当前位置: 仪器信息网 > 行业主题 > >

多次测量粒度仪

仪器信息网多次测量粒度仪专题为您提供2024年最新多次测量粒度仪价格报价、厂家品牌的相关信息, 包括多次测量粒度仪参数、型号等,不管是国产,还是进口品牌的多次测量粒度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多次测量粒度仪相关的耗材配件、试剂标物,还有多次测量粒度仪相关的最新资讯、资料,以及多次测量粒度仪相关的解决方案。

多次测量粒度仪相关的资讯

  • 【安东不怕扰e直播】粒度测量
    颗粒体系可能非常复杂,但颗粒分析不一定复杂!安东帕提供了两种不同的技术,来表征从纳米到毫米范围内的颗粒。Litesizer 系列采用光散射技术来确定分散液中纳米颗粒和微颗粒的颗粒尺寸、zeta 电位、透光率、分子量以及折光率。PSA 系列使用激光衍射技术来测量分散液和固体粉末中微米和毫米范围内的颗粒尺寸。这两个系列共同为全面的颗粒特性分析提供了更大的可能性。安东帕的 PSA 系列有着五十多年的历史。1967 年,世界首款激光衍射粒度分析仪 – 第一台 PSA – 研发完成。我们总共设计了 PSA 990、PSA 1090 和 PSA 1190 三个型号,用于测量悬浮液或固体粉末中的各种粒径。多激光技术适用于各种粒径多激光技术为您提供了广阔的粒径范围的测量。单激光器 PSA 990 的测量范围达到 0.2 μm 至 500 μm。为扩大测量范围,PSA 1090 和 PSA 1190 采用独特的衍射分析光学设计,包含多个激光器。PSA 1090 设计采用双激光器处理小至 40 纳米的颗粒,PSA 1190 则添加了第三个激光器,整个测量范围扩展到 2.5 毫米。干法和湿法一体式设计PSA 仪器是唯一可以在一台仪器中全面集成湿法和干法分散模式的激光粒度分析仪。这一独特设计使操作人员无需操作多个附件或进行手动调整。只需轻点鼠标,即可在湿法和干法分散模式之间切换,既节省了时间又避免了操作错误。在分散模式之间切换时,无需更换硬件、重新验证或重新校准光路的准直。准确的粒度分布结果由于固体粉末容易结块而导致测量结果错误,所以通常很难测量固体粉末的粒度分布。干法分散技术 (DJD) 是安东帕的专利技术 (FR2933314),可有效分散且精确测量粉体颗粒。该创新设计采用一个空气压力调节器,可以根据样品特性快速轻松地调节气流。气流产生的剪切力将结块的颗粒分开,这样就可以测量单个颗粒的粒径。终身保证精度、可重复性和稳定性安东帕的粒度分析仪完全符合 ISO 13320 标准,可以获得可追溯、准确和可重复测量结果的需求。激光器和光学试验台的独特设计确立了再现性高于 1 % 的市场标准。此外,独特的光学试验台设计使所有光学部件永久安装在铸铁底座上。确保即使在最恶劣的环境中操作也无需重新准直。因此,在粒度分析仪的整个使用期限内可保证精度、可再现性和稳定性。
  • 安东帕在颗粒度测量领域的完美解决方案
    安东帕在颗粒度领域不断提高市场知名度,即去年的Litesizer 500系列上市到今年PSA系列激光粒度仪的上市,原子力显微镜的上市,在颗粒测量领域更具有竞争度。近期第十一届全国颗粒测试学术会议暨2017全国粉体测试技术应用研讨会在广州举办,安东帕的展台也获得关注,并在大会上做了专题报告。报告题目:安东帕Litesizer TM系列和90系列激光粒度仪的介绍 安东帕应用工程师在颗粒测试学术会议上做报告,主要介绍了安东帕LitesizerTM系列和90系列两个激光粒度仪产品,其中LitesizerTM系列包含Litesizer TM500和Litesizer TM100,该系列采用了专利的cmPALS技术,可实现更短测量时间,更低施加电场降低样品和电极的影响、污染。90系列即990/1090/1190系列,于2017年上市,源于法国Cilas公司,具有湿法条件下粒度大小和形态可同时测定等特点。 安东帕MCR模块化智能型高级流变仪和litesizer 500纳米粒度分析仪形成互相补充的测试技术,最完美得匹配。使用Litezizer粒度仪获得有价值的颗粒度和胶体稳定性观察,现在你可以改进你的流变性能测试。了解颗粒度可以帮助你选择正确的测试系统,zeta电位表征你样品在更高剪切速率的稳定性。-更加专业的流变性能测试-对结果的更进步评估-对样品的更全面理解为进一步扩大公司颗粒表征的产品线,安东帕收购法国CILAS公司PSA业务。PSA系列激光粒度仪是在今年9月份推出的新品。 该系列产品包括PAS 990、PSA 1090和PSA 1190这三个型号。 PSA系列仪器扩展了基于动态光散射的当前粒度测量仪器组合,是LitesizerTM系列仪器的极佳补充。 PSA系列激光粒度仪最大的特点在于可一键切换干湿法,用户无需进行硬件的切换,只需一键点击鼠标便可轻松切换,无需重新验证或重新调准灵敏的光学器件。本次讲座将对PSA990/1090/1190基本应用情况,特点进行阐述。 化繁为简,为真正的工业AFM开辟道路安东帕进入原子力显微镜市场,推出一款专为工业用户设计、满足各种需求的 AFM 产品 Tosca™ 400。它独一无二地将先进技术与简单易用的操作完美结合,使得这款 AFM 既适合工业用户,也适合科学工作者。自动化和工作流导向的控制分析软件植入到机器的每个操作层级,进一步提高了效率并简化AFM测量操作。
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 /3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • 布鲁克海文沉降粒度仪在碳黑粒径分布测量中的应用
    p    strong Testa Analytical Solutions注册公司发布了一份技术报告,描述了如何使用他们的BI系列圆盘式离心/沉降粒度仪精确测量碳黑样品的粒径。 /strong /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201806/insimg/d966dc87-88fd-44fd-852a-876a29b9fb20.jpg" title=" BI-DCP圆盘式离心-沉降粒度仪.jpg" width=" 500" height=" 340" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 340px " / /strong /p p   碳黑作为耐磨填料被 span style=" color: rgb(255, 0, 0) " 广泛应用于轮胎制造业,以及许多其他橡胶材料的生产中 /span 。碳黑还被 span style=" color: rgb(255, 0, 0) " 用作涂层、涂料、塑料、印刷油墨和黑色着色剂中的颜料 /span 。 /p p   由于碳黑聚合物的粒径分布(PSD)与分散体的热学及力学性能关系紧密,碳黑PSD的测量成为其质量控制的重要组成部分。 span style=" color: rgb(255, 0, 0) " 尽管谱图上经常只出现单个峰,但非团聚态碳黑的典型粒径分布范围却十分宽泛,可从10nm到500nm以上。 /span /p p   作者介绍了使用圆盘式离心/沉降粒度仪测量粒径的原理,他们证明了为获取更精确测量的消光修正的重要性。 /p p   给出了ASTM系列碳黑参比材料(A4-F4)的结果,并比较了不同参比材料的差异。讨论了不同样品制备方式,给出了这些制备方式随时间的稳定性。 /p p   该报告的结论是,考虑到小粒径尺寸及典型分布的幅度,BI系列圆盘式离心/沉降粒度仪是测量碳黑粒径的优选仪器。BI系列圆盘式离心/沉降粒度仪不仅是一个坚固的仪器,且它的工作原理发展良好。如果进行了所有的修正,使用BI系列圆盘式离心/沉降粒度仪对碳黑样品粒径分布测量的精确性是非常卓越的。 /p
  • 样品池知多少?亚微米粒度测量迎来环形“天使”
    p style=" text-indent: 2em " 激光粒度仪在粉体、乳液、液体雾滴的测量中有着广泛的应用,样品池则是关键的零部件之一,对激光粒度仪的粒度检测能力有重要的影响。时随境迁,在如今的科研工作和工业生产中,测量亚微米颗粒的需求越来越多,提升亚微米颗粒的测量能力是激光粒度测试技术的重要研究方向。那么常见的激光粒度仪用样品池都有哪些种类?怎样的样品池最有助于激光粒度仪测量亚微米级颗粒呢? /p p style=" text-indent: 2em " (1)传统样品池 /p p style=" text-indent: 2em " 传统样品池由两块互相平行的平板玻璃组成,待测颗粒悬浮于两块玻璃之间。其结构如下图所示: /p p style=" text-indent: 2em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/47b9ccda-c182-4fd4-9143-b0cf03ab95db.jpg" title=" 1.png" / /p p /p p style=" text-indent: 0em text-align: center " (传统样品池结构图) /p p style=" text-indent: 2em " 样品池垂直于入射光,由于悬浮介质多为液体,而液体的折射率大于空气,当散射角大于一定范围时,由于全反射的作用,散射光不能出射到空气中,从而限制了仪器对亚微米颗粒的测量能力。 /p p style=" text-indent: 2em " (2)梯形样品池 /p p style=" text-indent: 2em " 用一块梯形玻璃代替了传统样品池右侧的平板玻璃,其结构如下图所示: /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/149ae414-cd61-4974-a297-86a864eb9da7.jpg" title=" 2.png" / /p p /p p style=" text-indent: 0em text-align: center " (梯形样品池结构图) /p p style=" text-indent: 2em " 这种样品池结构只需一束照明光,且小角度散射光从梯形玻璃的平面出射,大角度散射光则从玻璃的斜面出射,避免了全反射的发生。但是,从平面出射的小角度散射光与斜面出射的超大角度散射光在空间上部分叠加,相互干扰。 /p p style=" text-indent: 2em " (2)三角形样品池 /p p style=" text-indent: 2em " 用一块三角形玻璃代替了传统样品池右侧的平板玻璃,其结构如下图所示: /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/be92b18a-dfa0-4afb-bc7e-9a99d307e6b9.jpg" title=" 3.png" / /p p /p p style=" text-indent: 0em text-align: center " (三角形样品池结构图) /p p style=" text-indent: 2em " 该方法突破全反射限制机理,与梯形样品池的散射机理相同,但是其玻璃厚度过大。 /p p style=" text-indent: 2em " (4)柱面镜样品池 /p p style=" text-indent: 2em " 入射光沿着两块玻璃之间的狭缝入射,散射光则从玻璃出射。其结构如下图所示: /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/20702fb4-dc04-4cb8-b91c-786f9ad31bbb.jpg" title=" 4.png" / /p p /p p style=" text-indent: 0em text-align: center " (柱面镜样品池结构图) /p p style=" text-indent: 2em " 该方法使45° ~135° 的散射光能够出射到空气中,胶合在右侧平板玻璃上的柱面镜对相同散射角的出射光起聚焦作用,但是这种方法在小角度散射光的接收方面存在一定困难。 /p p style=" text-indent: 2em " (5)环形样品池 /p p style=" text-indent: 2em " 环形样品池的透明池壁和池内的液体柱组成一个透镜组。针孔的中心和主探测器的中心对于该透镜组互为物像关系。由于该透镜组在平行于纸面的方向具有聚焦能力,而在垂直于纸面的方向不具有聚焦能力,因此在该透镜组的前面增加一个平凸柱面透镜,以实现垂直于纸面方向光线的聚焦,从而使针孔以及探测器中心相对于平凸柱面透镜也呈物像关系。其结构如下图所示: /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/3aac82b4-aa81-4526-94be-fd5a39e400d0.jpg" title=" 5.png" / /p p /p p style=" text-indent: 0em text-align: center " (环形样品池结构图) /p p style=" text-indent: 2em " 环形样品池相比于传统样品池,具有更宽的散射角接收范围,理论上具有更小的测量下限与较高的小颗粒测量灵敏度。环形样品池法相比于其他扩展散射角的方法,理论上在0° ~180° 的范围内,散射光都能从池壁出射,巧妙地规避了传统方法中全反射的影响,不存在不同照明光束的数据拼接问题,也不存在不同出射面出射的散射光之间的相互干扰问题,且结构非常简单。与传统样品池测量结果的对比表明,环形样品池方法能够使仪器的测量下限接近静态光散射方法的理论极限。 /p p style=" text-indent: 2em " 环形样品池在激光粒度仪亚微米颗粒的粒度检测中,具有独到的优势,基于环形测量池的激光粒度测试方法对亚微米颗粒具有测量下限低、测量精度高、分辨率高和可靠性高的特点,堪称是亚微米粒度检测中的“环形天使”,这样的样品池,你的激光粒度仪拥有了吗? /p
  • 百特激光粒度仪助力中国航天事业, 圆满完成月壤粒度粒形分析任务
    2020年12月17日,嫦娥五号携带月球样品安全着陆,任务圆满完成,带回共计1731克月球岩石和土壤样品。2021年7月12日,中国空间技术研究院钱学森实验室获得了首批国家航天局发放的月球样品,对样品进行了尺寸、形态学和组成的研究。10月19日,中国科学院在北京发布了由我国科学家主导独立完成的嫦娥五号月球科研样品研究成果,这些成果得到国际专家的高度评价,彰显了我国科学家的科研水平和创新能力。丹东百特Bettersize3000Plus激光图像粒度粒形分析仪作为主力分析设备出场并且圆满完成任务,彰显了国产粒度分析设备的国际先进地位。图1. 首批月球科研样品发布会(图源网络)图2. Bettersize3000Plus激光图像粒度粒形分析仪研究月壤的物理及化学性质对月球的探索、月球资源利用具有重要的指导意义。探测月壤粒度粒型及分布情况对人类了解月球有极大帮助。通过是否有颗粒团聚反映月球是否存在水资源,亦可以通过分布结果推断月球的自然现象,包括太阳风注入、气象/微气象撞击、风化等。通过测量不同地点月壤的粒形粒径信息,可以研究月球不同地形的成因。钱学森实验室运用丹东百特Bettersize 3000 Plus激光粒度分析仪测量了样品的粒形和粒径分布。Bettersize 3000 Plus激光图像粒度粒形分析仪是一台集激光、图像二合一的粒度粒形分析仪器。激光衍射技术和动态图像分析技术相辅相成,扩大了分析范围,实现了对毫米、微米乃至纳米样品粒径的准确测量,同时还可以让研究者对颗粒的形态了如指掌。图3. 激光散射+显微图像二合一系统(百特专利技术)根据实验,月壤的粒径分布范围宽泛,小颗粒可至0.31μm,大颗粒可达到515.70μm。根据粒径的累计分布图,土壤分析常用的典型粒径值:有效粒径D10,中间粒径D30,中值径D50,限制粒径D60分别为4.75±0.39μm,、24.34±0.91μm、55.24±0.96μm和71.87±0.89μm。从粒径的频率分布图可以观察到月壤样品为宽分布样品,粒径分布连续且不间断。通过Bettersize3000Plus配备的高速CCD摄像头拍摄的图像,月壤的颗粒形态均匀,平均圆形度为0.875,仅有10%左右的颗粒圆形度小于此值。此结果与阿波罗计划带回的月壤样品先前的测量结果有所不同,其原因是分级方法的不同——阿波罗月壤样品使用了根据质量进行筛分的方法。2008年至2010年重新使用激光法对阿波罗月壤样品进行分析,得出中直径结果为66.47-30.05 μm,与丹东百特Bettersize 3000 Plus的结果更为接近。丹东百特Bettersize 3000 Plus对样品分散效果更强,避免了筛分法可能存在的团聚现象,并且不会对珍惜样品造成损伤及损耗,结果更直观可靠。图4. 编号CE5C0400月球样品的颗粒形貌和粒度分布测试结果丹东百特Bettersize 3000 Plus在月壤研究方面做出多次出色的贡献,其激光与图像联合的技术为实验室研究提供助力。在正式月壤样品测量前,钱学森实验室事先使用了模拟月壤对仪器进行了准确性的验证,粒形和粒径的实验结果都十分准确可靠,通过仪器测量得出的分析结果极具参考价值,因此钱学森实验室继续选择了丹东百特的仪器对真正的珍贵月壤样品进行尺寸和形态学的研究。无独有偶,德国慕尼黑大学环境与地球研究院同样使用了丹东百特的仪器进行月壤分析与研究,丹东百特Bettersize 3000 Plus的结果也得到了实验室的一致好评。图5. 现服役于德国慕尼黑大学环境与地球研究院的Bettersize 3000 Plus国内外诸多高端科研项目不约而同选择了百特激光粒度仪辅助项目研究,对于稀有样品的分析也不在话下,足以见得百特仪器优良的特性得到了客户的信赖。丹东百特未来亦将不断精进技术,以优越的产品质量助力中国航空航天事业再上一层楼。参考文献:【1】H. Zhang, X. Zhang, G. Zhang, K. Dong, X. Deng, X. Gao, Y. Yang, Y. Xiao, X. Bai, K. Liang, Y. Liu, W. Ma, S. Zhao, C. Zhang, X. Zhang, J. Song,W. Yao, H. Chen, W. Wang, Z. Zou, and M. Yang, Size, morphology, and composition of lunar samples returned by Chang’E-5 mission, Sci. ChinaPhys. Mech. Astron. 65, 000000 (2022), https://doi.org/10.1007/s11433-021-1818-1(附论文链接)
  • 纳米粒度仪哪家准,比测结果告诉你
    动态光散射纳米粒度仪是测量纳米材料粒度的主要手段。很多人会认为进口品牌准确性更好。而事实到底是怎样呢?在2017年11月17日广州“第十一届全国颗粒测试学术会议暨2017年全国粉体测试技术应用研讨会”上传来消息,在中国合格评定国家认可委员会和北京粉体技术协会联合举办的纳米颗粒粒度分析能力验证活动中,丹东百特BT-90纳米粒度仪与国内外19个品牌纳米粒度仪同台竞技,所测结果与标准样品的标准值相差极小,评价结果为“满意”。近些年来,中国合格评定国家认可委员会和北京粉体技术协会举办多多次粒度仪器分析能力验证活动,丹东百特都全部参加并一直取得很好的成绩。本次活动是主办方邮寄对比样品到各个比对实验室自主测试,然后由主办方对测试及结果进行统计分析,最终得出各个品牌的测试值与指定值之间的偏差和结论。百特BT-90的测试值为107nm,对比样品的指定值(标称值)为107,9nm,绝对偏差仅为-0.9nm,是所有参赛仪器偏差最小之一。这说明国产纳米粒度仪已经摆脱了以往模仿跟踪阶段,通过自主创新达到了新的高度。BT-90是丹东百特与华南师范大学联合研制的一款高性能的纳米激光粒度仪,它采用动态光散射原理,通过高灵敏度的光子计数器PMT实时接收纳动态光散射信号,通过具高性能的自相关器对信号进行甄别和处理,再通过精确反演计算就得到了纳米颗粒的粒度分布。除此之外,BT-90具有有效的恒温系统和保温措施,温控范围小于0.5℃,为得到准确的测试结果提供了稳定的外部环境。通过纳米粒度测试能力验证活动和百特BT-90准确的测试结果,我们可以看到国产纳米粒度仪的准确性已经达到甚至超越国外同类产品水平。BT-90将为中国纳米材料研究和产业化提供有力的保障。 (本文作者:百特公司研发中心主任 范继来)
