说:“这对澳大利亚科学家研制最新的纳米仪器十分重要,其具有无限的潜力,目前已被用于油漆、汽车和门窗的净化处理,甚至对泳衣也能进行改进。而MCN与澳大利亚同步加速器相邻,也能吸引更多的国际研究团队的目光。”   MCN的目标是成为澳大利亚开放的、多范围的、多学科的微纳米制造中心。该中心将支持环境传感器、医疗诊断设备、微型纳米制动器的研制,以及新型能源和生物等领域的研究和模型绘制。除电子束曝光系统外,MCN中还包含了高分辨率双束型聚焦离子束显微镜、光学和纳米压印光刻仪、深反应离子蚀刻仪和共聚焦显微镜等众多设备。   凯恩认为:能够介入这种技术使我们的科学家十分兴奋,它可以确保我们在未来十年内在工程技术前沿领域的众多方面保持领先地位,也将成为科学家在纳米范围内取得更大成就的重要基点。(张巍巍)
  • “你真的了解电子天平吗?”之三——大有讲究的“校准”术
    前情回顾在本系列上一期关于电子天平水平调节的分享中,小编主要针对水平调节的必要性、原理、以及调节方法等方面进行了详细的梳理和通俗易懂的阐述,特别是就容易搞错的调节规则与手法为大家总结了详细的法则,相信小编手把手式的经验传授应该能为大家的实际操作起到实质性的帮助吧。水平调节的话题告一段落,本期小编将搬上天平的前期准备工作中最重要也是最有讲究的一环——校准,那么在天平的校准中,又有哪些值得关注的点呢? 老司机也难免会混淆的微妙概念 早在中学物理课本里,我们就学过物体的重量G=mg(m为物体的质量,g为重力加速度),对于同一个物体,无论把它放置在地球上的任一位置,它的质量都是不会发生变化的。然而,重力加速度g的值在地球上的不同地方是会有微小差异的,因此同一物体在不同地方的重量是不相同的。而电子天平则是采用电磁力与被测物体的重力相平衡的原理来测量物体的重量,并经过内部程序计算和显示出物体的质量,这与托盘天平的称量原理是不同的,所以就会出现同一台电子天平在不同地方称量同一个物体会显示不同的质量结果。此外,诸如温度、湿度等环境因素也会影响电子天平的传感器,导致称量结果的误差。 为了避免不确定因素带来的不良影响,就需要在使用电子天平之前进行校准,并在使用周期中进行定期的校准,特别是在对称量结果准确度和精确度敏感的应用中。校准(Calibration),是通过一组称量活动,来检测天平的各项计量性能,包括误差和不确定度的分析等。作为一种良好的称量习惯,校准能够有效地保证称量的可靠性。通过校准,能够检测出天平的工作性能,避免物料浪费、返工、过渡使用后的产品召回,定期校准并执行日常测试是降低相关风险的最佳方法。 然而,对于一字之差的“校正”,含义却有微妙的差别。校正(Adjustment),又称标定,是在测量系统中进行的一组操作,提供与将要测量的数量的给定值一致的规定指示。天平在投入使用前、工作一段时间以后、或者变更位置后,都需要进行校正,以消除重力加速度、环境干扰因素等导致的称量误差。通常,需要使用高精度的标准砝码来对天平进行量程校正。综上所述,通过定期的校准和校正,可以减少天平的称量误差,并且对天平的计量性能有一个全面的把握,确保称量结果满足实验和生产的要求。 在日常工作中,大家往往比较容易混淆“校准”和“校正”的概念,对于这种严格意义上微妙差别,习惯上大家会有一定程度的通用性,校正也可以被认为是狭义上的校准,本文接下来的内容主要是在此基础上进行讨论。 走近极致考究的校准术A. 关于砝码的学问谈到校准,起到至关重要作用的就是砝码。