当前位置: 仪器信息网 > 行业主题 > >

干涉成像光谱仪

仪器信息网干涉成像光谱仪专题为您提供2024年最新干涉成像光谱仪价格报价、厂家品牌的相关信息, 包括干涉成像光谱仪参数、型号等,不管是国产,还是进口品牌的干涉成像光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合干涉成像光谱仪相关的耗材配件、试剂标物,还有干涉成像光谱仪相关的最新资讯、资料,以及干涉成像光谱仪相关的解决方案。

干涉成像光谱仪相关的论坛

  • 新型干涉光谱成像技术研究取得重要进展

    近日,西安光机所新型干涉光谱成像技术研究取得重大进展,以光谱室胡炳樑研究员为首的研究团队在国内率先将离轴三反光学系统应用于短波红外干涉光谱成像系统中,并成功研制了基于M-Z像面干涉光谱成像的离轴三反桌面样机系统。  面向宽覆盖、高分辨率、高光谱分辨率的要求,离轴三反加M-Z像面干涉光谱成像技术可以有效解决大视场光学系统和大尺寸干涉仪的技术瓶颈。M-Z干涉仪放置在系统会聚光路中,在减小系统体积和重量的同时,能量利用率可以达到成像仪的极限;离轴三反光学系统则能够同时实现长焦距与大视场,并且没有中心遮拦,传递函数高。但在基于M-Z像面干涉的光谱成像系统中,离轴全反射系统难以补偿会聚光路中M-Z干涉仪棱镜元件所引入的像差,为此,科研人员将校正补偿系统应用到离轴三反系统中,设计并成功研制了一种新型离轴三反成像光学系统,并针对离轴三反系统装调自由度多,结构非对称性以及离轴系统离轴量需要精确测量调整等问题,解决了离轴非球面微应力装夹、多自由度调整结构形式、离轴三反系统高精度装调等多项技术难点,为高分辨率、高光谱分辨率光谱成像技术奠定了坚实基础,并完成了必要的技术储备,使我所先进光谱成像技术达到了国内领先水平。

  • 红外光谱仪中干涉仪部分疑问?

    1. 单色光的干涉图是正弦波,波长与单色光相同2. 既然干涉波的波长与单色光相同,那两者岂不是一样的光,干嘛要多此一举转化成干涉光呢?3. 当连续光源发生干涉后,自然产生对应的正弦波,这些.波是同时产生的,自然相互作用,应该不是呈分开的谱带状,即没有呈色散状,这样一起作用在样品上,咋就能成连续波数的光谱图,有点想不通?注:本人看了红外光谱检测技术这本书

  • 【求助】红外光谱仪无干涉图

    各位大侠 你们好!,我的尼高力380红外光谱仪出现了问题,刚开机时,有干涉图,随后干涉图不稳定,直到逐渐消失.我用bench diagonoist查看了激光,光源等各参数的电压,都正常.但就是没干涉图,急呀.请各位大侠赐教.谢谢!

  • 傅里叶红外 干涉与光谱图关系 求助

    傅里叶红外 干涉与光谱图关系 求助

    请问各路高手,傅里叶变换红外光谱仪的原理:1.是不是用红外光源先产生干涉光,通过样品后,得到干涉图。关键:干涉图是如何变成光谱图的?基于什么原理?我个人的理解是,得到的总的连续的干涉图,可以分解为一系列不同强度的连续正弦干涉图,而这一系列不同强度的正弦干涉图,就是一系列不同波数的光谱。对不对?(傅里叶变换:任何连续周期信号可以由一组适当的正弦曲线组合而成)2.光源里面为什么要有激光发生器?有何用途?3.好像还有一个白光源,用来校准??4.动镜的移动速度有什么要求么?鄙人干仪表维修,看化学专业的东西真心头疼,看了一晚上,没看出个所以然。百度了一下傅里叶变换,看到高数公式,直接崩溃。。。再次先谢过!能提供有用回答,再额外加分!http://ng1.17img.cn/bbsfiles/images/2013/01/201301192226_421457_1620528_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/01/201301192224_421454_1620528_3.jpg

  • 白光干涉仪是什么?有哪些作用?

