当前位置: 仪器信息网 > 行业主题 > >

定氮索氏分子仪

仪器信息网定氮索氏分子仪专题为您提供2024年最新定氮索氏分子仪价格报价、厂家品牌的相关信息, 包括定氮索氏分子仪参数、型号等,不管是国产,还是进口品牌的定氮索氏分子仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合定氮索氏分子仪相关的耗材配件、试剂标物,还有定氮索氏分子仪相关的最新资讯、资料,以及定氮索氏分子仪相关的解决方案。

定氮索氏分子仪相关的论坛

  • 【分享】对比双缩脲方法与凯氏定氮方法

    蛋白质的研究对生物领域来说非常重要,那么,蛋白质的测定方法,从古至今,已累积不少,其分析与定性、定量分析是生物化学和其他生物学科、食品检验、临床检验、诊断疾病、生物药物分离提纯和质量检验中最重要的工作。测定蛋白质的方法,从大的方面分,可以分为直接法和间接法,从细的分,则可以分很多:凯氏定氮仪法、考马斯亮蓝G-250法、双缩脲法、Folin酚法、紫外吸收法、pH滴定法、甲醛滴定法等等。每种方法其测定原理不同,其精度以及过程也就不同,下面我们就凯氏定氮法和双缩脲法进行比较。  双缩脲法:双缩脲法对白蛋白、红蛋白的颜色反应相近,不受温度影响。测试速度快,但是灵敏度低,不适合高精度的蛋白质含量测定。测定范围为1-20mg。常用于谷物蛋白质含量的测定。  凯氏定氮法:凯氏定氮法是最经典的测定蛋白质含量的方法,其需要使用的有定氮仪或者粗蛋白测定仪。粗蛋白测定仪的原理跟定氮仪一样,都是利用氮的含量来计算蛋白质的含量。凯氏定氮法是测定试样中总有机氮最准确和最简单的方法之一,是被国内外作为法定的标准检验方法。它包括消化、蒸馏、吸收、滴定四个过程,在催化剂作用下,试样用浓硫酸消煮破坏有机物,使其中的蛋白质氮及其他有机氮转化为氨态氮,然后与硫酸结合生成硫酸铵,加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用酸滴定,测出含氮量,将结果乘以换算系数,计算出粗蛋白质含量。通过凯氏定氮仪测定蛋白质含量时,需要将有毒气体排出,另外要选择合适的催化剂。  与双缩脲法相比,虽然都能够对蛋白质含量进行测定,但是凯氏定氮法是最为常用的方法,是经典的方法。适用于样品广泛和用于结果较为精确的测试。而双缩脲法测试过程较为简便、快速,用于可以准备配取标准蛋白溶液而准确性要求不高的测试。我们在选择方法时,应该根据要求,选择适合实验的方法。

  • 【讨论】请问哪位版主把我的帖子锁定了?

    http://www.instrument.com.cn/bbs/shtml/20090219/1746629/在这里想请问一下哪位版主把我的帖子锁定了?1.这位版主把我的帖子首先设置成违规贴,不知道我在这里有违规么?我把版规copy在下面了,没有过多求助这一项的吧,我也没有超过每篇10贴的版规啊?2.强制设置成100的悬赏帖,这个是不是有点多了?版规500积分以上的求助中文文献才2积分的悬赏,我的10篇帖子最多也就是20个积分,为什么设置成100积分?3.版主很不负责任,明明帖子里面第5篇文献没有找到,但是版主还是把帖子给锁住了,请问这是一个负责任的版主么?有没有仔细看过帖子里面的内容,是不是已经全部求助成功了呢?[color=#DC143C]“文献求助-应助”版面主要是为了解决大家工作、学习中所需要的文献资料,幸得大家的关注,本面中的许多求助帖都得到了及时的解决,非常感谢大家!但是许多朋友在发帖求助时,往往不注意发帖的格式,这样给应助的朋友带了不便,花费较多的时间,也耽误了解决问题的时间。特此,再次强调一下本版发帖求助的格式,大家在发帖时一定要注意将所求文献的内容(作者、题名、期刊、年卷期号等)写的具体详细一些1.发帖格式【作者】:【题名】:【期刊】:【年卷期】:【全文链接】:2.发帖要求1).发求助帖时一定要将自己需要的文献写的具体、详细一些,请大家在发帖之前一定要自己先检索一下,给出链接,这样方便大家的应助。不要在求助时只写需要某个方面的文献等,切勿从文章的参考文献中直接复制粘贴。2).发帖求助的朋友,如果积分大于等于500,必须设置悬赏帖,求助每篇英文文献5个积分,中文文献2个积分,论文及书籍10个积分;如果发帖时没有设置,版主将对此进行维护,转换为悬赏帖!3).建议一次性求助文献不要超过10篇,否则会给应助者应助和版主评分带来不便!同时批量求助文献,不得一篇文献一个主题贴,占用版面,请将几篇文献整合到一个帖子里面.4).大家在发帖求助时,最好能说一句表示感谢的话,不管别人能不能给帮你,毕竟别人也是花时间看帖子了。5).大家不要在这里发与本版无关的帖子求助,如标准求助可以去标准求助版。关于技术类的帖子到相应的版面。请勿在此发与主题无关的帖子和广告贴,违者一律删除!这个是一个相互交流的平台、互帮互助的平台,方便大家也方便了自己,谢谢大家的理解与支持!3.奖励规则“文献求助-应助”版面自从设立以来,在众多热心朋友的大力支持和帮助下,使得版面应助率不断的提高。在此代表求助的朋友向各位应助的朋友表示由衷的感谢!为了答谢大家对本版的关注与支持,对应助朋友的感谢,特设定应助积分奖励规则:1求助帖是悬赏帖和新手求助贴的积分奖励为正常奖励积分的一半(中文文献为奖励总积分的一半)!2非新手求助贴和悬赏帖的求助贴(由于有些朋友的积分较低,不能设置悬赏帖)按照以下办法进行奖励:1)应助中文文献、中文会议论文、中文专利等,每篇奖励1个积分;2)应助中文会议论文集、硕士和博士毕业论文、中文电子书等每份奖励10个积分;3)应助外文文献、外文会议论文、外文专利等,每篇奖励2个积分;4)应助外文会议论文集、硕士和博士毕业论文、外文电子书等每份奖励15个积分;4对没有直接提供所需文献的,但给出链接及有效信息的奖励积分与应助减半。5本规则自公布之日起实行。 如果各位朋友对此规则有意见和建议,及各种未尽事宜,请不吝赐教!再次对关注本版的朋友表示衷心感谢!2009.01.08 环保巡视:特别说明,对同日内分多帖求助的板油将会合并其求助帖,并给予一定的警告,以避免珍贵首页资源被浪费的现象。[/color]

  • 【求助】关于凯氏定氮最后的滴定变色测量含氮的原理问题?