砝码是具有一定物理特性和计量特性且能够复现质量值的一种实物量具,关于其形状、尺寸、材料、表面状况、密度、磁性、质量标称值、最大允许误差等指标都有非常严格的规定。作为标定、校验衡器的最普遍也是最重要的工具,国际法制计量组织(OIML)对砝码进行了明确的等级划分,共分为9个等级:E1、E2、F1、F2、M1、M1–2、M2、M2–3、M3,等是按照不确定度来分,等砝码有修正值;级是按照示值误差来分,级砝码没有修正值,只要其示值误差在此范围内都是认为合格的。在砝码的众多指标当中,和校准关联度最高的就是最大允许误差(MPE)了,国际相关法规条款对各个等级的砝码的MPE有明确的规定,以下表格是对电子天平所常用质量标称值砝码MPE的说明(误差值以毫克为单位): 从上图可看出,在相同质量标称值的情况下,MPE的大小跟砝码等级的高低成反比;在相同砝码等级的情况下,MPE的大小跟质量标称值的大小成正比。 同时,在国家标准的相关规定里,根据检定分度值e和检定分度数n将电子天平分为四个准确度级别,由高到低依次为特种Ⅰ、高Ⅱ、中Ⅲ、普通Ⅳ准确度级。结合砝码MPE的变化趋势可得出,准确度越高的天平需要用越高等级的砝码进行校准,这样校准天平的数据就越精准。比如十万分之一和万分之一天平应选用E级系列砝码校准,千分之一天平应选用E2或F1级砝码进行校准,以此类推。B. 校准的分类从校准的用途上来讲分为“量程校准”和“线性校准”,在制造和维修过程中需要结合两种校准方式共同实施,而日常使用过程一般只需做量程校准。 量程校准主要是在当前称量环境下对天平进行赋值,通过称量一个已知质量的砝码,来获得实际值和显示值之间的比例关系,作为以后称量显示值计算的系数,目的是消除不同纬度及海拔高度对称量结果的影响、环境温度变化对称量结果的影响,以及天平使用一段时间后积累的误差。通常,量程校准采用比较简单的两点校准法,第一个点为零点,第二个点为天平的最大量程,日常操作起来比较容易,能够使天平快速适应当前的称量环境,保证整个量程范围内的称量准确,是实验室工作人员一种普遍的校准方法。 线性校准主要是通过对全量程范围内的多个点的称量结果的线性化来消除误差,使得显示称量结果与参考质量的比例接近相同。一般来说是在3个点设置电子天平,即零点、半量程和最大量程。天平经过线性校准后,其全量程线性误差通常表现为S型,即在零点、半量程、满量程3个校准点误差很小,在1/4,3/4满量程点误差相对较大。为获得更好的线性,可以采取多点修正的方式,比如制造过程中往往采用更科学的5点线性法。当然数学修正只是辅助的,天平的示值误差还是取决于其本身的真实性能。 以上两图描述了电子天平在实际载荷m和称量示值W之间的线性关系,左图的直线为理想线性特征曲线,右图为实测曲线(非线性曲线)与理想直线的对比,其中非线性就是指不按比例、不成直线的关系,且函数的一阶导数不为常数。m0处的NL为称量示值与实际负载间的非线性误差。在天平的称量规格说明书中,线性通常表述为在不断增加负载的测试中得到的最大误差值(以克为质量单位),误差值越小,说明线性度越高,称量越准确。 由于线性校准采用的是分段误差比较,节点越多,非线性误差就越小,实测曲线就越接近于理想的拟合直线,因此线性校准是保证每一个称量范围都做到最大程度的准确,从而对校准的条件会有更加严格的要求。通常,线性校准过程在恒温恒湿的环境下,由机械手自动完成。校准时需准备相应的多个砝码,非专业人员严禁私自进行操作,否则不能恢复原有程序,影响天平的正常使用。 综上所述,量程校准和线性校准各有各自的特点和用途,将二者结合能够有效提升校准的质量。 