    白光干涉仪目前在3D检测领域是精度最高的测量仪器之一,在同等系统放大倍率下检测精度和重复精度都高于共聚焦显微镜和聚焦成像显微镜,在一些纳米级和亚纳米级的超精密加工领域,除了[url=http://www.chotest.com/detail.aspx?cid=686][b][color=#333333]白光干涉仪[/color][/b][/url],其它的仪器无法达到其测量精度要求。[align=center][img]http://www.chotest.com/Upload/2018/3/201803076710554.jpg[/img][/align][align=center]中图仪器SuperView W1白光干涉仪[/align]白光干涉仪测量原理:  白光干涉仪是利用光学干涉原理研制开发的超精密表面轮廓测量仪器。照明光束经半反半透分光镜分威两束光,分别投射到样品表面和参考镜表面。从两个表面反射的两束光再次通过分光镜后合成一束光,并由成像系统在CCD相机感光面形成两个叠加的像。由于两束光相互干涉,在CCD相机感光面会观察到明暗相间的干涉条纹。干涉条纹的亮度取决于两束光的光程差,根据白光干涉条纹明暗度以及干涉条纹出现的位置解析出被测样品的相对高度。[align=center][img]http://www.chotest.com/Upload/2019/5/201905302500097.jpg[/img][/align]白光干涉仪的测量应用:  以测量单刻线台阶为倒,在检查仪器的各线路接头都准确插到对应插孔后,开启仪器电源开关,启动计算机,将单刻线台阶工件放置在载物台中间位置,先手动调整载物台大概位置,对准白光干涉仪目镜的下方。  在计算机上打开白光干涉仪测量软件,在软件界面上设置好目镜下行的最低点,再微调镜头与被测单刻线台阶表面的距离,调整到计算机屏幕上可以看到两到三条干涉条纹为佳,此时设置好要扫描的距离。按开始按钮,白光干涉仪可自动进行扫描测量,测量完成后,转件自动生成3D图像,测量人员可以对3D图像进行数据分析,获得被测器件表面线、面粗糙度和轮廓的2D、3D参数。[align=center][img]http://www.chotest.com/Upload/2019/5/201905303281565.png[/img][/align]  白光干涉仪具有测量精度高、操作便捷、功能全面、测量参数涵盖面广的优点,测量单个精密器件的过程用时2分钟以内,确保了高款率检测。白光干涉仪独有的特殊光源模式,可以广泛适用于从光滑到粗糙等各种精密器件表面的测量。

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • Zygo 发布全新 Qualifire 激光干涉仪

    [color=#000000]阿美特克(纽约证券交易所代码:AME)旗下Zygo公司宣布发布其最新的激光干涉仪Qualifire?。Qualifier加入了一系列高端干涉仪解决方案,该仪器旨在支持半导体、光刻、星载成像系统、尖端消费电子产品、国防等行业中最苛刻的计量应用。Qualifire将于1月30日在加州旧金山的SPIE Photonics West首次亮相。这款干涉仪在不牺牲性能的情况下,将显著的增强功能集成到一个更轻的小型封装中。[/color][color=#000000]Zygo 激光干涉仪产品经理 Erin McDonnell 表示:“我们很高兴将 Qualifire 推向市场,其改进的人体工程学设计使其易于使用,并且比 Zygo 的许多其他激光干涉仪更便携。使用激光干涉仪进行的测量往往对噪声、污染物和其他伪影敏感,因为该仪器能够提供纳米级精度;Qualifire上的可选模块飞点可主动减少甚至消除这些伪影,从而提高测量的可靠性和可重复性。飞点结合了Zygo最好的两种伪影减少技术:环纹和相干伪影减少。飞点在需要高精度的应用中尤其有价值,包括科学研究和先进的制造工艺。[/color][color=#000000]Qualifire为Zygo的激光干涉仪产品线带来这些功能和改进:[/color][color=#000000]Qualire激光干涉仪提供了许多新颖的新功能。[/color][b][color=#000000]智能附件接口[/color][/b][color=#000000]——干涉仪可以识别任何安装的“智能附件”,并自动应用系统错误文件并执行横向校准。[/color][b][color=#000000]体积小、重量轻[/color][/b][color=#000000]——最小的 Qualifire 型号重约 45 磅(20.4 千克)。 它是真正的便携式,特别是对于干涉仪必须经常移动或调整的复杂和精密应用。[/color][b][color=#000000]移相器[/color][color=#000000](PMR)[/color][/b][color=#000000]——PMR 是调制测试部件和参考光学器件之间干涉条纹所必需的,最终可创建定量表面图。其整体设计提供:[/color][color=#000000]整体机械稳定性和对准[/color][color=#000000]降低损坏或错位的风险[/color][color=#000000]确保性能一致,减少重新校准的需要[/color][b][color=#000000]改进的用户体验[/color][/b][color=#000000]——方便使用的电源按钮和运动安装支脚使设置更易于使用。大型控制旋钮可实现更精确的调整,这对校准和校准都至关重要。 集成手柄确保安全可靠的操作。[/color][b][color=#000000]更易于维护[/color][/b][color=#000000]—— 密封的光学系统和整合的电子元件使更换各种组件变得简单,而不会使光学元件暴露在污染物中。[/color][b][color=#000000]飞点[/color][/b][color=#000000]——用于减少伪影的可选模块,包括自动对焦功能。[/color][b][color=#000000]稳定变焦[/color][/b][color=#000000]——提供新变焦方法的选项,可在所有放大倍率下实现完美的图像配准和衍射限制图像采样。[/color][color=#000000]计量集团副总裁Kurt Redlitz 表示:“Qualifire 保持了 Zygo 在计量方面的高标准,同时提供了最高水平的精度并优化了用户体验。通过改进的人体工程学设计,它可以在不牺牲性能的情况下提高操作效率和部署灵活性。Qualifire 是一款更强大、更可靠、用户友好的仪器,可随时应付最苛刻的应用和环境——精度不容置疑。[/color][来源:仪器信息网译] 未经授权不得转载

