当前位置: 仪器信息网 > 行业主题 > >

高分辨率显示器

仪器信息网高分辨率显示器专题为您提供2024年最新高分辨率显示器价格报价、厂家品牌的相关信息, 包括高分辨率显示器参数、型号等,不管是国产,还是进口品牌的高分辨率显示器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨率显示器相关的耗材配件、试剂标物,还有高分辨率显示器相关的最新资讯、资料,以及高分辨率显示器相关的解决方案。

高分辨率显示器相关的资讯

  • 化学所“超高分辨率荧光显微镜”获得方解石中超高分辨率蛋白图像
    近日,记者从中科院化学所获悉,该所胶体、界面与化学热力学重点实验室李峻柏课题组利用其开发的“超高分辨率荧光显微镜”,观测到生物矿化过程中参与结晶的蛋白质分布信息。论文在《德国应用化学》上刊发。  “超高分辨率荧光显微镜”可以超越远场光学显微镜的分辨率极限,直接检测到几十纳米的精细结构。而与能达到相同或更高分辨率的X光显微镜、各类电子显微镜及原子力显微镜相比,超高分辨荧光成像能在常温常压和基本不损伤生物样本活性的条件下,获得其纳米尺度的图像信息。  研究人员介绍,“超高分辨率荧光显微镜”又称为随机光学重建显微镜(STORM),可达到或好于50纳米分辨率。在前期研究中,李峻柏课题组在超高分辨图像采集和数据分析方面发展了实时单分子定位的程序包SNSMIL,该程序包可广泛应用于高背景成像的数据分析。  他们利用STORM观测到方解石中生物矿化过程中参与结晶的蛋白质分布信息,为研究蛋白质诱导生物矿化的机理提供了数据。
  • 发布超高分辨率显微镜新品
    微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。创新点:微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。
  • 首个真彩超高分辨率显微镜 打开光谱信息新大门
    美国劳伦斯伯克力国家实验室的科学家们开发了首个真彩(true-color)超高分辨率显微成像技术,为研究细胞结构和相关疾病提供了一个强大的工具。该技术将光谱与超高分辨率显微技术结合起来,在单分子成像时可以达到空前的光谱和空间分辨率。这一突破性成果发表在八月十七日的Nature Methods杂志上。  “我们用这一技术检测每个分子在空间和光谱中的定位,根据其光谱判断分子的颜色,可以说这是首个真彩超高分辨率显微镜,”助理教授Ke Xu说,他将这一技术命名为SR-STORM(spectrally resolved stochastic optical reconstruction microscopy)。  SR-STORM能够给出每个分子的光谱和空间信息,为人们打开了一扇新的大门。该技术不仅能够在细胞中成像多个组分,还能检测局部的化学环境(比如pH变化)。更重要的是,SR-STORM是一种高通量技术,能在大约五分钟内获得大量单分子的空间和光谱信息。  SR-STORM是Xu博士基于自己之前的工作开发出来的,当时他在著名学者庄小威(Xiaowei Zhuang)实验室从事博士后研究。庄小威教授研发的超高分辨率成像技术STORM与诺奖得主Eric Betzig的成果不相伯仲,却和2014年的诺贝尔化学擦肩而过。  现有的超高分辨率显微技术不能给出光谱信息,这样的信息对于理解分子行为是很有帮助的,而且能够对多个靶标实现高质量的多色成像。Xu博士和同事们经过深入探索,终于解决了这一难题。他们用发射波长相近的14种染料对样本进行染色。尽管这些染料的光谱彼此重叠,但SR-STORM能够很好的将其区分开。研究人员还用四种染料对线粒体、微管等四个不同的亚细胞结构进行标记。研究显示,SR-STORM能够根据分子的光谱轻松分辨不同的颜色,每个亚细胞结构都能鲜明的呈现出来。  “我们以大约10nm的高分辨率,成像了细胞内四个生物学组分的空间互作,”Xu说。“目前这一技术主要用于基础研究和细胞生物学领域,我们希望日后也能将其用于医疗。研究者们可以在SR-STORM的帮助下观察细胞结构的建立,以及它们在疾病中发生的变化。”  “细胞骨架包括一系列相互作用的亚细胞结构和蛋白,这一技术可以通过空前的颜色通道和空间分辨率,揭示不同靶标之间的互作。”  Xu博士正在尝试进一步改良这一技术,使它能够用于常规显微系统。他也在开发合适的染料和探针,在纳米尺度上监控细胞内局部环境的变化,比如pH值。  原文链接:Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy
  • Science:低成本的超高分辨率成像
    显微镜一直是生物学研究中的重要工具,随着技术的发展显微镜的分辨率在不断提高。最新的超高分辨率显微镜已经达到了超越衍射极限的分辨率。现在MIT的研究团队通过另一种巧妙的方式达到了同样的目的。   研究人员并没有在显微镜上下功夫,而是从组织样本下手,利用一种吸水膨胀的聚合物将组织样本整体放大。这种方法非常简单成本也很低,能用普通共聚焦显微镜达到超越200nm的分辨率。这项发表在Science上的成果,能使更多科学家接触到超高分辨率成像。   &ldquo 你在常规显微镜下就可以实现超高分辨率成像,不需要购买新设备,&rdquo 文章的资深作者,MIT的副教授Ed Boyden说,Fei Chen和Paul Tillberg是这篇文章的第一作者。   物理放大   衍射极限曾经是光学显微镜的最大障碍之一,使其分辨率无法突破200nm,然而这个尺度恰恰是生物学家最感兴趣的。为了克服这个问题,科学家们开发了超高分辨率显微技术,该技术获得了去年的诺贝尔化学奖。   然而,超高分辨率显微镜最适合用于薄样本,成像大样本的时间比较长。&ldquo 如果想要分析大脑,或者理解肿瘤转移中的癌细胞,或者研究攻击自身的免疫细胞,你需要在高分辨率水平上观察大块的组织,&rdquo Boyden说。   为了使组织样本更容易成像,研究人员使用了聚丙烯酸盐制成的凝胶,这是一种高度吸水的材料,通常用于尿不湿中。   研究人员首先用抗体标记想要研究的细胞组分或蛋白,这种抗体不仅连有荧光染料,还能够将染料连到聚丙烯酸盐上。研究人员向样本添加聚丙烯酸盐并使其形成凝胶,然后消化掉起连接作用的蛋白,允许样本均匀膨胀。样本遇到无盐的水之后膨胀了100倍,但荧光标记在整个组织中的定位并没有改变。   人们一般用普通共聚焦显微镜进行荧光成像,不过它的分辨率只能达到几百纳米。研究人员通过放大样本,用共聚焦显微镜达到了70nm的分辨率。&ldquo 这种膨胀显微技术能够很好的整合到实验室已有的显微系统中,&rdquo Chen补充道。   大样本   MIT的研究团队用这种膨胀显微技术,在常规共聚焦显微镜下成像了500× 200× 100微米的大脑组织切片。而其他超高分辨率技术难以成像这么大的样本。   &ldquo 其他技术目前可以达到更高的分辨率,但使用起来比较难也比较慢,&rdquo Tillberg说。&ldquo 我们这个方法的优势在于,使用简单而且支持大样本。&rdquo   研究人员认为,这一技术对于研究大脑的神经连接非常有用。Boyden的团队将注意力放在大脑研究上,不过这一技术同样适用于肿瘤转移、肿瘤血管生成、自身免疫疾病等研究。
  • 「中智科仪新品」撕掉像增强相机低空间分辨率的“标签”- TRC428高分辨率像增强相机
    在科技的不断进步与创新中,像增强相机已成为众多科学问题探索过程中不可或缺的工具。像增强相机是一种利用像增强器对弱信号进行增益放大的特殊相机,它可以极大提高相机的成像灵敏度。但是由于像增强器中起增益放大作用的微通道板(MCP)会极大的限制相机的分辨率,因此,目前市面上的像增强相机空间分辨率一般低于30lp/mm,这大大限制了很多有着较高分辨率要求的应用场景。今天,我们自豪地宣布,中智科仪的最新力作——TRC428高分辨率像增强相机即将面世。这款革命性的产品将带来卓越的空间分辨率、出色的性能表现以及无与伦比的可靠性,将满足您对高分辨率需求的一切期待。TRC428 高分辨率像增强相机搭载了全新的图像传感器芯片,分辨率高达3200x2200,单像素尺寸4.5um,为用户提供了前所未有的图像质量和分辨率,同时,我们集成了新一代的高空间分辨率、高量子效率、低噪声像增强器,且成功突破了高分辨率CMOS相机与增强器实现光纤锥耦合工艺的技术壁垒。这一突破性的技术提升使得相机的整机空间分辨率高达45lp/mm以上,重新定义了像增强型相机成像分辨率的标准。TRC428高分辨率像增强相机具有特点及优势:高空间分辨率:TRC428高分辨率像增强相机采用新一代高空间分辨率像增强器,以及3200x2200高分辨率CMOS图像传感器,利用4um芯径光纤面板将二者进行光学耦合,借助先进的耦合工艺,整机空间分辨率优于40lp/mm,为用户提供了极致的图像分辨率,使您能够捕捉到每一个细微的细节。TRC411相机(左)和TRC428相机(右)空间分辨率测试对比超短光学快门:TRC428高分辨率像增强相机可实现低至500ps的光学快门,可以以皮秒精度捕捉瞬态现象,并大幅降低背景噪声;针对瞬态吸收荧光光谱应用场景,可以实现更高的时间分辨率;针对门控拉曼光谱采集应用场景,抑制荧光和背景光能力更加卓越。特别适用于各种时间分辨成像以及超快过程探测。500ps光学门宽高时间同步精度:TRC428高分辨率像增强相机内置10皮秒精度的3通道同步时序控制器,可以进行相机与外部设备的高精度延迟和同步,无需额外的同步触发设备即可轻松实现多台设备之间的精准同步控制;各个通道可独立控制同步信号脉宽及延时,延迟精度高达10皮秒,通道间同步时间抖动小于35ps(RMS)。10ps延时精度高快门重复频率:TRC428高分辨率像增强相机快门工作重复频率可高达500kHz,可以更高效的实现高频信号采集;且支持片上积分(IOC)模式,一次CMOS曝光时间内可以支持更多次的“Burst”累积,这在可重复的弱信号采集应用中可有效提高信噪比。在激光诱导荧光光谱采集应用场景下,可以同步更高频率的激发光源,提高光谱信号激发和采集效率;在量子关联成像应用场景下,更高的快门工作频率可以适应更高的光子发生率,从而获取更丰富的成像信息,更快实现关联成像。片上积分(IOC)模式工作示意图方便易用的软件:TRC428高分辨率像增强相机的控制与操作可以完全兼容SmartCapture软件,功能丰富,方便易操作。SmartCapture软件界面及功能特点高分辨率像增强相机的以上特点和优势除了在成像应用领域为用户带来革命性的应用体验外,在门控光谱仪系统中也将发挥重要的优势。众所周知,探测器的分辨率对于光谱采集系统的光谱分辨率至关重要,但是在一些与时间分辨相关的光谱以及极弱单光子光谱信号采集系统中,单色仪需要配置具有门控功能的像增强相机做为探测器,从而实现时间分辨光谱和极弱单光子光谱信号采集测量。但是,像增强相机的低空间分辨率会极大限制光谱分辨率,相对于普通探测器,配置门控型像增强相机做为探测器的光谱仪分辨率将会降低约1.5倍左右(经验值)。高分辨率像增强相机的问世将在一定程度上解决这一问题。我们将TRC428高分辨率像增强相机与MS5204i光谱仪集成,形成一套纳秒门控光谱仪,利用这套门纳秒控光谱仪进行了极限光谱分辨率测试,并与集成了标准像增强相机的纳秒门控光谱仪测试结果进行了对比:结果如下:TRC428高分辨像增强相机,分辨率26.73pm@546.075nmTRC411像增强相机,分辨率35.64pm@546.075nm集成了TRC428高分辨率像增强相机的纳秒门控光谱仪,极限光谱分辨率可达26.73pm;但集成TRC411标准像增强相机的纳秒门控光谱仪,采用同样的光谱仪设置,对同样的光谱信号进行采集,能够达到的极限光谱分辨率仅为35.64pm。其他更多波长的光谱分辨率对比如下所示(不同波长对应的增益有所不同):波长(nm)253.652365.015404.656435.833546.075579.066TRC411相机35.10pm40.50pm39.96pm32.40pm35.64pm39.69pmTRC428相机24.57pm23.63pm23.31pm25.92pm26.73pm28.35pm由以上对比数据可以看出,使用TRC428高分辨率像增强相机做为探测器的纳秒门控光谱仪,相对于使用TRC411相机做为探测器的纳秒门控光谱仪,在光谱分辨率上有30%以上的提升。配合更长焦距的单色仪,预期光谱分辨率可提升至10pm以内,可应用于等离子光谱以及同位素光谱分析等超高精度要求的应用场景。TRC428高分辨率像增强相机的推出标志着中智科仪对高分辨率成像技术的持续投入和创新。我们相信,TRC428将成为像增强相机行业内的新标杆,为用户提供前所未有的视觉体验和应用价值。同时,TRC428高分辨率像增强相机的问世也证实了像增强相机的空间分辨率有进一步提升的空间,中智科仪将继续努力,持续研发,推动像增强相机的空间分辨率进一步提升。