    GBT22427.10-2008 淀粉及其衍生物氮含量测定》中指示剂是:由两份中性甲基红冷饱和溶液和一份浓度为0.25 g/L的亚甲基蓝溶液混合而成,贮存于棕色瓶中。(1)我想问的是中性甲基红冷饱和溶液的中性是什么意思?是不是说配完甲基红冷饱和溶液后加酸或碱调溶液PH为7.0?用试纸大概显中性行吗?会对定氮结果的影响大吗?(2)关于凯氏定氮最后的滴定变色测量含氮的原理,我有不懂得地方,国标说用硼酸(20g/L),这样的硼酸的PH是多少呢?我觉得只有是5.2才能确保后面的滴定准确,因为指示剂变色范围是5.2到5.6,5.2的是紫红色,5.6的时候是绿色,滴定到溶液显紫红色时就停止滴定,说明要让硫酸或盐酸把氨气抢走的氢离子还回来,要还的正好是PH5.2!不知道我这么理解对不对?那么就有一个问题是:硼酸(20g/L)的PH是5.2吗?网上有说 0.1mol/L的硼酸ph为5.1,那推理是硼酸(20g/L)的PH是小于5.1的,那么氨气抢走硼酸的氢离子后,再滴定到显紫红色(ph5.2),我觉得是不准的。

  • 使用光镊在单分子水平检测蛋白折叠、去折叠和构象动力学

    使用光镊在单分子水平检测蛋白折叠、去折叠和构象动力学

    [b]研究多结构域蛋白阶段性去折叠[/b]很多生物大分子的功能与其构象和构象动力学密切相关,如蛋白质的生物功能需要其正确折叠成自然形态。错误折叠或者未折叠的蛋白会(部分)失活或者产生毒性,如错误折叠的蛋白与神经退行性疾病有关。研究蛋白如何正确折叠并改变构象以实现生物功能对理解其机制与疾病发生至关重要。单分子力谱(SMFS)是研究这些分子现象的理想工具,因为其具有独特的分离个体生物分子和实时观察构象变化及去折叠过程的功能。由于SMFS具有高敏感度和施加机械力的能力,可以直接操纵单个蛋白并通过测量其长度变化(亚nm级)观察构象改变。接下来我们使用LUMICKS开发的高分辨率光镊-荧光显微镜C-Trap演示了对钙调蛋白(CaM)的折叠过程的研究。[img=,500,110]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021105519876_1986_981_3.png!w690x153.jpg[/img][img=,218,200]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021106425366_604_981_3.png!w217x199.jpg[/img]1 多结构域蛋白的去折叠实验图解。具有3个结构域的蛋白通过DNA连接至两个被光所捕获的微球。2 通过改变光阱之间的距离可以对蛋白施力并检测断裂的发生。使用层流微流控和自动装载功能,N-端和C-端连接有DNA的单个CaM蛋白可被两个微球捕获(图1)。[img=,227,200]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021108116955_1942_981_3.png!w220x193.jpg[/img]3 10 mM Ca2+浓度下CaM的力-拉伸距离(蓝色)和力-收缩距离(红色)。拉伸与收缩的速度为100 nm/s。微球直径为1.0 μm,光阱的刚度为0.284 pN/nm。[img=,500,161]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021108223351_3734_981_3.png!w638x206.jpg[/img]4 10 mM Ca2+浓度下CaM的多个状态下的动态平衡。图为50 kHz(灰色)和200 kHz(红色)下记录的数据。在右侧直方图中可以看到两个清晰的峰即表现为蛋白最常处于的两个状态。第一个实验,在10 mM Ca2+条件下对CaM的机械拉伸与收缩行为进行了记录。首先对100 nm/s的速度下的拉伸与收缩的相关数据进行了记录(图3)。随着施加的力增加,可观察到两个去折叠的阶段,表现为力的突然下降,与两个螺旋-环-螺旋结构域的去折叠相符合。由此可以得出结论,基于C-Trap设备的力和距离的高分辨率(100 Hz时误差在0.2 pN以下和0.5nm以下),去折叠的发生可以用力谱的力-距离曲线来确定。这种测量非常适合用于比较正常蛋白与发生了改变或损伤的蛋白的折叠的相关数据。接下来研究光阱位置固定时CaM的折叠、去折叠的动态平衡,对蛋白长度的变化进行测量并确定中间态的转变(图4)。对CaM分子施加7.5 pN的力,可以观察到三种状态之间的波动,反映了螺旋-环-螺旋亚结构域的折叠和去折叠,波动的数据图像与之前的研究1,2相符(图4)。仪器所获得的稳定的高质量数据为蛋白的折叠和去折叠之间的动态转变的检测提供了大量有效的信息。通过这种方法可以对不同状态的驻留时间和转变动力学进行测量。这些信息使得我们对特定蛋白的折叠、去折叠过程产生进一步的了解。对折叠和去折叠的动力学以及构象改变的研究表现了一种突破性的生物学和生物物理学研究方法。使用C-Trap光镊-荧光技术可以观察到折叠和去折叠现象还有动态平衡,使得科研人员可以研究去折叠的中间态并获得蛋白的结构与功能信息。对蛋白折叠和构象的进一步研究仰仗于C-Trap的高敏感度和多通道荧光单分子FRET功能,通过检测FRET效率信号与力的波动的变化来进一步检测蛋白构象,可以得到蛋白的机械性质与结构之间的关系。[b][/b]

  • 【重要公告】论坛将开始整理老帖子,在8月1日实行帖子分年索引

    论坛准备在8月1日对所有帖子实行分年索引,加快论坛的显示和发帖速度。每年一个索引,不是当年的帖子就只能看,不能再回复了。各论坛的版主将开始进行帖子清理,删掉没有什么保留价值的帖子。帖子清理都是不扣分的,如果用户收到了删贴通知不用担心。以下帖子将被删除:1、2007年1月1日前提了问题没人回复的帖子2、技术讨论版内的非技术类帖子3、有时效性的通知类的帖子,比如培训班、学术会议、研讨会通知等4、广告类的帖子5、其他版主认为明显没有保留价值的帖子。清理后我们将按年对帖子进行索引和存档,将大大加快论坛的访问速度和发帖回帖的速度。请大家积极配合,非常感谢!

  • 细胞单分子操纵磁镊系统特点及应用

    [url=http://www.f-lab.cn/microscopes-system/magnetic-tweezers.html][b]细胞单分子操纵磁镊系统[/b][/url],magnetic tweezers是继激光光镊技术仪器后又一种细胞操纵和细胞力学测量仪器.它采用倒置显微镜和电动平移旋转定位台和PicoTwist磁力细胞操纵捕获技术,组成强大的单分子操纵磁镊仪器。细胞单分子操纵磁镊系统是通过梯度分布的磁场对处于其中的可磁化微粒施力,通过显微镜观察并分析微粒运动过程,这套磁镊可同时对40个细胞分子视频采集和跟踪测量。[b]细胞单分子操纵磁镊系统特点[/b]操作稳定—图像漂移很低分辨率高,测力能力强—适合超薄样品可以同时对40个细胞单分子成像和跟踪测量磁铁来控制 DNA拉伸和超螺旋结构[b]细胞单分子操纵磁镊系统应用[/b]细胞单分子,生物单分子,细胞力学,生物力学等,在单分子水平上对生物分子行为(包括构象变化、相互作用、相互识别等)的实时﹑动态检测以及在此基础上的操纵﹑调控等;对单个生物大分子施以力或力矩,并测量它们的物理性质(如DNA弹性、蛋白质的力学变性等);对单个生物大分子施以力或力矩,测量它们的力学生化反应(如分子马达);研究机械力的作用如何影响细胞的生长、分裂、运动、粘附以及信号的传输,基因的表达;在生物大分子上施加力以使之发生构像上的变化,研究生物单分子形成新的结构,以及力学以及动力学之间的相互联系等。研究各种药物可能导致的DNA、蛋白质凝聚、变性过程;给出分子实时行为与性质的分布,有效避免对集群测量苛刻的同步(synchronization)要求,如DNA的解链(unzipping)、蛋白质的折叠(folding)等。[b][img=细胞单分子操纵磁镊系统]http://www.f-lab.cn/Upload/magnetic-tweezers.jpg[/img][/b]细胞单分子操纵磁镊系统:[url]http://www.f-lab.cn/microscopes-system/magnetic-tweezers.html[/url]