  • 在线培训 | 锂电行业关键材料粒度测量的问题与挑战
    如何选择样品分散的方法?是什么造成了结果不稳定?如何判断数据的质量?为了解决您在日常粒度测量过程中遇到的困难,马尔文帕纳科定于5月13日下午举行《锂电行业关键材料粒度测量的问题与挑战》网络研讨会。本次会议将基于锂电行业激光粒度仪的用户在使用中的具体问题而定制,您可以在报名表单中选择/填写您粒度测量过程中遇到的问题和困惑,马尔文帕纳科应用专家会针对您的具体为您在线答疑解惑。敬请关注!在锂电行业的材料分析中,提供最佳且一致的颗粒粒度分布,不仅为电极材料增加价值,而且是确保最终产品质量的关键。正负极材料的粒度分布直接影响电池的充放电性能,安全性能等,因此,粒度分布结果是正负极材料关键技术指标。激光衍射技术,带来比筛法和沉淀法更快更可靠,比显微图像法更具统计学意义,已经成为锂电行业检测粒度分布的通用标准技术。随着行业发展,新材料不断涌现,新能源行业对粒度检测的要求越来越高,粒度结果允许的相对标准偏差越来越小,供应链上下游粒度结果一致性对比日益重要,例如极大值D100,极小值D0等等。 研讨会日程安排2021年5月13日 14:00 - 15:30时间报告内容14:00-15:00锂电行业关键材料粒度测量的问题与挑战 激光衍射技术测量粒度的原理 常见电池材料粒度监测的方法和注意事项15:00-15:30疑难问题答疑主讲人:黎小宇,马尔文帕纳科应用实验室主管2008年毕业于华东师范大学分析化学专业,同年加入马尔文帕纳科公司,一直从事激光粒度仪、图像粒度仪和纳米粒度及Zeta电位仪的应用和技术支持工作。报名链接:http://malvernpanalytical.mikecrm.com/NjgcrUl 联系我们:销售热线: +86 400 630 6902 售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 《颗粒 激光衍射粒度分析仪 通用技术要求》国标启动会成功召开
    一年之计在于春,2月3日立春之际,《颗粒 激光衍射粒度分析仪 通用技术要求》国家标准(计划号20204883-T-469)启动会于云端成功召开。标准起草单位及国内外主流激光粒度仪生产厂商的近40位代表出席了活动。会议由全国颗粒标准化分技术委员会秘书长李兆军主持,项目负责人、中国计量科学研究院张文阁详细介绍了该标准立项的背景、意义及过程,并对接下来的工作安排与分工进行了部署。激光粒度分析仪是用于测量颗粒材料粒度大小和分布的仪器。激光(衍射)粒度分析仪与其它粒度测量仪器相比,具有准确可靠、测试速度快、重复性好、操作简便、适用领域广泛等突出特点。目前,国内外激光粒度仪生产厂家众多,我国市场存量达数万台。在激光衍射粒度仪的生产和使用过程中,仪器技术指标及试验验证方法更受厂商及用户关注,而现有标准和技术规范对此基本没有涉及,亟需相关标准的修订。基于此,中国计量科学研究院等单位通过中国颗粒学会测试专业委员会联合相关单位的科研与技术人员,于2019年初组建了标准起草工作组(以下简称“工作组”),工作组以JJF1211-2008、IS013320等相关标准为基础,经过多次讨论、反复修改完成了《颗粒 激光衍射粒度分析仪 通用技术要求》草案,于2019年10月在全国颗粒标准化分技术委员会年会上讨论通过,之后通过国标委组织的专家答辩,于2020年12月28日正式批准立项。《颗粒 激光衍射粒度分析仪 通用技术要求》国家标准拟对激光衍射粒度分析仪的技术指标、试验项目、试验方法和仪器测量结果的不确定度评定方法进行规定,适用于静态激光衍射粒度分析仪的通用技术要求和性能评价。新标准的发布可进一步保障激光粒度仪的重复性、准确性、分辨率、测试范围,为用户提供更可靠的测试结果。项目启动后,工作组将汇总各相关单位的意见和建议,经充分讨论后形成标准征求意见稿,预计今年11月在全国颗粒标准化分技术委员会年会上对标准送审稿进行审查。仪器信息网将持续关注本标准项目进展情况并报道。
  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 蔡小舒教授:颗粒粒度及气溶胶在线测量的图像魔法
    p style=" text-align: justify text-indent: 2em " 说起图像法,大家很自然会联想到相机。对,图像法就是用相机作为传感器测量颗粒粒度。其实,图像法并不是一种新的测量方法,这是一种已有很多年历史的测量方法。早期的相机采用胶片作为传感器,记录被测物体的影像,然后将影像投影到工具投影仪上,在投影仪上用标尺或后期发展的坐标传感器量出被测物体的大小。下图是一种显微投影仪的照片,显微物镜把胶片上的图像投影到屏幕上,在屏幕上量出物体图像的尺寸。对于颗粒样品,则可以直接在显微镜下进行观测测量。很显然,在用胶片作为传感器的时期,图像法是不可能用于在线测量的。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/21f18409-d7be-4568-a7cb-255a0d29561b.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: center text-indent: 0em " strong 显微投影仪 /strong /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(255, 0, 0) " (友情提示:移动端用户下方点击阅读全文, /span /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(255, 0, 0) " 再点击取消即可阅读全文,也欢迎下载APP体验阅读新感受) /span /p p style=" text-align: justify text-indent: 2em " 图像法作为颗粒粒度测量,尤其是颗粒粒度在线测量的新方法再次出现并得到日益广泛的应用,得益于CCD和CMOS的发明,数码相机的飞速发展,以及光学镜头、光源、计算机技术以及图像处理算法的飞速发展。数码相机的核心是CCD/CMOS传感器,尤其是近年来CMOS技术的发展使其性能得到很大提高,几乎占据了绝大部分的数字传感器。下图是CMOS传感器的照片。在CCD/CMOS传感器中,代替胶片中感光粒子的是按矩阵排列的像素。如果在每个像素前按规律设置红(R),绿(G)和蓝(B)三色滤色片,则可以得到彩色图像。这样CCD/CMOS就将图像自然分解成了成可以用计算机处理的离散信号。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/fc747ae3-b89b-426c-8014-114e41854faa.jpg" title=" 图像2.png" alt=" 图像2.png" / /p p style=" text-align: justify text-indent: 2em " 图像法在线测量装置主要包括:相机、镜头、光源、取样装置等。其中相机是最关键的设备。为得到清晰的被测颗粒的影像边缘,一般在在线测量中采用逆光(背光)照明方式,相机在测量区一侧,光源在测量区另一侧,如图所示。 span style=" color: rgb(0, 176, 240) " strong 由于光的穿透能力不强,因此图像法不能用于高浓度颗粒的直接在线测量(in-line)。对于高浓度颗粒,必须采用取样方式测量(on-line) /strong /span 。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/fc188c81-6aa1-4737-96b1-bf330735261e.jpg" title=" 图片3.jpg" alt=" 图片3.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图像法在线测量原理示意图 /strong /p p style=" text-align: justify text-indent: 2em " 与图像法静态测量要求不同,在图像法在线测量中,被测颗粒不是静止不动的,而是在运动的,甚至运动速度很高。为得到清晰的颗粒图像,就要“冻结”运动颗粒的影像,这就要求图像的曝光时间要与被测颗粒的运动速度相匹配。对于高速运动的颗粒,要求的曝光时间要短,低速的可以稍长。 曝光时间还与拍摄图像时所用镜头的放大倍率有关,放大倍率大,要求的曝光时间就短,放大倍率小,曝光时间就可以长一些。& nbsp 曝光时间可以由相机的快门控制,也可以由光源的脉冲宽度控制。目前工业相机的电子快门时间最短可以到1微秒,而作为照明光源的脉冲激光的脉冲宽度可以达到几个纳秒。曝光时间越短,需要的光源强度就越大,这就给光源提出了高的要求。工业相机的电子快门分成滚动快门(rolling& nbsp shutter)和全局快门(global& nbsp shutter)2类。 span style=" color: rgb(0, 176, 240) " 为保证曝光时运动颗粒图像不发生畸变,在图像法在线测量中必须采用全局快门 /span 。 /p p style=" text-align: justify text-indent: 2em " 作为在线测量,图像法装置不能像显微镜那样通过更换不同放大倍率的显微物镜来适应不同大小颗粒的测量,这就希望像素尺寸尽量小,以得到高的图像分辨率。通常,滚动快门的CMOS的像素小于全局快门,目前滚动快门的CMOS的最小像素已达到1.5微米,而全局快门的最小的像素是3.8微米。 /p p style=" text-align: justify text-indent: 2em " 在图像法测量中,相机镜头是关键的设备。图像法能进行在线颗粒测量,很大程度上是依赖于 strong span style=" color: rgb(0, 176, 240) " 远心镜头 /span /strong 的发明和发展。用相机拍摄物体,通常图像存在远小近大的现象。而在线测量不能控制被测颗粒一定会处于镜头的焦平面位置,这就会造成颗粒的影像大小与颗粒的真实尺寸不同。远心镜头的出现,很好解决了这个问题。被测颗粒处于不同位置时,远心镜头获得的颗粒图像大小并不会随位置变化而变化。这就使得图像法可以用于颗粒的在线测量。远心镜头有定倍率和工作距离,以及可变放大倍率和工作距离2类,可以根据需要采用其中一种。 /p p style=" text-align: justify text-indent: 2em " 在图像法在线测量中最大问题是被测颗粒不仅存在于测量区中,有些还处于离焦位置,颗粒图像是不清晰的。下图中就同时存在清晰颗粒、离焦程度不大和离焦尺度大的模糊颗粒影像。 strong span style=" color: rgb(0, 176, 240) " 对于离焦颗粒图像,可以有2种处理方法 /span /strong ,对于离焦程度大的模糊影像,直接剔除,不予处理。对于离焦程度不大的模糊图像,可以采用图像处理算法来恢复,得到颗粒的粒度。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 在图像法在线测量中,一般都需要用取样装置将被测粉体样品从生产工业管路中去出,在取样时,必须采取措施防止颗粒样品发生团聚,如用无油无水的压缩空气分散样品颗粒。下面3个图给出了在在线测量取样中没有对颗粒采取分散措施,分散不足和充分分散后的颗粒图像。可以明显看出充分分散的重要性。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/59590f06-6860-4880-955a-367e24cc5746.jpg" title=" 图像4.png" alt=" 图像4.png" / /p p style=" text-align: justify text-indent: 2em " 图像法在线测量不仅可以给出被测颗粒的粒度,还可以得到被测颗粒的形貌参数,这是其它颗粒测量方法不能做到的。 /p p style=" text-align: justify text-indent: 2em " strong 图像法与RGB三波段消光法融合在线测量 /strong /p p style=" text-align: justify text-indent: 2em " 受光学原理和硬件的限制, strong span style=" color: rgb(0, 176, 240) " 图像法在线测量下限一般在2-3微米 /span /strong 。但在工业过程中存在着大量亚微米颗粒中同时存在有少量较大颗粒,并都需要测量其粒度的情况。这时可以 strong span style=" color: rgb(0, 176, 240) " 将图像法与多波长消光法相结合,用图像法测量较大颗粒的粒度,而用多波长消光法测量亚微米颗粒的粒度 /span /strong 。 /p p style=" text-align: justify text-indent: 2em " 彩色相机中的CMOS传感器可以认为是RGB三个波段光探测器件,当采用白光作为光源,对获得的图像可以分别用图像处理算法处理其中的大颗粒影像,用多波长消光法处理背景图像中的RGB信息来分别获得大颗粒和亚微米颗粒的粒度。如下图是用彩色相机获得的高速流动中的湿蒸汽两相流图像,其中高速流动的较大水滴的轨迹宽度对应其粒度,而长度对应其速度,背景是较高浓度的小水滴,无法用图像识别。此时,可以分别对如圆圈中的大水滴影像用图像处理算法处理,得到其粒度和速度,而对矩形框内的亚微米颗粒用RGB三波段消光法进行数据处理,得到小水滴的粒度及分布。 /p p style=" text-align: justify text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/009bf84a-9554-447d-945d-c6bdbe8cb4f2.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 同时存在大小颗粒的图像 /strong /p p style=" text-align: center text-indent: 0em " strong 图像法与后向光散射融合测量大气颗粒和排放烟尘浓度 /strong /p p style=" text-align: justify text-indent: 2em " 图像法不仅可以测量成像的颗粒的粒度,还可以 strong span style=" color: rgb(0, 176, 240) " 与光散射结合测量无法成像的大气中气溶胶颗粒的浓度和排放烟尘的浓度 /span /strong 。气溶胶是空气中悬浮颗粒与大气构成的体系,悬浮颗粒包括固体颗粒,液体颗粒,生物颗粒等。由于气溶胶颗粒粒度很小,受气流和布朗运动的作用,会在大气中长时间扩散传播,PM2.5就属于气溶胶范畴。下图分别是室内和大空间悬浮的气溶胶颗粒在激光照射下的散射光。 strong span style=" color: rgb(0, 176, 240) " 该散射光强与悬浮颗粒的粒度、浓度和测量散射角度有关 /span /strong 。用相机作为传感器,将相机聚焦于激光照射的要测量区域,得到气溶胶后向散射强度后,用米散射理论和相关数学模型进行数据处理,可以得到空间的气溶胶浓度。该方法可以用于烟囱排放烟尘浓度的远距离遥测。如果同时用多个波长的激光进行测量,还可能可以得到悬浮颗粒的平均粒度和分布。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/2f6469fd-9884-41c8-9b57-af11b16bc8b0.jpg" title=" 图像6.png" alt=" 图像6.png" / /p p style=" text-align: justify text-indent: 2em " strong img style=" max-width: 100% max-height: 100% float: left width: 125px height: 125px " src=" https://img1.17img.cn/17img/images/202002/uepic/01e065bd-c5ef-4e1a-9570-1808f883e70a.jpg" title=" 蔡小舒_.jpg" alt=" 蔡小舒_.jpg" width=" 125" height=" 125" border=" 0" vspace=" 0" / span style=" color: rgb(0, 176, 240) " 作 /span span style=" color: rgb(0, 176, 240) " 者简介: /span /strong 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。 /p
  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • 欧美克激光粒度仪应用体验的高速发展
    商用激光粒度仪从上世纪70年代面世以来,仪器的光学设计、各光电部件的规格和品质、样品适应性的干湿法进样系统性能、反演算法等方面均得到不断的进步。随着测量技术不断迭代升级,测试范围和灵敏度也在不断提高,加之激光粒度仪具有的测试范围宽、样品适应性广、测试过程便捷快速、维护需求少、重现性佳等优点,近些年其不断获得众多颗粒相关行业认可,逐步大量地取代了传统筛分、沉降、显微图像等方法成为了颗粒粒径分析和质控的主流仪器。随着技术的日臻成熟,用户对激光粒度仪的期待也逐步从复杂的科学仪器到简便的测量工具的转变。自2010年欧美克加入思百吉集团(Spectris plc.),成为马尔文帕纳科(Malvern Panalytical)的子品牌后,欧美克秉持集团公司以客户为中心的价值观,在新粒度仪开发中不仅着力于引进诸如低杂散光高动态范围光学设计、一体化多探测器工装装配工艺、双色光源全散射角覆盖、高精确度反演算法等等国际先机技术和工艺,同时针对客户测试应用和管理体验的实际需求也进行了重点的开发和改善。在一系列仪器的开发升级中除了始终保持高性能外,亦将与用户仪器应用体验息息相关的更高水平的自动化、智能化、标准化、易操作、少维护、好管理、更安全及友好的数据分析和报告输出等作为重要的发展方向和目标,使得以OMEC LS-609、Topsizer等为代表的系列激光粒度分析仪不断完善,在具有良好的测试性能同时满足用户的多种不同个性化需求,在简便了用户的日常操作维护管理的同时提供了更佳的使用体验。本文试着逐一地举例向读者简要介绍。测试与使用自动化针对越来越多企业使用激光粒度仪进行质控,许多实验室测样量大,技术人员工作负荷高的现象,欧美克在仪器硬件设计上不断增加了自动化控制功能,例如以自动对中或对中智能判断的主机搭配主流的SCF-105B全自动湿法进样循环系统、DPF-110自动化干法进样系统均可以实现一般测试全流程的软件自动化控制。通常情况下,用户仅需要按软件提示将多个干湿法样品依次加入到样品池,仪器可以对这些样品进行自动进样,自动分散,自动测量,自动输出测试报告结果的处理,同时仪器在测试结束后还可以自动进行清洗,多个样品批量测试过程已经被简化。湿法、干法进样器控制面板如上所述,针对质检人员的日常工作,软件专门设计了SOP(标准作业程序)功能,仅需两步(运行程序?加入样品)即可完成高质量粒度测试。软件同时搭配超阈值警告功能,系统根据测试结果自动进行特征粒径结果的阈值分析,直接给出样品是否符合设定的质量阈值的提示。操作者无需查看具体结果数值就可以轻松快速根据警示页面判断样品是否符合质控要求。智能化仪器智能化的目的主要是解决粒度仪测试时由于操作者忽略的仪器状态或加样错误等原因导致的结果的偏差。例如:欧美克开发了对中状态智能判断功能,开启后软件可以自动进行仪器背景状态和光学对中进行判断,根据判断结果自动采取对中或进入测试下一步的操作,为用户节省了大量的时间并延长了对中机构的寿命。在湿法测试中,加样量的智能识别和调整功能,系统会自动识别判断加样量,根据需要提醒操作者继续加样至满足要求或是在加样过量的情况下自动控制调低样品量后进行测量。在干法测试中,智能下料状态动态分析功能可以对流动性不佳样品下料的稳定性自动判断,同时将超量下料和下料中断时的光能信号和测量时间等进行自适应调整。以上的智能化功能保障了测试结果的可靠性,极大减少了测试分析人员的不熟练或疏失的影响。欧美克LS-909激光粒度分析仪同时,在粒度仪智能化设计中,多种影响测试因素的感知和自主分析功能是重要的一环。