  • 有没有基于空间调制干涉仪的傅里叶变换红外光谱仪?

    请问各位,市场上有基于空间调制干涉仪的傅里叶变换红外光谱仪吗?我看各家公司的产品都是在迈克尔逊干涉仪基础上进行改进的,需要动镜进行扫描,但是空间调制型的如sagnac干涉仪可以避免这种情况,而且体积更小,但是市面上为什么没有看到这类产品呢?

  • 【资料】干涉滤光片

    干涉滤光片interference film利用干涉原理只使特定光谱范围的光通过的光学薄膜。通常由多层薄膜构成。干涉滤光片种类繁多,用途不一,常见干涉滤光片分截止滤光片和带通滤光片两类。截止滤光片能把光谱范围分成两个区,一个区中的光不能通过(截止区),而另一区中的光能充分通过(通带区)。典型的截止滤光片有低通滤光片(只允许长波光通过)和高通滤光片(只允许短波光通过),它们均为多层介质膜,具有由高折射率层和低折射率层交替构成的周期性结构。例如,最简单的高通滤光片的结构为g(L/2)(HL)mH(L/2)a,其中g代表玻璃(光学元件材料),a代表膜外空气,L和H分别代表厚度为1/4波长的低折射率层和高折射率层,L/2则代表厚度为1/8波长的低折射率层 ,m 为周期数 。类似地,低通滤光片的结为g(H/2)L(HL)(H/2)a。一种具有对称型周期膜系的高通和低通滤光片的结构分别为g(0.5LH0.5L)ma和g(0.5HL0.5H))ma 。带通滤光片只允许较窄波长范围的光通过,常见的是法布里-珀罗型滤光片,它实质上是一个法布里-珀罗标准具(见法布里-珀罗干涉仪)。具体结构为:玻璃衬底上涂一层半透明金属层,接着涂一层氟化镁隔层,再涂一层半透明金属层,两金属层构成了法布里-珀罗标准具的两块平行板。当两极的间隔与波长同数量级时,透射光中不同波长的干涉高峰分得很开,利用别的吸收型滤光片可把不允许透过的光滤掉,从而得到窄通带的带通滤光片,其通频带宽度远比普通吸收型滤光片要窄。另外还有全电介质的法布里-珀罗型滤光片,两种典型结构为gHLHLLHLH a,g HLHL HH LHLH a1。根据需要,带通滤光片的通频带可从红外到紫外。在可见光区,彩色电视摄像机中可利用这种滤光片把像分离成不同颜色;在红外区,常用于二氧化碳激光器、导弹制导系统及卫星传感器等。