  • 凯氏定氮法与纳什比色法比较

    氮是植物生长发育的重要营养元素之一,植物叶片中氮素含量高低常可作为施氮效应及氮素需要的诊断指标。因此,氮素含量的测定在教学中是一个重要的教学内容,在科研研究中是常测定的一个指标。植物组织全氮测定常用方法是凯氏定氮法,即利用浓H2SO4-H2O2消煮,将样品中有机物和有机含氮化合物转化为无机铵盐,再用蒸馏滴定的方法测定全氮含量。有文献报道,植物样品中氮的含量也可采用纳什比色法测定,即获得消化液后,采用纳什比色方法测定消煮液中铵离子的浓度,然后通过计算获得样品中氮的含量。  甘蔗是需氮量较大的作物,氮肥不足会影响甘蔗的生长,氮营养过剩则会增加生产成本,造成肥料浪费和环境污染。本试验利用H2SO4-H2O2法消化获得消煮液,用蒸馏滴定法和纳什比色法测定甘蔗叶片样品中的全氮含量,分析比较2种方法的测定结果及其优缺点,为植物样品的快速测定提供一定的参考依据。  1 材料与方法  1.1材料来源  取生长盛期健康的甘蔗+3叶片,在105℃烘箱内杀青30min,在60℃~70℃烘干至恒重,用粉碎机粉碎密封保存备用。  1.2待测液的获得  准确称取0.2g(精确至0.0001g)粉碎样品置于消化管中,3次重复,加入5mL浓H2SO4,瓶口加一个小漏斗,摇匀,过夜,另取一个消化管,不加样品,只加同样的浓硫酸作为对照。将消化管置于控温式远红外消煮炉上消煮,中间视消化情况加1mLH2O21~2次加速氧化,直至消煮液呈无色或清亮色。待消化管冷却,用少量水冲洗小漏斗,将消化液无损失转入100mL容量瓶并定容,澄清上清液即为待测液。  1.3滴定法测定全氮  对蒸馏装置进行洗涤,并确保干净后,准确吸取定容后的消煮液10.0mL于反应器中开始蒸馏,将馏出液出口的冷凝管下端管口插入盛有30ml的硼酸吸收液和5~6滴混合指示剂的三角瓶中,当三角瓶中溶液开始变绿时开始记时,四分钟后将三角瓶移离冷凝管口,继续蒸馏1分钟后将三角瓶移离蒸馏装置,用水冲洗冷凝管及馏出液管,然后用0.01mol/LHCL标准酸滴定,溶液由绿色变为淡紫色为滴定终点并记录所用酸体积,同时作一空白试验。依据公式计算全氮含量:  N(%)=(V1-V0)×C×14×Ts×10-3×100/m  其中:N:植株的全氮含量;V1:样品测定值消耗标准酸的体积数(mL);V0:空白试验所消耗标准酸的体积数(mL);C:标准酸的浓度(mol/L);14:氮原子的原子质量(g/mol);Ts:分取倍数;m:干样品质量(g)。  1.4纳什比色测定  标准曲线的制作:分别吸取10μg/mLN(NH4-N)标准液0、2.50、5.00、7.50、10.00、12.50mL于6个50mL容量瓶中,每个加入100g/L酒石酸钠溶液2mL,充分摇匀,加入纳什试剂2.5mL,用水定容后充分摇匀。30min后用分光光度计在波长420nm测定。用所得数据制作标准曲线,根据标准曲线计算NH4+浓度。  吸取待测液2mL于50mL容量瓶中,按照标准曲线的方法测定样品中中的NH4+OD值,同时在样品测定的同时做空白试验,根据标准曲线计算比色液中NH4+-N浓度,再根据下面公式计算含氮量。  N(%)=p×V×Ts×10-4/m  其中:p:从标准曲线查的显色液N(NH4+-N)的质量浓度(μg/mL);V:显色液体积(mL);Ts-分取倍数:m:干样品质量(g)。  2.结果与分析  2.1比色方法的线性关系  根据所测定的OD值,制作标准曲线如图1所示,标准曲线的函数关系式为Y=0.2228x-0.0297,相关系数R2=0.9995,线性关系较高,可以满足试验的下一步计算。  2.2两种测定方法的结果比较  试验中所采用的两种测定方法结果的偏差除了第16号外,其他几个样品的结果偏差都小于2%,滴定法与纳氏比色法比值大于1的样品有1、8、10、13号(表1)。滴定法测定结果的标准差和标准误都小于纳氏比色法测定结果,同时滴定法的变异系数也比纳氏比色法的要小,但二者都小于2%(表2),两种测定结果都是可靠的。对两种测定方法的t检验结果从表3可知,95%置信区间的上下限分别为0.017和0.174,t值为2.582大于0.021,说明两组测定结果之间差异不显着,即用凯氏滴定法和纳氏比色测定法两种方法测定甘蔗样品的全氮含量差异不显着,表明用两种方法的任何一种测定甘蔗叶片全氮,均不影响其试验结果。  3 讨论与结论  [url=http://www.kaishitest.com/][color=#ffffff]凯氏定氮法[/color][/url]是测定植物组织全氮的国家标准方法。该方法虽不需复杂的仪器设备,但滴定终点易受人为因素的影响,且蒸馏耗时太多,对快速批量测试来说费时费力。纳什比色法采用比色的方法,根据分光光度计比色槽的设定可同时测定5~7个样品,避免人工蒸馏和滴定的繁琐过程,大大提高了工作效率。  本试验测定结果表明,凯氏定氮法和纳什比色法二者测定结果关系不显着,其中凯氏滴定法变异系数小,蒸馏结果准确可靠,优于纳什比色法,但纳什比色法设备简单,效率较高,且与滴定法没有达到显着差异,如果样品量较大,又仅仅是比较不同处理间的氮含量差异,纳什比色法是一种快速效率较高的测定方法,减少了凯氏定氮法中的蒸馏与滴定操作,节省时间与资源,更为方便。在实验过程中,可根据自己试验的目的要求,选择合适的测定方法。  值得注意的是要使测定结果有更好的准确度,在测定过程中要认真掌握各个细节及相应的注意事项。如在滴定法测定时要注意加入NaOH量得控制,过多反应剧烈,造成NH4+-N损失,过少蒸馏又不完全。在应用纳什比色法测定时要注意显色溶液的pH值应≥11,NH4+-N的浓度控制在0.2~3.0mg/L;稳定时间要有保证,当温度低时应稳定1h再进行比色测定。只有注意到这几个测定细节,才能保证测定结果的准确性。  因此,[url=http://www.kaishitest.com/]凯氏滴定法[/url]和纳什比色法都可以用来测定甘蔗组织中的全氮含量,二者的测定结果差异不显着。在方法选择上,可根据自己的试验条件和试验目的要求,选择合适的测定方法,但在使用两种方法的同时,应该细致掌握各方法的注意事项。