从校准的方法上来讲分为内校和外校。内校是指利用电子天平内部安装的校准砝码并遵循内部标准程序进行校准。校准时只需按一下校准键,电机会驱动带内置砝码的升降装置,对天平进行加载,从而实施并完成校准。 外校是指利用外部砝码对天平本身误差进行修正的方式进行校准。事先需检查外部砝码是否通过检定,并在检定有效期内,主要是为了确保砝码满足相关标准对实物量具的控制要求。开始校准时先按下校准键,再通过手动把指定量程的砝码放到电子天平秤盘上,来完成校准过程。 通常,外部砝码可能会受到灰尘沾染、日常磨损和酸碱腐蚀等自然因素的不良影响,所以为了保证计量工作的准确性,外部砝码也需要定期进行校准,常常需付费请省(市)级计量院做测试;再加上人为拿错砝码的可能性,因此外校型天平对人为操作的要求会更加苛刻。而内置砝码的天平一般不会出现这些情况,并可以通过修改天平的校正程序参数来修正偏差。综上所述,内校可以有效避免不确定因素所造成的误差,相比外校是一种更加节约成本的方法。 无论是内校还是外校,电子天平在使用之前都必须进行预热(万分之一位天平需要至少1个小时的预热),其次进行水平调节,之后就可以开始进行校准了(以下步骤为传统校准方法,具体不同品牌和型号的天平会有一定的差异): 第一,确保秤盘上没有称量物品时应稳定地显示为零位。 第二,按“CAL”键,启动电子天平的校准功能。 第三,内校型天平的显示器由“C”变成零位时,表示校准结束;外校型天平的显示器上首先显示需要准备的砝码的质量值,其次将与天平准确度级别相对应等级的标准砝码放在天平的秤盘上。当屏幕显示值不变时,取出砝码,屏幕显示“Done”之后说明已经完成校准。 第四,如果在校准中出现错误,电子天平显示器将显示“Err”,或“Time out”,应重新进行校准。 校准术的变革——奥豪斯AutoCal™ 全自动校准技术怎么样,看过了上面的详细介绍,你有没有发现校准是一门相当有技术含量的学问呢?其实,随着称量技术日新月异的发展,校准手段也越来越趋于人性化。如果你还在为传统校准方法中麻烦的人为操作而发愁,那不妨来看看为天平校准带来全新变革的奥豪斯AutoCal™ 全自动校准技术吧! 奥豪斯AutoCal™ 是针对环境温度漂移和时间触发的专业全自动校准技术,在传统的内校基础上进行了全新的改良,在温度漂移值超过±1.5℃或间隔3~11小时之间(用户可自定义内部校准时间)时,天平校准自动触发,避免了未进行定时校准或手动校准砝码不当等造成天平称量不准确的潜在因素。 目前,AutoCal™ 全自动校准系统在庞大的奥豪斯天平家族里有广泛的应用,特别是Explorer® 准微量天平采用了两组内置砝码,同时拥有量程校准和线性校准功能。在校准过程中,通过同时加载砝码m1和m2,以及分别加载砝码m1和m2校准半载点的方法,可测试天平的线性并自动进行线性校准。 此外,Explorer® 系列十万分之一以下的分析和精密天平以及Adventurer™ AX系列天平的AutoCal™ 通过配备的一个内置砝码,可进行量程校准功能,用户可根据具体的使用需求做灵活的选择! 听了小编全面细致的讲解,你是不是摸到了校准的门道呢?是不是也想马上动手操作感受一下AutoCal™ 技术的强大之处?如果你有更多关于天平校准的疑难咨询,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议。最后,小编再次祝大家在旺旺狗年生活幸福吉祥,工作顺心顺意!