例如欧美克的干法测试系统皆含有直接定位于分散管的正压传感器及定位于窗口后方的负压传感器,相对于传统的仅对分散压输入处的压力控制,智能系统能对干法分散全过程的压力条件得到最真实的记录和控制,并使得仪器可以智能化自主判断仪器状态和测试数据的可靠性,有力保障了仪器长期使用分散测样条件的一致性和测试结果的重现性,使得原料药、制药及精细化工等行业方法的迁移,测试条件的追溯都有据可循,同时避免了欠压状态测试结果错误的影响。LS-909还带有自适应噪声抑制智能算法,能对探测器信号进行多次反演后进行原始功能自适应匹配修正再分析,有效的提高了仪器分析动态范围。此外,欧美克中高端粒度仪还具有折射率(包括实部和虚部)的自动分析计算等功能。可以通过结合多次取样测试结果的自动智能分析,给出推荐参数。标准化仪器的标准化包括仪器生产工艺和仪器测试条件的标准化,对于粒度测试结果的重现性是至关重要的。早先的激光粒度仪不同仪器之间的一致性较差,这主要是由仪器的多个光学部件在生产装配时的相对位置一致性不佳及杂散光水平不一致造成的。欧美克新的系列激光粒度仪在生产工艺上采用了一体式工装,包括主探测器、侧向、大角及后向探测器的所有探测器都由工装一次性定位,同时在所有探测器上设置仅对窗口颗粒开口的光学屏蔽罩,极大的减少了系统杂散光的干扰,保障了同型号不同仪器之间的测试结果的一致性。LS-609一体式工装定位大角探测器组同时进样器颗粒进样、分散的一致性也得到充分的考量和改进,例如:在开发湿法循环进样器SCF-105B的时候,面对传统电流控制离心泵转速精确度较低的问题,我们在进样器中加入了电机测速装置,通过数字反馈控制电机精确运转,从而保障了泵速显示真正的所见即所得,使得不同进样器之间的分散条件一致性得到提高,也保障了不同粘度介质测量的泵速数据真实可靠。又比如上章节提到的干法进样系统分散压传感器和负压传感器,使得粉体在下料后的全测量管道内状态精确可控,对于测试方法开发确定压力条件及测试中的欠压异常的甄别都有极大帮助。结合主机和进样系统的智能感知、精密控制功能,欧美克现代激光粒度仪真正实现了加样后全流程的测量方法和测试条件的标准化,当经过方法开发的这些对样品的条件被以SOP文件的方式固定下来后,只需要拥有最基本电脑操作和测试常识的操作人员均可以胜任标准化测试工作,同时测试过程条件的数字化记录可以随时用于追溯。欧美克SCF-105B、SCF-108A全自动湿法进样器欧美克DPF-110干法进样器易操作得益于高性能自动化智能化标准化的粒度仪开发,使得粒度仪可以满足用户高精确方法开发、低人工操作需求的标准化测试,逐步向高精密、傻瓜化的方向同时发展。针对粒度测试方法开发人员,欧美克粒度仪使用的集成粒度测试软件内置的大量数据分析筛选比对功能模块,例如除了拥有每个测试的独立报告外,系统还能够自动将多个测试的结果以统计数据图表呈现。且根据需要可以对这些数据按各种测试相关条件进行分类、筛选和排序。根据方法开发中大量数据统计和对比的需要,软件中同时集成了多报告的统计、比较和特征粒径趋势分析功能,通过这些功能使方法开发者可以轻松获得可视化过程结果,以用于测试条件的快速判断和决策。此外,软件还具有一键导出SOP功能,直接将方法开发中理想的测试条件,通过测试记录快速保存为标准化的SOP测量文件。现代化的欧美克集成粒度测试软件采用迭代开发模式,不断的进行优化和升级,不仅具有时代潮流风格的软件UI界面,其针对用户的文件操作、测试操作、数据分析等常见操作行为,进行分类分区图标化管理。在用户需要的大多数操作均可以以快捷按钮一键执行之外,我们通过大量用户操作行为分析,新的版本还将大量用户测量需要执行的多个连续操作进行合并,使其一样可以一键化执行,例如通过将常用SOP直接显示在操作面板上,用户仅需要双击软件测试面板上的SOP文件图标就可以执行完整的多样品测试,再比如传统手动测试需要的加介质、开启泵速循环、排气泡、对中、测背景等常规准备操作亦可以一键式点击仪器测样前准备按钮实现。欧美克Topsizer激光粒度分析仪
  • 弗尔德莱驰粒度及粒形分析仪北京演示日活动
    成立于1915年的德国RETSCH(莱驰)公司是Scientific Division(科学仪器事业部门)的核心品牌之一,是全球最大的实验室固体样品前处理暨研磨粉碎筛分设备的生产厂家。中国分公司总部设在上海,在北京、广州等地设有办事处或技术中心。RETSCH TECHNOLOGY(莱驰科技)做为RETSCH的姊妹公司,专业致力于粒度及粒形分析仪器的研发和生产,1999年,德国莱驰科技研发出全世界第一台利用动态数字成像技术原理的粒度及粒形分析仪,十多年来,已经有超过600个客户在使用。基于ISO13322-2标准设计,Camsizer/Camsizer XT可以一次进样,测量粒度大小、粒度分布、球形度、纵横比、对称性、凹凸度,并可进行颗粒计数或密度及比表面积测量,已经逐渐成为催化剂、玻璃珠、金属粉末等行业粒度分析的新宠。 干湿两用多功能粒径及粒形分析仪 Camsizer XT 莱驰不仅是样品粉碎研磨筛分的专家,在颗粒粒度及粒径分析也是独树一帜。特有的干湿两用多功能粒径及粒形分析仪Camsizer XT,专利的测量系统是基于动态数字成像原理,实时显示和精确分析颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。多种进样模块可让客户根据不同的应用和要求进行分析:X-JET压缩空气分散进样;X-FALL自动振动分散进样;X-FLOW湿法超声分散进样模块,其技术为全球领先。 为了让更多的客户了解动态数字成像技术,我们曾多次在上海、北京和广州举办客户演示日,在演示日期间,我们除了对仪器的性能特点做详细介绍外,最主要是结合客户样品进行上机演示实验,务求让到场的客户能够直观的了解到仪器的功能和优点。3月18-19日,我们2014年首场客户演示日在弗尔德莱驰北京办事处举办。来自北京高校及科研院所的相关专家及老师,还有外地的客户远道而来参加了此次演示日活动,现场气氛热闹非凡。 亚太区粒度仪产品销售经理Joerg Westman先生详细为到场来宾演示了干湿两用多功能粒度及粒形分析仪Camsizer XT的操作和应用,使用X-jet模块演示煤粉、钼粉、高分子材料、原料药等粒径粒度测量,其快速清晰的显示和分析过程让来宾叹为观止。 除了粒度分析的仪器,弗尔德莱驰北京办事处区域经理叶上游先生简单介绍了2013年10月弗尔德集团收购德国著名的真空和可控气氛高温炉制造商GERO(盖罗),2014年1月将GERO(盖罗)并入同属弗尔德集团科学仪器事业部的CARBOLITE(卡博莱特)品牌下。两大品牌强强联手,产品范围包括烘箱、箱式炉、管式炉、工业炉,温度从20°C至3000°C。除此之外,还能提供工业定制炉解决方案,包括真空应用、可控气氛的应用如惰性气体或化学活性气体环境下的热处理和先进材料制备。丰富的产品种类和可靠的德国品质,远销全球80多个国家,弗尔德科学仪器事业部逐渐成为高温热处理领域的佼佼者! 关于GERO(盖罗)德国真空和可控气氛高温炉制造商GERO(盖罗)拥有超过30年的专业热处理经验。从标准产品到客户定制的系统解决方案。GERO(盖罗)基于广泛的标准工业炉,对复杂的热处理工艺提供完全定制解决方案,研发制造高达3000°C的高温炉,是真空、惰性气体或反应性气氛(如氢)的高温应用领域的专用炉领头羊,应用主要领域是高校和工业研究,以及产品的中小型生产。 关于CARBOLITE(卡博莱特)英国CARBOLITE(卡博莱特)公司创建于1938年,几十年来,一直致力于实验室箱式马弗炉、管式炉、灰分炉、工业定制马弗炉及其他箱体设备(高温烘箱、培养箱)的制造和研发,在全球享有很高的知名度,已经成为高温热处理设备领域中的佼佼者。广泛应用在航空航天,陶瓷,金属加工,矿山,医药,电子和材料研究等领域。除了标准产品,CARBOLITE(卡博莱特)还生产一系列特殊应用的马弗炉,例如无尘室的烘箱,旋转管式炉;煤炭和焦炭标准分析测试炉、铁矿石(球团矿)还原性测试炉、贵金属灰吹炉、沥青粘结剂分析用炉、有机氚碳氧化炉等。 敬请期待接下来在上海举办的粒度仪演示日,更多精彩活动,尽在弗尔德莱驰! 弗尔德莱驰(上海)贸易有限公司上海张江高科技园区毕升路299弄富海商务苑(一期)8栋邮编:201204电话:+86 21 33932950传真:+86 21 33932955邮箱:info@verder-group.cn 弗尔德莱驰北京办事处北京海淀区苏州街29号院18号楼维亚大厦608室邮编:100080电话:+86 10 82608745传真:+86 10 82608766 弗尔德莱驰广州办事处广州市天河区华庭路4号富力天河商务大厦905室邮编:510610电话:+86 20 85507317传真:+86 20 85507503
  • 法国Cordouan发布Vasco纳米粒度分析仪新品
    VASCO颗粒粒度分析仪是基于增强型动态光散射(DLS)技术的纳米级悬浮和胶体特性的独特仪器。得益于与法国Institute of Petroleum(IFP)合作开发的技术, VASCOTM是浓缩和不透明悬浮液样品最有效的解决方案。主要特征• 基于增强型动态光散射原理(DLS)• 带有DTC系统的嵌入式样品池• 粒度范围(直径):0.5nm-10μm • 样品浓度:0.1ppm-40%w / wt • 专有产品软件NanoQ,专用于颗粒粒度• 在线样品池选项 • 改善荧光样品的测量技术与创新VASCO:独特的颗粒粒度分析仪• 由二氧化硅棱镜制成的嵌入式样品池 • 双厚度控制器(DTC)系统,可实现精确的样品厚度控制 • 测量原油等深色/浓缩样品,不需要稀释。创新的样品池设计:简单、自动、无耗材简单:DTC样品池的设计简化了样品制备,并防止任何过度稀释带来的危害。它与有机溶剂相容,可以测试微量样品。并可以在线测量,实现动力学研究(选项)。自动: DTC的简单调整足以将样品层从2mm减小到200μm(超薄层样品的体积)。这种用于降低测量体积的双厚度控制器可以防止由于多次扫描和局部热量导致的问题,并确保可靠地测量黑色介质或高浓度样品。与常规样品池相比,样品无需稀释!VASCO提供极宽的样品浓度测试范围,从非常稀的样品或差的对比度到高浓度和不透明的样品。Cordouan技术独特的专利设计,使得范围测量的实际浓度范围达到40%。这使其能够广泛应用于样品不能稀释而需要测试的行业。主要优势• 可测量黑色样品和原浓悬浮液,在不透明介质中具有更高的检测效率 • 直接测量无法进行后处理的样品• 耐溶剂嵌入式样品池:无消耗品 • 用于多模态样品分析的专有算法 • 即测样品 • 与传统DLS相比,样品检测浓度高于传统DLS 20多倍。应用领域:农业化学药品:牛奶、巧克力、咖啡、啤酒、乳胶等药品:悬浮液、粉末、糖浆剂、血管注射剂、微胶囊等化学品:聚合物、分散剂、杀虫剂等环境:自来水、污水、絮凝物和膜过滤等化妆品:香水、膏霜、乳剂等石油化学品:燃料、原油、沥青添加剂等创新点:VASCO 颗粒粒度分析仪是基于增强型动态光散射(DLS)技术的纳米级悬浮和胶体特性的独特表征仪器。得益于与法国Instute ofPetroleum(IFP)合作开发的专利技术,VASCO 是浓缩和不透明悬浮液样品的最有效解决方案。 创新的样品池设计:简单、自动、无耗材 由二氧化硅棱镜制成的嵌入式样品池 专利双厚度控制器(DTC)系统,可实现精确的样品厚度控制 测量原油等深色/浓缩样品,不需要稀释 产品优势 可测量黑色样品和原浓悬浮液,在不透明介质中具有更高的检测效率 直接测量无法进行后处理的样品 耐溶剂嵌入式样品池:无消耗品 用于多模态样品分析的专有算法 即测样品 与传统DLS相比,样品检测浓度高于传统DLS 20多倍 Vasco纳米粒度分析仪
  • 新帕泰克发布纳米粒度分析仪新品NANOPHOX CS
    近日,德国新帕泰克最新发布了一款能够快速分析高浓度浑浊分散体的纳米粒度分析仪NANOPHOX CS。本款产品创新采用了PsB PCCS技术,不仅延续了PCCS技术上消除了高浓度体系检测时的多次散射影响,提高结果真实性、准确性的优点,还通过偏振分离散射技术将信噪比提高到一个新的水平,适用于更高的样品检测浓度,测试更快、重复性更高。基于动态光散射0.5-10,000 nm 纳米粒度分析仪动态光散射(DLS)基本原理由于分子的热运动,使得颗粒与溶剂分子产生碰撞并在溶液中做无规则的布朗运动;大颗粒运动慢,小颗粒运动快。动态光散射(DLS)仪器的实现就是利用颗粒的这种运动现象,将入射光照射到待测溶液中,随后与颗粒发生散射作用,再由探测器在一定角度上收集散射光光强信号。散射光光强随着颗粒的布朗运动发生波动,分析这些散射强度随时间的波动可确定颗粒的扩散系数,从而利用斯托克斯-爱因斯坦方程进行进一步分析,获得被检纳米溶液的粒度大小和分布。PCS与PCCS技术传统DLS仪器采用光子相关光谱(PCS)技术,无法避免高浓度测试下多重散射带来的结果偏差问题,往往需要大量稀释,因此样品准备工作往往非常耗时且容易出错,同时稀释也会导致样品的粒度分布和稳定性发生变化。光子交叉相关光谱(PCCS)技术采用双光束设计,通过相关处理获得单散射信号,从而提高了高浓度检测的准确性。交叉相关技术的应用允许了不受多重散射影响的粒度分析。通过测量不同浓度系列的100nm聚苯乙烯标准品悬浮液,我们可以直观地比较PCS与PCCS在可分析样品浓度上的差别:上图可见,PCS需要大量稀释后才能得到可靠的粒度结果,而PCCS在样品浓度较高时就可获得正确的结果。PsB PCCS技术在光子交叉相关光谱(PCCS)技术的基础上,NANOPHOX CS创新设计的偏振分离后向散射PCCS技术(PsB PCCS),实现了更高浓度以及更快速的纳米样品分析。在这项强大的技术中,垂直和平行的两束偏振激光束照射在同一个测量体积上,随后散射信号分别由对应的两个探测器接收,通过互相关处理获得粒度大小信息。偏振分离后向散射PCCS技术提供了一个新的信号质量水平,增强被测颗粒的单散射信号,显著提高信噪比,从而获得更加准确和重复的分析结果。PsB PCCS帮助NANOPHOX CS实现高于PCCS技术100倍以上的浓度检测, 同时测试时间缩短10倍以上,让高浓度样品在原始状态下直接进行分析成为可能,为高浓度体系的研究提供科学依据。高浓度纳米激光粒度仪NANOPHOX CS应用案例——油墨面对油墨分析,挑战不仅来自样品的高不透光性,还来自对聚集体的高分辨率,正确的粒度分析结果有助于油墨质量与稳定性的确认:NANOPHOX CS适合测量亚微米到纳米范围内油墨中颜料颗粒的大小: ● 原液检测,避免稀释可能导致的油墨变化或引入杂质等 ● 缩短分析时间,无需样品制备过程,轻松检测 ● 智能软件操作,全自动化参数和可测量性检查 ● 多峰敏感,区分原生颜料产品与聚集体总结分析结果的准确性与科学性是研究、制造的基础,高浓度纳米体系保持原始状态的分析显然更具意义。NANOPHOX CS的上市,将进一步助力纳米产品的研究、开发与质量控制。
  • 欧美克激光粒度仪为中国水文监测提供助力
    中国的淡水资源总量为28000亿立方米,名列世界第四位。但是由于水资源分布不均,资源有效利用率并不高,水土流失情况也较为严重。因此水文监测体系的重要性不言而喻。降水量、河流湖泊水位监测,河流的流量监测、水体内的泥沙监测分析,这四项工作是水文监测工作的重要工作内容。水文工作人员在河流湖泊进行水体采样监测工作 我国水文监测数据采集体系经过近十几年技术飞速发展,数据资料收集的自动化程度有了较大提高。但是总的来说,水位和降水量数据收集的自动化程度要远远高于流量、泥沙数据收集。相对而言,流量、泥沙监测的新技术和新仪器应用水平还不高。中国的水土流失问题比较严重,河流泥沙治理开发工作任重道远,对水文工作的要求也愈来愈高 ,无论是防洪、水资源统一管理、还是生态环境的建设都需要水文监测数据采集过程的准确、及时,水文泥沙颗粒分析工作更是如此。当前,许多的水文站对河流泥沙颗粒的监测,依然应用传统的方法。用沉降干燥法测试泥沙含量,用沉降仪或者筛分法测试水体中泥沙颗粒的粒度分布。这类传统检测手段由于测量速度慢,精度低,无法应对现代水文监测对数据的准确性、及时性的需求。因此,迫切需要引入先进的仪器设备和测试手段。 激光粒度仪是当今主流的粒度分布检测设备,非常适宜用来替代沉降仪、标准筛等传统设备,对自然水体中的泥沙做粒度测试。同时,激光粒度仪使用光在介质中传播过程中的指数衰减定律(Beer-Lambert定律)和光散射理论,可以测得待测样品的体积浓度。这为激光粒度仪方便快捷的监测水体泥沙含量奠定了理论基础。理论上,如果已知颗粒的密度,则有如下关系:重量浓度(含沙量)=体积浓度×泥沙真密度。但是由于沙粒的成份复杂,以及测量过程中的采样、稀释等因素对最终的结果都有影响,常用一个总的转换常数VCC(体积转换常数)来实现量纲的转换,此时也就是有如下关系:重量浓度(含沙量)=体积浓度×VCC。当前,激光粒度仪检测水体泥沙含量的技术进入了实用化阶段。我国水利系统已经开始逐步使用激光粒度仪进行水体泥沙含量监测工作。对比于传统的沉降干燥后用天平称量的方法需要一到两天工时,激光法从采样到输出完整的泥沙粒度分布及水体泥沙含量数据只需20分钟左右,大大提高了数据采集速度。 TOPSIZER激光粒度仪 广东水文局是较早将激光粒度仪引入实际应用的水文机关,珠江三角洲的口门泥沙以幼沙为主,激光粒度仪的宽量程及大动态测量范围,非常适合该区域的泥沙状况监测工作。高质量的泥沙颗粒分析成果将为研究珠江三角洲的口门整治、河流的河道淤积、河床演变提供可靠的数据;为水利工程的调度、运用提供重要的基本资料 ;为河流的治理、开发、水资源利用提供了科学依据。湖南、江苏、浙江等水资源大省,也都投入大量资源,将激光粒度仪引入水文系统的自然水体泥沙研究分析项目。在这波水利系统监测设备的升级行动中,欧美克激光粒度仪的顶级型号——TopSizer激光粒度仪成为这个利国利民项目中的重要一份子。数量众多的欧美克激光粒度仪在长江流域、珠江流域、湘江流域等重要水系一线监测站尽职工作着。 TOPSIZER用户——湖南水利局神山头水文站 TopSizer相比于目前市面上常见的激光粒度仪而言,具有更长焦距的傅里叶透镜,能够准确探测到更小散射角度的散射光信号,大大增强了仪器对大颗粒的测试能力,仪器的测量上限达2000μm。TopSizer率先采用了双光源技术,也就是在红色氦氖激光源的基础上再增加了波长更短的蓝色光源,能够准确探测更大角度的散射光信号,确保仪器对亚微米颗粒的测量性能,使得仪器的测量下限达到0.02μm。真实可靠的超宽分布样品测试能力,保障了泥沙粒度分布测试数据的真实性和权威性。自然水体泥沙含量测试对激光器稳定性及探测器精度提出了苛刻的要求。根据实验数据可推算出,在测试过程中当激光器光强波动1%,泥沙含量数据将波动10%以上。TopSizer使用的激光系统及探测器,具有极高的稳定性和精度,性能远超国内同类型产品。TopSizer激光粒度仪采用原装进口的光电探测器,具有灵敏度高、精度高的特点。能够捕捉到极细微的光强变化。高质量的光电探测器是准确测试泥沙含量的前提保障。 自然水体泥沙粒度及含量测试,跟常规工业粉体粒度测试相比,测试条件要求及取样、制样技术细节更为复杂。这种技术前提,不仅仅对仪器性能有较高需求,同时也对测试应用技术有严格要求。欧美克的应用技术专家,早在2010年左右就开始了自然水体泥沙测试应用技术的研究。在湖南、湖北等多个省份实地采集各类泥沙样品进行研究实验。我们没有局限自己的埋头苦干,还注重跟水利系统的专家进行学习探讨。多次的拜访水利部长江委、湖南省水文局等权威机关,了解用户需求,学习专业技术。还曾经邀请湖南水文局的专家领导莅临我司指导工作。多年不懈的努力,我们建立了一套自然水体泥沙测试SOP(标准化测试流程)。通过建立标准化测试应用技术流程,大幅降低了人为因素对测量数据的影响,保障了数据的真实性、可靠性。欧美克人用严谨踏实的工作作风,换回了自身技术的成长及客户的认可。 技术工作永无止境,欧美克人本着绝对诚信、以客户为中心的价值理念,在粒度测试与控制领域秉承科技创新的精神,坚定前行!
  • 张福根专栏|激光粒度仪导论之性能特点篇