  • 【讨论】红外光谱仪的增益设置 及 干涉图能量范围

    各位朋友红外光谱中,大家怎么设置增益值的?有什么标准?还有我们的nicolet 6700,新仪器刚用4个月。增益设为1时,空光路干涉图能量6.67 加金刚石的单反射附件后1.04 加ZnSn多反射附件后0.74我们老板认为太低,我初做红外时间不久,没什么感念不知大家的仪器能量数值是多少,给个参考还有大家有什么评论。我问仪器工程师,他说正常,可我们老板听说也是红外的专家,呵呵

  • 【谱图】微分干涉金相显微镜的简要介绍

    DMM-5000微分干涉金相显微镜采用优质的无限远光学系统,同时配备明暗场通用的长工作距离平场平场消色差物镜,多光路的系统设计,可同时支持双目镜筒观察和数码摄像装置观察。DMM-5000倒置金相显微镜可广泛应用于研究金属的显微组织,能在明场、暗场、偏光、微分干涉下进行观察和摄影,配备专用软件,更可同步进行测量分析。可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用。DMM-5000高级正置金相显微镜,选用优质的光学元件,配有超大视场目镜、落射照明器、平场无限远长工作距离明暗场物镜,可选用微分干涉(DIC)观测、获得高清晰的图像,使图像衬度更好。是针对半导体晶圆检测、太阳能硅片制造业、电子信息产业、治金工业开发的,作为高级工业金相显微镜使用。可进行明暗场观察、落射偏光、DIC观察,广泛用于工厂、研究机构、高等院校对太阳能电池硅片、半导体晶圆检测、电路基板、FPD、精密模具的检测分析。 DMM-5000C电脑型微分干涉金相显微镜是将精锐的光学显微镜技术、先进的光电转换技术、尖端的计算机成像技术完美地结合在一起而开发研制成功的一项高科技产品。既可人工观察金相图像,又可以在计算机显示器上很方便地适时观察金相图像,并可随时捕捉记录金相图片,从而对金相图谱进行分析,评级等,还可以保存或打印出高像素金相照片。

  • 【资料】求助--激光干涉仪

    [em10] 用于机床定位精度检测和重复定位精度检测的激光干涉仪什么牌子的好呀?在Renishaw和API之间徘徊,那位前辈能给指点一二?