  • 耶拿推出最高分辨率的ICP光谱
    仪器信息网讯 2013年10月25日,德国耶拿公司在北京展览馆举行了&ldquo 高分辨ICP-OES新品发布会&rdquo ,推出目前市场同类产品中最高分辨率的ICP-OES新品&mdash &mdash PQ9000。 发布会现场 德国耶拿公司在BCEIA 2013上展示的ICP-OES新品&mdash &mdash PQ9000 (左一:德国耶拿公司CEO Berka,左二:德国耶拿中国区总经理赵泰)   在新品发布会上,仪器信息网(以下简称:instrument)编辑也就相关问题采访了德国耶拿中国区总经理赵泰。   Instrument:多年来,耶拿公司一直以原子吸收的著名厂家而知名,尤其是2004年推出的划时代的连续光源原子吸收,目前中国的ICP市场已被许多品牌领先占据,德国耶拿公司为什么选择当前推出ICP-OES?   赵泰:大家都知道ICP-OES产品经过多年的发展,在化学分析领域有着非常重要的地位,但是ICP的应用技术还是存在很多难以克服的问题,给我们的分析工作带来很大的障碍。   比如,发射光谱的主要缺陷是发射谱线多、光谱干扰严重,很多分析问题都是源于此,所以对ICP-OES分辨率的要求就非常高,理想目标是分辨率达到发射谱线的自然宽度(1-3pm),而目前市场上ICP-OES都未达到这一目标。   还有ICP-OES很难直接测量高盐,痕量类样品,所以也限制了ICP的分析范围。另外,随着技术的进步大家对仪器研发要求越来越高,大家心目中理想的仪器,不仅性能要好,使用成本也要低。   为了能克服不足,满足当前分析的需求,德国耶拿公司就一直在研发这样的ICP-OES。德国耶拿公司在光学仪器制造行业有非常丰富的经验,已经有160多年的发展历史和经验,具有得天独厚的优势,所以在光谱领域一直以来都能推出品质非凡的产品。耶拿新品ICP-OES PQ9000也是在传承历史,经过多年的研发,针对目前的ICP-OES产品的不足之处,为了满足当前分析需求,为分析者&ldquo 量身定做&rdquo 的,所以选择当前隆重推出。   Instrument:耶拿推出的ICP-OES新品与市场上同类产品相比的在技术方面有哪些新的突破,仪器性能有何显著提高?给分析工作带来哪些优越?   赵泰:首先,借助耶拿特有的光学技术优势,加上设计独特的分光系统,PQ9000的光谱分辨率能达到3pm,达到了相当于发射谱线自然宽度的理想目标,在目前市场上同类产品中是最高分辨率的ICP-OES。用户可以轻松应对很多难分析的、光谱干扰严重的样品。光学性能上也有很大的突破,保证了分析的稳定性和准确性。   第二,PQ9000采用了先进的垂直矩管、双向观测设计方式,消除了高盐和基体的影响,不仅能满足各类样品(有机,高盐)的分析,也能满足不同浓度(µ g/L~%)的同时测量,保证了灵敏度和检测限。另外PQ9000采用冷锥加氩气反吹消除尾焰,无自吸,无空气,降低背景 持续氩气对光室和检测器的吹扫,消除空气和水分等对紫外光的吸收,从而使得PQ9000的检出限比常规降低2~10倍,灵敏度达到µ g/L级。从短波到长波,常用元素的检测限都大幅提高。从而解决了&ldquo 复杂基质&rdquo ,&ldquo 痕量分析&rdquo 的难题。   第三,采用高性能的新一代CCD检测器,产生高量子效率和紫外超高灵敏度,可以自动选择最佳积分时间,同时记录元素线与其直接光谱环境,自动扣除背景,检测器只需致冷到零下6到10度即可稳定工作,大大缩短了预热时间(5分钟),能做到真正的即开即用。   第四,耶拿本着创新的理念,PQ9000在其他部分的设计上也充分体现。比如新颖独特的尾焰消除技术,采用最先进的气路设计,即吹扫和冷却用氩气又巡回到等离子体使用,没有额外消耗,大大地降低了氩气的消耗   另外,组合式炬管,体积小,氩气消耗少,从而最大程度降低氩气的消耗。整个外观设计也很精巧,是世界上体积最小的高分辨率ICP-OES。   Instrument:耶拿新品ICP-OES主要在哪些应用领域推出?如何能获得用户的认可?   赵泰:PQ9000在技术上的创新突破,打破了目前ICP-OES的分析局限,带来分析工作带来更多的自由空间。各种样品中低含量、微量和痕量的金属元素以及部分非金属元素的定性和定量分析 尤其适合分析样品量大,检测结果要求高的用户 可广泛应用于石油化工、农业,质检、环保、钢铁、科研、卫生等行业。凡是追求更好分析性能的用户都能认可该技术。   Instrument:您是如何看待原子吸收与ICP-OES未来发展的关系?ICP-OES的推出对原子吸收业务发展有何影响?耶拿如何制定发展规划?战略目标是?   赵泰:原子吸收和ICP-OES技术都是目前无机分析的主力军,两者一直是即有交叉又有互补的关系,应用上各有所长。   ICP-OES的推出对原子吸收业务发展不会有太大影响,只是一些以往必须用石墨炉原子吸收分析的痕量元素现在有更多可能在高分辨率ICP-OES上完成,有更多分析任务可以全部依靠高分辨率ICP-OES完成,而不必分到两种仪器上才能全部满足分析任务的要求。但很多以往特别适合用原子吸收分析项目,如分析元素种类少,或仅靠火焰原子吸收就能完成的分析仍应采用原子吸收更为合适或更加经济。   PQ9000高分辨率ICP-OES的推出,使耶拿公司的原子光谱仪器家族又增加了新的成员,能满足更多的分析需求,可以为更多的用户提供更多的服务,也为信赖耶拿品质的用户提供更大的合作空间。这也加进一步强了耶拿公司在无机分析领域的技术领先地位和市场影响力。耶拿公司将继续不遗余力的做好售后服务和技术支持,借助此超高分辨率ICP-OES的先进性能为用户解决更多的分析难题,增强实验室分析能力,更加简便、有效的完成高质量的分析任务。   耶拿公司的战略目标是不断创新,用更多先进技术巩固和加强光谱技术领先者的市场地位。   Instrument:谈谈新品ICP-OES PQ9000的市场定位和预期?   赵泰:PQ9000高分辨率ICP-OES的市场定位与其它众多耶拿产品一样,仍然是瞄准高端市场,以技术优势和非凡品质赢得广泛用户的信赖。可以预期,期盼有更好、更强分析性能力装备的用户一定会欢迎这一新品,而耶拿公司的PQ9000绝不会让这样懂行的专业用户失望,将再次为德国耶拿赢得光彩夺目的品牌声誉!  Instrument:2013年,在全球经济依然不景气的情况下,耶拿面对市场变化,取得了怎样的销售业绩?在耶拿中国的业绩情况?   赵泰:2013年,德国耶拿一如继往的取得了骄人的业绩,除日本市场外,全球市场继续有较快增长,尤其生命科学业务,有近2位数的增长。   耶拿中国的业绩继续领先全球,业务总量仍然保持2位数的增长速度,对总增长约推高2个百分点的生命科学业务更是增长了近80%! 撰稿人:刘丰秋
  • 超高分辨率荧光显微镜的应用
    超高分辨率荧光显微镜正在不断改变我们对细胞内部结构及运作的认识。不过在现阶段,显微镜技术还是存在着种种不足,如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。   光学显微镜的出现及其影响   自荷兰博物学家、显微镜创制者Antonie van Leeuwenhoek(1632-1723)在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物(microorganisms or animalcule)以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了Leeuwenhoek的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。   此后,研究人员对显微镜技术的追求从未停歇过,他们总是希望能得到分辨率更高的显微镜,从而更好地观察细胞内部更细微的结构。最近,《自然-方法》(Nature Methods)杂志上报道的超高分辨率成像技术(super-resolution imaging, SR imaging)终于使得人们可以在单分子水平上进行观察研究。   SR技术的发展过程   在达到今天SR技术水平的过程中,承载了许许多多研究人员辛勤劳动的汗水,也面临着诸多亟待解决的难题。   在以上这些光学SR成像技术中有两种技术&mdash &mdash 受激发射减损显微镜(stimulated emission depletion microscopy, STED)和饱和结构光学显微镜(saturated structured illumination microscopy,SSIM)最受关注。   最近,基于探针SR成像技术的光敏定位显微镜(PALM)和随机光学重建显微镜(STORM),以及借助荧光基团随机激活特性的荧光光敏定位显微镜(FPALM)都已经取得了成功。   通过基于探针的SR成像技术,可以获得多张原始图像。在每一张原始图像中,细胞内只有一部分被荧光标记的分子能发出荧光,即这些荧光分子都处于不断激活和灭活的交替状态,每一次都只有部分分子能被观察并成像。而且由于每次发出荧光的分子都分散得较为稀疏,因此相互之间不会受到影响,也就避免了因相邻分子发出荧光而无法分辨的问题。最后将这些原始图片叠加、重合在一起就得到了最终的高分辨率图像。这样,就能使得那些以前由于荧光点太密以至于无法成像的结构的分辨率达到纳米级水平,而且成像的分子密度也相当高,可以达到105个分子/&mu m2。   这种分辨率对于生物学家来说,意味着现在可以在分子水平上观察细胞内的结构及其动态过程了。   虽然显微镜技术已经发展到了如此高度,但它仍然只是生物学家研究中使用的一种工具。因此还需要将显微镜获得的图像与其它的试验结果互相参照,才能获得准确的结果。人们需要认清SR显微镜的优势与劣势,为操作以及判断SR图像制定出标准化的操作规范,只有这样才能最大限度地发挥SR显微镜的作用。   现在,由于人们对细胞内各组份的组织结构以及它们的动态变化过程都只有一个概念上的认识,因此,借助显微镜从纳米水平上对这些结构及过程进行真实的观察能让人们发现许多以往所不了解的东西。例如,以前人们通过电镜发现细胞骨架是由大量丝状网格样组织构成时,就有人对此现象持怀疑态度。那些认为细胞骨架是一种用来稀释细胞内生化物质浓汤这样一种结构的细胞生物学家把这种观测结果称作僵化的人为试验结果。   除非最新的SR显微镜图像或者其它的试验结果都能证明细胞骨架是由大量的丝状网格样组织构成的,否则还会有人持上述的怀疑观点。不过已经有其它的生化试验结果证实了早期的电镜观察结果是正确的。当然新兴的SR技术也需要其它传统的生化试验结果予以佐证才有价值,同时还需要电镜的辅助。因为电镜能提供纳米级的观察结果,这对于佐证具有同样分辨率的SR显微镜观测结果来说是最有价值的。   今后,大家在逐步了解、接受和广泛使用SR显微镜的同时,需要注意将会出现的各种问题,以下的表格列出了部分与SR显微镜使用相关的缺点及其目前的解决方法。   最近几年,就如何处理图像已经有了非常严格的操作规范。不过迄今为止,对于怎么处理SR图像还没有一个标准的操作规范。