    p strong span style=" font-family:宋体" & nbsp & nbsp 编者按: /span /strong span style=" font-family:宋体" 在 /span 8 span style=" font-family:宋体" 月初,张福根博士的激光粒度仪导论从原理、结构、报告解读、参数拾遗四个维度对激光粒度仪进行了条分缕析,仪器信息网特设专栏刊登了张福根博士的四篇论述文章。好文如佳酿,兴难尽而回味长,幸而大家手笔未歇,从今日起,激光粒度仪应用导论的后续珠玉,将继续晦养读者的头脑,本文飨食读者的,是激光粒度仪导论之性能特点篇 /span ~ /p p style=" text-align:center" strong span style=" font-family:宋体" 激光粒度仪导论之性能特点篇 /span /strong /p p span style=" font-family:宋体" & nbsp & nbsp & nbsp /span span style=" font-family:宋体" 这里所谓的“性能特点”,是激光粒度仪相对于其他原理的粒度测量仪器而言的。除激光粒度仪外,当前市面上主流的粒度仪还有:(1)颗粒图像仪,分为动态和静态两类;(2)电阻法(Electric sensing zone 或 Electric resistance)颗粒计数器;(3)沉降法粒度仪,按照沉降力的来源分为重力沉降和离心沉降两类;按照沉降速度的测量方法分为光透沉降、X-线沉降、沉降管和沉降天平等多种;(4)动态光散射(Dynamic light scattering)粒度仪。鉴于动态光散射仪器只测量纳米和亚微米颗粒,与激光粒度仪的测量范围重叠部分很少,不应放在一起比较。本文讨论的激光粒度仪性能特点是相较于以上前3类仪器而言的 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 动态范围大 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 所谓动态范围是指仪器在一个量程内能测量的最大粒径与最小粒径之比。现在大部分品牌的激光粒度仪都无需调整量程(通过更换傅里叶透镜或调节测量池位置实现),所以仪器的测量范围就是仪器的动态范围。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪的动态范围是由仪器同时能测量的最大散射角和最小散射角决定的。从原理分析,如果只测量前向散射光,测量下限能达到0.3µ m左右;如果光的探测角度范围扩展到后向,那么测量下限可达到0.1µ m。测量上限则由仪器的等效焦距和探测器最小单元的扇形平均半径决定(参考文献:胡华, 张福根等. 激光粒度仪的测量上限. 光学学报, 2018, 38(4): 0429001)。大多数品牌都能轻松测到1000µ m。可见激光粒度仪的动态范围能达到3300:1(无后向散射)或10000:1。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 需要说明的是,大多激光粒度仪厂商都把自己产品的测量下限宣传得很小,例如0.01微米(即10纳米),而把上限说得很大。有些是缺乏科学基础的。用户采信时要谨慎。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 不管怎样,其他3类粒度仪的动态范围都在 /span span style=" font-family:宋体" 100 /span span style=" font-family:宋体" 左右或者更小。可见激光粒度仪的动态范围远大于其他原理的仪器,这给用户使用带来极大的方便。 /span /p p class=" MsoListParagraph" style=" margin-left:24px" strong span style=" font-family:宋体" 测量速度快 /span /strong /p p & nbsp & nbsp & nbsp span style=" font-family:宋体" 激光粒度仪的测量过程主要包括背景测量、投样和搅拌循环、散射光测量、数据反演计算以及报告显示等。整个过程大约需要1分钟左右。当然这里不包括前期的样品制备过程。对难分散样品,在投入仪器的分散槽之前,需用外置的高功率超声分散器进行预处理,这个过程从数秒到几分钟,视样品不同而异。不过难分散样品的预分散对任何仪器都是必须要做的。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 预处理后的测量时间,电阻法仪器也很快,整个过程也在1分钟左右。沉降法仪器每次测量都要等整个沉降过程完成,同时为了满足斯托克斯定律要求的层流条件,沉降速度还不能太快。这样就造成测量过程需要30分钟甚至更长。静态图像法需要一幅一幅地处理图像,还需要人工干预,测一个样需要30分钟或更长。动态图像仪需要数分钟。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 综上所述,激光粒度仪的测量速度是所有现存的粒度仪中最快的仪器之一。 /span /p p class=" MsoListParagraph" style=" margin-left:24px" strong span style=" font-family:宋体" 重复性和再现性好 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 重复性是指将制备好的颗粒样品输送到测量池后,让仪器进行多次测量,不同次测量结果之间的一致性。重复性又称“测量精度”。重复性通常用多次测量结果的相对均方差或标准差来表示。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 有必要提醒的是,同一台仪器,量程的中段往往测量精度高,两端的测量精度低。在不加说明的情况下,都是指量程中段的精度。另外对粒度测量,重复性还跟样品的特性有关。首先是粒度分布宽度的影响。宽度越宽,重复性越低。其次跟样品在介质中的分散难易有关,容易团聚的样品,重复性低。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪比较典型的精度指标是:对单分散(即理论上认为所有颗粒有相同的粒径)样品,D50重复性误差小于 /span span style=" font-family:宋体" 0.5% /span span style=" font-family:宋体" ,甚至 /span span style=" font-family:宋体" 0.2% /span span style=" font-family:宋体" 。对一般的多分散样品(最大最小颗粒之比 /span span style=" font-family:宋体" 10 /span span style=" font-family:宋体" 到 /span span style=" font-family:宋体" 20 /span span style=" font-family:宋体" 倍),国际标准 /span span style=" font-family:宋体" ISO13320 /span span style=" font-family:宋体" ( /span span style=" font-family:宋体" 2009 /span span style=" font-family:宋体" 版)的要求是:” /span span style=" font-family:宋体" D50 /span span style=" font-family:宋体" 重复误差小于 /span span style=" font-family:宋体" 3% /span span style=" font-family:宋体" , /span span style=" font-family:宋体" D10 /span span style=" font-family:宋体" 和 /span span style=" font-family:宋体" D90 /span span style=" font-family:宋体" 重复误差小于 /span span style=" font-family:宋体" 5% /span span style=" font-family:宋体" 。如果粒径小于 /span span style=" font-family:宋体" 10 /span span style=" font-family:宋体" 微米,相对误差可以翻倍”。现行的商品化激光粒度仪, /span span style=" font-family:宋体" 重复性误差大多远小于国际标准的要求 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 再现性是指不同的人对同一样品进行测量(有时为了简便,也有同一个操作者,对同一样品多次取样再测量),得到的结果之间的一致性。显然,重复性是再现性的基础。由于受取样的代表性、样品制备方法(比如分散,移样的手法等)的差异的影响,再现性误差总是大于重复性误差。不过由于激光粒度仪有很高的重复精度,并且取样量比其他测量方法大,因此再现性也可以做到很高。 /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 不论是重复性误差还是再现性误差,一般都是用相对或绝对均方差来表示的。我们了解到有的用户对粒度测量误差的物理意义不甚了解或不甚准确,在此特意再解释一下: /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 我们首先要弄清楚,不论是平均粒径、边界粒径或者用户特别感兴趣的其他测量值,每一次的测量值跟上一次都不可能完全一样,因此每一个量的测量都存在误差。现在假设某一个量(例如D50)在n 次测量中,得到的数值分别为a sub 1 /sub ,a sub 2 /sub ,?,a sub n。 /sub /span /p p style=" text-indent:29px" span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" https://img1.17img.cn/17img/images/201808/insimg/06638399-24f9-44c5-9f0f-6f0309d6149d.jpg" title=" 专栏5图1.png" / /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 举个例子:设我们对一个颗粒样品进行了10次测量,每次的测量值见表2。其平均值和标准差分别为14.139微米和0.021微米。所以 /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a +S=14.139+0.021=14.160 /span span style=" font-family: 宋体" (微米),把测量值和这个上边界值对比,可以发现第4、第5共2个测量值超出; /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a -S=14.139-0.021=14.118 /span span style=" font-family: 宋体" (微米),把测量值和这个下边界对比,可以发现第6、第10共2个测量值超出;总共有4个测量值超出 /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a-S, /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a+S /span span style=" font-family: 宋体" 的区间,占测量值个数的40%,换言之,有60%的测量值在这个区间内。 /span /p p style=" text-align:center text-indent:29px" span style=" font-family: 宋体" 表2 测量误差的含义举例 /span /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 547" tbody tr style=" height:25px" class=" firstRow" td width=" 113" nowrap=" " rowspan=" 2" style=" border-style: solid border-color: windowtext windowtext black border-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 序号 /span /p /td td width=" 95" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 单次测量值(微米) /span /p /td td width=" 94" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 测量值与上边界的差 /span /p /td td width=" 80" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 正值表示超出 /span /p /td td width=" 91" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 测量值与下边界的差 /span /p /td td width=" 50" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 负值表示超出 /span /p /td td style=" border: none " width=" 0" height=" 25" br/ /td /tr tr style=" height:30px" td style=" border: none " width=" 0" height=" 30" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 1 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.149 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.011 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.031 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 2 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.152 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.008 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.034 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 3 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.138 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.022 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.02 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 4 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.174 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.014 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.056 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 5 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.161 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.001 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.043 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 6 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.108 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.052 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.01 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 7 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.125 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.035 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.007 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 8 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.127 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.033 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.009 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 9 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.139 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.021 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.021 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 10 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.115 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.045 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.003 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:21px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 均值 /span span style=" font-family: 宋体" ( /span span style=" font-family: 宋体" 微米 /span span style=" font-family: 宋体" )& nbsp /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 14.139 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td style=" border: none " width=" 0" height=" 21" br/ /td /tr tr style=" height:21px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" & nbsp /span span style=" font-family: 宋体" 标准差 (微米)& nbsp /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 0.021 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td style=" border: none " width=" 0" height=" 21" br/ /td /tr /tbody /table p span style=" font-family: 宋体" & nbsp /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 【 strong 进阶知识6 /strong 】粒度测量误差的表述及误差的统计理论。