  • 使用AFS检测单分子水平的蛋白去折叠过程

    使用AFS检测单分子水平的蛋白去折叠过程

    [b]使用声力研究蛋白去折叠[/b]单分子力谱(SMFS)技术是研究蛋白结构与蛋白去折叠中的生物力学性质的有力工具。SMFS能够为研究和药物开发提供有价值的信息。SMFS有助于揭示人类疾病病理的分子机制,而机制往往被认为与错误折叠的蛋白的形成和积聚有关,如阿茲海默症和帕金森氏症。然而现有的SMFS仪器缺少同时并行研究多个蛋白去折叠的功能,使得研究过程耗时很长。使用声波来对数以百计的生物分子施力并操控是非常理想的高通量研究方法。此案例中,声力谱学(AFS)是最新的用于研究蛋白去折叠的单分子操控方法。[img=,500,145]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021031435408_23_981_3.png!w690x201.jpg[/img]1 AFS检测蛋白去折叠的图解。蛋白一端栓住玻璃表面,另一端拴住聚苯乙烯微球。[img=,400,238]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021032257008_8827_981_3.png!w421x251.jpg[/img]2 对视野范围内被蛋白分子拴在玻璃表面的4.5 μm聚苯乙烯微球同时成像。物镜放大倍数为20x。AFS设备使用压电元件共振激发平面声阱穿过微流控芯片。共振波对与周围介质密度不同的微球施力,每个生物分子被单独地由微球拉伸(图1)。仪器可以实时并行操控视野范围内数以百计的微球,获得大量的数据以研究每个生物分子的随机与异质行为(图2)。在Yan Jie(NUS)的实验室的这项试点研究中,我们首次展示了AFS如何对蛋白施力并操控。实验对踝蛋白施力引发(去)折叠同时以高精确度记录蛋白的拉伸。踝蛋白属于机械敏感性大分子,在调控蛋白粘附于胞外基质中起作用。踝蛋白是细胞代谢过程和信号通路中的关键,并能够在力的作用下改变构象,在单分子生物物理学中备受关注。[img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021033524578_3892_981_3.png!w679x212.jpg[/img]3 使用AFS得到的单个踝蛋白分子的去折叠曲线,力变化速率为1 pN/s。轨迹在500 Hz下获得(彩色点),并平衡至50 Hz(黑色线)。3a 单个踝蛋白多次拉伸的力-距离曲线。3b 单个拉伸循环的力-距离曲线。3c 图3b中分子的时间-距离曲线。在这项研究中,连接了DNA的踝蛋白拴在聚苯乙烯微球和玻璃表面。启动声波后形成平面声阱,连接了踝蛋白的微球受到朝向声阱的力。实验中通过调节声波的振幅来改变力的大小。逐渐增加力的大小使得蛋白的结构域按顺序去折叠。实验循环进行拉伸与收缩的过程(力变化速率为1 pN/s)并同时以nm级的分辨率检测每个蛋白的拉伸长度(图3)。通过力-距离曲线(图3a)可以观察到单个踝蛋白的去折叠循环。将单个蛋白的去折叠轨迹叠加即可检测到单个结构域去折叠的发生,研究人员可以得到蛋白结构和蛋白去折叠自由能图谱信息。AFS仪器产生的超声并不会损害生物分子的结构完整性,因此蛋白可以连续去折叠和再折叠长达数小时,并能够得到单个蛋白多次去折叠和再折叠的曲线。相比于其他SMFS方法经过多次拉伸和收缩之后对蛋白造成光学损伤或力学损伤使得实验被迫终止,AFS能够获得更多的信息。图3b: 单个力-距离曲线中截取一小段,表示一个拉伸过程。将力从15 pN增加至19 pN,可以观察到4个去折叠过程,与蛋白的4个结构域相符合,拉伸长度为30 nm至100 nm。AFS的高分辨率检测功能可以很清晰地区分去折叠过程。AFS在x,y方向精度为2 nm,在z方向精度为4 nm(频率为25 Hz),可以大幅提高(去)折叠研究的精密程度。图3c: 图3b中分子的18秒范围内的时间-距离曲线。AFS可以检测短至毫秒级至长达10小时以上的事件,用于研究蛋白的热力学和动力学。通过检测踝蛋白的去折叠步骤并记录连续的高分辨率的去折叠轨迹,可以得出AFS如何用于研究蛋白去折叠。研究蛋白(去)折叠的详细机制能够在生物物理和生物医药领域产生突破性发现。今后的蛋白折叠以及蛋白相互作用的研究中,AFS的多分子并行操控功能将发挥重要作用,用户可以同时并行检测大量的蛋白分子。用户可以获得大量的实验数据,在不影响分辨率的同时对蛋白的机械性质数据作出分析。

  • 高校科研院所招聘联盟刚刚发布了中国科学院化学研究所分子反应动力学国家重点实验室所属单分子光谱研究组-博士后职位,坐标北京,敢不敢来试试?

    [b]职位名称:[/b]中国科学院化学研究所分子反应动力学国家重点实验室所属单分子光谱研究组-博士后[b]职位描述/要求:[/b]合作老师:夏安东 研究员,博士生导师 研究方向: (1)飞秒激光光谱和非线性光学 (2)单分子光谱及应用 招聘条件:博士学历、责任心强和有团队精神,具有激光光谱、或单分子光谱研究背景者优先。(申请者具有下列研究经验之一,即可优先考虑) (1)熟悉飞秒激光技术、飞秒泵浦-探测、飞秒荧光上转换和CARS等原理和技术,并有相关的研究经验。 (2)熟悉单分子光谱知识,了解光学显微镜的基本原理, 有一定的单分子光谱研究基础。 (3)有一定的荧光分子和荧光量子点的荧光光谱的研究经验、以及荧光探针分子(量子点)的生化标记的知识背景、或者荧光半导体量子点的合成与表征。 (4)熟悉LabVIEW、以及 相关计算机编程和数据采集。 待遇:依照国家及科学院化学所规定。[b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/60992]查看全部[/url]

  • 请教一个关于微量凯氏定氮步骤方法的疑问...

    就是蒸馏出来的氮被硼酸吸收后...当观察到锥形瓶内溶液由紫变绿时,开始计时蒸馏3分钟,然后提高冷凝管出口离开液面1cm 高,同时用少许蒸馏水冲冷凝管出口外侧,继续蒸馏1 min. 移走锥形瓶,用表面皿覆盖,等待滴定。想问一下,为什么蒸馏完3分钟后,还要把冷凝管的出口离开液面1cm,继续蒸馏1分钟,为什么要离开液面这样再蒸馏,而不直接蒸馏4分钟,再离开液面呢?

  • 请教一个关于微量凯氏定氮步骤方法的疑问...

    就是蒸馏出来的氮被硼酸吸收后...当观察到锥形瓶内溶液由紫变绿时,开始计时蒸馏3分钟,然后提高冷凝管出口离开液面1cm 高,同时用少许蒸馏水冲冷凝管出口外侧,继续蒸馏1 min. 移走锥形瓶,用表面皿覆盖,等待滴定。想问一下,为什么蒸馏完3分钟后,还要把冷凝管的出口离开液面1cm,继续蒸馏1分钟,为什么要离开液面这样再蒸馏,而不直接蒸馏4分钟,再离开液面呢?谢谢大家~~~

  • 【讨论】关于锁定帖子

    为了防止一些帖子成为灌水者的温床,我做锁定了许多帖子。而且这些帖子大部分都是好贴。但是论坛里面却还要算这个帖子的回贴量。一方面说禁止“顶“,“谢谢“之类的回贴,一方面却注重帖子的回贴量,这样子很多时候都很矛盾。因为很多好的帖子,也需要靠灌水者才能浮出水面。不知道,这方面大家有什么样的看法