尤其需要指出的是,PALM和STORM数据在某些重要因素上,graph方面的共性要多于image方面。在一张SR图像上,分子的不确定性和密度都能用颜色表示出来,这种图像把细胞内该分子有可能出现的任何地点都标示出来了。而且只有被标记的分子按照一定的标准(发出的光子数)判断它的确是一个单分子并且定位准确之后才显示出来。必须对获得的图像进行这样的标准化处理之后才能分析结果。同样,对于试验数据也需要如此进行标准化处理。要提高分辨率不仅需要分子定位、分布得比较好,还需要分子数目够多,以致能达到尼奎斯特判断法(Nyquist criterion)的要求,即分子间的平均距离要小于显微镜分辨率的一半。虽然上述问题都不会影响SR显微镜的应用,但由于存在这些问题,所以我们应该时刻提醒自己,一定要仔细判读、分析SR显微镜的图像结果,只有这样才能得到有价值的生物学结论。   SR荧光显微镜在生物学研究中的应用   到目前为止,人们还很难得知,SR荧光显微镜会对生物学界的哪一个领域带来重大变革,但已经有几个领域出现了明显的改变。这些研究领域是动态及静态的细胞组织结构研究领域、非均质分子组织研究领域、蛋白动态组装研究领域等。这几个领域都有一个共同的特点,那就是它们研究的重点都是分子间如何相互作用、组装形成复合物。因此,能在纳米水平观察这些分子对它们来说具有重大的意义。   通过观察蛋白质之间的组合关系来了解它们的作用,并能为后续的细胞功能试验打下基础   结构生物学研究在这方面已经取得了很大的进展,目前已经发现了4-8纳米大小的分子间相互作用组装成细胞微管、肌丝、中间丝这些超过10微米大小聚合物的机制。不过对于核孔复合体、中心体、着丝点、中间体、粘着斑这些由许多不同蛋白经过复杂的三维组装方式组合起来的复合体,还需要更好的办法来进行研究。目标就是要达到分子水平的分辨率,这样就可以观察大复合体形成过程中的单个分子,也就能对这些分子的化学计量学有所了解了。要得到更多的生物学信息就需要SR显微镜这样的三维成像技术,例如可以使用活体细胞SR成像捕捉细胞骨架的动态重构过程等等。   SR成像有助于人们更好地了解分子间的差异   细胞膜蛋白组织方式的经典模型已经从随机分布的液态镶嵌模型转变成了脂筏模型、穴样内陷模型或特殊蛋白模型。这种差异与细胞不同功能相关,例如在高尔基体、cargo蛋白和高尔基体酶蛋白之间必须发生相互作用,但最终它们会按照各自的功能分开,发挥各自的作用。有很多试验手段,例如免疫电镜技术、荧光共振能量转移技术(FRET)等都已经被用来研究这种膜不均一性问题了。多色PALM技术(Multicolor PALM)为人们提供了一种新的手段用来观察膜蛋白集合、组织的过程,并且还能定量分析不同蛋白间的空间距离关系。因为有了PALM提供的单分子信息,人们就可以清楚地了解蛋白分子间的空间关系,甚至有可能计算出相隔某一距离的分子之间发生相互作用的可能性。这种方法除了用于研究膜蛋白之外,还能用于许多非随机分布的生物系统研究,例如研究微管上的马达蛋白。   SR成像技术还能用于在单分子水平研究蛋白动态组装过程   细胞对外界刺激信号的反应起始于胞膜,在胞膜上受体蛋白之间发生动态的集合,用来调节细胞的反应活性。像HIV这种有被膜病毒也是在细胞膜上完成病毒颗粒组装过程的病毒,也是利用了细胞的物质转运机制。尽管现在蛋白组装的物理模型还远远没有完成,但研究人员知道膜蛋白的动态组装过程是不均一的,所以通常使用荧光试验手段很难获得分子水平上的信息。同样,单分子测量技术(Single molecule measurements)也存在着类似的局限,因为单分子测量技术只能观察细胞内的几个分子,所以缺乏整体的信息。因此由于缺乏空间分辨率,很难动态地研究蛋白质组装过程。SR荧光成像技术与活细胞成像技术和单分子示踪技术(sptPALM)结合就能解决这一问题。我们可以借助分子密度准确地看出PALM图像中的蛋白质簇,蛋白质簇动态的统计数据和形态学数据能帮助我们了解蛋白质动态组装的机制。   上面只是选了生物学研究中的3个方面来说明SR技术的用途,但这已经很好的展示了我们是如何从Leeuwenhoek最初对于生命组成的假设一步一步走到了今天,使用SR显微镜来证实构成生命体的最基本材料&mdash &mdash 分子的组合过程。STED和PALM的商业化产品已经上市了,这标志着SR显微镜的时代来临了。我们相信SR显微镜在充满创造力的生物学家们手中,一定会充分发挥它的作用,帮助我们发现更多生命的奥秘。   原文检索:   Jennifer Lippincott-Schwartz & Suliana Manley. Putting super-resolution fluorescence microscopy to work. Nature Methods, 17 December 2008 doi:10.1038/nmeth.f.233
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • 超高分辨率让“不可能”变为“可能”!
    超高分辨率让“不可能”变为“可能”!史晓磊Isotope Abundance同位素丰度,是指自然界中存在的某一元素的各种同位素的相对含量(以原子百分计)。如1H的同位素丰度为99.985%,2H为0.015%。可用于追踪物质的运行和变化规律,借助同位素原子以研究有机反应历程的方法,称之为同位素示踪法。因其所引用的同位素标记化合物的化学量是极微量的,不会对体内生理过程产生影响,获得的分析结果符合生理条件,在代谢组学研究中被广泛应用。想在不受13C干扰的条件下去测量低丰度的2H示踪以用于代谢研究,是几乎不可能的,由于来自四极杆质谱的M+1质量同位素13C丰度很高,约为 18%,严重干扰了测定2H的标记示踪[1]。但实际上,2H(0.015%)的低自然丰度使得示踪剂剂量在理论上小于0.5%是可能的[2],这需要极高分辨率的质谱才能实现完全的基线分离,而Orbitrap Exploris GC 240出现之后,凭借其240000的超高分辨率,让以往在代谢研究中不可能实现的难题变为可能。今天为大家分享一篇美国德克萨斯大学西南医学中心的研究人员利用Orbitrap Exploris GC 240分析棕榈酸中的2H同位素示踪剂的应用。图1.棕榈酸酯C16H31O2的质量同位素分布摘要新生脂肪生成(De novo lipogenesis, DNL)是由碳水化合物等非脂质营养物质合成的脂肪酸,是长期储存热量和维持细胞膜的主要营养物质[3]。监测DNL在细胞器、细胞、组织活检、小鼠模型和人类等环境中的功能,将有助于发现新的分子生理学和许多不同疾病的潜在干预措施。DNL通量通常通过氘水(2H2O)给药后2H掺入脂肪酸来测量。本文利用GC-Orbitrap解析2H和13C脂肪酸质同位素,允许DNL定量使用较低的2H2O剂量和较短的实验周期。NewOrbitrap Exploris™ GC 240科研利器,引领潮流图2. 稳定同位素2H2O是测定DNL的基础 图3.EI模式下的棕榈酸甲酯的质谱图图4.NCI模式下的棕榈酸五氟苯酯质谱图 通过比较棕榈酸甲酯在EI模式和五氟溴代苯衍生棕榈酸酯在NCI模式下的质谱图,NCI测定五氟苯酯产生了未破碎的棕榈酸盐离子(C16H31O2,精确分子量为255.2324),比EI检测甲酯的效率和灵敏度高1000倍(见图3和图4)。 图5. 采用不同条件验证2H在棕榈酸中的示踪标记 针对不同AGC(自动增益控制)目标的靶向选择离子监测(Target-SIM)(2*104, 2*105和3*106),2H1和13C1的M + 1两种方法都能很好地分辨。而但全扫描数据为易受离子损失,特别是在AGC目标值高的情况下,容易产生空间电荷效应。同时,准确度高(94-107%),精度高(变异系数6.模拟人体水富集到0.3% 2H2O时棕榈酸质量富集作为DNL的函数研究棕榈酸酯13C1和2H1 (M + 1)质量位移需要用165,000的最小分辨率进行分辨,以往用傅立叶变换离子回旋共振质谱法(FT-ICR-MS)可以实现,但扫描时间长,并需要超导磁体[7],不易实现。当GC-Orbitrap商业化之后,成为很多代谢组学实验室进行分辨13C和2H的首选。为了确定这种方法是否比单位分辨率的质谱更有优势,模拟了超高分辨率的质谱0-10%的DNL分数范围和0.3%的体内水富集。结果证明,GC-Orbitrap为检测极低前体和产物富集的DNL提供了主要的理论优势。 图7. 在其他脂肪酸中也可以检测到2H富集 结论 本文介绍了一种HR-Orbitrap-GC-MS方法,该方法解决了其他同位素的2H质谱富集,来研究DNL生成。在棕榈酸中直接检测2H质量同位素可防止在低富集时与13C自然丰度的卷积,实验证明,DNL可以在1小时内检测完成,且2H2O的剂量比以前更低[8]。Orbitrap Exploris GC 240因其超高的24万分辨率解决了代谢组学研究中一直以来的难题,成为代谢组学研究中不可或缺的利器。 参考文献:1. Brunengraber, H., Kelleher, J. K. & Des Rosiers, C. Applications of mass isotopomer analysis to nutritional research. Annu. Rev. Nutr. 17, 559 (1997). 2. Diraison, F., Pachiaudi, C. & Beylot, M. In vivo measurement of plasma cholesterol and fatty acid synthesis with deuterated water: 3. Wallace, M. & Metallo, C. M. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin Cell Dev Biol, https://doi.org/10.1016/j.semcdb.2020.02.012 (2020). 4. Murphy, E. J. Stable isotope methods for the in vivo measurement of lipogenesis and triglyceride metabolism. J. Anim. Sci. 84, E94–E104 (2006). 5. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on orbitraps.Anal. Chem. 89, 5940–5948 (2017). 6. Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H.Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996). determination of the average number of deuterium atoms incorporated. Metabolism 45,817–821 (1996). 7. Herath, K. B. et al. Determination of low levels of 2H-labeling using highresolution mass spectrometry: application in studies of lipid flux and beyond.Rapid Commun. Mass Spectrom. 28, 239–244 (2014). 8. Previs, S. F. et al. Using [(2)H]water to quantify the contribution of de novo palmitate synthesis in plasma: enabling back-to-back studies. Am. J. Physiol.Endocrinol. Metab. 315, E63–E71 (2018).