人们都希望测量误差越小越好,但是误差却不可避免。误差可分为三类:一是系统误差,二是随机误差,三是疏忽误差。系统误差是指测量系统(包括测量设备和操作者)对一个物理量的进行多次测量得到的平均值与该物理量真值之间的偏离。随机误差是多次测量中的某一次测量值对多次测量平均值的偏离。系统误差反映测量系统的准确性( /span strong span style=" font-family:宋体 color:#0070C0" Accurac /span /strong strong span style=" font-family:宋体 color:#0070C0" y /span /strong span style=" font-family: 宋体 color:#0070C0" ),随机误差反映测量系统的精度( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Precision /span /strong span style=" font-family:宋体 color:#0070C0" )或重复性。在实际操作中,误差一方面来源于测量仪器本身,另一方面来源于操作,包括取样误差,操作失误等等。在颗粒仪器行业,为了客观地考察仪器,尽量避免人为影响,一般采用一次投样,重复测量,考察每次测量结果相对于多次测量的平均值之间的误差来评估仪器精度或重复性。 /span span style=" font-family:宋体 color:#0070C0" 而把不同次取样甚至不同操作者测量同一个样品得到的结果之间的相对误差,叫做再现性 /span span style=" font-family:宋体 color:#0070C0" ( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Reproductivity /span /strong span style=" font-family:宋体 color:#0070C0" )。重复性和再现性都反应随机误差的大小。疏忽误差是指测量仪器处于不正常状态或者操作者操作错误得到的测量结果与真值之间的偏差。这里不讨论此类误差。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 粒度测量与其他物理量的测量相比有两个特殊性:一是大多数情况下,粒度不存在或者难以确定真值。这是因为多数情况下颗粒的形状是不规则的,客观上不存在一个真实的“直径”。所谓的颗粒直径都是等效的圆球直径。等效的原理不同,结果也不同;甚至等效的原理相同,数据处理的方法不同,也会造成结果的差异,此其一(关于激光粒度仪的等效粒径,作者曾进行过初步研究,有兴趣的读者可参考“张福根等.棒状和片状颗粒在激光粒度仪中的等效粒径(一)、(二).中国颗粒学会首届年会论文集,1997,267-278”)。其二,即使颗粒是圆球形的,但是粗细不均,客观上也难以用绝对方法(指更可靠、更高精度的方法,比如显微镜)测定足够多的颗粒,最终给出在计量学上有说服力的真值。粒度只有在一种很特殊的情况下才能在一定误差范围内获得真值,这就是粒度分布很窄(称为“单分散”)的圆球形颗粒。现在都用这样的颗粒制作微粒标准物质( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Reference Material /span /strong span style=" font-family:宋体 color:#0070C0" )。所以颗粒测量仪器声称的“准确性”,都是相对于单分散的标准物质来说的。用户需要注意的是,两台不同的粒度仪测标准样时都足够准确,但测量实际样品却可能得出不一样的结果。这是许多用户很费解的事。原因就在于颗粒形状的不规则、大小的不均匀和数据反演算法的差异。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 第二个特殊性是,粒度测量结果的完整表述是由一组数(往往达到几十个)组成的粒度分布,而不是一个数,因此就存在用哪个数或哪几个数来衡量测量误差的问题。通常用平均粒径(如D[4,3]、D[3,2]或者D50,以及上下边界(累积)粒径D10、D90的测量误差来衡量。用户如果有特别关注的某个测量值,比如说碳酸该行业的2µ m以细的含量,也可以用这个测量值的误差来衡量仪器误差。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 下面再谈误差的表达的问题。用标准误差表达重复性或者再现性已经在正文做过简单介绍。这里再补充几点: /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (1)置信度和置信区间 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 正文已经谈到,单次测量值落在 /span span style=" font-family:Symbol color:#0070C0" ` /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" a-S, /span span style=" font-family:Symbol color:#0070C0" ` /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" a+S /span span style=" font-family:宋体 color:#0070C0" 区间内的概率是 /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" 68.3% /span span style=" font-family:宋体 color:#0070C0" 。这个区间又叫置信区间, /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" 68.3% /span span style=" font-family:宋体 color:#0070C0" 叫做置信度。这里假设了误差的分布满足正态分布规律(注意,这是误差分布,不是粒度分布)。根据概率论中的中心极限定律,如果测量误差是由多个相互独立的因素引起的,只要因素的数量足够多,那么误差的概率分布就满足正态规律。正态分布曲线见下图 /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" , /span span style=" font-family:宋体 color:#0070C0" 一定区间范围内曲线以下的阴影面积就代表发生在该区间内的测量值的概率。 /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 由此我们可以推断出,测量值落在μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -2σ,μ+2σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 区间内的概率是 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 95.4% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " ,μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -3σ,μ+3σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 的概率是 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 99.7% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 。μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -σ,μ+σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 、μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -2σ,μ+2σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 或μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -3σ,μ+3σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 叫做测量值的置信区间,对应的 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 68.3% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 、 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 95.4% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 和 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 99.7% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 称为相应的置信区间内的置信度。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/a45cdca6-a484-4a8d-83ee-30adc265602d.jpg" title=" 专栏5图2.jpg" / /p p style=" text-align:center" span style=" font-family:宋体 color:#0070C0" 随机误差的概率分布 /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (2)方均根误差与标准误差 /span /p p style=" margin-left: 29px text-align: center " span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" https://img1.17img.cn/17img/images/201808/insimg/18f3b470-d0b2-49f0-b9b5-22caa8d02452.jpg" title=" 专栏5图3.png" / /span /p p style=" margin-left:29px" span style=" color: rgb(0, 112, 192) font-family: 宋体 font-size: 16px " 显然,标准误差大于均方根误差。当n趋于无穷时,二者趋于一致。 /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (3)t分布 /span /p p span style=" font-family:宋体 color:#0070C0" & nbsp & nbsp & nbsp /span span style=" font-family:宋体 color:#0070C0" 可以想象,如果我们用n次测量的平均值 /span span style=" font-family: 宋体" a /span span style=" font-family: PMingLiU, serif" ? /span span style=" font-family:宋体 color:#0070C0" 作为测量的报告值,那么一般而言随机误差会减少。具体会减小多少?或者说置信区间和置信度会发生什么变化?需要用到概率论的t分布函数,有兴趣的读者可以自行参考有关书籍。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 适用多种类型的分散介质 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 绝大部分粒度仪都需要把待测颗粒分散在介质中才能测量。具体选择什么介质,首先取决于颗粒本身的特性,比如颗粒与介质不能发生化学反应,能在介质中良好分散等等。其次是介质的使用成本,越低越好。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪测量颗粒时,既可用液体介质(称为“湿法分散”)也可用气体介质(称为“干法分散”),其中液体介质可以是最常见的水,也可以是各种有机溶剂。从而为用户选择适用且经济的介质提供便利。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 操作方便 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 不论使用什么类型的仪器,粒度测量都需要操作者认真仔细地进行,否则就可能引入人为误差。相对而言,激光粒度仪相较于其他粒度仪,操作起来要方便得多。主要表现在: /span /p p span style=" font-family:宋体" & nbsp & nbsp /span span style=" font-family:宋体" (1)对大多数激光粒度仪而言,不需要调整仪器量程。由于动态范围大,0.1微米至1000微米的任何样品都可以在仪器固有的量程范围内完成,无需预先估计样品的粒度分布范围,然后设置好仪器的量程才能测量(目前个别品牌的激光粒度仪还需要选量程,但大多数不需要)。作为对比,电阻法仪器、图像法仪器、沉降法仪器等等,都需要选择量程。 /span /p p & nbsp & nbsp & nbsp span style=" font-family:宋体" ( /span 2 span style=" font-family:宋体" )对分散介质的纯度没有太高要求。这是因为激光粒度仪在测量中有一个“减背景“的操作,杂质颗粒形成的散射光的影响在一定范围内可以通过这个操作消除掉。 /span /p p style=" text-indent:21px" span style=" font-family:宋体" ( /span 3 span style=" font-family:宋体" )一次测量所用的样品量较大,代表性好。另外样品浓度对测量结果的影响也较小。 /span /p p & nbsp & nbsp span style=" font-family:宋体" ( /span 4 span style=" font-family:宋体" )大多产品都具有 /span SOP span style=" font-family:宋体" 功能,进一步降低了操作人员和操作手法不一致带来的测量结果差异。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 局限性 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 上面介绍了激光粒度仪的诸多优点。凡事有优点必然就有缺点。以下是激光粒度仪的缺点: /span /p p style=" text-indent:29px" span style=" font-family:宋体" (1)分辨率低:所谓分辨率是指仪器分辨两个不同粒径的单分散样品的能力。行业一般认为激光粒度仪只能区分粒径相差 /span span style=" font-family:宋体" 3 /span span style=" font-family:宋体" 倍的两个单分散样品。比如把一个 /span span style=" font-family:宋体" 5 /span span style=" font-family:宋体" 微米的样品和 /span span style=" font-family:宋体" 15 /span span style=" font-family:宋体" 微米的样品混合起来,仪器可以测出两个分布的峰。分辨率优异的品牌能够做到 /span span style=" font-family:宋体" 1.5 /span span style=" font-family:宋体" 倍左右。在实用中,需要去区分两个粒径相近的单分散样品的情况很少见,但是分辨率低意味着仪器对样品分布宽度的变化不敏感。有些对粒度均匀性要求很高的样品(比如单分散的标准微球、激光打印机用的碳粉等等)就不适合用激光粒度仪测量了。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" (2)对处在样品的粒度分布范围两端的颗粒不敏感。这是因为激光粒度仪直接测量的是所有颗粒散射光分布叠加在一起的结果,处在粒度分布两端的颗粒占总颗粒的比例很低,例如0.1%,对总光能的贡献很小,容易被噪声淹没。因此用户如果很关注Dmax和Dmin,那么就要注意,激光粒度仪给出的这两个数值是不可靠的。 /span /p p & nbsp & nbsp strong 编者结: /strong span style=" font-family:宋体" 在本文中,张福根博士一根妙笔对激光粒度仪的优势和局限娓娓道来。在下篇系列文章中,张福根博士就激光粒度仪研究界的几个前沿技术问题与大家深度剖析,精彩不容错过! /span /p p style=" text-align: right " span style=" font-family:宋体" (作者:张福根) /span /p
  • 全球首创的扫描式粒度粒形分析测量系统亮相世界制药原料中国展
    人和科仪作为获得泰洛思独家授权的代理商很荣幸能和广大客户一起分享泰洛思参加2016第十六届世界制药原料中国展的现场实况。 2016年6月21-23日在上海新国际博览中心举办了第十六届世界制药原料中国展,参与此次展会企业超过2800家。在展会上TRILOS特别带来了全球首创的扫描式粒度粒形分析测量系统,在生物医药行业被广泛应用于细胞分析反应过程监测及结晶过程监测。 参数:最小分辨率:0.12um最大量程:4000um重复性:温度范围:-90℃~300℃压力范围:Vaccu-300 bar光纤长度:300m体系浓度:可依据不同要求,最高可达760%vol/vol防爆设计:可选食药行业认证:符合要点21CFR part 11质量:约15kg 所有产品完全根据客户实际需求进行定制且安装条件极度简便 可用于高温高压高粘度测量环境,干法湿法集成一体化(可选) 如此出色的TRILOS粒度粒形检测系统一经亮相,就吸引了无数中外观众的目光.. Trilos迄今已有十余年的发展历史,我们始终视客户满意为我们的终极目标,力求将最优秀的工艺技术结合客户的最新需求,设计出最贴近客户需求的优质产品。泰洛思正在积极开拓全球市场,目前产品已经远销美国、中国、欧洲、韩国、日本和台湾等地区,我们坚持把最优质的产品分享给全球优秀的使用者,Trilos真诚的欢迎您早日加入我们使用者的行列。如果您想了解更多的产品信息欢迎咨询,我们在中国的独家授权代理商:上海人和科学仪器有限公司。泰洛思正在举办免费体验活动,如果您对我们的产品感兴趣可以和我们预约体验!预约方式:1.扫描以下二维码添加泰洛思官方微信 在公众号上直接与泰洛思客服预约2.拨打86-13817694620直接和人和科仪的产品经理刘翀预约 同时欢迎点击我司网站 www.renhe.net查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在推荐朋友关注更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:TRILOS、DRAGONLAB、FUNGILAB、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 2021年激光粒度仪中标盘点:纳米粒度仪需求激增