  • 【技术@创新】我科学家在单分子自旋态的量子调控研究中取得新进展

    [size=4][font=黑体]简介:量子调控研究是国家中长期科技发展战略规划的重要内容。近日,中科院物理所纳米物理与器件实验室高鸿钧研究组与谢心澄研究员及英国利物浦大学Werner A. Hofer教授合作在单分子自旋态的量子调控研究中取得新进展[/font][/size]量子调控研究是国家中长期科技发展战略规划的重要内容。近日,中科院物理所纳米物理与器件实验室高鸿钧研究组与谢心澄研究员及英国利物浦大学Werner A. Hofer教授合作在单分子自旋态的量子调控研究中取得新进展。他们发现在酞菁铁分子Kondo效应中由于分子中心铁原子在金属表面的吸附位置不同对Kondo效应产生很大影响。相关研究结果发表在9月7日出版的《物理评论快报》(Phys. Rev. Lett. 99, 106402 (2007))上。这是首次报道吸附位置对单分子Kondo效应的调控作用,为单分子自旋态的量子调控及其在量子信息中应用研究提供了新思路。 Kondo效应是指磁性杂质中的局域自旋与自由电子强关联相互作用所引起的一系列低温反常现象。近年来,扫描隧道显微镜技术的迅速发展使人们能够精确地测量单个磁性原子或分子在金属表面上的Kondo效应,而在原子尺度上探索影响Kondo效应的因素是实现单分子自旋态量子调控的关键。 物理所高鸿钧研究组利用低温扫描隧道显微镜及扫描隧道谱,在对吸附在金表面的磁性分子酞菁铁的测量中,发现了Kondo温度高于室温的Kondo效应,并发现分子中心铁原子在金表面的吸附位置对Kondo效应影响很大。他们发现酞菁铁分子在金表面存在两种吸附取向,虽然在分子中心测量的扫描隧道谱显示两种分子取向都存在Kondo效应,但是彼此却存在很大差别。这种差别主要表现在两个方面:根据Fano理论拟合的Kondo温度,以及扫描隧道谱在费米面附近的线型。第一性原理计算及实验测量表明,两种取向的分子的中心铁原子吸附在金表面的不同位置:第一种分子取向,铁原子吸附在金表面两金原子之间的桥位置;第二种分子取向,铁原子吸附在金表面金原子的正上方。他们的理论分析表明,分子中心铁原子在金表面的吸附位置不仅影响到局域自旋与自由电子耦合相互作用的强弱,而且还会影响扫描隧道谱测量中隧穿电子的通道。 近年来,高鸿钧领导的研究组对纳米功能结构材料的调控生长、机制与物性等进行了系列研究(如:Phys. Rev. Lett. 97, 246101 (2006);97, 156105 (2006);96, 226101 (2006);96, 156102 (2006);Adv. Func. Mater. 17, 770 (2007))。根据该工作观察到的吸附位置对单分子Kondo效应,他们提出了调控单分子自旋量子态的可能途径:1)通过基底上不同位置或不同基底的物理化学性质(如:Phys. Rev. Lett. 97, 156105 (2006));2)通过调节纳米分子体系中非功能性侧链(如:Phys. Rev. Lett. 96, 226101 (2006))。这对量子调控和量子信息研究具有重要意义。 以上工作得到了国家自然科学基金委、国家科技部和中国科学院的资助。

  • 双旦活动礼品发放说明,兑换实物礼品的筒子注意查收(剩余金蛋兑换积分功能已经开启)

    剩余金蛋兑换积分功能已经开启剩余金蛋兑换积分功能已经开启,3金蛋=1积分,取整喔~还剩余金蛋的筒子,赶紧前去兑换。最后祝各位筒子,新年快乐,阖家幸福!仪器论坛2012.1.16————————————————————————————————————————由于本次活动所发放的礼品数量比较多,特分批邮寄,具体邮寄时间如下:1月6日(星期五):折叠小书灯(全部发放)1月9日(星期一):小猪手电、电子万年历、16G优盘、移动硬盘、《有毒有害物质分析》、《实验室信息关系系统/LIMS》、体温计(部分)1月10日(星期二):手机充值卡(移动)、体温计(剩余部分)、2011年《仪器快讯》合订本、8G优盘请各位保持手机开机、电话通信正常,以免邮件丢失友情提醒:由于恰逢节庆假日期间,快递也可能变成慢递,请各位及时查收,如果遇到破损,请拒收。谢谢合作!其他事宜欢迎跟帖咨询……PS:1月6日之后利用漏洞刷的金蛋用户将清理所获得的金蛋及相关奖励。对于利用漏洞的用户严惩不贷!仪器论坛2012.1.10

  • 【原创大赛】离子色谱仪检定新方法探索(三)——淋洗液发生器浓度及梯度校正

    【原创大赛】离子色谱仪检定新方法探索(三)——淋洗液发生器浓度及梯度校正

    离子色谱仪检定新方法探索 —淋洗液发生器浓度及梯度校正 Dionex公司的淋洗液发生器可以实现单泵梯度的特殊模式,目前应用较广,但对其实际发生浓度以及浓度梯度,并没有合适的检验标准。利用酸碱中和反应可测定浓度的实际值。查阅资料发现,在戴安公司出厂检定中分别在0.1mL/min和1mL/min两个流速下对其梯度浓度进行实验,其中采用紫外检测器,并使用数据转换器对其进行处理。由于仪器设备的限制,所以,本实验只采用了其检定程序,通过电导检测器和紫外检测器测定淋洗液发生器所产生的淋洗液的浓度梯度。1 实验部分1.1 仪器设备 ICS-3000系统(AS自动进样器,EG淋洗液发生器,DC模块,SP/DP泵)1.2 实验操作 淋洗液发生器的检定分为两个部分:首先检定其淋洗液浓度精度,采用酸碱滴定的方法进行;其次是对其淋洗液连续变化的梯度准确度检定,主要是通过电导检测器和紫外检测器测定淋洗液发生器所产生的淋洗液的浓度梯度。 KOH淋洗液发生器发生浓度的校正:设置流速为1.0mL/min,淋洗液浓度为50mmol,稳定3分钟后,用锥形瓶接受淋洗液,时间15分钟。用标定好的0.05mmolHCl滴定。重复三次。0.05mmolHCl的标定:称取约0.1g 干燥无水Na2CO3,于锥形瓶加入25ml超纯水,滴加1-2滴甲基橙指示剂。 MSA淋洗液发生器发生浓度的校正:设置流速为1.0mL/min,淋洗液浓度为50mmol,稳定3分钟后,用锥形瓶接受淋洗液,时间15分钟。用标定好的0.05mmolNaOH滴定。重复三次。0.05mmolNaOH的标定:称取约0.3g干燥的邻苯二甲酸氢钾,于锥形瓶中,加入25mL超纯水,滴加2滴酚酞指示剂。http://ng1.17img.cn/bbsfiles/images/2016/09/201609210953_611346_3143520_3.png 图1 系统流路连接 淋洗液梯度精度检定时,在configuration中需要将单泵、淋洗液发生器、电导检测器以及紫外可见检测器连入到系统中。流动相为超纯水,流路连接如图1所示。共对两个精度范围进行检定:第一个为0-10mM范围内,每次梯度变化为1mM;第二个为10-100mM范围内,每次梯度变化为10mM。同时,需要对1mL/min和0.1mL/min两个流速条件下进行精度梯度检定,分别测定高流速和低流速条件下淋洗液发生器的工作状况。2 结果分析 所得检定谱图如图2所示http://ng1.17img.cn/bbsfiles/images/2016/09/201609210954_611347_3143520_3.png图2 1-10mM中淋洗液发生器浓度梯度变化电导谱图 数据及计算结果如表1所示。表1 1-10mM淋洗液发生器浓度变化数值表 浓度变化/mM 1 1 1 1 1 1 1 1 平均值 RSD 信号变化/μs2642602602602592562542542581.35% 由上表所得数据可以发现,淋洗液发生器在1-10mM的浓度范围内,能够准确的产生相应浓度的淋洗液。 范围以为10-90mM(在100mM,电导检测器已超载),每五分钟浓度增加10mM。所得检定谱图如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/09/201609210956_611350_3143520_3.png 图3 10-100mM中淋洗液发生器浓度梯度变化电导谱图 数据及计算结果如表2、3所示。表2 10-50mM淋洗液发生器浓度变化数值表 浓度变化/mM 10 10 10 10 10 平均值 RSD 信号变化/μs2461239323422288224823461.76%表3 50-90mM淋洗液发生器浓度变化数值变化表 浓度变化/mM 10 10 10 10 10 [ali