  • GE收购超高分辨率显微镜制造商
    4月末,通用电气医疗集团(GE Healthcare)签署了一项协议,收购细胞成像产品制造商Applied Precision,具体收购金额不详。随着这次收购行动,GE Healthcare有望进入快速增长的细胞成像领域。   总部位于华盛顿西雅图郊外的Applied Precision开发并制造高分辨率以及超高分辨率的显微镜仪器,让研究人员能够以其他类型显微镜无法实现的规模来研究细胞过程。   一般显微镜所拥有的分辨率能让研究人员观察到200 nm及以上的物体。因此,对于大小在10 nm左右的胰岛素,一般的显微镜是无法看到的。然而,有了超高分辨率显微镜,研究人员就能看到。电镜的分辨率与超高分辨率显微镜相似,但它们不能活体观察细胞,而后者能做到。   GE Healthcare负责细胞技术的总经理Amr Abid向国外媒体透露,通过在此水平研究细胞功能,研究人员能够对功能异常细胞的机制有了更深入的了解。他举了一些例子,比如利用超高分辨率显微镜来研究HIV病毒如何穿透细胞,这为新药开发提供了信息。   几个世纪以来,科学家们都是利用光学显微镜对肉眼无法看到的结构进行观测,目前光学显微镜已经成为了实验室必备的实验器材之一,但是随着研究的深入,光学显微镜的分辨率已经无法达到科学家们的要求了。2008年,《Nature》杂志将超高分辨率显微技术评为年度技术。   Abid估计,如今整个显微镜市场大概在20亿-30亿美元。其中,超高分辨率显微镜占了约20%。Applied Precision和徕卡(Leica)是硬件方面的行业领先者,他们各自的市场份额大约为30%-35%。   GE目前不提供超高分辨率显微镜,也不曾开发它们。Applied Precision的产品是对GE细胞分析产品线的很好补充。GE也在探索一些方法,将其现有的细胞研究技术与Applied Precision的仪器捆绑起来。   目前,GE在细胞成像方面的旗舰产品是2009年上市的IN Cell平台。IN Cell Analyzer平台提供了一整套从自动化图像获取到数据的定量和深度分析以及可视化的强大工具,来协助整个高内涵分析过程。前不久,GE推出了最新版本的分析平台&mdash &mdash IN Cell 6000。   据Abid透露,由于Applied Precision在高分辨率以及超高分辨率显微镜方面声名卓著,故GE打算保留其名称。该公司还计划保留全部130名员工,并在技术上继续投资。 GE还打算加大力度提高Applied Precision在亚太地区(如中国、印度和日本)的知名度,对于超高分辨率显微镜而言,这些区域是一个增长点,然而,Applied Precision目前的份额还很有限。 关于通用电气(中国)医疗集团生命科学部 GE Healthcare Life Science隶属于通用电气医疗集团,我们的产品和技术主要应用于基因科学、蛋白质科学、药物开发研究、以及生物制药、诊断、法医和环保等行业。 我们为制药公司提供完整解决方案,以减少新药筛选和开发的时间和费用,迅速、简单地将研究成果转为规模化生产,并更好地从药物开发候选方案中选择开发出有效、安全药物的方案,更快地研制新药,为医药研发领域的重大突破铺平道路。我们的Biacore和Microcal非标记分子相互作用分析系统是生物分子间相互作用、动力学和热力学研究的标准方法。我们的AKTA系统是专为生物分子纯化而设计的平台,集成了液相层析系统、软件和预装柱;市场上90% 以上FDA批准的生物药正是使用基于相同设计理念的可放大平台AKTAProcess系统和填料进行生物药物分子的提纯。我们的Whatman品牌提供在全球享有盛誉的过滤产品和技术,为分析领域、医疗保健和生物科学市场提供全新的解决方案。 欲了解更多有关GE医疗集团生命科学部的信息,请访问公司网站www.gelifesciences.com.cn,或垂询800-810-9118。
  • Nature:超高分辨率显微镜下的世界美如画
    2014年的诺贝尔化学奖授予了三位率先突破光学极限的科学家。现在,200nm已经不再是光学显微镜所能达到的极限,人们对细胞的认识从未像现在这么清晰。   纳米显微技术常能获得异常美丽的图像,说它们是艺术品也不为过。《自然》杂志近日挑选了一些这样的图像以飨读者。   诺贝尔奖得主Eric Betzig(霍华德· 休斯医学研究院 HHMI)获得这张图像,是为了理解大肠杆菌如何组织膜中的三个受体蛋白。亮光来自于研究人员标记在目的蛋白上的荧光分子。Betzig与斯坦福大学的William Moerner开发了光激活定位显微技术PALM,这一技术在这里揭示了蛋白的细胞定位。   这张图片的左半部分是PALM的三维成像,显示了黑腹果蝇细胞中的微管。红色、蓝色到紫色,这些颜色代表着微管的不同深度,展示了Z轴方向共500nm的微管三维结构。右半部分是同一个细胞的普通显微镜成像。   这是一个人类脑瘤样本,在共聚焦显微镜下显得很模糊(左),用STED技术(受激发射损耗)成像就清楚多了(右)。这一技术的发明者是诺贝尔奖获得者Stefan Hell(Max Planck生物物理化学研究所)。   在诺贝尔奖获得者的工作之后,其他研究者也发明了工作原理类似的纳米显微镜。哈佛大学的庄小威(Xiaowei Zhuang)用自己开发的随机光学重建显微技术STORM,展示了细长的神经纤维(轴突)如何每隔180nm就被肌动蛋白的环加固。   这里显示的是一个细胞中的线粒体。图像的左边是传统显微镜获得的图像,中间是超高分辨率技术STORM的三维成像,右边是STORM的层切面图像。   结构照明显微技术SIM是第四个问世的超高分辨率技术,这一技术通过特殊的照明模式(栅格移动)产生干涉图案(摩尔纹现象),这些干涉图案包含了样本的结构信息。这是一张人骨癌细胞的三维SIM图像,肌动蛋白呈紫色,DNA呈蓝色,线粒体呈黄色。   SIM技术生成了许多漂亮的细胞图像。这是一个癌细胞,红色的是肌动蛋白,蓝色的是微管,绿色的是转铁蛋白受体(负责将铁带入细胞)。   原文检索:   Richard Van Noorden. Through the nanoscope: A Nobel Prize gallery. Nature, 14 October 2014 doi:10.1038/nature.2014.16129
  • 中科大实现世界最高分辨率单分子拉曼成像
    在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。   记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作&ldquo 打破了所有的纪录,是该领域创建以来的最大进展&rdquo ,&ldquo 是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地&rdquo ,&ldquo 是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作&rdquo 。   这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。   光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。   上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。&ldquo 迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。&rdquo 董振超说。   微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元&ldquo 天线&rdquo 的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。   &ldquo 可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。&rdquo 董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。
  • 用于高分辨率制造的低成本显微投影光刻系统
    集成光信号分配、处理和传感网络需要小型化基本光学元件,如波导、分光器、光栅和光开关。为了实现这一目标,需要能够实现高分辨率制造的方法。弯曲元件(如弯管和环形谐振器)的制造尤其具有挑战性,因为它们需要更高的分辨率和更低的侧壁粗糙度。此外,必须采用精确控制绝对结构尺寸的制造技术。已经开发了几种用于亚波长高分辨率制造的技术,如直接激光写入、多光子光刻、电子束光刻、离子束光刻和多米诺光刻。然而,这些技术成本高、复杂且耗时。纳米压印光刻是一种新兴的复制技术,非常适合高分辨率和高效制造。然而,它需要高质量的母版,通常使用电子束光刻来生产。新发表在《光:先进制造》的一篇论文中,来自汉诺威莱布尼兹大学的科学家Lei Zheng博士等人开发了一种低成本、用户友好的制造技术,称为基于紫外发光二极管的显微投影光刻(MPP),用于在几秒钟内快速高分辨率制造光学元件。这种方法在紫外光照射下将光掩模上的结构图案转移到涂有光致抗蚀剂的基板上。a.采用基于UV-LED的显微镜投影光刻系统的草图。b.工艺链示意图,包括从结构设计到最终投影光刻的步骤。c.使用MPP制造的高分辨率光栅。d.通过MPP实现的低于200nm的特征尺寸。上部和下部所示的线条分别使用昂贵的物镜和经济物镜制造。MPP系统基于标准光学和光机械元件。使用波长为365nm的极低成本UV-LED作为光源,而不是汞灯或激光。研究人员开发了一种前处理工艺,以获得MPP所需的结构图案化铬掩模。它包括结构设计、在透明箔上印刷以及将图案转移到铬光掩模上。他们还建立了一个光刻装置来制备光掩模。通过该装置和随后的湿法蚀刻工艺,可以将印刷在透明箔上的结构图案转移到铬光掩模上。MPP系统可以制造特征尺寸低至85纳米的高分辨率光学元件。这与更昂贵和更复杂的制造方法(如多光子和电子束光刻)的分辨率相当。MPP可用于制造微流体设备、生物传感器和其他光学设备。研究人员开发的这种制造方法在光刻领域取得了重大进展,可用于光学元件的快速和高分辨率结构化。它特别适合于快速原型设计和低成本制造重要的应用。例如,它可以用于开发用于生物医学研究的新型光学设备,或为消费电子产品应用原型化新型MEMS设备。
  • 深圳先进院高分辨率超声成像研究获系列进展
    p   近期,中国科学院深圳先进技术研究院劳特伯医学成像研究中心郑海荣团队在高分辨率超声成像研究中取得一系列进展。 /p p   高分辨率超声主要采用大于15MHz的超声频率进行成像,可获得几十微米量级的成像分辨率。在临床中主要应用于浅表、内窥和眼科等方面的疾病检测。高频超声换能器是成像系统的关键部件,主要基于压电材料进行设计加工。但传统压电材料介电常数较小(夹持介电常数小于1500),造成压电阵元尺寸小的高频换能器的电阻抗会大幅度提升,进而导致换能器成像性能不佳。郑海荣团队邱维宝课题组利用新开发的一种高介电常数、高压电性能的改性PMN-PT陶瓷(夹持介电常数为3500)设计制备了性能优异的40MHz高频超声换能器(阵元尺寸可为0.4mm× 0.4mm),使得制备的高频超声换能器的电阻抗大幅度降低,更容易与电子系统的阻抗相匹配,实现较高的成像灵敏度(-13dB)。此外,该研究中设计制备的超声换能器具有较高的成像带宽(80%)和信噪比,并在高分辨率医学成像领域中展现出应用潜力。相关研究成果已被IEEE Trans Ultrason Ferroelectr Freq Control接收。 /p p   邱维宝课题组在高分辨率超声成像方法和电子系统方面也取得了研究进展。高频超声获得高分辨率医学图像存在衰减系数增大导致成像穿透深度降低的问题。据此,课题组提出了基于编码超声的高频超声成像方法,在激励换能器时,采用带有一定编码的超声信号进行激励,回波接收时通过算法解码恢复出高分辨率图像,使得在成像中既可以维持图像的分辨率,也可以提升超声成像的穿透深度。该技术在浅表和内窥等成像中具有应用潜力。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   在进行高分辨率超声成像时,电子系统需要具有较高的数据采样率,以获取超声回波的原始数据信息,因此需要大幅度提高模数转换器(ADC)的采样频率。然而,传统超声成像系统的ADC采样频率通常为60MHz或者更低,不能满足大于30MHz的高频成像需要。据此,邱维宝课题组提出了一种延迟激励方法,通过将激励波束的时序进行规律性调整,在多次发送后获取多个数据图像,通过延迟复合处理,即可以获得高采样率的图像。该方法有望使临床用的超声设备,在不改动主要电子器件模数转换器的前提下,实现高分辨率超声成像的功能。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   高分辨率超声成像技术在内窥镜领域具有重要的应用潜力,邱维宝课题组在推进血管内超声成像技术的同时,也在尝试新型内窥成像技术。胶囊内窥镜(capsule endoscopy)是一种胶囊形状的内窥镜,它是用来检查人体肠胃的医疗仪器。胶囊内窥镜体积仅有普通胶囊大小,消除了传统检查耐受性差的缺点,能够拍摄食道、胃、小肠、大肠等,从而完成对人体整个消化道的检查。然而目前该技术是采用光学成像方法,仅能观测组织表层的病变信息,不能获得深层次的组织情况。由于超声成像技术的穿透性较好,因此课题组拟尝试进行超声胶囊内窥镜的设计验证,提出了基于高分辨率超声的内窥成像控制方案,采用40MHz的超声频率获得了小于60微米的肠道组织成像分辨率。相关研究成果发表于IEEE Trans Med Imaging。 /p p   以上研究得到了国家自然科学基金、中科院前沿科学重点研究计划、广东省杰出青年基金、深圳市孔雀计划等项目的资助,以及美国南加州大学、宾夕法尼亚州立大学,英国格拉斯哥大学,东北大学等高校的支持与合作。 /p p   论文题目:High Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic with Ultrahigh Clamped Dielectric Permittivity /p p style=" text-align: center " img title=" 01.png" src=" http://img1.17img.cn/17img/images/201712/insimg/76653693-b0cd-480d-ab1c-d835a6a2f035.jpg" / /p p style=" text-align: center " strong 图1.(a)高频超声换能器技术参数对比 (b)高频超声换能器结构示意图和实物图 (c)成像性能测试图 /strong /p p style=" text-align: center " img title=" 02.png" src=" http://img1.17img.cn/17img/images/201712/insimg/c0246a6c-4345-4ee5-b1a2-fe74a5030a04.jpg" / /p p style=" text-align: center " strong 图2.(a-c)编码成像原理示意图 (d)编码成像技术可以大幅度提高血管内超声成像的穿透深度 /strong /p p style=" text-align: center " img title=" 03.png" src=" http://img1.17img.cn/17img/images/201712/insimg/86bdbf66-cabb-484d-92d3-d2dc22d62b25.jpg" / /p p style=" text-align: center " strong 图3.左:延迟激励成像原理示意图 右:眼睛组织超声成像图 /strong /p p style=" text-align: center " img title=" 04.png" src=" http://img1.17img.cn/17img/images/201712/insimg/90b38fc1-6ef0-4192-83b1-723cacb12d4c.jpg" / /p p style=" text-align: center " strong 图4.(a-b)胶囊超声内窥镜设想方案示意图 (b)高分辨率肠道组织超声成像图 /strong /p p & nbsp /p