  • 【资料】微分干涉相衬法及其应用

    [size=3][font=宋体][/font][size=2][font=宋体][/font][/size][/size][size=2][font=宋体]微分干涉相衬法(DIC)作为一种极具前途的分析检验方法,具有对金相样品的制备要求较低,所观察到的样品各组成相间的相对层次关系突出,呈明显的浮雕状,对颗粒、裂纹、孔洞以及凸起等能作出正确的判断,能够容易判断许多明场下所看不到的或难于判别的一些结构细节或缺陷,可进行彩色金相摄影等优点。但在目前的金相检验工作中,DIC法还利用得很少。[/font][/size][size=2][font=宋体]在金相显微镜检验方法中,微分干涉相衬法(DIC)是金相检验的一种强有力的工具,其特点主要为:[/font][/size][size=2][font=宋体]对金相样品的制备要求降低,对于某些样品,甚至只需抛光而不必腐蚀处理即可进行观察。优点是可以观察到样品表面的真实状态,如将试样抛光后在真空下发生马氏体相变,不用腐蚀就可以观察到马氏体的相变浮凸。 [/font][/size][size=2][font=宋体]所观察到的表面具有明显的凹凸感,呈浮雕状,样品各组成相间的相对层次关系都能显示出来,对颗粒、裂纹、孔洞以及凸起等都能作出正确的判断,提高了金相检验准确性,同时也增加了各相间的反差。 [/font][/size][size=2][font=宋体]用微分干涉相衬法观察样品,会看到明场下所看不到的许多细节,明场下难于判别的一些结构细节或缺陷,可通过微分干涉进行反差增强而容易判断。 [/font][/size][size=2][font=宋体]微分干涉相衬法基于传统的正交偏光法,又巧妙地利用了在渥拉斯顿棱镜基础上改良的DIC 棱镜和补色器([/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)等,使所观察的样品以光学干涉的方法染上丰富的色彩,从而可利用彩色胶卷或者数码产品(CCD 摄像头以及数码相机)进行彩色金相显微摄影。由于微分干涉相衬得效果与样品细节的浮雕像以及色彩都是可以调节的,因而比正交偏光更为优越。 [/font][/size][size=2][font=宋体]微分干涉相衬法在生物医学领域得到了广泛的重视,然而,到目前为止从发表的有关材料金相研究的论文中,国内外基于微分干涉相衬法进行材料金相研究的工作开展得很少。其原因主要有两个方面:一方面是由于配备微分干涉相衬部件的金相显微镜不是很多;另一方面,许多材料科学工作者还没有意识到微分干涉相衬法在材料研究中的优势。[/font][/size][size=2][font=宋体]一、微分干涉相衬法的基本原理:[/font][/size][size=2][font=宋体]微分干涉相衬法所需部件:起偏器、检偏器、微分干涉相衬组件插板(DIK组件插板),以及补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)。起偏器和检偏器是在对金相样品进行正交偏振光观察中必不可少的基本配套部件,组装在明/暗场照明组件中,也是微分干涉相衬法必不可少的部件。起偏器是把光源变为按东- 西方向振动的线偏振光;检偏器可以使满足干涉条件的相干光进行干涉。DIK组件插板是微分干涉相衬法的核心部件,其上装配有以渥拉斯顿棱镜为基础改良后的DIC棱镜。DIK组件插板上有两个调节旋钮,其中较大的一个用来调节组成DIC棱镜的两个棱镜间的相对位置,使其厚度产生微小的改变从而引起光程或光程差的微小变化,产生明显的干涉相衬效果;较小的一个用来调节DIC棱镜的高低位置,以配合不同倍数物镜后焦平面位置上的差异,从而确保DIC观察视场中能获得均匀的照明。补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)由石膏制成,插在线偏振光的照光路中用以增加一个光波波长约550nm的光程差,使干涉级序升高一级,保证视野中样品的不同组织细节获得丰富的色彩,从而利于金相组织的观察和分析。 [/font][/size][size=2][font=宋体]微分干涉相衬的基本原理:微分干涉相衬法的基本原理如图1所示。由光源出射的照明光经起偏器后变为东-西方向振动的线偏振光,第一次进入DIC棱镜内部时分为寻常光(o光)和非寻常光(e光),这两束光微微分开,而其振动方向相互垂直。当o光和e光穿出棱镜时,两者具有一定的光程差T1,这两束光通过物镜照射到样品上时,就有可能照射于不同的表面状态上。也就是说,这两束光的波前接触到了样品上的不平整表面、裂纹、微孔、凹陷、晶界等,都会产生不同情况的反射,再加上不同物相上光的折射率差异产生的光波相位变化,从而产生了新的附加光程差T0。当这两束光由样品表面反射后,穿过物镜第二次进入DIC棱镜,波前又产生了新的光程差T2 并进行合并。但这两束光仍然是相互垂直的线偏振光,并未产生干涉。在进入检偏器之前,总的光程差T总=T1±T0±T2只有符合光程差条件T总=(2k + 1)[/font][/size][size=2][font=Arial]λ/2[/font][/size][size=2][font=宋体],其中(k= 0,1,2等) 的光波波前,才可能通过检偏器。也就是说,线偏振光两次通过DIC棱镜后,只有那些经样品反射而其总光程差等于所用光源光波半波长奇数倍的波前,才能满足干涉条件而通过检偏器而进行干涉。当将DIC棱镜的两半部分进行适当的移动(即调节DIK 插板上较大的旋钮),则T1和T2 的比率就会发生变化:调节旋钮使DIC 棱镜在显微镜的光轴上为对称时(即棱镜上下两半部分没有相对位移),有T1=T2,视场中光强分布只与光程差T0有关,而T0是由样品上的不平整度以及物相造成的光波相位变化而引起的光程差。除了在样品表面上由于物相间折射率的差异导致的光波相位变化而引起的光程差之外,这种干涉方法所引起的样品光程差与o光和e光的分开距离x值(低于显微镜的分辨率极限,约012[/font][/size][size=2][font=Arial]μm[/font][/size][size=2][font=宋体])有关,还与样品表面上物相表面高度变化(凸起或凹下)梯度tg[/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]([/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]为o光或e光入射于样品表面的入射角)有关。即样品成像的反差取决于o光和e光波前在样品表面物相凸起或凹下的高度变化梯度所引起的光程差。当调节旋钮使DIC 棱镜上下两半部分产生相对位移时,物相表面凸起或凹下两个相反梯度所引起的光强差异就在显微镜的成像中产生了浮雕效果如图2所示,与单一方向斜射照明光所产生的近似立体效果相同。此时干涉效果是零级干涉级序下的微分干涉效果,灰度最大者为零级灰,在零级干涉级序下干涉相衬的效果最佳,同时也是最大的,但仅能以不同灰度层次显示。把补色器(或[/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)加在线偏振光的照明或检偏器之前的成像光路中,可以将线偏振光在样品不同物相或表面上引起的光程差扩大约550nm ,也就是扩大一个光波波长的长度,使干涉级序提高一级,把原先干涉出来仅以不同灰度显示出来的层次转为色彩鲜艳且富有立体感的彩色,零级灰转为红色(一级红),而其它的灰度阶也依次变为橙、黄、绿、紫、粉紫以至于金黄色等对应的颜色如图3 (见彩图页) 所示。虽然加入补色器后干涉出来的色彩非常丰富,但干涉相衬的效果(即浮雕效果) 要相应减弱一些。 [/font][/size]