  • 凯氏定氮仪与化学发光定氮法的比较

    燃烧法定氮仪也叫化学发光定氮仪,它与凯式定氮仪的区别体现在原理,测定对象,标准,样品量,价格,运行费用,分析速度,自动化程度,工作环境等方面,具体介绍如下:一、原理不同:凯氏方法是绝对测量;燃烧法是相对测量凯氏定氮仪是应用凯氏定氮法的仪器设备,凯氏方法是利用浓硫酸消化、碱性环境蒸汽蒸馏、硼酸吸收、指示剂滴定终点颜色判定法,根据滴定体积来计算出氮含量。燃烧法:在高温情况下,使用充足的氧气将样品全部燃烧,生成氮的氧化物,再还原出氮元素,利用TCD 检测器测量其信号强度,与事先标定的曲线进行比对,计算出样品中的氮含量。凯氏方法是绝对测量,与标准样品无关,可以直接测量标准品的含量,并用来检验仪器的准确性;燃烧法是相对测量,必须依靠标准品,标准品的准确性定标直接影响测量结果,没有办法检验仪器的准确性。二、测量的对象不同:凯氏测量的是氨态氮;燃烧法测量的是总氮样品中的氮含量根据定义不同有:总氮、凯氏氮、铵态氮、硝态氮、亚硝态氮;也可以分为:有机氮和无机氮。燃烧法测量的是总氮的含量。凯氏方法可以分别测量出来上述各个氮含量。样品不经过消化直接蒸馏测量,就是无机氮中的铵态氮;在蒸馏过程中加入催化剂将硝态氮、亚硝态氮转换成铵态氮,其结果就是无机氮。样品经过消化蒸馏得到的是凯氏氮,在消化前加入催化剂将硝态氮、亚硝态氮转换成铵态氮,得到的是总氮。因而燃烧法测量的结果总是高于凯氏氮的结果;没有人为掺假的食品,二者测量结果是一样的。三、标准不同:凯氏方法是所有样品的国标;燃烧法是参考方法凯氏方法是食品、饲料、土壤、环境、种子等样品中氮或蛋白质含量测量的强制标准,测量结果具有互通性和可比性。由于燃烧法和凯氏法测量的氮含量对象不同,造成样品种类不同、成份不一样,结果偏差也不一样。燃烧法不适合化肥中的氮含量的国家标准。四、样品量不同:凯氏方法是常量分析;燃烧法是微量分析凯氏方法是常量和半微量;燃烧法是从微量扩展到半微。凯氏法固体到5g、液体到15ml;燃烧法最多到1g。凯氏法可以一直使用最大量分析,而燃烧法如一直使用最大量分析,则燃烧后的无机残渣堆积在仪器里面,要求频繁清理,同时也会缩短仪器的使用寿命。对于均匀性不好的固体样品,脂肪高的食品,只能通过大取样量来减少测量结果的偏差,燃烧法显得稍微。困难;如大豆、玉米。此外鲜肉类食品,由于蛋白、脂肪分布不均匀,也建议是大的取样量。

  • 【重要公告】为加快速度,论坛对帖子进行了分年索引

    【重要公告】为加快速度,论坛对帖子进行了分年索引

    为加快发帖回帖的速度,论坛对帖子进行了分年存档索引,一年一个存档索引,2006年及以前发表的帖子今后将只能浏览和搜索,不能再回复和编辑了。目前每个版面的帖子列表页面默认只列出2007年发表的帖子,如果想查看年份发表的帖子,可以在版面的帖子列表左上方选择年索引。如下图所示:[img]http://ng1.17img.cn/bbsfiles/images/2007/07/200707312157_59492_1600795_3.jpg[/img]另外,在帖子搜索页面上也有一个年索引选项,请大家在搜索时注意一下。

  • 【分享】日本利用分子马达开发“分子快递”技术

    日本开发“分子快递”技术日本一研究小组利用分子马达开发出一种新技术,可将微小颗粒经由生物芯片上的微细通道运送到指定地点。这种“分子快递”技术将来可促进特定蛋白质和其他化学物质在芯片上发生高效反应,帮助人们研发新药。据报道,日本东京大学生产技术研究所藤田博之教授等组成的研究小组研制开发了这一技术。他们首先在玻璃基质的生物芯片上的微细通道内“铺设”一种分子马达——驱动蛋白;然后,再向通道内添加微管和作为能量的三磷酸腺苷(ATP),进入通道的微管会沿着通道整齐地排列起来,相当于“ 快递” 系统的“ 铁轨”; 最后, 用紫外线照射芯片,驱动蛋白就会抓住微管将其固定下来,其作用类似“ 路基”。至此“ 分子快递” 的基本装置安装完成。除了起到“路基”的作用外,驱动蛋白还可起到“火车”的作用。需要运送某种微粒时,就将特定微粒附着到驱动蛋白上,然后放入芯片的微细通道。添加一些三磷酸腺苷后,驱动蛋白就会沿“铁轨”运动将微粒送达指定地点。在实验中,研究人员在芯片上设置宽0.5 毫米、长30 毫米的通道,并在里面铺设好微管“铁轨”。将用荧光物质标记的直径为0.32微米的微粒附着到驱动蛋白上后放入通道,研究人员观察到微粒以每秒1 微米的速度沿“铁轨”运动。生物芯片作为分析蛋白质和其他化学物质反应的装置被广泛应用。使用时,需要将试剂放入固定地点,再把它们运送到指定的反应地点。目前常用的运送微粒的技术依靠沿通道流动的水为载体,但这样的技术难以实现精确控制,而利用“分子快递”技术,可将微小颗粒高效精确地搬运到目的地。