    激光粒度仪是一种常用的粒度测试仪器,广泛应用于制药、化工、能源、建材、地矿、环保等行业,以及高校、科研院所、军工等领域;按工作原理,主要分为静态光散射激光粒度仪(俗称“静态激光粒度仪”)和动态光散射激光粒度仪(俗称“纳米粒度仪”)。为了更好的了解激光粒度仪市场,仪器信息网对2021年激光粒度仪中标标讯整理分析,供广大仪器用户参考。(注:本文数据来源于公开招中标信息平台,共统计激光粒度仪中标公告234条,不包括非招标形式采购及未公开采购项目,主要反映激光粒度仪科研市场变化,结果仅供定性参考。)从时间维度来看,2021年激光粒度仪月度中标数量波动较大。1-5月份科研市场采购需求疲软,招投标市场表现低迷;6月份中标数量激增,达到全年峰值,主要原因在于马尔文帕纳科在本月分别中标一批Mastersizer 3000激光粒度仪与一批Zetasizer Pro纳米粒度及电位分析仪;下半年中标数量虽有波动,但整体保持在相对高位。从季度分布来看,2021年激光粒度仪中标数量逐季增加,与2020年趋势基本相似。据公开招中标信息平台统计,2021年激光粒度仪招标单位覆盖29个省份、自治区及直辖市。广东省中标数量再列第一,排名二到五位的依次为江苏、北京、浙江、山东;激光粒度仪采购需求连续两年集中在以上五个省市。四川、山西、河北、辽宁、河南各省中标数量排名位于第二梯队,其中,河北与河南两地浮现激光粒度仪“采购大户”,2021年,河北化工医药职业技术学院、河北省药品医疗器械检验研究院、郑州大学分单次或多次采购了一批激光粒度仪,仪器总价均超过200万元。2021年激光粒度仪采购用户单位类型对采购单位分析发现,2021年,来自大专院校/科研院所的采购比例有所提升,高达79%;而企业占比缩减至5%。“十四五”期间,科技创新被提到前所未有的高度,国家实验室及研究机构的建设浪潮势必为科学仪器市场带来新的机遇,激光粒度仪厂商应高度关注,提前布局。2021年中标激光粒度仪类型分布从中标激光粒度仪类型来看,2021年纳米粒度仪采购需求激增,中标数量占比47%,创历年新高。近年来,随着新能源、生物医药、纳米技术等行业的迅速发展,对纳米颗粒尺寸表征的需求呈现指数般增长态势,国内外激光粒度仪生产厂商积极响应市场需求,纷纷推出纳米粒度及电位分析仪。2020年,马尔文帕纳科重磅发布Zetasizer Advance系列纳米粒度电位仪,包括Lab,Pro,Ultra三个型号;2021年,丹东百特隆重推出BeNano系列纳米粒度及 Zeta 电位仪,包括BeNano 90 Zeta、BeNano 180 Zeta、BeNano 180 Zeta Pro等多个型号;珠海欧美克高调发布NS-90Z纳米粒度及电位分析仪,成功引进和吸收了马尔文帕纳科纳米颗粒表征技术。随着各方入局及新产品的推出,纳米粒度仪市场迎来良好发展机遇。2021年激光粒度仪中标价格分布纵观整体中标价位分布,30万元以上的中高端激光粒度仪更受科研用户青睐,合计占比达67%。长期以来,国产品牌往往占据中低端市场,进口品牌则在高端市场占绝对优势;值得一提的是,国产品牌开始逐渐向高端市场渗透,2021年,多条中标讯息显示,丹东百特激光粒度仪中标单价超过40万元。2021年进口/国产品牌中标数量占比2021年激光粒度仪各品牌中标数量占比分布2021年激光粒度仪中标市场上,国产占比35%,进口占比65%,与2020年相比保持稳定。聚焦中标品牌,马尔文帕纳科以41%的占比稳坐榜首;丹东百特位列第二,占比19%,持续领跑国产品牌榜;麦奇克凭借7%的占比重回前三;济南微纳与珠海欧美克紧跟其后,并列第四,占比6%;布鲁克海文与安东帕中标数量旗鼓相当,各占比5%。其他表现较好的品牌还有新帕泰克、HORIBA、真理光学、Sequoia、贝克曼库尔特、美国PSS等。根据2021年中标数据信息,仪器信息网整理了2021年招投标市场“出镜率”较高的激光粒度仪明星型号,榜单如下:仪器类型品牌型号纳米粒度及Zeta电位仪马尔文帕纳科Zetasizer Pro激光粒度仪马尔文帕纳科Mastersizer 3000激光粒度仪丹东百特Bettersize2600纳米粒度及Zeta电位仪丹东百特BeNano 90 Zeta纳米粒度及Zeta电位仪安东帕Litesizer 500纳米粒度及Zeta电位仪麦奇克Nanotrac Wave II纳米粒度及Zeta电位仪布鲁克海文NanoBrook Omni纳米粒度及Zeta电位仪布鲁克海文NanoBrook 90plus PALS激光粒度仪欧美克LS-909激光粒度仪济南微纳Winner802
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 百特激光粒度仪折射率测量技术在Pittcon2017上获瞩目
    正在美国芝加哥举行的Pittcon2017展览会上,丹东百特展出的最新激光粒度仪——Bettersize3000Plus,引起美国、意大利等国客户的兴趣,当他们看到这种仪器独特的测量粉体材料折射率功能时,更是大加赞赏,称这将解决困扰他们多年的难题。 折射率是激光粒度测试的必备参数,但有一些新的合成材料,其初始形态就是粉体,无法测量也无法查到它的折射率,给激光粒度测试出了一道难题。百特Bettersize3000Plus激光粒度仪通过对颗粒消光和散射光的精确测量,并运用最小二乘数值处理技术实现了粉体材料折射率的快速准确测量,使新的合成材料粒度测试的准确性有了充分的保障。 百特通过Pittcon2017向世界展示了中国首创的新技术,新技术将通过Pittcon2017走向世界。
  • 张福根专栏|激光粒度仪应用导论之技术问题篇
    p style=" text-indent: 2em " 本文简述了作者团队近几年已经完成的部分研究成果或已经发现而正在解决的激光粒度仪的理论和技术问题。用户了解这些内容对正确认识和更好利用粒度仪器及其输出的测试结果会有所裨益。 /p p style=" text-indent: 2em " 1 爱里斑的反常变化(Anomalous Change of Airy disk,简称ACAD )对及其对激光粒度测量的影响 /p p style=" text-indent: 2em " 前文已经叙述过,激光粒度仪是建立在“颗粒越大,散射光斑(爱里斑)越小”这一物理现象之上的。这一现象使得爱里斑的尺寸与颗粒大小呈现一一对应关系。而作者团队的研究成果(参见论文:L. Pan, F. Zhang, et al. Anomalous change of Airy disk with changing size of spherical particles [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016,170: 83-89)表明,这种物理现象对吸收性颗粒来说,或者透明颗粒从粒径变化的大尺度上看是正确的。但如果颗粒是透明的,那么从某些较小的粒径区间看,有时会出现相反的情况,即:颗粒越大,爱里斑也越大。我们把这种现象称作爱里斑的反常变化(英文简称“ACAD”)。 /p p style=" text-indent: 2em " 下图是基于Mie散射理论,用数值计算的方法绘制的散射光斑模拟图,形象地显示出光斑大小的变化。这里假定颗粒分散在折射率为1.33的水介质中,照明光波长0.633微米。先看第一行,颗粒折射率取1.59,故相对折射率为1.20。从(a1)到(a4),颗粒直径分别为2.88μm, 3.28μm, 5.30μm, 6.06μm,逐步增大;对应的散射光斑角半径(从亮斑中心到第一个暗环的角距离)分别为8.09° ,13.06° ,5.08° ,7.90° ,时大时小。粒径从2.88μm增大到3.28μm,时,爱里斑尺寸则从8.09° 增大到13.06° ,属于反常变化;粒径从5.30μm增大到, 6.06μm,爱里斑尺寸从5.08° 增大到7.90° ,也属于反常变化。图7中的(b1)到(b4)是m 为1.1,颗粒直径分别为5.91μm,6.82μm,10.90μm,11.81μm对应的散射光斑,角半径分别为4.24° ,7.02° ,2.61° ,4.35° ,也是振荡减小的。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/3ad14d66-db52-460b-b9e1-ba3ee2c52995.jpg" title=" 1.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " strong & nbsp 爱里斑图像随着粒径增大而变化 /strong /p p style=" text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201808/insimg/4f396c68-da7c-44fd-8227-d1b3f65bcafc.jpg" title=" 2.png" / /p p style=" text-indent: 2em " 图中红色曲线是根据Fraunhofer衍射理论得到的爱里斑尺寸随无因次参量的变化,它是一条单调下降的曲线。蓝色曲线是根据Mie理论计算的透明颗粒的爱里斑尺寸变化曲线,可以看出它是振荡的。我们把爱里斑尺寸随粒径的增大而增大的粒径区域,称为“反常区”。图中还表达出折射率实部仍然取1.2,但颗粒有吸收时爱里斑尺寸的变化。可以看出,随着吸收系数的增大,反常现象会逐步消失。在该图所设定的情形中,吸收系数达到0.1时,反常现象即完全消失(绿色曲线)。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/9059b5e1-eadd-4451-b427-f6642c42419e.jpg" title=" 3.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " strong & nbsp 爱里斑尺寸随粒径变化曲线 /strong /p p style=" text-indent: 2em " 凭直觉我们就能想到,反常现象的存在可能导致爱里斑尺寸与颗粒大小不再一一对应,从而使得仪器根据光能分布反演粒度分布产生困难。作者团队进一步的研究表明,爱里斑的振荡随着粒径的增长会反复出现直至永远。其振荡周期会趋近于一个常数。而反常现象对粒度分布反演的困扰主要发生在第一个反常区(参考文献:L. Pan, B. Ge, and F. Zhang. Indetermination of particle sizing by laser diffraction in the anomalous size ranges[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 199:20-25)。 /p p style=" text-indent: 2em " 作者团队已经推导出第一个反常区的中心粒径(反常区内Mie理论曲线与Fraunhofer曲线的交点)公式为: /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/be81374b-33fc-4075-a312-18647c7e952f.jpg" title=" 4.jpg" / /p p br/ /p p style=" text-indent: 2em " 从上式可以看出,反常现象对任意折射率的透明颗粒都存在。颗粒折射率越大,第一个反常中心的数值就越小。当被测颗粒的粒径分布落在反常区域,即上述公式给出的粒径位置周围时,将出现两个不同的粒度分布对应于相同的光能分布的情况,从而给粒度分布的反演带来不确定或者错误的结果。对此现象,各激光粒度仪厂商各有应对的方法,比如,真理光学的研发团队就在对ACAD现象深入研究的基础上,成功地解决了该现象对粒度测量的困扰,并已应用在真理光学的激光粒度仪产品中。 /p p style=" text-indent: 2em " 2 平行平板测量池带来的全反射盲区 /p p style=" text-indent: 2em " 所谓“全反射”就是当光线从折射率较大的空间(光密媒质)射向折射率较小的空间(光疏媒质)时,如果入射角较大,则光线将全部反射回光密媒质,不能传播到光疏媒质中。在激光粒度仪中,如果用液体分散待测颗粒(称为“湿法测量”),由于光电探测器总是安装在空气中,那么散射光就是从光密媒质向光疏媒质传播。目前市面上流行的激光粒度仪都是用平行平板玻璃作为测量池的窗口,这就会带来全反射的问题。如下图所示,当散射角比较小时,散射光能够穿过平行平板玻璃进入到空气,从而被光电探测器接收。假设分散介质是水(折射率1.33),那么根据折射定律可以算出全反射角为48.57° ,即在入射光垂直于玻璃表面的情况下,当散射角达到该角度时,光线进入空气的折射角等于90° (称为“全反射临界角”);当散射角继续增大,散射光将全部被玻璃-空气界面反射,回到测量池内,故称全反射。此时没有任何散射光出射到空气中。实际上置于空气中的探测器不可能摆在90° 的方向,常见的最大角为70° 左右,对应于水中的散射角为45° 。所以对前向散射来说,仪器只能接收散射角小于45° 的散射光。45° 到90° 的散射光不能被探测,这个角度范围即为测量盲区。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/62269a7f-254a-4c5d-8872-c0062969f795.jpg" title=" 5.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " strong 散射光在平行平板玻璃测量池内的全反射现象示意图 /strong /p p style=" text-indent: 2em " 对采用平行平板玻璃的测量池,即使设置了后向散射探测器,其后向能接收的最小散射角为135° (=180° -45° )。就是说45° 到135° 之间是测量盲区。该盲区对应于0.3到0.1微米的颗粒。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/51eeae4c-813c-4ec8-90a6-5f99ce16cd00.jpg" title=" 6.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " & nbsp strong 双光束照明的光学结构 /strong /p p style=" text-indent: 2em " 引入另一束不同波长的照明光(以下称为“辅助照明光”或“辅助光束”),是加强激光粒度仪对亚微米颗粒测量能力的一种手段,如上图所示。一般来说辅助光束应该以较大的倾斜角入射到测量池中,从而使得测量池内大于45° 的散射光也能出射到空气中。例如,辅助光从空气入射到测量池的入射角为43° ,则对应于水中的倾斜角为31° 。该光束被颗粒散射后,逆时针方向最大76° (=31+45)的散射光,相对于水-玻璃界面,入射角也只有45° ,所以能够出射到空气中被探测器接收。另一方面,辅助光一般采用波长较短的蓝光,以扩展测量下限。 /p p style=" text-indent: 2em " 真理光学则采用了梯形玻璃的测量窗口,能够较好地解决全反射对亚微米颗粒测量的影响。下图是真理光学LT3600plus激光粒度仪的结构示意图。该仪器包含了多项创新成果。就激光粒度仪的核心技术之一——光学结构来说,主要有两项:一是用一体化的偏振滤波取代了传统的针孔滤波,使仪器的抗震能力极大地提高,完全避免了针孔滤波所固有的易偏移,难调节的麻烦;二是用独创的改进型梯形窗口取代了传统的平板窗口。本文重点讨论第二点。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/fe3173a2-dec7-4250-bf55-92c9a964348d.jpg" title=" 7.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " strong 真理光学LT3600plus的光学结构示意图 /strong /p p style=" text-indent: 2em " 梯形玻璃测量池的工作原理见下图。在这种结构中,前向的平板玻璃被换成了梯形玻璃,同时在梯形玻璃的平行面与斜面相交的棱上加了一片防串条,并且给超大角探测器设置了遮光格栅。当光轴上方的超大角(大于全反射角)散射光传播到玻璃—空气界面时,正好落在玻璃的斜面上。此时散射光到达斜面的入射角总是小于玻璃-空气界面的全反射角,因此能够出射到空气中,从而解决了平板玻璃结构的全反射问题。必须说明的是,这种梯形结构20多年前就有人提出过。但是这种结构在应用中存在一个麻烦的问题,就是从平面出射的散射光和从斜面出射的散射光在空气中会相互串扰。真理光学通过前述的防串条和遮光格栅,巧妙地解决了串扰问题,故此能把梯形玻璃测量池应用在实际的粒度仪中。该方案用一束照明光解决了全反射盲区问题。下图(第二张)是LT3600Plus仪器对对0.1、0.2、0.4、0.5、1.0微米单分散标准颗粒的测量结果综合。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/24748398-5f6f-41b3-9d65-6a2a6dfd5d7b.jpg" title=" 8.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " & nbsp strong 改进的梯形玻璃测量池工作原理图(不包含后向接收) /strong /p p style=" text-indent: 0em " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/0f4aa241-55ef-4927-b1b4-8ff2a4bb20e1.jpg" title=" 9.jpg" / /strong /p p br/ /p p style=" text-align: center text-indent: 0em " strong & nbsp LT3600Plus测量各种亚微米颗粒的结果综合 /strong /p p style=" text-indent: 2em " 3 折射率数据获取的困难及解决之道 /p p style=" text-indent: 2em " 用激光粒度仪测量样品时,需要预先输入样品的折射率。折射率数值如果不对,将导致错误的测量结果。目前一般是通过查找文献资料获得颗粒的折射率数值(粒度仪厂家虽然在仪器软件中也提供了部分物质的折射率数据,但也是从公开的文献中引用过来)。但是在实际操作中,折射率数据的问题,还是会困扰激光粒度仪的使用。主要原因是: /p p style=" text-indent: 2em " (1)有些样品的折射率在公开文献中查不到; /p p style=" text-indent: 2em " (2)有时查到的折射率数据与实际折射率不符。原因是: /p p style=" text-indent: 2em " & nbsp & nbsp & nbsp (2a)物质中的杂质含量会影响折射率的数值。如果待测物质的实际杂质含量与文献提供数据所对应的杂质含量不一致,那么待测物质的实际折射率与文献提供的折射率数值也不一致。 /p p style=" text-indent: 2em " (2b)物质的折射率随照明光的波长变化。激光粒度仪的主光束通常是红光,波长大约633纳米到655纳米。文献提供的折射率数据对应的光波长很少是这个范围的。最常见的折射率是用钠黄光(波长589纳米)测量得到的。因此实际折射率与文献提供的数值可能不一致。 /p p style=" text-indent: 2em " 准确地获得被测颗粒的折射率,成为激光粒度仪应用的重要问题之一。 /p p style=" text-indent: 2em " 在各种解决方法之中,真理光学的研发团队提出了一种利用激光粒度仪测量得到的散射光分布本身计算待测颗粒的折射率的方法(已申请发明专利)。可以自动测定颗粒尺寸远大于光波长情况下颗粒的折射率。 /p p style=" text-indent: 2em " 本方法所依据的基本原理是:当颗粒的尺寸远大于光波长(典型值为10倍以上),且只考虑小角度(通常小于5º )范围内的光强分布时,散射光分布可以用Fraunhofer衍射理论比较精确地描述。而Fraunhofer衍射理论给出的光能分布与颗粒的折射率无关,只与颗粒尺寸有关;同时在小角范围内,Fraunhofer衍射理论与Mie理论的数值高度吻合,因此我们可以根据散射光在小角范围内的分布和衍射理论确定样品的粒度分布,再利用大角散射光及前面用衍射理论获得的粒度分布,通过简单的迭代算法,计算出颗粒的折射率实部和虚部。 /p p style=" text-indent: 2em " 4 其他问题 /p p style=" text-indent: 2em " 衍射法粒度测量还存在一些其他的值得进一步研究的问题。例如当颗粒浓度很高时,散射光被颗粒多次散射(称为“复散射”)对测量结果的影响,颗粒形状偏离球形是怎样影响测量结果的等等,这些问题都有待研究者们继续探索下去。 /p p style=" text-indent: 2em " 本文中,张福根博士基于自己多年来的研发成果,深入探讨了激光粒度仪存在的几个前沿问题,激光粒度仪的复杂性由此可见一斑,其未来的发展仍然让人期待。不过作为粒度粒型检测分析的重要仪器,有关激光粒度仪的话题不仅是高山流水的学术研究,同时也是日常实验检测中的亲密伙伴,在实际应用中我们应该选择什么样的激光粒度仪呢?下一篇张福根专栏|激光粒度仪选型建议将为你提供参考。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p p style=" text-align: left text-indent: 2em " 更多精彩内容尽在 a href=" http://www.instrument.com.cn/zt/YYMMG" target=" _self" title=" " style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 激光粒度仪应用面面观 /span /a 。 br/ /p