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
  • JASIS 2018新品发布之大塚电子:测厚仪和粒度仪
    p    strong 仪器信息网讯 /strong 2018年9月5日,日本最大规模的分析仪器展JASIS 2018在东京幕张国际展览中心盛大开幕,吸引来自全球各地的万余名观众参观出席。 br/ /p p   作为用于光学特性评价?检查的装置制造商,大塚电子在展会期间带来其测厚仪新品和粒度仪新品——nanoSAQLA。 /p p style=" text-align: center " img title=" 大塚电子非接触光学测厚仪.jpg" style=" width: 400px height: 267px " alt=" 大塚电子非接触光学测厚仪.jpg" src=" https://img1.17img.cn/17img/images/201810/uepic/70d4e4a6-1e05-4247-ac98-a97f9d543eec.jpg" height=" 267" border=" 0" vspace=" 0" width=" 400" / /p p style=" text-align: center " strong 大塚电子非接触光学测厚仪 /strong /p p   是一种旨在缩短检测过程的装置,无需校准曲线,容易测得绝对厚度。基于其独特的光谱干涉方法,可以在短时间内非接触地轻松测量厚度(10μm至5 mm),且外形紧凑,占用空间小。主要特点包括: 可以无接触地测量不透明、粗糙表面、易变形的样品 高重复性· 再现性 无需校准曲线测得绝对厚度 由于测量直径非常小,因此不受不均匀性的影响 不必调整样品的位置,可以通过“单独放置”来测量 由于稳定性高,操作简单 是一个光学系统,更安全。 /p p style=" text-align: center " img title=" 大塚电子多检体纳米粒度检测系统nanoSAQLA.jpg" style=" width: 400px height: 267px " alt=" 大塚电子多检体纳米粒度检测系统nanoSAQLA.jpg" src=" https://img1.17img.cn/17img/images/201810/uepic/e9696875-6d17-49ce-b7ba-f09007b5607d.jpg" height=" 267" border=" 0" vspace=" 0" width=" 400" / /p p style=" text-align: center " strong 大塚电子多检体纳米粒度检测系统nanoSAQLA /strong /p p   nanoSAQLA为动态光散射法(DLS法)的粒度测量(粒径0.6nm-10μm)仪器。配置了进一步追求质量控制需求的各种功能。 /p p   实现了一种新的光学系统,兼容多种样品测量,从稀到浓的更广泛样品浓度范围,轻巧紧凑,适合实验室使用,标准为1分钟高速测量。此外,对于非浸入式样品,“5样品连续测量”配置为无自动进样器的标准设备。主要特点包括:使用一个装置轻松进行五样品连续测量 广泛浓度范围样品检测系统 高速测量,标准测量时间为1分钟 简单的测量功能(测量一键完成) 配备温度梯度功能。 /p p & nbsp /p
  • 电子束加热控制器研制
    成果名称电子束加热控制器单位名称中科院物理研究所联系人郇庆联系邮箱qhuan_uci@yahoo.com成果成熟度□正在研发 □已有样机 □通过小试 □通过中试 √ 可以量产合作方式√ 技术转让 √ 技术入股 □合作开发 √ 其他成果简介: 电子束加热是实验中经常用到的样品加热、蒸发和处理方式,加热中需要给灯丝提供电流、提供所需的高压电源甚至还需要束流检测和反馈控制。该电子束加热控制器集成了电子束加热所需的全部功能,可以在手动、恒压、恒发射电流、恒加热功率以及束流反馈等多种模式下工作。采用ARM为核心的主控系统和5.6寸触摸液晶屏,操作简便、界面友好。具备以太网口、USB口等多种数字接口,可实现数据存储输出、固件的远程更新和远程故障诊断。目前该设备已在国内外多家单位进行了尝试性推广,包括中科院物理所、清华大学、北京大学、复旦大学、中国科技大学、武汉物数所、美国伊利诺伊大学芝加哥分校等,反响很好。其主要技术指标为: 最大输出功率: 250W 输出电压范围: 0~2KV 输出电流范围: 0~125mA 灯丝电流: 0~3A 工作模式: 手动/自动(恒压、恒发射电流、恒加热功率、恒束流) 束流检测范围: 100pA~1mA 最小分辨率为1pA 应用前景: 主要用于电子束加热样品台、电子束加热蒸发源等装置,也可单独作为手动高压电源使用。应用范围广,估计每年国内市场需求在百套以上。知识产权及项目获奖情况: 发明专利:201410527768.4 201510220859.8