  • 世界首台可观察活体细胞的超高分辨率生物显微镜问世
    近日,德国IBIDI公司成功开发出一款超高分辨率生物显微镜。该公司宣称基于新型随机光学重建显微技术“(d)STORM”,利用该公司独创的特殊塑料底板“μ-Slides”可实现超高分辨率观察活体细胞。   STED,SIM,(F)PALM 和(d)STORM等新型光学显微技术可有效避免衍射极限,获得纳米级水平的超高分辨率成像。这些超高分辨率显示技术可应用到生物实验研究,观察了解组织细胞分子结构。IBIDI公司采用了创新性的含有亲水性膜涂层的塑料材质底板“μ-Slides”替代传统玻璃底板,首次实现了“活体细胞”超高分辨率观察。这种被成为“ibi-Treat”的亲水性膜涂层性能可以与标准的细胞培养瓶和培养皿相媲美。   IBIDI公司相关研发工作受到了德国联邦教研部《生命科学领域光学技术—基本细胞功能》项目的资助。
  • 高分辨率激光外差光谱技术研究取得进展
    近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所副研究员许振宇团队在激光外差光谱技术研究中获进展。相关研究成果发表在《光学通信》(Optics Letters)上。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,研究人员提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明,相比于传统的高分辨率激光外差光谱仪,所研发的基于半导体光放大的高分辨率激光外差光谱仪的弱光信号探测和气体浓度测量精度得到大幅提升。该研究有助于提高高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大应用潜力。相关研究工作获得国家自然科学基金、国家重点研发计划等项目的资助。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果
  • 第四届高分辨率对地观测学术年会开幕
    2017年9月17日,**四届高分辨率对地观测学术年会在武汉大学隆重开幕。来自国内外高校、科研院所、企业单位的7位院士以及1200余名代表、学生参加了会议。北京欧普特科技有限公司一如既往的积极参与了此次行业年度盛会。本届年会由高分辨率对地观测系统重大专项管理办公室、中国科学院重大科技任务局、中国航天科技集团公司宇航部、中国航天科工集团公司空间工程部、中国测绘学会摄影测量与遥感专业委员会联合主办,由武汉大学、国防科技大学、中国航天科工集团**四研究院共同承办;以“精致为用”为主题,集中体现了高分专项“**探测、精细处理、精准应用、精益求精”的宗旨与追求,充分代表了我国高分辨率对地观测的发展方向及战略需求。高分学术年会作为国内高分辨率对地观测领域的年度盛会,汇集了本领域的顶尖专家和行业用户,持续聚焦军民融合、一带一路、成果转化等政策和技术热点,充分研讨高分新思想、新技术、新方法、新发展,有力推动了高分体制机制和技术创新以及产业升级,显著提升了高分专项的品牌效益。北京欧普特科技有限公司作为二十年光谱仪器行业的开拓者与引领者,始终坚持我们的创业初衷,不断为国内广大客户引进推广国外**先进的光谱类光学仪器与技术,并凭借我司从业多年来所累积的丰富经验以及与各大科研院所多年来真诚合作所建立的良好合作关系,同时设身处地的与我国用户的实际科研与生产需求相结合,自主研发了一系列与我司销售的光谱类仪器配套的软件、系统与解决方案,从而做到更专业系统的满足客户的使用要求、更周到细致的为广大新老提供售前与售后服务。北京欧普特科技有限公司,竭诚期待与您的合作。
  • 半导体所完成水下高分辨率光学成像海试
    近期,中国科学院半导体研究所研发的“水睛”水下高分辨率环视摄像机完成了针对水下礁盘的摸底海试工作。海洋观测是开发海洋资源、保护海洋生态的关键技术,受到全球的关注,但是目前海洋生物群落及环境变化监测技术仍无法满足海洋大时空数据获取的需求,特别是深海。光学成像技术可提供高分辨率、符合人眼视觉特征的图像,但是在保障高分辨率的前提下存在视场小的问题,难以实现大范围的海底详查的需求。针对此种情况,半导体所周燕、王新伟及其科研团队研制了水下高分辨率环视摄像机“水睛”,可实现水下高分辨率大视角的光学成像,具备180°下视走航观测和360°原位环视观测两种模式(图1)。本次海试中,“水睛”搭载半导体所海面移动光学试验平台“冲浪者”号(图2),在约1000平方米海域进行了水下高分辨观测,完成了海上走航式观测、定点原位观测等摸底性观测试验,验证了设备具备5900万像素下良好的实时彩色成像功能。图1 水下环视摄像机的下视及环视工作模式(上图下视模式,下图环视模式)图2 搭载冲浪者号走航式观测过程中的“水睛”摄像机此次海试,研究人员利用水下摄像机多次完成了礁盘生态系统的观测,拍摄了大量的珊瑚、海星、贝类、鱼类等,形成了水下光学彩色图像库(图3),可用于海洋光学图像处理、目标识别等算法研究。图3海域美丽的珊瑚、鱼类、海星、砗磲等除珊瑚及鱼类等生物要素外,本次海试中,在海底还发现了生物附着的碗和盘子各一只(图4)。图4 生物附着的盘子和碗此次海试由半导体所和南开大学共同组织完成,除“水睛”摄像机外,还利用多参量海洋水体测量系统完成了海洋温盐深、核素、水体光学衰减系数等海洋水体多物理化学参量采集。相关工作得到了南方海洋实验室、中科院青促会项目的经费支持。 图5 项目团队及设备在海试现场
  • 精确跟踪芯片蚀刻过程,用高分辨率光谱仪监测等离子体
    在半导体行业,晶圆是用光刻技术制造和操作的。蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体是一种被激发的、类似气体的状态,其中一部分原子已经被激发或电离,形成自由电子和离子。当被激发的中性原子的电子返回到基态时,等离子体中存在的原子就会发射特有波长的辐射光,其光谱图可用来确定等离子体的组成。等离子体是用一系列高能方法使原子电离而形成的,包括热、高能激光、微波、电和无线电频率。实时等离子体监测以改进工艺等离子体有一系列的应用,包括元素分析、薄膜沉积、等离子体蚀刻和表面清洁。通过对等离子体样品的发射光谱进行监测,可以为样品提供详细的元素分析,并能够确定控制基于等离子体的过程所需的关键等离子体参数。发射线的波长被用来识别等离子体中存在的元素,发射线的强度被用来实时量化粒子和电子密度,以便进行工艺控制。像气体混合物、等离子体温度和粒子密度等参数都是控制等离子体过程的关键。通过在等离子体室中引入各种气体或粒子来改变这些参数,会改变等离子体的特性,从而影响等离子体与衬底的相互作用。实时监测和控制等离子体的能力可以改进工艺和产品。一个基于Ocean Insight HR系列高分辨率光谱仪的模块化光谱装置用于监测等离子体室引入不同气体后,氩气等离子体发射的变化。测量是在一个封闭的反应室中进行的,光谱仪连接光纤和余弦校正器,通过室中的一个小窗口观察。这些测量证明了模块化光谱仪从等离子体室中实时获取等离子体发射光谱的可行性。从这些发射光谱中确定的等离子体特征可用于监测和控制基于等离子体的过程。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如Ocean Insight的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。监测真空室中形成的等离子体时,一个重要的考虑因素是与采样室的接口。仪器部件可以被引入到真空室中,或者被设置成通过视窗来观察等离子体。真空通管为承受真空室中的恶劣条件而设计的定制光纤将部件耦合到等离子体室中。对于通过视口监测等离子体,可能需要一个采样附件,如余弦校正器或准直透镜,这取决于要测量的等离子体场的大小。在没有取样附件的情况下,从光纤到等离子体的距离将决定成像的区域。使用准直透镜可以获得更局部的收集区域,或者使用余弦校正器可以在180度的视野内收集光线。测量条件HR系列高分辨率光谱仪被用来测量当其他气体被引入等离子体室时氩等离子体的发射变化。光谱仪、光纤和余弦校正器通过室外的一个小窗口收集发射光谱,对封闭反应室中的等离子体进行光谱数据采集(图1)。图1:一个模块化的光谱仪设置可以被配置为真空室中的等离子体测量。一个HR2000+高分辨率光谱仪(~1.1nm FWHM光学分辨率)被配置为测量200-1100nm的发射(光栅HC-1,SLIT-25),使用抗曝光纤(QP400-1-SR-BX光纤)与一个余弦校正器(CC-3-UV)耦合。选择CC-3-UV余弦校正器采样附件来获取等离子体室的数据,以解决等离子体强度的差异和测量窗口的不均匀问题。其他采样选项包括准直透镜和真空透镜。结果图2显示了通过等离子体室窗口测量的氩等离子体的光谱。690-900纳米的强光谱线是中性氩(Ar I)的发射线,400-650纳米的低强度线是由单电离的氩原子(Ar II)产生的。图2所示的发射光谱是测量等离子体发射的丰富光谱数据的一个例子。这种光谱信息可用于确定一系列关键参数,以监测和控制半导体制造过程中基于等离子体的工艺。图2:通过真空室窗口测量氩气等离子体的发射。氢气是一种辅助气体,可以添加到氩气等离子体中以改变等离子体的特性。在图3中,随着氢气浓度的增加添加到氩气等离子体中的效果。氢气改变氩气等离子体特性的能力清楚地显示在700-900纳米之间的氩气线的强度下降,而氢气浓度的增加反映在350-450纳米之间的氢气线出现。这些光谱显示了实时测量等离子体发射的强度,以监测二次气体对等离子体特性的影响。观察到的光谱变化可用于确保向试验室添加最佳数量的二次气体,以达到预期的等离子体特性。图3:将氢气添加到氩等离子体中会改变其光谱特性。在图 4 和 5 中,显示了在将保护气添加到腔室之前和之后测量的等离子体的发射光谱。 保护气用于减少进样器和样品之间的接触,以减少由于样品沉积和残留引起的问题。 在图 4中,氩等离子体发射光谱显示在加入保护气之前,加入保护气后测得的发射光谱如图5所示。保护气的加入导致了氩气发射光谱的变化,从400纳米以下和~520纳米处的宽光谱线的消失可以看出。图4:加入保护气之前,在真空室中测量氩等离子体的发射。图5:加入保护气后,氩气发射特性在400纳米以下和~520纳米处有明显不同。结论紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。HR2000+高分辨率光谱仪和模块化光谱学方法在测量等离子体室条件改变时,通过等离子体室的窗口测量等离子体发射光谱,效果良好。还有其他的等离子体监测选项,包括Maya2000 Pro,它在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。以上文章作者是海洋光学Yvette Mattley博士,爱蛙科技翻译整理。世界上第一台微型光谱仪的发明者海洋光学OceanInsight,30年来专注于光谱技术和设备的持续创新,在光谱仪这个细分市场精耕细作,打造了丰富而差异化的产品线,展现了光的多样性应用,坚持将紧凑、便携、高集成度以及高灵敏度、高分辨率、高速的不同设备带给客户。2019年,从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。此后,海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTech)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。如需了解更多详情或探讨创新应用,可拨打400-102-1226客服电话。关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 西光所高分辨率X射线像增强器视觉系统研制成功
    5月16日,由中科院西安光学精密机械研究所与该所投资企业西安中科麦特电子技术设备有限公司共同承担完成的“高分辨率X射线像增强器视觉系统”通过了成果鉴定。 高分辨率X射线像增强器视觉系统是一项具有自主知识产权、设计先进、操作简便、使用安全的工业X射线检测系统,它可广泛应用于电子工业生产装配中出现的短路、开路、冷焊和焊点空洞等质量问题,适用于BGA、CSP、Flip Chip 集成电路内部以及多层电路板的质量检测,亦可用于其他领域的X射线检测。 高分辨率X射线像增强器视觉系统采用密封型微焦斑X光管,无需抽真空,可以轻易穿透带散热片的芯片,并且实现了大视场浏览和局部细节观测两种检测需求的快速切换,提升了检测效率。同时采用自主研发的高分辨率X射线增强器图像及专用的图像处理软件使得图像更加清晰。该系统所有操作可通过计算机独立完成,高稳定性的运动平台可在X、Y、Z方向大行程运动,倾斜检测模式可使用户更为准确地实施产品质量的检测。 专家认为,高分辨率X射线像增强器视觉系统设计先进、综合技术处于国内领先水平,具有广阔的应用前景和较好的经济效益,并建议进一步加强对系统的产业化开发,以拓展产品在更多领域的应用。
  • 突破生物打印极限,优化高分辨率3D生物制造技术!