  • 激光粒度仪在粒度检测中的应用浅谈
    p style=" text-indent: 2em " 编者按:谈到粒度,激光粒度仪怎能缺席?目前,在各行各业的粒度检测领域,激光粒度仪应用广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。 /p p style=" text-indent: 2em " 那么激光粒度仪在粒度检测中到底是怎样应用的呢?我国颗粒学泰斗专家周素红研究员的论述,无疑将给我们带来启示…… /p p style=" text-indent: 2em " strong 专家观点: /strong /p p style=" text-indent: 2em " 激光粒度分析方法是近年来发展较快的一种测试方法,其主要特点是: /p p style=" text-indent: 2em " 1)测量的粒径范围广, 可进行从纳米到微米量级如此宽范围的粒度分布。约为 :20nm ~ 2000μm , 某些情况下上限可达 3500μm /p p style=" text-indent: 2em " 2)适用范围广泛 , 不仅能测量固体颗粒 , 还能测量液体中的粒子 /p p style=" text-indent: 2em " 3)重现性好 ,与传统方法相比 ,激光粒度分析仪能给出准确可靠的测量结果 /p p style=" text-indent: 2em " 4)测量时间快,整个测量过程1-2分钟即可, 某些仪器已实现了实时检测和实时显示 ,可以让用户在整个测量过程中观察并监视样品。 /p p style=" text-indent: 2em " 激光粒度分析不仅在先进的材料工程 、国防工业、军事科学、而且在众多传统产业中都有广泛的应用前景。特别是高新材料科学的研究与开发 ,产品的质量控制等 , 如 :陶瓷、粉末冶金、稀土 、电池、制药 、食品、饮料 、水泥 、涂料 、粘合剂 、颜料、塑料、保健及化妆品 。由于颗粒粒子的特异性能在于它的粒径十分细小,粒径大小是表征颗粒性能的一个重要参数, 因此 ,对颗粒粒径进行测量是开展材料检测、评价颗粒材料的重要指标。 /p p style=" text-indent: 2em " 当光线照射到颗粒上时会发生散射 、衍射 。其衍射、散射光强度均与粒子的大小有关 。观测其光强度, 可应用夫琅和费衍射理论和 Mie 散射理论求得粒子径分布(激光衍射/散射法)。 /p p style=" text-indent: 2em " 光入射到球形粒子时可产生三类光:1)在粒子表面 、通过粒子内部、经粒子内表面的反射光 2)通过粒子内部而折射出的光 3)在表面的衍射光 。这些现象与粒子的大小无关 。全都可以作为光散射处理 。一般地 , 光散射现象可以用经Maxwell 电磁方程式严密解出的 Mie 散射理论说明。但是, 实际使用起来过于复杂, 为了求得实际的光强度, 可根据入射波长 λ和粒子半径r 的关系 ,即 :r& lt & lt λ时,Rayleigh 散射理论r& gt & gt λ时,Fraunhofer 衍射理论在使用上述理论时 ,应考虑到光的波长和粒子径的关系, 在不同的领域使用不同的理论 。 /p p style=" text-indent: 2em " 粒子径大于波长的时候, 由 Fraunhofer 衍射理论求得的衍射光强度和 Mie 散射理论求得的散射光强度大体是一致的。因此 ,可以把 Fraunhofer 衍射理论作为 Mie 散射理论的近似处理。这时 ,光散射(衍射)的方向几乎都集中在前方, 其强度与粒子径的大小有关 ,有很大的变化。即, 表示粒子径固有的光强度谱 。解出粒子的光强度分布(散射谱)就可以定出粒子径。当波长和粒子径很接近的时候 ,不能用 Fraunhofer 的近似式来表示散射强度 。这时有必要根据 Mie 散射理论作进一步讨论。在Mie 散射中的散射光强度由入射光波长(λ)、粒子径(a)、粒子和介质的相对折射率(m)来确定 。、 /p p style=" text-indent: 2em " 激光粒度分析的应用领域极为广泛, 如 :1)医药中的粒度控制着药物的溶解速度和药效 2)催化剂的粒度影响着生成反应效率 3)制陶原料的粒度影响着烧结后的物理特性 4)矿物的粒度影响着长途海运的安全 5)食品的保质期受粒度影响 6)橡胶原料粒度影响着其寿命 7)电池原料的粒度影响着电池的充放电效率和寿命 8)涂料 、染料中的粒度影响着产品染色时的发色、光泽 、退色 9)塑料原料的粒度影响着塑料的透明度和加工以及使用性能。 /p
  • 关注!国家标准《纳米技术 动态光散射法粒度分析仪技术要求》正式发布
    2024年7月24日,由国家纳米科学中心牵头,中国计量科学研究院 、北京信立方科技发展股份有限公司等单位参与起草的国家标准GB/T 44223-2024《纳米技术 动态光散射法粒度分析仪技术要求》正式发布,并于2025年2月1日起实施。该标准由TC279(全国纳米技术标准化技术委员会)归口 ,主管部门为中国科学院。随着纳米科技的迅速发展,纳米材料的粒度表征已经成为评估材料特性的关键指标之一。动态光散射法粒度分析仪凭借其卓越的测量能力,成为亚微米及纳米级颗粒粒度分析的常用仪器。然而,现有的标准和技术规范体系尚未覆盖该类仪器的技术要求指标,中国颗粒学会颗粒测试专业委员会、北京粉体技术协会相关专家在组织多次粒度仪量值比对活动的基础上,倡议提出制定针对动态光散射法粒度分析仪设备性能要求和评价的国家标准,以推动颗粒技术的标准化发展。该标准主要介绍了动态光散射法粒度分析仪的主要技术要求,以及仪器准确性、重复性的试验方法。标准主要起草单位包括国家纳米科学中心 、中国计量科学研究院 、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 、珠海真理光学仪器有限公司 、丹东百特仪器有限公司 、华南师范大学 、济南微纳颗粒仪器股份有限公司 、珠海欧美克仪器有限公司 、合肥鸿蒙标准技术研究院有限公司 、广州特种承压设备检测研究院 、上海思百吉仪器系统有限公司 、冷能(广东)科技有限公司 、中国计量大学 、山东理工大学 、北京信立方科技发展股份有限公司 、成都精新粉体测试设备有限公司 、安泰科技股份有限公司 、安东帕(上海)商贸有限公司 、中国合格评定国家认可中心 、北京粉体技术协会 、中国颗粒学会 。为了帮助业内人士深刻理解这一重要标准,以标准规范纳米粒度仪的技术指标,接下来,本网将邀请标准主要起草人——国家纳米科学中心高级工程师朱晓阳对该标准进行深入解读,敬请期待。
  • 新能源汽车产销两旺,高端激光粒度分析仪持续爆发增长
    近日,中国汽车工业协会发布了2021年新能源汽车行业经济运行指标,前十个月累计生产新能源汽车256.6万辆,同比累计增长175.3%;累计销售新能源汽车254.2万辆,同比累计增长176.6% 。产、销数量均创历史新高,下面来看具体数据: (图片来源: 中国汽车工业协会网站) 从汽车种类来看,新能源乘用车是增长的主要来源,说明随着新能源汽车性能、价格的优化及充电设施的完善,新能源汽车得到了越来越多的老百姓的认可,从而促使新能源乘用车走进千家万户,产销出现跳跃式上涨。其中,纯电动乘用车产、销同比累计增长分别达到205.2%和201.0%, 插电式混合动力乘用车产、销同比累计增长分别达到124.6%和144.5%。回顾新能源汽车行业近三年波澜壮阔的发展历程,有助于新能源汽车行业的广大从业者更深刻地认识到央妈断奶的智慧与果敢:“扶优扶强”让一大批有技术、善管理、懂市场的企业脱颖而出,在退补、疫情、原材料价格上涨、芯片供应紧张、限电等多重困难夹击下,整个新能源汽车行业在短暂的调整后再次迎来了快速增长。原本2019年6月份开始的新能汽车补贴大幅退坡让新能源汽车行业首次出现负增长,2020年初爆发地新冠疫情叠加影响更让新能源汽车行业雪上加霜。据中国汽车工业协会公布数据显示,2020年第1季度国内新能源汽车产、销量同比下滑60.2%和56.4%。但仅仅半年之后,自2020年7月开始,新能源汽车产、销均超过上年同期,并一直持续爆发增长到今天的水平。图片来源: 中国汽车工业协会网站从新能源汽车行业整体来看,从今年3月份起,新能源汽车月度销量均超过了20万辆,从8月份开始月度销量均超过30万辆,即使剩下的11、12月份产销出现一定波动,新能源汽车全年产销突破300万辆也是大概率事件。新能源汽车的产、销两旺必然拉动动力电池快速增长,据高工锂电(GGII)统计,2021年前9个月,国内动力电池装机电量累计92GWh,同比累计上升169.1%,其中三元电池装车量累计47.1GWh,占总装车量51.2%,同比累计上升99.5%;LFP电池装车量累计44.8GWh,占总装车量48.7%,同比累计上升332%。同时,据高工锂电不完全统计,今年以来,国内动力及储能电池投扩产项目总投资超过5000亿元,粗略估算扩产规划超1.4TWh。随着磷酸铁锂电池的成功逆袭,在德方纳米、邦普、富临精工、湖北万润等磷酸铁锂专业生产厂家纷纷扩大产能的同时,还不断向磷酸铁锂原材料产业延伸;同时,万华化学、新洋丰、川金诺、川发龙蟒、川恒股份、龙佰集团、中核钛白、安纳达、司尔特、湖北宜化等一大批传统化工企业纷纷跨界强势涌入磷酸铁锂产业。据高工锂电统计数据显示,2021年前三季度中国磷酸铁锂正极材料出货量达到30.8万吨,同比增长302.6%,据不完全统计,前三季度国内合计新扩增磷酸铁锂材料超过250万吨。而这些正在或即将扩产的锂电及材料项目已经带来了强劲的激光粒度分析仪市场需求,并且有望持续爆发增长。电池材料的粒度分布是锂电行业的一项重要质控指标,它影响锂离子电池的能量密度、充放电性能、循环性能、安全性能以及生产工艺等,因此,电池材料及电芯生产企业普遍选用高效的激光粒度分析仪作为电池材料粒度分布检测工具。但什么样的激光粒度分析仪才能真正得到锂电行业市场的青睐呢?根据近几年锂电行业激光粒度分析仪购买需求的统计分析,高端激光粒度分析仪越来越得到行业的青睐。锂电行业经过近二十年的发展,行业资源逐步向头部企业倾斜,新增产能大多数来自宁德时代、比亚迪、国轩高科、力神、中航锂电、亿纬锂能等头部企业,这些新增产能在选择检测分析仪器往往参考原厂配置,甚至选择更高端配置,所以,高端激光粒度分析仪将在这些新增产能中获得更多市场机遇。而一款好的激光粒度分析仪不仅应该具有宽广的测试范围和良好的易操作性,还应保证测试结果具有良好的真实性、重现性和对细微的粒度差异具有足够的分辨能力。从欧美克仪器近几年的市场销售情况来看,大多电芯及材料企业选择了欧美克的Topsizer和TopsizerPlus两款高端仪器。这两款仪器不仅具有宽广的测试范围和全测试范围内高灵敏度,而且具有很高的自动化程度,大大降低了测试结果对人为因素的依赖程度。Topsizer激光粒度分析仪Topsizer Plus激光粒度分析仪在锂电行业,需要检测粒度分布电池材料包括正极材料、前驱体材料、负极材料、导电添加剂、隔膜材料、电解质等等,种类繁多,粒度分布范围比较宽,小到纳米级,大到毫米级,因此,理想的测试范围应当尽量覆盖所有电池材料的整个测试粒径分布范围。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管不规则颗粒的粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行基本可靠的评价,有利于对连续生产或同一规格的不同产品的质量一致性进行把控。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。具备高分辨能力的仪器才能准确识别测试样品及其各组分的细微粒径变化,对于电池材料中异常的少量大颗粒,及少量的离群细颗粒的准确测量和定量尤其重要。Topsizer对含有极少量细颗粒的负极材料样品的检测激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养等。如果仪器的易操作性不高,不同人员对同一样品测试得出不同的结果,那么,即使有良好的测试性能,也不能高效满足用户的测试需求。作为深耕新能源行业的粒度检测与控制技术专家,欧美克仪器秉承思百吉集团“赢之有道”的核心价值观,始终坚持为行业用户提供高效的粒度解决方案,不断满足行业创新发展需求,助力中国新能源高速发展! 参考文献【1】中国汽车工业协会,2021年10月汽车工业经济运行情况。【2】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用。【3】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用。【4】高工锂电,2021高工年会聚焦(14):动力电池产业2021“战局”。
  • 欧美克LS-909E干法激光粒度仪在粉末涂料行业的创新应用
    干法激光粒度仪在粉末涂料行业的应用随着近年来国家环保高压及绿色发展要求,我国“漆改粉”趋势加速,粉末涂料在整个涂料体系中所占份额越来越大。根据Global Market Insights,Inc.的报告,到2025年,全球粉末涂料市场预计将超过170亿美元。而从全球范围看,我国粉末涂料产销量已占全球60%左右,引领着全球粉末涂料发展! 与传统液态涂料相比,粉末涂料对材料的利用率很高(高达99%),任何过量喷涂都可以回收利用,从而大限度地减少了浪费;具有更广泛的颜色选择和纹理强化了粉末涂料成为液体涂料的有力替代品;粉末涂料具有可持续性、清洁性、安全性等特性,与替代涂料相比,粉末涂料具有优异的性能特征以及显著的成本优势,在农业和建筑、电器、汽车和运输等工业涂饰市场占15%以上并持续增长。 粉末涂料市场一直在发展,而保证粉末涂料质量检测的科学仪器也在不断创新发展。我们都知道,涂料颗粒的粒度分布对粉末涂料性能的影响有以下几大方面: 1、涂料颗粒粒径影响其带电性能 粉末涂料喷涂时的粘附力主要来源于静电荷的库仑力。涂料颗粒一般来说粒径越大带电性越好,但是颗粒的重力随粒径加大的增长速度大于库仑力的增长速度。也就是说颗粒大到一定程度后,重力会远大于库仑力,导致上粉率和涂覆效果会变差。故理想状态下的粉末涂料颗粒粒径应该尽量控制在10μm-60μm之间。粉末涂料太细或者太粗,涂装施工效率、质量就会下降。 图一 不同粒径涂料带电性能 2、影响涂料的流平性 粉末涂料吸附在工件上被加热后形成高粘度的流体状态,然后逐渐流平固化。通过研究流平时间的NIX和DODGE公式:t=kμR/γ(t是涂料颗粒聚结时间、k是常数、R是涂料颗粒半径、γ涂料的表面张力、μ涂料粘度),我们可以知道涂料颗粒粒径跟流平时间成正比。粉末涂料的粒度分布不均匀或者颗粒太粗,将严重影响流平性。 图二 粒度分布均匀的粉末涂料流平效果明显 3、影响涂层厚度 传统粉末涂料的平均粒径一般控制在30μm -50μm,涂层厚度一般在60μm -100μm之间。不同类型的工件需要的涂层厚度不同。同时涂层厚度也在很大程度上影响单位重量的粉末涂料能够涂覆的面积。因此粉末涂料的粒度分布可以说是直接影响涂料性能及经济性的重要参数。 4、影响涂料的储藏性能 根据部分行业专家的研究,粉末涂料存在一个临界粒径,大于这个粒径,粉末不易结块,反之则很容易结团。涂料产品的粒径不应该低于临界粒径,否则产品的储藏性将变得很差。 图三 粉末涂料显微图像 从上图的粉末涂料显微图像中我们可以看到其中有为数众多的小于5微米的“有害”颗粒,这些颗粒既浪费了原材料和能源,又严重影响涂料的存藏性能,应该尽量减少其含量。 因此,有效测定粉末颗粒的分布才能保证粉末涂料的高质量应用。激光粒度仪是当前流行的粒度测试仪器之一,其测试动态范围大、测试速度快、对使用环境要求不高、重复性好等优势满足了涂料行业的测量需求。但随着粉末涂料的异军突起,常用的湿法测试由于粉末涂料样品亲水性不好以及添加分散剂后容易产生气泡等原因,会导致测试结果不稳定,并容易造成结果拖尾。 而干法测试通过空气作为分散介质,在粒度检测时对粉末涂料样品进行干法分散处理,测试时即可以模拟粉末涂料在应用中的状态,得到的测试结果更好的反应粉体应用。在此基础上,粉末涂料行业用户也迫切地要求激光粒度仪具有方便快捷、数据报表呈现灵活等自动化、个性化特点的使用需求。而高性能、简单易用的全自动干法测试系统,智能多样化的软件功能正是LS-909E显著的优势,能为行业用户带来行云流水一般的实验体验。 图四 欧美克LS-909E干法激光粒度仪 欧美克LS-909E干法激光粒度仪正是基于粉末涂料用户对高性能干法仪器的需求而开发的一款性能卓越的粒度分析仪。 LS-909E干法进样系统由干法进样器、全封闭进样窗口、静音泵空压机、油水过滤器和吸尘器等部件构成。在硬件方面,主机装载了进口的高性能进口He-Ne气体激光发射器,结合永磁体空间滤波器设计及一体化激光发射器技术,保障了LS-909E激光粒度分析仪具有0.1-1400um的较宽测试范围及重现性小于1%的高分辨率可靠结果。 搭配欧美克DPF-110自动干法进样系统,样品池具有三重调节设计:进料速度由先进的压电陶瓷晶体精确控制,使测试遮光率易于控制并节省样品量;内置分散压和负压传感器,实时监控测样状态,并具有错误警示功能;干法窗口采用密闭管道式设计,结合窗口负压保护设计与大功率吸尘器粉尘回收装置,大限度回收样品,也使主机不受粉尘影响,极大减少了窗口维护及擦拭清洁工作,并提高了窗口玻璃的使用寿命,同时也提升了测试分析速度。以上多种特性共同保障了LS-909E干法测试对多种不同特性样品的适应性及良好的重现性和真实性。 在软件设计方面,LS-909E智能软件控制自动对中系统保证了精确的光学对中和多次测量的重现性。自动对中机构精度达0.2um,速度更快,既可作为自动测量的一部分,亦可在屏幕上单击鼠标来完成。结合智能判断对中软件功能,避免了传统粒度测量中因对中不良导致的结果偏差,并能延长对中机构寿命。 值得一提的是,LS-909E还配备有完善、开放的样品参数数据库,具有200多种常见材料光学参数,用户也可以自定义材料和折射率,包括折射率实部和虚部(对应样品的吸收率)。结合简单易操作的SOP标准操作流程,使分析测试流程标准化,减少人为因素的影响。同时提供多种测试报告模式和高度个性化的自定义功能:可提供通用测试报告、筛分测试报告、百分测试报告,并具有平均报告、统计报告、拟合报告功能,以及可自定义专业测试报告模板功能。测试报告支持pdf、excel、word及其他文本格式等丰富的导出格式,报告图表可直接右键保存。此外用户还能够在软件中同时查看多个测试报告结果,进行数据的图形比对和数值统计分析,对多个参数进行分类、排序、筛选,并能以表格形式输出。 其智能、友好、符合多种应用的计算机软件功能可定义测试报告模板,让粒度测试分析变得轻松可靠。 欧美克LS-909E的定位是一款高性价比干法激光粒度仪,甫一问世,已在第二十四届中国国际涂料展上得到了广大用户的高度关注和良好反响。粒度测试是一门涉及知识面极为宽广的技术学科,在每一个行业中都有极深入的应用研究,即使是在粒度检测行业打拼了二十多年的欧美克人也一直不断虚心前行,不断探索更智能化的解决方案、更高效的新技术及更全面的服务推向行业市场,为粉末涂料客户在现有和新的应用领域提供了显著的附加值,共同助力粉末涂料行业的创新发展!