  • 【原创】和一个版友PK凯氏定氮法

    [color=#00008B][color=#00FFFF][size=4]版友给我的短信,贴出来大家一起讨论下:[/size][/color][/color]凯氏定氮法本身没有问题; 不过我有二个疑点: 1:有人说“其实凯氏定氮法的缺陷并不难弥补,只要多一道步骤即可:先用三氯乙酸处理样品。三氯乙酸能让蛋白质形成沉淀,过滤后,分别测定沉淀和滤液中的氮含量,就可以知道蛋白质的真正含量和冒充蛋白质的氮含量。这是生物化学的常识,也早成为检测牛奶氮含量的国际标准(ISO 8968)。”请问搂主这样说有没有道理? PK:您说的有道理,但我要反驳的事:1.奶里本身不含有三聚氰胺,如果不出现这档子事,根本就没人去关心,就像我我之前说的,泉水中没有鱼,没有捕到的必要,何必要浪费宝贵的资源去检测呢?2 看您也是专家,对凯氏定氮有研究,凯氏定氮本身用大量的硫酸和氢氧化钠,对环境的污染本身比较大,如果按照您说的方法去检测,将会使用双倍的试剂,污染环境,您说呢?3 这也是最关键和重要的一个环节,三聚氰胺如果含量比较低的话,是很难检测的,一般现在用0.1摩尔的酸,如果含量比较低,你就要换0.01摩尔的酸您也知道,现在一般用的比较多的是福斯的开始定氮仪,换酸很麻烦的,而且标准酸溶液浓度越低,准确度也越低,像现在液相检测三聚氰胺的检出限2毫克每公斤,凯氏定氮根本达不到这个检出限,只有像三鹿这样添加很多的才能检测出来。2:即便牛奶中不含三聚氰胺,是不是常规分析,也要应该检测一下牛奶中有机成分的分析,比如奶牛饲料中含有农残等等,挤出来的奶肯定要化验一下,这是理所应当的吧?就好比我们喝的自来水一样啊。而检测的手段最好用gc-ms,三聚氰胺是可以被检测出来的。 PK:现在一般的大型乳品厂都有福斯公司的乳成分分析仪,采用近红外技术,2分钟测定一个样品,检测出脂肪,蛋白,乳糖和体细胞数据,很先进,但是需要凯氏定氮校准仪器,很多厂家收奶都用这个检测。 常规分析不做牛奶中的有机成分,拿巴氏杀菌奶来说,做脂肪,蛋白,干物质,硝酸盐,亚硝酸盐,黄曲霉毒素,微生物方面有大肠菌群,菌落总数,致病菌等,元素检测铅和无机砷,就这么几项下来检测费都好几千。如果检测农药残留,那就更多了666,DDT,有机磷,有机氯,多了去了,您想法是好的,但实现起来比较困难,企业很难承担检测费,而且能检测的实验室也不是很多。 还有您说的gc-ms,很先进,很好,但是能买的起的实验室又有多少呢?不是每个实验室都那么有钱。有的做凯氏定氮还没有定氮仪,用凯氏烧瓶做呢条件层次不齐,实现起来很困难,还是从原料奶的源头抓起,是最好的办法,消灭在萌芽状态。

  • 双缩脲法测定蛋白质浓度

    目的]掌握双缩脲法测定蛋白质浓度的原理和标准曲线的绘制。[align=center]原理][/align][align=center]双缩脲(NH2CONHCONH2)在碱性溶液中与硫酸铜反应生成紫红色化合物,称为双缩脲[/align][align=center]反应,蛋白质分子中含有许多肽键(-CONH-)在碱性溶液中也能与Cu2+反应产生紫红色化合物。在一定范围内,其颜色的深浅与蛋白质浓度成正比。因此,可以利用比色法测定蛋白质浓度。[/align][align=center]双缩脲法是测定蛋白质浓度的常用方法之一。操作简便、迅速、受蛋白质种类性质的影响较小,但灵敏度较差,而且特异性不高。除-CONH-有此反应外,-CONH2、-CH2NH2、-CS-NH2等基团也有此反应。[/align][align=center]操作][/align][align=center](一) 绘制标准曲线[/align][align=center](二) 未知样品蛋白质浓度的测定 [/align][align=center] 1.取12支试管[/align][align=center]6支分别加入0,0.4,0.8,1.2,1.6,2.0毫升的标准[/align][align=center]   6支分别加入1毫升不同稀释浓度的待测液(两两相同)。[/align][align=center] 2.分别加水补足到2毫升。[/align][align=center] 3.分别加入4毫升双缩脲试剂在室温/37℃下放置30分钟。[/align][align=center][

  • 【转帖】凯氏定氮法和杜马斯法测定植物样品中的全氮方法比较

    【转帖】凯氏定氮法和杜马斯法测定植物样品中的全氮方法比较

    1 引 言 氮是植物需求量最大的矿物质营养元素,同时也是植物个体乃至自然生态系统和人工生态系统(包括农业系统)生长最常见的限制因子。在植物体中含有的氮,大部分是作为蛋白质、氨基酸、酰胺及其它与蛋白质有关的物质的组成而存在的,此外少部分作为硝酸态存在。 全氮是植物成分分析中非常重要的项目之一。全氮的测定方法有很多种,最经典的方法为凯氏定氮法,但是普通的凯氏法不便定量硝态氮,而其含量可能相当高。 此外,对-N=N-,http://www.dsddy.cn/Upload/UploadPic/201042612017583.jpg,-N=O, -NO2等的定量也是困难的。对于大量含有这些形态氮的样品,应采用各自的定量方法进行检测。但通常用能定量植物样品中大部分氮素的凯氏法所定量的氮作为全氮。若样品中含有较多硝态氮时,可用水杨酸硫酸分解法还原硝酸,这种方法比较烦琐。目前在欧美等发达国家广泛采用杜马斯燃烧法取代凯氏法。这种方法是使样品在高温纯氧环境中燃烧后,分离出氮气,并被热导检测器检测,检测出的结果包含了硝态氮。此法也因其快速,精确,无污染等优点而得到了广泛的认可。对两种定氮方法做一比较是非常必要的。以下简介杜马斯燃烧定氮法,并对两种方法测定几种植物样品中的全氮进行了对比。2 杜马斯燃烧定氮法 早在1833年,Jean Baptiste Dumas就开发出燃烧定氮法,后人定名为杜马斯(Dumas)法。该方法的发明比凯氏法还早50年,但是由于早期的杜马斯法只能检测几个毫克的样品,使它的实际应用受到了极大的限制,在随后的岁月里这种方法没有被广泛的应用开来。近十年来,随着可以检测克级样品的杜马斯法快速定氮仪问世,才拉开了其在食品、饲料、肥料、植物、土壤及临床等领域上广泛应用的序幕。目前,在西方国家的很多实验室都已用杜马斯法代替凯氏法检测全氮。http://ng1.17img.cn/bbsfiles/images/2010/12/201012032157_264274_1641058_3.jpg 凯氏定氮法需要较大的劳动强度和分析时间,且操作过程较为危险,产生化学废物污染环境。相比之下,杜马斯法有很大的优势:它不需要对样品做复杂的前处理,只要适当的粉碎;单个样品分析只要3-5分钟,可用自动进样器连续进样,不需要人看守;它不用有害试剂,不产生污染物质,对操作人员和环境都是安全的。表1归纳了两种方法的特点。3 实验部分3.1凯氏定氮法3.1.1原理利用浓酸溶液将有机物中的氮分解出来。均匀的样品在沸腾的浓硫酸中作用,形成硫酸铵。加入过量的碱于硫酸消解液中,将NH4+ 转变成NH3,然后蒸馏出NH3,用接受液吸收。通过测定接受液中氨离子的量来计算样品中氮的含量。3.1.2仪器全自动凯氏定氮仪。3.2杜马斯燃烧定氮法3.2.1原理样品在900℃~1200℃高温下燃烧,燃烧过程中产生混合气体,其中的干扰成分被一系列适当的吸收剂所吸收,混合气体中的氮氧化物被全部还原成分子氮,随后氮的含量被热导检测器检测。3.2.2仪器蛋白质测定仪 。3.2.3反应过程(基于ZDDN-II氮/蛋白质分析仪)样品在高温下燃烧,燃烧生成的气体被载气 CO2携带直接通过氧化铜(作为催化剂)而被完全氧化。此外,化合物中一定量的难氧化部分会被载气携带通过作为催化剂的氧化铜和铂混合物进一步氧化。燃烧生成的氮氧化物在钨上还原为分子氮,同时过量的氧被结合。用传感器控制最佳燃烧所需的氧气量,以保证氧气和钨的消耗量最少。用一系列的吸收剂将干扰成分如H2O、SO2、HX从被检测气流中除去。用TCD热导检测器来检测 CO2 载气流中的氮。用标准物质独立校正,被测样品中含氮量自动计算、打印和存储。4 结果与讨论凯氏法一个公认的局限性是它不能定量NO3-N (植物样品全氮的重要组成部分)( Silvertooth和Westerman,1988)。Sader等人(2004)发现NO3-N的存在会影响全氮含量。Simonne et al.(1995)和Etheridge et al.(1998)也证实,在分析植物样品时,杜马斯法得到的全氮值总是略微高于凯氏法的测定值。本实验也得到了同样的结果。http://ng1.17img.cn/bbsfiles/images/2010/12/201012032158_264275_1641058_3.jpg由表2可以看出,凯氏氮总是低于杜马斯氮,D/K的值均大于1。Sader等(2004)认为,凯氏氮与杜马斯氮在同类样品中呈线性相关,通过校正因子对硝态氮进行校正后,两种结果差异不显著。对于草类样品,凯氏氮低于杜马斯氮的程度是否与样品中硝态氮的含量有关及其相关性如何尚需进一步研究。此外,植物的不同部位以及生长的不同阶段其硝态氮的含量和分布会有所不同,用凯氏法及杜马斯法测得的总氮结果会有何等差异,在本文中未曾涉及,有待进一步探讨。5 结 论由于植物样品中多含有硝态氮,某些样品硝态氮的含量占全氮的10%以上,所以杜马斯法测定结果往往高于凯氏法的结果。可见杜马斯定氮法所得到的全氮结果更接近真值。而且,杜马斯法不需要消煮,大大缩短了工作时间,减少了实验的危险性,对环境没有任何污染。作者认为可以用杜马斯燃烧法进行植物样品中全氮的测定。