    【研究背景】三维(3D)生物打印是精确组装生物材料和细胞以形成3D固体物体的先进技术。由于其在组织工程、再生医学和器官芯片制造等领域的广泛应用,该技术成为了研究热点。然而,现有的基于投影的3D生物打印(PBBP)在实际应用中面临低打印分辨率的问题,存在理论分辨率与实际分辨率之间的显著差距。这主要是因为生物墨水的高水分含量和柔软特性使得打印分辨率难以提升,并且细胞的生物相容性要求进一步限制了打印精度。有鉴于此,浙江大学机械工程学院贺永教授团队提出了一系列优化策略来解决这些挑战。例如,通过改进光学投影系统和优化生物墨水的配方,可以在一定程度上提升打印分辨率。最新的研究聚焦于系统性优化打印过程,包括提高光响应材料的性能和改进打印工艺,以缩小理论分辨率与实际分辨率之间的差距。这些努力已显示出一定的成果,例如,通过改进技术,基于投影的3D生物打印的实际分辨率已提升至约50微米,但仍远未达到理论极限。这些研究为未来在组织工程和再生医学领域的实际应用提供了重要的技术支持。【仪器亮点】(1)实验首次详细综述了基于投影的3D生物打印(PBBP)技术的分辨率及优化策略,并探讨了其在组织工程和再生医学中的应用潜力。得到了:通过文献综述和技术分析,本文确认了PBBP在高分辨率打印方面的优势及其面临的挑战。(2)实验通过:本文通过分析现有的PBBP技术,包括其工作原理、分辨率极限、以及应用于生物墨水的局限性,得到了以下结果:技术挑战:PBBP具有最高的分辨率/时间制造比,但实际分辨率仍低于理论极限。主要挑战包括生物墨水的光响应特性差和细胞生存限制。优化策略:提出了系统优化整个打印过程的建议,包括改进生物墨水的配方、优化打印步骤和调整光学系统,以缩小实际分辨率与理论分辨率之间的差距。应用前景:为组织工程和再生医学应用提供了实际的优化方案和技术路线图,以推动PBBP技术向更高的分辨率和更广泛的应用领域发展。【图文解读】图1: 基于投影的3D打印分辨率和配置。图2:步骤1:构建精确的光场。图3:生物墨水对光场的响应。图4: 维持机械平衡。【科学启迪】本文揭示了基于投影的3D生物打印(PBBP)在实现高分辨率打印中的关键挑战和潜在优化策略。尽管基于投影的3D打印在制造比上具有领先优势,但在应用于生物墨水时,其实际分辨率显著低于理论水平。这主要归因于生物墨水的光响应特性不佳和细胞活性保持的复杂性。本文通过总结现有的技术步骤,详细探讨了如何缩小理论分辨率与实际打印分辨率之间的差距。特别是,通过优化打印过程、改进生物墨水的光响应性以及提高生物打印系统的整体性能,可以显著提升打印分辨率。此外,提出的实际优化策略为组织工程和再生医学应用提供了宝贵的参考,强调了系统性优化在高分辨率打印实现中的重要性。参考文献:Zhang, G., Li, B., Shi, Y. et al. Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01406-7
  • 中国首台天文观测高分辨率光纤光谱仪通过验收
    高分辨率光谱仪本体,设有主动温控系统,以适应高精度视向速度观测的需要。 1月6日,由中国科学院国家天文台南京天文光学技术研究所为山东大学威海分校研制的中国第一台天文观测高分辨率光纤光谱仪通过验收。验收专家组由国家自然科学基金委、国家天文台、山东大学和北京大学的专家组成。 该仪器配置在山东大学威海天文台的1米望远镜上。光谱仪光学系统采用白瞳设计,光束口径92.5mm。仪器设有良好的恒温、隔震系统,由光纤引导连接到望远镜的卡焦接口,并配备有平场定标,波长定标及碘蒸汽盒定标装置和独立的导星系统。光谱仪一次曝光可覆盖波长范围为375nm~1000nm,光谱分辨率为40000~60000。 该仪器的科学目标是进行恒星视向速度测量,高分辨率、高信噪比的星际参数测量和化学元素丰度测量等。从2010年8月仪器交付使用以来,山东大学威海天文台进行了大量的试观测。试观测期间,光谱仪性能优良,工作状态良好。高稳定度的恒温系统和高精度的碘蒸汽吸收装置为高精度视向速度测量提供了有力的保障。试观测中对于视星等8等的恒星,一小时曝光观测的信噪比好于100。
  • 网络研讨会:高分辨率CT成像技术与应用
    网络研讨会:高分辨率CT成像技术与应用时间:2016-09-08 14:00 注册方式打开以下链接并报名http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2104 讲座内容概要在过去的几十年中,显微成像技术取得了令人瞩目的发展,涌现出众多新的技术和设备,如光学显微镜,SEM/TEM, AFM等,将显微成像技术的分辨能力不断推向新的高度,从微米到纳米甚至是原子尺度。但是,所有这些技术都只是对样品表面形貌进行观测,对样品制备有严格的要求。而高分辨率CT成功的弥补了这一不足,可在无损的情况下对样品内部组分及三维结构进行精确表征。“高分辨CT技术及其应用”介绍了最新的x射线三维显微成像检测技术及其产品,该技术可对样品内部不同吸收系数的组分及微观结构进行三维高分辨率无损成像,在科研及工业领域有着广泛的应用,如石油地质,材料科学,先进制造等。欢迎各行各业对CT感兴趣的用户参与。
  • 传感器阵列以最高分辨率记录脑信号 为中长期脑机接口研究提供新的可能
    一个由工程师、外科医生和医学研究人员组成的团队发布了来自人类和大鼠的数据,证明一种新的大脑传感器阵列可直接从人脑表面记录电信号,并实现破纪录的细节处理。该大脑传感器具有密集网格,由1024或2048个嵌入式皮质电图(ECoG)传感器组成。如果获准用于临床,传感器将直接从大脑皮层表面为外科医生提供大脑信号信息,且分辨率比目前可用的高100倍。该论文于19日发表在《科学转化医学》杂志上。  人的大脑总是在运动,例如,随着每一次心跳,大脑会随着流过它脉动的血液而发生活动。从直接放置在大脑表面的传感器网格记录大脑活动,已经被外科医生普遍用作一种工具,用来切除脑肿瘤和治疗对药物或其他药物无反应的癫痫症。  此次新研究提供了广泛的同行评审数据,证明具有1024或2048个传感器的网格可用于可靠地记录和处理直接来自人类和大鼠大脑表面的电信号。相比之下,当今手术中最常用的ECoG网格通常具有16到64个传感器。  能够以如此高分辨率记录脑信号,可提高外科医生尽可能多地切除脑肿瘤的能力,同时最大限度地减少对健康脑组织的损害。对于癫痫,更高分辨率的脑信号记录能力可提高外科医生精确识别癫痫发作起源的大脑区域的能力,这样就可在不接触附近未参与癫痫发作的大脑区域的情况下移除这些区域。通过这种方式,这些高分辨率网格可以增强正常功能脑组织的保存。  研究团队表示,此次能以更高的分辨率记录大脑信号,归因于他们能够将单个传感器放置得更靠近彼此,而不会在附近的传感器之间产生干扰。例如,该团队的3厘米×3厘米网格和1024个传感器直接记录了19名志愿者的脑组织信号。在这种网格配置中,传感器彼此相距一毫米。相比之下,已经批准用于临床的ECoG网格通常具有相距1厘米的传感器。这为新网格提供了每单位面积100个传感器,而临床使用的网格每单位面积1个传感器。  该项目由加州大学圣地亚哥分校雅各布斯工程学院领导,团队其他成员来自马萨诸塞州总医院和俄勒冈健康与科学大学。该团队正在研究这些高分辨率ECoG网格的无线版本,可用于对顽固性癫痫患者进行长达30天的大脑监测。
  • 860万!上海科技大学高分辨率光谱仪采购项目
    一、项目基本情况项目编号:310000000231018136459-00044392项目名称:上海科技大学磁-惯性约束聚变能源系统关键物理技术项目购高分辨率光谱仪1预算编号: 0023-J00046862 预算金额(元): 8600000元(国库资金:8600000元;自筹资金:0元)最高限价(元): 无 采购需求: 包名称:磁-惯性约束聚变能源系统关键物理技术项目购高分辨率光谱仪1 数量:4 预算金额(元):8600000.00 简要规格描述或项目基本概况介绍、用途:上海科技大学磁-惯性约束聚变能源系统关键物理技术项目购高分辨率光谱仪4套及相关售后服务,交货期:合同签订后6个月内交付;质保期:不少于一年 合同履约期限: 合同签订后至合同规定内容全部完成 本项目( 否 )接受联合体投标。二、获取招标文件时间:2023年11月23日至2023年11月30日,每天上午00:00:00-12:00:00,下午12:00:00-23:59:59(北京时间,法定节假日除外)地点:上海市政府采购网方式: 网上获取 售价(元): 0 三、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海科技大学地 址:华夏中路393号联系方式:021-206851792.采购代理机构信息名 称:上海健生教育配置招标有限公司地 址:上海市瞿溪路350号1楼联系方式:53087656-1053.项目联系方式项目联系人:余大为电 话:53087656-105
  • 海洋光学推出高分辨率微型光纤光谱仪
    海洋光学(Ocean Optics)于近期推出高性能,900-2200nm 光谱响应的近红外光谱仪:NIRQuest 512-2.2。该产品是用于水分检测、化学分析、高分辨率激光检测和光纤特征研究等的理想设备。 海洋光学NIRQuest 512-2.2 近红外光纤光谱仪尺寸小,且测量范围可达900-2200nm   NIRQuest 512-2.2采用高稳定性、512像元的滨松 (Hamamatsu) 铟镓化砷 (InGaAs) 阵列探测器,集成二阶热电制冷和低电子噪声的小型光学平台。根据配置 -- 有六种光栅选项和五种尺寸入射狭缝可供选择--光学分辨率可达~0.5 nm-5.0 nm ( FWHM 全宽半高值),高的分辨率要求对激光特征分析是相当有用。   独特的外部硬件触发功能允许用户通过外部触发来捕捉光谱,或者在数据获得之后来控制触发其它器件。该功能有利于自动过程控制的集成开发或从同步闪光的太阳能模拟器中捕捉光谱。   光谱仪采用的SpectraSuite操作软件是一个模块化、以 Java 开发的操作平台,可在Windows,Mac OS 和Linux 操作系统下运行工作。 此外,NIRQuest 512-2.2能与海洋光学的Remora网络适配器一起使用,可将系统变为通过以太网或已有无线连接控制使用的多用户光谱数据服务器。   推出NIRQuest 512-2.2之后,海洋光学现提供的NIRQuest近红外光谱仪光谱测量范围选项如下:900-1700 nm、900-2050 nm、900-2200nm 和900-2500nm 。多种光栅、光学平台和光学附件使得 NIRQuest 系列能适应各种各样的应用,如医学诊断、食物饮料监测、药物分析、环境监控和过程控制等等。   关于海洋光学 (Ocean Optics) 和豪迈 (HALMA) :   总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。
  • 超高分辨率显微镜:显微镜发展史上的新突破
    显微镜技术经过长期发展,加之近年来物理学界接二连三出现的重大科研进展,终于,在2008年,显微镜发展史上的新成果&mdash &mdash 超高分辨率荧光显微镜为科学家所研制出。人们预言,它定会成为生物学家的好帮手。   Stefan Hell打破了物理学界的传统看法   自从1873年Ernst Abbe第一次发现光学成像具有衍射限制现象以来,物理学界就公认,显微镜的分辨率具有极限,该极限与光源的波长有关。直到一个多世纪之后,罗马尼亚物理学家Stefan Hell推翻了这一观点。他是首位不仅从理论上论证了,而且用实验证明了使用光学显微镜能达到纳米级分辨率的科学家。   罗马尼亚物理学家Stefan Hell,现任德国马克斯· 普朗克生物物理化学研究院(Max Planck Institute of Biophysical Chemistry)主任。   早在上世纪80年代中期,当时师从德国海德堡大学(University of Heidelberg)一位低温固态物理学家的Stefan Hell就已经发现,如果不是像常规那样使用一个透镜聚焦,而是将两个大孔径的透镜组合在一起聚焦,就可以提高光学显微镜的分辨率。Stefan Hell是首位发现这一现象的研究人员。   Hell于1990年顺利完成了他的博士学业,但同时,这也意味着他将无法再凭借奖学金的资助进行研究了。Hell最终决定独自一人继续在家研究以上的发现,并最终成功发明了4Pi显微镜。 4Pi显微镜,超高分辨率成像中的一个步骤   时任美国马萨诸塞州坎布里奇市哈佛大学(Harvard University)化学系教授的Sunney Xie遇到了Hell,当他了解了Hell发明的4Pi高分辨率显微镜时,Xie对Hell勇敢地对传统物理学观点提出挑战的精神表示赞许。   随后,Hell带着他的发明来到了位于德国海德堡的欧洲分子生物学实验室(European Molecular Biology Laboratory, EMBL),并获得了德国科学基金会提供的奖学金。