  • 简述电子点天平的组成部分
    电子天平构造原理基本构造是相同的。主要由以下几个部分组成:      (1)秤盘      秤盘多为金属材料制成,安装在天平的传感器上,是天平进行称量的承受装置。它具有一定的几何形状和厚度,以圆形和方形的居多。使用中应注意卫生清洁,更不要随意掉换秤盘。      (2)传感器      传感器是的关键部件之一,由外壳、磁钢、极靴和线圈等组成,装在秤盘的下方。它的精度很高也很灵敏。应保持天平称量室的清洁,切忌称样时撒落物品而影响传感器的正常工作。      (3)位置检测器位置检测器是由高灵敏度的远红外发光管和对称式光敏电池组成的。它的作用是将秤盘上的载荷转变成电信号输出。      (4)PID调节器      PID(比例、积分、微分)调节器的作用,就是保证传感器快速而稳定地工作。      (5)功率放大器      其作用是将微弱的信号进行放大,以保证天平的精度和工作要求。      (6)低通滤波器      它的作用是排除外界和某些电器元件产生的高频信号的干扰,以保证传感器的输出为一恒定的直流电压。      (7)模数(A/D)转换器      它的优点在于转换精度高,易于自动调零能有效地排除干扰,将输入信号转换成数字信号。      (8)微计算机      此部件可说是电子天平的关键部件了o它是电子天平的数据处理部件,它具有记忆、计算和查表等功能      (9)显示器      现在的显示器基本上有两种:一种是数码管的显示器 另一种是液晶显示器。它们的作用是将输出的数字信号显示在显示屏幕上。      (10)机壳      其作用是保护电子天平免受到灰尘等物质的侵害,同时也是电子元件的基座等。      (11)底脚      电子天平的支撑部件,同时也是电子天平水平的调节部件,一般均靠后面两个调整脚来调节天平的水平。 下面为欧洲瑞德威电子天平的图片:
  • 全自动乌氏粘度计-用毛细管法测定PEN(聚萘二甲酸乙二醇酯)树脂稀溶液的黏数
    聚萘二甲酸乙二醇酯的简称。聚萘二甲酸乙二醇酯(PEN)是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。其化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET中的苯环。萘环结构使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。近年来,PEN薄膜主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,而PEN薄膜新的用途仍然在不断开发中。如数据磁带,数据磁盘的种类有DDS(数字、数据、储存),8MM数据磁带,1/4英寸磁带,DDS的需求量较大。根据DDS的记忆容量公别为Ⅰ、Ⅱ、Ⅲ型。Ⅱ、Ⅲ型为聚芳酰胺膜,Ⅰ型为PEN与PET共用型。记忆容量为2G,90MM的PEN薄膜代替。从记忆容量来考虑,Ⅰ型几乎全部被PEN占领。随着手机及小型携带机械的发展,对薄膜电容器的需求也不断增大。目前,虽然这方面市场规模虽小,但将是一个很有发展前途的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,乌氏毛细管法是PEN树脂质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的黏数也是PEN树脂的核心指标之一。按国标规定的中描述的步骤测定聚合物的黏数,测试温度为25℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:苯酚/1,1.2,2-四氯乙烷溶剂,在25℃下2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PEN树脂稀溶液样品的制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到0.005g/ml,再将样品瓶放置到多位溶样器中,待溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 牛津仪器推出AZtecBattery专用于电池异物颗粒自动分析系统