  • 涡轮分子泵运转时需要注意的问题7

    4、前级管道设安全阀  如果不采用一个操作合理的前级管道安全阀,就有可能即污染涡轮分子泵又污染真空室。当前级泵断电停车时,前级泵就会给自己充气反向通到涡轮分子泵的排气口。这种前级泵充气会输送前级管道返流的泵油,之后通过涡轮分子泵进入真空室,这种现象称为油污染,被污染后涡轮分子泵的叶片就必须在厂家的指导下用氟利昂来清洗。  在涡轮分子泵与前级泵之间装上一个真空阀,可以防止反向充气,当停电时立刻关上此阀。理想的情况是,它即能对前级泵入口充气又不致于使泵油返流浸入安全阀。另外,只有当它的压力基本均衡时才能打开安全阀,否则就有可能出现压力冲击前级管道的问题,例如,在断电瞬间前级泵压力将为大气压力,然而前级管道仍可能处于真空状态下。若阀门的两侧压力差很大,一旦通电阀门会立刻打开,含污染油的大气压下的气体将由前级泵冲向前级管道,从而会污染系统。所以安全阀需要一定的延迟开启的时间,以便让前级泵将阀门后的管道内抽成真空,阀前后的压差均衡时才可打开安全阀,总之采取办法来控制阀门的两侧的压力差,不使气流返冲。现在许多直联式旋片泵,在泵内装有安全阀,但阀门密封性能一定要保证,一旦阀门关不上后果相当严重,涡轮分子泵系统就会被油污染,这种问题是可能通过检测事先发现的。在运转的前级泵上安装一个前级真空规管,将泵关闭如果前级压力增加值在10~1000 μmHg (1×10- 2~1 torr 或1.333~133.3Pa)之间并不再增加,则阀门有效如果压力继续上升很快,直接达到大气压力说明阀门失效。如果阀门的密封良好,检查阀门是否立即开启还是等压力均衡后再开启,观察规管并开前级泵,如果规管马上就跳到几乎是大气压力,说明有返流的蒸汽的冲击。

  • 【原创】竞猜、悬赏类帖子应该有自动锁定功能

    竞猜、悬赏类帖子往往会出现灌水,抄袭跟帖的现象,而且由于版主临时有事可能在一段时间内不会及时管理帖子,造成不断低水平回帖,也会误导新网友,也让急切想得到结果的网友失望。所以,我建议:竞猜、悬赏类帖子应该有自动锁定功能。锁定可分为回帖数量锁定和回帖时间锁定。比如,我发的帖子仅允许20个回帖,那么到20帖后,此主题帖自动锁定。时间锁定也是,几个小时之内,或者几天之内,主题帖自动锁定。

  • 【转帖】高温快速消化与国标消化的凯氏定氮法测定蛋白质含量的比较研究

    【转帖】高温快速消化与国标消化的凯氏定氮法测定蛋白质含量的比较研究

    1  方法1.1  实验分组分为2 组:对照组和实验组。两组在测定样本蛋白质含量的过程中,采用不同的消化方法,之后的蒸馏、滴定、计算方法,则完全相同。推荐使用仪器:蛋白质测定仪,半自动定氮仪。1.1.1  对照组:操作严格按照国标规定〔1〕进行。其采用的消化方法为小火碳化消化法:取样品稀释液110 mL 与消化剂及硫酸一起加入定氮瓶内,于瓶口放一漏斗,将瓶以45°角斜支于有小孔的石棉网上加热消化,消化过程要求小火(400 ℃) 碳化3 h 左右。1.1.2  实验组:采用的消化方法是高温消化法:将样品稀释液110 mL 与消化剂一起加入定氮瓶内保持1 000 ℃的高温持续加热,其过程要求保持定氮瓶内液体沸腾,但所产生的蛋白质气泡不溢出瓶口,同时产生的蒸馏水气体在瓶壁遇冷回流,可以将瓶内壁上的蛋白质带回瓶底进行消化,整个消化过程大约1 h。1.2  蛋白质含量检测1.2.1  两组方法的稳定性、准确性比较: 分别对50 g/ L蛋白校准液(上海申索) 及15 份人血白蛋白样品(蛋白含量未知) 进行两种方法的蛋白质含量检测,前者重复15 次。1.2.2  实验组蛋白回收率检测(见表1) :任取2 种含蛋白的样品A、B(蛋白含量未知) ,每种样品分别取3 份各916 mL ,加入50 g/ L 的蛋白标准液0μL 、100μL 、400μL 和分别对应400μL 、300μL 、0μL 的生理盐水,执行4 次重复试验,进行2 种方法的蛋白质含量检测。最后计算回收率。http://ng1.17img.cn/bbsfiles/images/2010/12/201012032149_264269_1641058_3.jpg1.3  统计学分析数据以

  • 【讨论】建议-论坛资料是否在应助之后锁定

    提到这次圣诞大活动,最显著的特点就是灌水,明灌有之,暗灌也有(比如象我这种,将平素积累的资料一点一点的放出来的),不过看看一些版面,尤其一些提供资料的帖子,死水翻塘!忽然想到,是不是在一些求助资料帖子结束之后能够及时将帖子锁定,同时请论坛哪位能够编写一份仪器信息网论坛搜索引擎使用的说明,这样既保证不会出现现在这种大规模的翻塘的同时,也能保证网友找寻到想要的东西(这种问题在标准版尤为强烈,很多板油需求资料的时候很少或者从不进行事先搜索,直接需求,估计穿越有所感觉,提供旧链接的帖子应该是不计其数).最终建议如下:1,建议资料贴及时锁定2,求助资料贴在得到回应并问题解决后及时锁定3,编写论坛搜索引擎使用说明(这个谁来写还没有想到,不过最后的修纂可以交给wsy18,让他写成flash应该可以比较直观,请wsy18原谅我的冒昧推荐哦)以上,请大家讨论!

  • 欢迎xiaopianzi1209担任实验室建设/管理-仪器检定和计量规程版主

    欢迎[url=http://www.instrument.com.cn/bbs/user.asp?username=xiaopianzi1209]xiaopianzi1209[/url]担任实验室建设/管理-仪器检定和计量规程版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请参见这个帖子:[url=http://www.instrument.com.cn/bbs/shtml/20071101/1042199/]http://www.instrument.com.cn/bbs/shtml/20071101/1042199/[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制