  • 激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。[align=center][img=,578,450]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201754505855_5264_3712_3.jpg!w578x450.jpg[/img][/align]  激光干涉仪最典型的应用就是测量机床精度,本文讲解如何使用激光干涉仪测量五轴机床平移轴直线度误差。  对于平移轴而言,每根轴均有两个直线度误差,因此三根轴有六个直线度误差,均可采用激光干涉仪分别测得。  原理:带有圆孔的是直线度干涉镜,其与待测轴相连一同运动;长条镜是直线度反射镜静止安装,其是对称结构,上下左右均对称。当一束激光从源头发出射入干涉镜,干涉镜将光束分成两束,形成一个很小的角度分别去往反射镜,由于反射镜上下对称,因此两束光被反射后又回到干涉镜,汇合成一股光束,去往激光头的探测器。当运动轴产生直线度误差时,会使得干涉镜相对于反射镜在水平横向方向发生相对运动,而反射镜是左右对称的(左右的镜片不在同一平面,有一定的角度),因此会使得两束分开的光束光程具有差别,根据此差别,即可测得运动轴产生的直线度误差。[align=center][img=,678,333]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755021895_7221_3712_3.jpg!w678x333.jpg[/img][/align][align=center]▲ 直线度测量的光路原理构建图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755111914_6482_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的横向直线度测量示意图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755345695_9383_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的纵向直线度测量示意图[/align]  根据直线度误差测量原理可知,测量过程中不可避免的会引入斜率误差。该误差是由于测量直线度反射镜的光学轴线最初与待测轴不平行,为调整平行而引起的。如图 所示,A 为干涉镜和反射镜的距离,B 为激光头到干涉镜的距离(其中干涉镜是固定在运动轴上的)。在一开始,反射镜的光学轴线处于旋转前的位置,而由于机床运动轴与其之间存在的夹角θ,[img]http://www.chotest.com/Upload/2019/10/201910173125514.jpg[/img][align=center][img]http://www.chotest.com/Upload/2019/10/201910177031118.png[/img][/align]  因为斜率误差是稳定误差,因此可以采取上述的公式将其从直线度测量结果中分离出来,亦可以采用两端法拟合或者最小二乘法拟合将其分离出去。  两端法拟合:即是将所有采集来的数据第一点和最后一点相连决定一直线,再将所有采集来的数据去除掉拟合的直线信息,由此得出的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910170000002.png[/img][/align]最小二乘法拟合:将采集回来的所有数据通过最小化误差的平方和方式来寻找数据的最佳函数匹配,而后将采集值与匹配函数对应值相比较,剩余的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910171562522.png[/img][/align]附:SJ6000激光干涉仪直线度测量精度。[table][tr][td][align=center]轴向量程[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量精度[/align][/td][td][align=center]分辨力[/align][/td][/tr][tr][td][align=center]短距离[/align][/td][td][align=center](0.1~4.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(0.5+0.25%R+0.15M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.01μm[/align][/td][/tr][tr][td][align=center]长距离[/align][/td][td][align=center](1.0~20.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(5.0+2.5%R+0.015M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.1μm[/align][/td][/tr][tr][td=5,1]注:R为显示值,单位:μm;M为测量距离,单位:m[/td][/tr][/table]