    AZtecBattery是一款强大的自动化分析软件,用于检测电池原料和电池制造过程中产生的异物颗粒。AZtecBattery适用于从采矿到电池制造整个链条中颗粒物产品的杂质检测、确认杂质类型及数量。可帮助用户溯源,具有全面表征颗粒物特征的能力。准确分析异物成分 准确标定异物颗粒中的元素种类,有利于追踪溯源; 高速分析下保证数据可靠性:每小时可分析高达30,000个颗粒;在400kcps的计数率下保证定量分析的准确性。颗粒物分析参数设置灵活方便,满足不同测试需要,节省时间及成本 设置多段阈值,可以同时识别衬度比基体颗粒亮或暗的异物颗粒; 个性化的分类方法方便您对新发现的异物进行分类; 跨视野的大颗粒通过重建予以合并,保证形貌和成分测量的准确性; 形貌过滤器方便您设定待检测颗粒的尺寸范围——节约时间; 全面、智能的过滤器和分类功能支持仅在必要的情况下采集数据——节约时间; 巡查扫描模式可对样品进行预扫描来判断异物颗粒的数量,自动优化采集方案; Z 聚焦——在大面积区域内分析时保持聚焦。强大、灵活的硬件配置保障计数率的最大化 可配置Ultim Max或者Xplore系列大面积能谱探测器,有效晶体面积可高达170mm2,可对更小的异物颗粒做出快速分析,具有很高的统计可信度和准确性; 可配置多个探测器获得更高的计数率; 专业的采集模式和低噪音的电子电路可观察到非常小的异物颗粒。可在多系统、多位置间拷贝采集参数——保证供应商使用同样的分析方案 在流程的每一步显示定制化的操作提示; 直观的软件界面专门为引导流程而设计,保证操作的重复性和简易性; 所有的参数为优化分析预先设定,在软件导航中有个性化的建议引导用户操作,保证每次分析的工作条件相同。可在同一设备上实现电池材料的自动颗粒物分析和精细分析 在同样的软件内可对已确认的杂质进行深入的成分分析和自动相分析(Feature Phase)分析; 在同样的软件内联用EDS和EBSD分析一系列的电池材料; 使用UltimExtreme可以在非常低的能量下工作,并从对光束敏感的样品中获得有价值的数据。特征
  • 东深电子北线引水坂雪岗泵站自动化建设助力坂田街道饮水民生工程
    2017年6月30日,由聚光科技(杭州)股份有限公司(以下简称“聚光科技”)下属子公司深圳市东深电子股份有限公司(以下简称“东深电子”)承建的深圳市北线引水坂雪岗支线工程自动化控制系统采购及安装(二次)工程顺利完工验收,并获得业主的一致好评。  北线引水坂雪岗支线工程所在区域位于深圳市龙华新区观澜街道、龙华街道和龙岗区坂田街道。起点在北线工程高新产业园区新建分水口,终点在坂雪岗水厂。全线长约4.3公里,北线分水口至岗头水库管线设计供水规模为30万立方米/天,泵站设计规模近期装机为16.5万立方米/天,远期装机为27.5万立方米/天。深圳市北线引水坂雪岗支线供水工程顺利送水,有效缓了解龙岗区坂雪岗片区供水不足的问题。验收会现场  由东深电子承建的自动化控制系统建设内容包括了计算机监控系统、语音系统、工业电视系统、视频会议及会商系统等,实现了泵站现场少人值守、设备运行自动化、中控室集中监视操作的运行综合管理模式,为缓解深圳市龙岗区坂田街道饮水紧张形势做出一定贡献。
  • 中科院成都计算所与电子科大共建自动推理联合实验室
    近日,中国科学院成都计算机应用研究所与电子科技大学联合成立自动推理联合实验室。   联合实验室主任由成都计算所张景中院士担任,杨路研究员、冯勇研究员分别担任第一副主任和第二副主任。联合实验室的地点分别设在成都计算所和电子科技大学。   联合实验室的正式成立,标志着电子科大和成都计算机所之间建立起固定合作组织机构,全面开展双方合作工作。双方将把联合实验室逐步建成富有特色的信息中心和开展双方相互合作的管理机构,并通过实验室的发展,利用科学院与大学的各自的优势,不断地培养出优秀科研人才,不断地进行基础性、原创性和前瞻性的研究,从而达到支持相关学科的发展,进一步提高其在国内外相关学术领域的地位,同时为社会输送更多人才。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制