1991年,Hell在该实验室开始他的博士后研究工作。   起初,许多科学家,包括那些声名显赫的物理学家都认为Hell的工作对于提高光学显微镜的分辨率没有太大的意义。他们认为,Hell仅用他那少得可怜的科研经费来从事这项研究简直就是在冒险。但Hell却始终坚信他能够打破衍射极限。   Hell的努力没有白费,他的冒险终于获得了回报。1992年,Hell第一次用他的4Pi高分辨率显微镜证明了他的确能将传统光学显微镜的分辨率提高3~7倍。然而,尽管Hell提高了Z方向的分辨率,他还是没能突破衍射极限的限制。   此后不久,Hell又在芬兰土尔库大学(University of Turku)得到了他的第二个博士后职位。一个星期六的早晨,Hell正躺在研究生公寓的床上看一本有关光学量子理论的书,突然,灵光一闪,Hell脑海里浮现了一个想法:如果使用一种合适的激光,仅激发一个点的荧光基团使其发光,然后再用一个面包圈样的光源抑制那个点周围的荧光强度,这样就只有一个点发光并被观察到了。Hell给他的这项发明取名STED,即受激发射损耗显微镜(stimulated emission depletion)。有了这个想法后,Hell立即行动,冲进实验室进行相关实验。每当回想起当时的心情,Hell都会觉得那是他科研生涯中最激动的时刻。   曾在EMBL与Hell共事,并共同研发4Pi显微镜的Pekka Hanninen指出,Hell在土尔库大学进行研究工作时非常刻苦。那时,他经常被许多问题困扰。尽管如此,研究过程中还是有许多快乐萦绕着他们。Hell不仅是一名严谨的科学研究者,还是一名音乐爱好者,每当工作至深夜时,实验室走廊总会回响起Hell吹奏萨克斯风的动听乐声。 由共聚焦显微镜(左图)和STED(右图)成像的一个神经元。   1994年,Hell在《光学快报》(Optics Letters)上发表了他关于STED的理论文章。不过直到多年以后,这项理论才得以在实践中被证实。在那段时间里,Hell一面继续研究工作,一面四处奔走筹集科研经费,还卖掉了他4Pi 显微镜的专利。   但是那个时候Abbe的衍射极限理论仍然在学界占统治地位,许多物理学家对Hell的理论都持怀疑甚至批评态度,因此他们也都将研究重点放在其它的成像技术上。尽管如此,Hell还是在1997年与马普生物物理化学研究所签订了一份长达5年的合同,以继续他的STED研究。   1999年,Hell将他的研究成果分别投给了《自然》(Nature)杂志和《科学》(Science)杂志,不过都被退稿。当时两位杂志的主编都没有意识到他的研究成果将会改变整个显微镜领域。   直到2000年,事情才终于有了转机&mdash &mdash 《美国国家科学院院刊》(PNAS)发表了Hell的科研成果。采用 Hell的STED技术,人们第一次得到了纳米级的荧光图像。Hell的工作由此获得了广泛的肯定,2002年,他获得了马普研究所的终身职位。从此,Hell一直在马普研究所从事成像技术的研究工作。   紧随STED这项开创性工作之后,世界各地实验室等研究机构内陆续出现了一批高分辨率的显微镜技术。例如,由珍妮莉娅法姆研究学院(Janelia Farm Research Campus)的物理学家兼工程师Mats Gustafsson领导的研究团队开发出了结构光学显微镜(structured-illumination microscopy, SIM)。 果蝇卵母细胞内的肌动蛋白的3D SIM成像,该照片拍摄于完整的卵泡内。   SIM技术的原理是通过一系列光成像的图案对低分辨率莫尔条纹形式的精细结构进行成像,此类图像是采用其它技术所无法观察到的。然后再由计算机处理、分析这些条纹中包含的信息,最终就可以获得高分辨率的图像。   同年,Gustafsson小组得到了HeLa细胞中肌动蛋白细胞骨架的图像,他的图像相比传统显微镜的图像来说,在测向上的分辨率提高了2倍。随后,Gustafsson小组又使用非线性技术将整体分辨率提高了4倍。   科研竞赛   2006年,超高分辨率显微镜研究行业翻开了新的篇章。Eric Betzig、Harald Hess以及Lippincott-Schwartz小组、Samuel Hess小组以及庄晓威(音译)科研小组几乎同时报道了他们提高显微镜分辨率的科研成果,下面分别介绍这三个小组的研究情况。   Eric Betzig、Harald Hess以及Jennifer Lippincott-Schwartz小组   2005年夏天,细胞生物学家Jennifer Lippincott-Schwartz卸下了她在美国马里兰州贝塞斯达美国国立卫生研究院(HIV)暗室里的红色灯泡。Lippincott-Schwartz正在为赋闲在家的两位物理学家Eric Betzig和Harald Hess腾出空间,筹备实验室。正是这两位物理学家研制出了光敏定位显微镜(photoactivated localization microscopy, PALM),他们的这种新产品能将荧光显微镜的分辨率提升至纳米级水平。   接下来的整个冬天,Eric Betzig、Harald Hess以及Lippincott-Schwartz等人都一直在那间狭小的没有取暖设备的实验室里工作。现在就职于美国弗吉尼亚州阿士伯恩霍华德休斯医学研究所珍妮莉娅法姆研究学院(Howard Hughes Medical Institute&rsquo s Janelia Farm Research Campus in Ashburn, Virginia)的Hess承认,自己与Betzig对生物学的认识都不深。不过近15年来,他们一直都在努力,希望能运用生物学知识获取高分辨率的显微图像,但是没有取得明显进展。然而,当Hess和Betzig了解到Lippincott-Schwartz和George Patterson在2002年发明的光敏绿色荧光蛋白(photoactivatable green fluorescent protein)后,他们知道他们已经找到了解决问题的关键所在。   回想起当时的情形,Lippincott-Schwartz指出:&ldquo 他们当时非常激动。我还记得当我们得到第一张显微图像时,你根本无法看出那是什么东西。直到我看到他们将荧光图像和电镜图像叠加之后的结果才相信,我们成功了。我当时觉得这一切真是太神奇了。&rdquo   2006年,Eric Betzig、Harald Hess以及Lippincott-Schwartz小组在《科学》(science)杂志上发表了他们的PALM研究成果。使用PALM可以清楚得看到细胞黏着斑和特定细胞器内的蛋白质。   Samuel Hess小组   Samuel Hess小组是上述三个小组之一。Hess是美国缅因州立大学(University of Maine)物理系的助理教授。2005年夏天,Hess一直在和他们学校的化学工程师和生物学工程师,就如何提高观察活体细胞脂筏结构的分辨率等问题进行交流。   2005年的一个夏夜,Hess被邻居家举办舞会的声音吵醒。半睡半醒的Hess走下楼来,随手画了一副设计图,他的这种设计是需要借助荧光标记的蛋白质来显示细胞形态的。第二天早上,当Hess重新翻看这幅非清醒状态绘制的潦草的设计图时,不由得大笑起来。不过令人吃惊的是,他的这幅设计图竟然没有一点问题。于是他把这幅图拿给物理系的同事检查,但同事也没有发现任何问题。   接下来,Hess就按照他的设计图开始制作显微镜了。此时,他的科研经费所剩不多,而结题时间转眼就到。因此,Hess等人以最快的速度组装好显微镜,并进行了试验。同时,在不到两天的时间里,缅因州立大学表面科学技术实验室的同事就为Hess制备好供检验显微镜效果的蓝宝石晶体样品。   对于同事们的帮助,Hess总是不胜感激。   2006年,《生物物理学期刊》(Biophysical Journal)刊登了Hess小组的科研成果。他们将这项研究成果命名为荧光光敏定位显微镜(fluorescence photoactivation localization microscopy, FPALM)。2007年,Hess小组证明了FPALM可以分辨细胞膜脂筏上的蛋白质簇。   庄晓威科研小组   与此同时,另一个研究小组&mdash &mdash 哈佛大学霍华德休斯医学研究所(Howard Hughes Medical Investigator at Harvard University)的研究员庄晓威科研小组也在研究高分辨率成像技术。   通过3D STORM观察到的一个哺乳动物细胞内线粒体网状系统。传统荧光成像(左图) 3D STORM成像(中图),其中,采用不同颜色标记出z的位置 3D STORM成像中xy维图像(右图)。   其实,这三个小组都有一个共同的也是非常简单的理念,那就是先获得单分子荧光图像,再将成千上万个单分子图像叠加在一起,获得最终的高分辨率的图像。   早在2004年初,庄等人就已经意外发现了有一些花青染料可以用作光敏开关。这也就意味着这些染料既可以被激活发出荧光,也可以被关闭不发光,人们可以使用不同颜色的光束来随意控制这些花青染料的开和关。   从那以后,庄等人就一直在研究如何用光敏开关探针来实现单分子发光技术。他们希望能用光敏开关将原本重叠在一起的几个分子图像暂时分开,这样就能获得单分子图像,从而提高分辨率。Eric Betzig小组和Samuel Hess小组也都采用了同样的策略,只不过他们使用的不是光敏开关而是一种可以先被荧光激活继而被漂白失活的探针。   2006年,庄的科研成果在《自然-方法》(Nature Methods)杂志上发表,他们将这项成果命名为随机光学重建显微镜(stochastic optical reconstruction microscopy, STORM)。使用STORM可以以20nm的分辨率看到DNA分子和DNA-蛋白质复合体分子。   此后几年,超高分辨率荧光显微镜又得到了进一步的发展。现在,生物学家已经能够使用超高分辨率荧光显微镜在纳米水平上观察细胞内部发生的生化变化了。以往那些大小在200nm至750nm之间的模糊泡状图像再也无法对他们造成困扰了。尽管早在上世纪80年代,科研机构里就已经出现了超高分辨率显微镜的构思,但只是最近几年里这项技术才伴随着它的商业化进程获得了快速发展。现在,已经有几十家实验室安装了这种最新型的显微镜并投入了使用。正像Lippincott-Schwartz所说的,超高分辨率显微镜正在以飞快的速度被科研界接受,在生物学界更是如此。   超高分辨率显微镜的成绩   已经开始使用这些显微镜的生物学家对这项技术都表示出了极高的热情。Jan Liphardt这位在美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)工作的生物学家,还清楚地记得他2006年第一次在《科学》(science)杂志读到Betzig的那篇有关PALM技术的论文时的激动心情。当他看到那幅线粒体蛋白的图像时立刻想到了该技术可以用于他自己的微生物研究领域。   Liphard说道:&ldquo 通常,我们得到的大肠杆菌荧光图像都只有20像素,甚至更低,现在突然有一幅几千像素的图片摆在你面前,你可以想象那是一种什么感觉。&rdquo   Liphard现在正与Betzig以及其他一些研究人员一起研究大肠杆菌的趋化现象(chemotaxis)。Liphard还提到:&ldquo 我从没想到这项技术达到的分辨率有这么高,可以如此清楚地看到细胞内单个蛋白质分子的定位,甚至还能定量。而对我来说,每天的工作实际上就是在弄清楚这些蛋白质在什么位置,什么时候存在。而之前我们的研究主要采用间接方法。但超高分辨率显微镜这项新技术是我从事科研工作这么长时间以来,感触最深,获益最大的一项科技成果。&rdquo   美国丹佛市科罗拉多州立大学医学院(Medicine at the University of Colorado Denver)的助理教授Nicholas Barry也正在和Betzig合作,他们使用了一台蔡司的全内反射荧光成像系统(total internal reflection fluorescence imaging, TIRF)来研究肾细胞顶端胞膜上的蛋白质簇。   Barry指出,只需要一台蔡司显微镜和普通电脑,差不多就足够了。此外,他们还花费3万美元添置了两台激光发射器。现在,Barry等人可以在8分钟内得到一幅图像,这幅图像由10000帧图像合成,每一帧图像上显示10个分子。最后的图像文件大小大约是0.3GB。Barry等人还使用Perl语言自己开发了一套免费程序。Barry表示:&ldquo 这里面包含了每帧图像的资料信息,客户可以根据这些信息进行相关计算。&rdquo Barry充满信心地提到,很快就会有人为NIH的那套免费图像分析软件ImageJ开发出一套运算程序作为插件使用。   美国斯坦福大学(Stanford University)化学及应用物理系教授W.E. Moerner曾于1989年第一个在试验中使用光学显微镜得到了单分子图像。