  • 【分享】参考干涉 采集

    里叶变换红外光谱仪中,干涉数据要实现等光程差采样,一般是通过氦氖激光器作为参考光源,如果只采用一个探测器,请问如何将测量光源与参考光源产生的干涉信号分离?提取出参考光源的干射信号?

  • 激光干涉仪怎样测量五轴机床平移轴直线度误差?

    SJ6000激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在[b]SJ6000[color=#333333]激光干涉仪[/color][/b]动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。[align=center][img]http://www.chotest.com/Upload/2019/9/201909243125960.png[/img][/align]  激光干涉仪最典型的应用就是测量机床精度,本文讲解如何使用激光干涉仪测量五轴机床平移轴直线度误差。  对于平移轴而言,每根轴均有两个直线度误差,因此三根轴有六个直线度误差,均可采用激光干涉仪分别测得。  原理:带有圆孔的是直线度干涉镜,其与待测轴相连一同运动;长条镜是直线度反射镜静止安装,其是对称结构,上下左右均对称。当一束激光从源头发出射入干涉镜,干涉镜将光束分成两束,形成一个很小的角度分别去往反射镜,由于反射镜上下对称,因此两束光被反射后又回到干涉镜,汇合成一股光束,去往激光头的探测器。当运动轴产生直线度误差时,会使得干涉镜相对于反射镜在水平横向方向发生相对运动,而反射镜是左右对称的(左右的镜片不在同一平面,有一定的角度),因此会使得两束分开的光束光程具有差别,根据此差别,即可测得运动轴产生的直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910178906394.jpg[/img][/align][align=center]▲ 直线度测量的光路原理构建图[/align][align=center][img]http://www.chotest.com/Upload/2019/10/201910170468304.png[/img][/align][align=center]▲ 运动轴的横向直线度测量示意图[/align][align=center][img]http://www.chotest.com/Upload/2019/10/201910173593913.png[/img][/align][align=center]▲ 运动轴的纵向直线度测量示意图[/align]  根据直线度误差测量原理可知,测量过程中不可避免的会引入斜率误差。该误差是由于测量直线度反射镜的光学轴线最初与待测轴不平行,为调整平行而引起的。如图 所示,A 为干涉镜和反射镜的距离,B 为激光头到干涉镜的距离(其中干涉镜是固定在运动轴上的)。在一开始,反射镜的光学轴线处于旋转前的位置,而由于机床运动轴与其之间存在的夹角θ,[img]http://www.chotest.com/Upload/2019/10/201910173125514.jpg[/img][align=center][img]http://www.chotest.com/Upload/2019/10/201910177031118.png[/img][/align]  因为斜率误差是稳定误差,因此可以采取上述的公式将其从直线度测量结果中分离出来,亦可以采用两端法拟合或者最小二乘法拟合将其分离出去。  两端法拟合:即是将所有采集来的数据第一点和最后一点相连决定一直线,再将所有采集来的数据去除掉拟合的直线信息,由此得出的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910170000002.png[/img][/align]最小二乘法拟合:将采集回来的所有数据通过最小化误差的平方和方式来寻找数据的最佳函数匹配,而后将采集值与匹配函数对应值相比较,剩余的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910171562522.png[/img][/align]附:SJ6000激光干涉仪直线度测量精度。[table][tr][td][align=center]轴向量程[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量精度[/align][/td][td][align=center]分辨力[/align][/td][/tr][tr][td][align=center]短距离[/align][/td][td][align=center](0.1~4.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(0.5+0.25%R+0.15M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.01μm[/align][/td][/tr][tr][td][align=center]长距离[/align][/td][td][align=center](1.0~20.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(5.0+2.5%R+0.015M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.1μm[/align][/td][/tr][tr][td=5,1]注:R为显示值,单位:μm;M为测量距离,单位:m[/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制