  • 弗尔德莱驰粒度及粒形分析仪客户演示日邀请函
    尊敬的老师:您好, 弗尔德科学仪器事业部(Verder Scientific Division)旗下包含了多个知名品牌,如德国RETSCH(莱驰)粉碎研磨筛分设备、Carbolite/GERO高温马弗炉、德国ELTRA(埃尔特)元素分析仪等,RETSCH TECHNOLOGY(莱驰科技)是其中一家专业从事粒度及粒形分析仪器生产和研发的厂家,基于ISO13322-2动态图像技术开发而成的Camsizer/Camsizer XT系列多功能粒度及粒形分析仪,已经有超过600多个客户在使用。该仪器能够一次进样,得到粉体颗粒的粒度大小、粒度分布、球形度、对称性、凹凸度、密度,甚至于颗粒计数,在石化、催化剂、玻璃珠、金属粉末、医药等行业有不可比拟其他粒度分析技术更好的应用优点。 为了让更多的客户了解动态数字成像技术,我们曾多次在上海、北京。广州等地举办客户演示日活动,在演示日期间,我们除了对仪器的性能特点做详细介绍外,最主要是结合客户样品进行上机演示实验,务求让到场的客户能够直观的了解到仪器的功能和优点。本次演示日,特邀德国专家Joerg Westermann先生莅临上海指导。 日期:2014年7月3日9:30-17:30地点:弗尔德莱驰(上海)贸易有限公司(浦东张江毕升路299弄富海商务苑(一期)8栋)仪器演示:Camsizer 多功能粒度及粒形分析仪 Camsizer XT 干湿两用多功能粒度及粒形分析仪 本次培训免费,请务必携带样品参加,餐饮将由弗尔德莱驰公司提供,外地客户的住宿也将本公司负责。请您提前报名,以便于我们发给您详细的日程安排及交通指南。报名至:蔡斌 b.cai@verder-group.cn 13774358570 传真:021-33932950 参加单位:联系人:手机:邮箱:携带样品名称:客户应用及要求:
  • 粒度及粒形分析仪华南区客户演示日邀请函
    尊敬的 客户,您好: 德国RETSCH(莱驰)是全球最大的生产实验室固体样品前处理暨粉碎研磨筛分仪器的专业厂家,中国分公司总部设在上海,在北京、广州等地设有办事处或技术中心。1999年,德国莱驰科技研发出全世界第一台利用动态数字成像技术原理的粒度及粒形分析仪,十多年来,已经有超过600个客户在使用。动态数字成像技术基于ISO13322-2,能够一次进样,得到粉体颗粒的粒度大小、粒度分布、球形度、对称性、凹凸度、密度,甚至于颗粒计数,在石化、催化剂、玻璃珠、金属粉末、医药等行业有不比拟其他粒度分析技术更好的应用优点。 为了让更多的客户了解动态数字成像技术,德国莱驰公司曾多次在上海和北京举办客户演示日,在演示日期间,除了对仪器的性能特点做详细介绍外,最主要是结合客户样品进行上机演示实验,务求让到场的客户能够直观的了解到仪器的功能和优点。2012年度,德国莱驰公司第一次在广州举办粒度仪客户演示日,敬候您的光临。 会议安排: 日期:2012年9月24日;2012年9月25日,每天9:30-17:30 地点:德国莱驰广州办事处(天河区华庭路4号富力天河商务大厦905室) 特邀德国专家:Joerg Westermann先生 仪器演示:Camsizer 多功能粒度及粒形分析仪 Camsizer XT 干湿两用多功能粒度及粒形分析仪 您可以报名参加两天的培训或只参加一天的培训,请告知您计划的参会日期和时间,本次培训免费,演示日期间的午餐将由德国莱驰公司提供,外地客户的住宿也将由德国莱驰公司负责。请您提前报名,以便于我们发给您详细的日程安排及交通指南。 报名方式: 1、登陆 www.evertechcn.com 点击右上角的&ldquo 在线报名&rdquo ,在线填写报名信息。 2、电话、传真、邮件确认,先确认先确保座位,额满为止。 报名电话:020-87688215-808 报名传真:020-87688280-808 报名信箱: qimin_ye@evertechcn.com 联 系 人:叶小姐 3、或直接联系广州办雷经理:13925082520 参加人员报名回执 公司 地址 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 携带样品: 到达广州日期: 离开广州日期: 参加培训日期: 关于艾威: 艾威仪器科技有限公司是德国RETSCH(莱驰)公司华南地区总代理,公司成立于2006年,拥有多名行业经验超过十年的资深从业人员,是美国、德国、日本等多家著名仪器生产商在中国地区的代理。我们主要从事化工、环保、制药、食品、农业、生化、材料测试等专用分析仪器的销售、安装调试及售后服务,是一家从事实验室成套配置、代理进口分析仪器及消耗品的专业公司。 艾威仪器科技秉承&ldquo 科技为先,服务为本&rdquo 的宗旨,多年来与分析测试行业、政府技术机构、高端制造业一起成长,成为深受业界尊重的一家公司,成为促进业界交流的积极分子。艾威科技公司在广州、深圳、南宁、长沙、海口、贵阳建立办事处,为众多企、事业单位的分析工作者提供了大量的仪器资讯和先进的分析仪器技术,在业界取得良好的口碑。 艾威科技 市场部 服务热线:400 880 3848 官网:www.evertechcn.com
  • 巴蜀地有玄妙 耕耘处觅新机—— 2019激光粒度仪中标年中盘点参上
    p style=" text-align: justify text-indent: 2em " 对于科学仪器行业来说,招标采购是重要的成交渠道,激光粒度仪也不例外。虽然招标采购显示的数据并非激光粒度仪市场的全貌(特别对工业客户覆盖较少),但是从中依然能看出一些行业领域及市场变动的端倪,特别是对激光粒度仪在科研领域的市场分布有相当的参考价值。值此年中之际,仪器信息网特推出2019年激光粒度仪上半年中标盘点,从网络公开招标平台整理汇总近百条激光粒度仪中标信息,分析汇总,以飨读者。根据以往经验来说进口高价位的激光粒度仪是中标市场的主流,制药、石化、食品、环保等领域需求旺盛,那么在2019年上半年,激光粒度仪的中标盘点有呈现怎样的态势?商机何在? /p p style=" text-align: justify text-indent: 2em " strong 兴农战略热需旺盛中回落 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/039048f9-5b36-416b-a087-dfec26ab8bca.jpg" title=" 1.png" alt=" 1.png" width=" 500" height=" 300" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center text-indent: 0em " strong 激光粒度仪上半年招标单位类型分布 /strong /p p style=" text-indent: 0em text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 345px " src=" https://img1.17img.cn/17img/images/201907/uepic/229bcb98-836d-4ae2-83f9-825384ba04e0.jpg" title=" 2.png" alt=" 2.png" width=" 500" height=" 345" border=" 0" vspace=" 0" / /strong /p p br/ /p p style=" text-align: center text-indent: 0em " strong 激光粒度仪上半年招标单位研究领域分布 /strong /p p style=" text-align: justify text-indent: 2em " 从单位类型的角度看,大专院校和科研院所仍然是绝对的主流,占比近8成,爆出的政府测试机构和企业研发/检测中心的采购需求相当,在13%左右。行业角度看前五名中制药/医疗、环保/水工业、石油/化工,食品都是激光粒度仪市场近年来需求旺盛的传统行业,值得注意的是2019年以来农业方面研究的需求异常旺盛,已经冲到前三名的位置。 /p p style=" text-align: justify text-indent: 2em " 究其可能性,兴农战略的政策红利或许是重要刺激因素。2019年和2020年是我国去前面建成小康社会的决胜期,“三农”问题被定为全党工作的重中之重。从具体的政策方面来说,深入推进优质粮食工程的计划就给了激光粒度仪采购很大的发展空间,粮食的口感、吸收性、流动性等性能与其粒度及粒度分布情况息息相关,打造优质粮食,粒度分析势必可以在质检领域添砖加瓦。另外,实施婴幼儿配方奶粉提升行动、实施农产品质量安全保障工程等政策的相继出台也让农业研究更加向着精细化的领域迈进。随之而来的,静态光散射法激光粒度仪、纳米及zeta电位分析仪、喷雾激光粒度仪等相关仪器都迎来了更广阔的应用空间。然而在最近的5-6月份,农业领域的科研单位采购激光粒度仪的需求有所回落,下半年的走势如何,仍然需要进一步观望。 /p p style=" text-align: justify text-indent: 2em " strong 北广领衔 四川各大学中高价位采购齐发力 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 282px " src=" https://img1.17img.cn/17img/images/201907/uepic/e3f21c09-a46f-406b-9627-a49412e0f652.jpg" title=" 3.png" alt=" 3.png" width=" 500" height=" 282" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center text-indent: 0em " strong 激光粒度仪上半年招标单位地域分布 /strong /p p style=" text-align: justify text-indent: 2em " 从地域分布的角度来看,共有26个省份、自治区及直辖市在2019年上半年出现了采购激光粒度仪的行为,其中北京、广东、四川、山东排在前四位。其余各省分布较为平均。其中四川的大专院校采购需求在3-4月份较为突出,四川大学、四川师范大学、西南民族大学等都有一至多台的激光粒度仪中标信息爆出。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 299px " src=" https://img1.17img.cn/17img/images/201907/uepic/8aea56e5-7778-48c6-bd83-f1a747b82025.jpg" title=" 4.png" alt=" 4.png" width=" 500" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 2019年上半年激光粒度仪中标价位分布 /strong /p p style=" text-align: justify text-indent: 2em " 2019年上半年在激光粒度仪科研市场,40万以上高价位激光粒度仪占比40%,30-40万中高价位激光粒度仪和10-30万的中档价位激光粒度仪分别占比26%和21%,10万以下激光粒度仪占比尽在12%。这也符合激光粒度仪中标分析主要反映科研领域用户需求的预期。 /p p style=" text-align: justify text-indent: 2em " 其中上文提到的,四川各高校采购的激光粒度仪,都为中高档价位或高档价位。许明年的春天,各大负责中高价位激光粒度仪销售的厂商负责人可以将四川各高校列在重点关注的榜单上。 /p p style=" text-align: justify text-indent: 2em " strong 中标榜:马尔文帕纳科、麦奇克、丹东百特居前三 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 295px " src=" https://img1.17img.cn/17img/images/201907/uepic/5b556801-5092-41f5-9eea-d8769cc6b0b2.jpg" title=" 5.png" alt=" 5.png" width=" 500" height=" 295" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center text-indent: 0em " strong 2019上半年激光粒度仪进口、国产中标占比分布 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 336px " src=" https://img1.17img.cn/17img/images/201907/uepic/c2d1a117-6398-416b-aba9-8e8b48788a7d.jpg" title=" 6.png" alt=" 6.png" width=" 500" height=" 336" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center text-indent: 0em " strong 2019上半年激光粒度仪各品牌中标占比分布 /strong /p p style=" text-align: justify text-indent: 2em " 在2019年上半年的激光粒度仪的中标市场上,进口品牌占比约78%,国产品牌占比约22%。具体到各激光粒度仪制造商,马尔文帕纳科、麦奇克和丹东百特包揽了激光粒度仪中标市场上半年的前三甲。新帕泰克、美国PSS、济南微纳、贝克曼库尔特等处于第二梯队,详情如上图所示。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/b9f33be8-8152-4398-95f3-1b71ea65605d.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center text-indent: 0em " strong 马尔文智能激光粒度仪Mastersizer 3000 /strong /p p style=" text-align: justify text-indent: 2em " 马尔文帕纳科是激光粒度仪行业传统的领军企业之一,其仪器在工业和科研领域都有广泛的需求,2019年,马尔文帕纳科被母公司思百吉集团正式升级为三大业务平台之一,集团收购的生命科学公司CLS也被并入麾下,百尺竿头更进一步。2019年上半年马尔文帕纳科中标最多的仪器型号为Mastersizer3000,该仪器量程宽达0.01至3500微米而无需更换透镜,采用全密封防尘光路设计,同时加持了同轴式红蓝双光源技术,即使是分布极宽的样品也能精准测量。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/8dd423df-6444-4f4d-a299-b6bbaca06937.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center text-indent: 0em " strong 麦奇克S3500系列激光粒度分析仪 /strong /p p style=" text-align: justify text-indent: 2em " 麦奇克在2019年上半年正式被弗尔德集团收购,其产品仍然由大昌华嘉代理。据悉大昌华嘉和弗尔德集团将达成更深层的合作,而两大巨头在供应链上的资源优势,让麦奇克在未来值得更多的期待。在2019年上半年的中标市场,麦奇克的S3500成为最受欢迎的型号之一。据相关负责人介绍,该仪器采用专利的Tri-Laser激光系统,消除了不同波长光源对颗粒散射光分布“连接点”的影响和多次米氏理论(Mie& nbsp Theory)数学处理的误差。仪器具有151个探测器,并引进“非球形”颗粒概念对米氏理论计算的校正因子,在准确性上值得称道。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/eeb50815-8b77-4759-90f5-d1272e287c68.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center text-indent: 0em " strong Bettersize2600激光粒度分布仪 /strong /p p style=" text-align: justify text-indent: 2em " 丹东百特是近年来增长势头最旺盛的国产激光粒度仪制造企业之一,其产品近两年开箱合格率高达100%,平均无故障运行时间超过1000天。2018年公司销售额过亿,总经理董青云新晋荣获辽宁省优秀企业家称号,其激光粒度仪Bettersize2600在2019年上半年刚刚通过了中国颗粒学会专家的鉴定,被认为达到国际先进水平。其发明专利的单光束单镜头正反傅里叶光学系统实现了近全角度的信号探测,提升了测量准确性。仪器同时具备的样品复配以及折射率测量等功能也广受各方用户的欢迎。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制