W.E. Moerner教授表示,这几年来,超高分辨率显微镜研究领域已经取得了巨大的进展,终于达到了纳米级单分子分辨率。他兴奋地说:&ldquo 经过了近20年对单分子成像课题的研究,我们终于取得了完美的成果。&rdquo   展望   自从2006年STORM技术和PALM技术问世以来,科技工作者就一直在不断努力,对它们进行改进、完善和提升。2008年,Lippincott-Schwartz的研究团队将PALM技术和单颗粒示踪技术(single-particle tracking)结合,成功地观测到活体细胞胞膜蛋白的运动情况。同年,庄小威研究组在《科学》(science)杂志上也发表了他们的3D STORM成像成果,该技术的空间分辨率比以往所有光学3D成像技术的分辨率都要高出10倍。论文中,他们展示了用3D STORM成像技术拍摄的肾细胞内微管结构图和其它的分子结构图。随后,他们又进一步将该技术发展成了多色3D成像技术(multicolor 3D imaging)。Gustafsson,还有其他一些科研工作者使用3D SIM技术(该技术使用3束干涉光,而不是常见的2束)观察到了共聚焦显微镜(confocal microscopes)无法观测到的哺乳动物细胞核内结构。位于德国的世界知名光学仪器制造公司蔡司公司进一步发展了SIM和PALM技术,不过他们将PALM称为PAL-M。蔡司公司预计将于2009年末推出全新的成像产品。   2008年,Hell小组使用STED技术通过抗体标记目标蛋白,观察到了活体神经元细胞中突触小泡(synaptic vesicles)的运动过程。同年稍晚些时候,他们又使用4Pi显微镜和STED技术得到了固定细胞内线粒体的3D图像,分辨率达到了40至50nm。最近,他们又使用超高分辨率显微镜成像技术对脑切片组织中的形态学变化进行了研究,并得到了活体神经元细胞树突棘(dendritic spines)的3D图像。 PALM在哺乳动物细胞内拍摄到的粘附复合物。   由于最近几年这些新技术的不断涌现,现在可以对活体细胞进行三维观察了。Gustafsson指出,随着PALM技术和STORM等新技术的出现,以前很多看起来不可能的事情现在都变得可能了。   尽管已有许多科学家从这项技术进展中获益,但是仍然可以进一步提高,以使更多的研究人员能够在自己的工作中使用它。到目前为止,那些成功应用此项技术的实验室都采取了正确的技术组合:研究人员可以很好地将物理学与生物学相结合&mdash &mdash 他们将显微镜装配并做适当的调节,然后用它对生物学样品进行检测。Moerner指出,软件的编写也不容小觑:对检测到的光子进行定位和报告需要进行准确计算,从而得到合适的分辨率。   仅仅是显微镜的价格就已经限制了它的普及性,Leica&rsquo s TCS STED显微镜高达100万美元。因此,如何获得相应的资金来购置显微镜仍然是摆在研究人员面前的一个难题,位于丹佛市的科罗拉多大学(University of Colorado)光学显微镜组主任Bill Betz这样说道。   Betz曾申请用于显微镜购置的资金,但遭到了拒绝。但他表示,他们已经计划再次申请相关资金。而Stefan Hell曾指出,激光领域的技术进展已经可以使得研究人员自己在实验室内构建一个STED平台,花费只需不到10万美元。   除了要将这一技术方法普及,使生物学家能够加以利用之外,该项技术的研发人员还表示,他们已经开始致力于研究更宽范围及更多样的荧光探针了。更好的探针当然能够为我们带来更高的分辨率及更快速的图像处理。美国纽约阿尔伯特&bull 爱因斯坦医学院(Albert Einstein College of Medicine)解剖学及结构生物学副教授Vladislav Verkhusha说到:&ldquo 为了对活体哺乳动物细胞进行研究,你就需要有一整套的荧光标记蛋白和可通过光控开关控制的蛋白质。&rdquo 他本人在荧光蛋白领域的研究工作就受益于PALM的出现。   庄晓威的众多项目之一便是与Alice Ting及其在麻省理工学院(MIT)的实验室合作,对蛋白标记技术进行研究,希望能够找到一种方法可以将小和明亮的光控开关可控的探针标记于细胞的特异蛋白上,从而可以对活细胞进行成像。她提到:&ldquo 将遗传标记方法与小而明亮且可被光控开关控制的探针结合在一起,将是今后发展分子级别超高分辨率成像的十分理想的一种方法。&rdquo   尽管研发人员还将继续努力,以进行相应技术的提高,但是超高分辨率荧光显微镜更加广泛的应用还是毫无疑问地成为新的一年的标志。Harald Hess说:&ldquo 这一技术的确会为生物学家的工作带来很大的帮助。同时,我们也在不断询问,&lsquo 你们想要用它做什么精彩的实验?&rsquo 事实上,我们也得到了许多精彩的答案。&rdquo
  • 日本东京大学研制纳米级量子传感器,实现高分辨率磁场成像
    日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。(a)六方氮化硼中的硼空位缺陷。空位可充当用于磁场测量的原子大小的量子传感器,对磁场敏感,就像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光可反应磁场的变化。图片来源:东京大学研究团队
  • CT分辨率知多少—高分辨率微纳CT的精确度量
    在 X 射线 CT 中,空间分辨率是重要的量化参数之一,它被定义为重建图像中两点之间可以区分的最小线性距离。因此,对空间分辨率的适当评估是至关重要的,特别是对于微纳 CT 这种高精度要求的成像系统。目前有两种最常见的空间分辨率评估方法:第一种是利用分辨率测试卡评估,其包含了可进行直接视觉评估的图案结构,在工艺上可制成二维和三维结构,适用于 X 射线断层和 X 射线 CT。测试卡的优势在于操作简单,可直观评估分辨率。但测试卡有一个明确定义的结构分布,只能评估测试卡上所列的图案尺寸;第二种是利用遵守 ASTM E1695-95 标准(Standard Test Method for Measurement of Computed Tomography (CT) System Performance)的斜边法或边缘瞬变法,光源扫描圆柱体或球体边缘,随后基于一套标准的数据处理方法计算空间分辨率。该方法需严格遵守测试标准,能够精确度量空间分辨率且不受测试卡的图案尺寸限制。1Resolution-spirit—微纳 CT 空间分辨率测试捷克CACTUX公司推出的 Resolution-spirit 是按照 ASTM E1695-95 标准制造的微纳 CT 模体,并由超精密三维测量机 nano-CMM 标定。Resolution-spirit 是一个高精度的红宝石球(Φ=0.5~5 mm),粘在一根碳棒上,如下图(左)所示。为评估 XY 平面的分辨率,只需对模体成像,如下图(右)所示,其中绿点为计算的质量中心。用户只需对模体边缘像素的数据进行处理,即两个红色圈内的数据,以质量中心为准,获得不同半径下强度分布—边缘响应函数(ERF)。这里最大挑战是以非常高的精度确定质量中心,如果没有正确地定义中心,那么根据中心对像素进行分组将不准确,错误将导致边缘模糊。然后依次通过求导和傅里叶变换得到点扩散函数(PSF)和调制传递函数(MTF),根据体素大小和 MTF 精确算出空间分辨率。最后类推到其他平面,可获得 CT 系统的三维空间分辨率。例如,布尔诺理工大学的研究人员利用传统 2D 分辨率测试卡和模体对 Heliscan 微米 CT 进行分辨率测试,如下表所示,模体能提供更精确的度量。2 Voxel-spirit—纳米 CT 体素校准在锥束 X 射线 CT 中,光源、样品和探测器之间的距离(SOD和SDD)影响重建体的视觉保真度和体素大小。除了这两个距离的估计存在偏差外,体素大小的真实值还受到 X 射线源漂移、CT 组件热膨胀、探测器和转台倾斜等因素的影响。因此,使用参考样品进行校准是防止在估计体素大小时出现误差的适当工具。对于视场在 10 mm及以上的锥束CT,体素尺寸校准已经很好地建立起来,并且有大量合适的参考样品可用。然而,对于小视场、高分辨率的微纳 CT 来说,很难找到合适的参考样品。CACTUX 的 Voxel-spirit 可以对 SOD 和 SDD 的误差进行精确校准,从而提高重建质量和体素大小的准确性,其适用于视场较小且锥束放大倍率接近 1 的微纳 CT。voxel-spirit由两个高精度的红宝石球(Φ=0.3 mm)组成,它们粘在一根碳棒上,球中心间距(约0.5 mm)并且经过 nano-CMM 严格度量,精度约 70 nm,如下图所示。首先保证两个球体完全在视场内,光源中心与探测器平面正交,两球中心连线平行于探测器平面。在对 Voxel-spirit成像后,可根据下图公式 1 计算体素大小。根据这种关系,在体素大小上的误差可能是由于 SOD 和 SDD 的不精确以及像素大小 p 的不精确造成的,而这些在实验中都是难以精确测量的。因此,在给定的 CT 测量条件下,利用图像中两球中心间距 lCT 和真实度量过的球中心间距 lref,可以获得体素修正因子 cf,算出修正后的体素大小,如下图公式 2、3。3 R1-shadow—微纳 CT 机械误差校正在微纳 CT、双能 CT 或 4D CT中,旋转转台同样会引入误差,即旋转中心的不对准、装台的不稳定或移动等等。尤其是针对颗粒、粉末样品,更容易受到这些机械误差的影响。CACTUX 的 R1-shadow 可以快速直观地纠正这些机械误差,并且提供配套的数据处理软件。R1-shadow是一个由 kapton 制成的样品基底(Φ=25~100 um),在中心处有一根碳纤维增强棒(Φ=2.5~10 um)作为机械误差校准的参考基准点,如下图所示。在确保基准点获得较高对比度的图像后,即可开始 CT 测量。下图展示了胶囊颗粒在机械误差修正前后的图像,可以清晰看到修正后的红色区域伪影消除了。 点击获取产品详细信息:捷克 CactuX—致力于提升您微纳 CT 系统的成像质量和测试效率参考文献:1. Standard Test Method for Measurement of Computed Tomography (CT) System Performance: E 1695–95. 1st edition. United States: American Society for Testing and Materials, 2013.2. Bla&zcaron ek P, &Scaron rámek J, Zikmund T, et al. Voxel size and calibration for CT measurements with a small field of view. Proceedings of the 9th Conference on Industrial Computed Tomography (iCT 2019), Padova, Italy. 2019: 13-15.3. Zemek M, Bla&zcaron ek P, &Scaron rámek J, et al. Voxel size calibration for high-resolution CT. 10th Conf. on Industrial Computed Tomography. 2020: 1-8.4. Laznovsky J, Brinek A, Salplachta J, et al. 3D spatial resolution evaluation for helical CT according to ASTM E1695–95. 10th Conference on Industrial Computed Tomography. 2020.5. Laznovsky J,Brinek A, Salplachta J, et al. Comparison of two different approaches for Spatial Resolution determination for X-ray Computed Tomography with helical scanning trajectory.
  • 240万!复旦大学高分辨率晶体衍射仪采购项目(二次招标)
    项目编号:0705-2240 02028108项目名称:复旦大学高分辨率晶体衍射仪采购预算金额:240.0000000 万元(人民币)最高限价(如有):235.2000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1高分辨率晶体衍射仪1套最大输出功率:3kW或更优;最大管流达到或优于:60mA,1mA/步,机柜同步数字显示。预算金额:人民币240万元。最高限价:人民币235.2万元。合同履行期限:签订合同后8个月内。 合同履行期限:合同履行期限:签订合同后8个月内。本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制