当前位置: 仪器信息网 > 行业主题 > >

开关器件

仪器信息网开关器件专题为您提供2024年最新开关器件价格报价、厂家品牌的相关信息, 包括开关器件参数、型号等,不管是国产,还是进口品牌的开关器件您都可以在这里找到。 除此之外,仪器信息网还免费为您整合开关器件相关的耗材配件、试剂标物,还有开关器件相关的最新资讯、资料,以及开关器件相关的解决方案。

开关器件相关的资讯

  • 上海微系统所Science:单质Te新原理开关器件
    2021年12月10日,中科院上海微系统与信息技术研究所宋志棠、朱敏研究团队在国际顶级期刊《Science》上发表了题为“Elemental Electrical Switch Enabling Phase-Segregation-Free Operation”的研究论文(图1)。中科院上海微系统所博士生沈佳斌、贾淑静为共同第一作者,宋志棠研究员、朱敏研究员为通讯作者,中科院上海微系统所为第一完成单位和唯一通信单位。图1 科院上海微系统所在Science上发表单质新原理器件文章集成电路是我国的战略性、基础性和先导性产业,其中存储芯片是集成电路的三大芯片之一,直接关系到国家的信息安全。然而,现有主流存储器-内存(DRAM)和闪存(Flash),不能兼具高速与高密度特性,难以满足指数型增长的数据存储需要,急需发展下一代海量高速存储技术。三维相变存储器(PCRAM)是目前成熟的新型存储技术,其核心是两端开关单元和存储单元,然而,商用的开关单元组分复杂,通常含有毒性元素,严重制约了三维相变存储器在纳米尺度的微缩以及存储密度的进一步提升。图2 单质Te开关器件结构与性能针对以上问题,中科院上海微系统与信息技术研究所宋志棠、朱敏与合作者在Science (2021, 374, 1390) 上提出了一种单质新原理开关器件(图2):该器件通过单质Te与电极产生的高肖特基势垒降低了器件在关态的漏电流(亚微安量级,图3);利用单质Te晶态(半导体)到液态(类金属)纳秒级高速转变(图4),并产生类金属导通的大开态电流(亚毫安量级),驱动相变存储单元。单质Te开关器件基于晶态-液态新型开关机理与传统器件等完全不同,是一种全新的开关器件。单质Te具有原子级组分均一性,能与TiN形成完美界面,使二端器件具有一致性与稳定性,并可极度微缩,为海量三维存储芯片提供了新方案。图3 单质Te器件低漏电流物理机制:单质Te与电极形成的高肖特基势垒图4 单质Te器件新型开关机理:晶态-液态-晶态转变意大利国家研究委员会微电子和微系统所Raffaella Calarco教授同期在Science (2021, 374, 6573)上发表了评论文章,高度评价道:“沈等人取得的成果是前所未有的,为实现晶态单质开关器件提供了稳健的方法,此单质开关为3D Xpoint架构提供了新的视角”(What has been achieved by Shen et al., is unprecedented and provides a robust method to realize crystalline elemental switches that bear new perspectives for 3D Xpoint architectures)。该研究工作得到复旦大学刘琦教授、剑桥大学Stephen R. Elliott教授、日本群马大学Tamihiro Gotoh教授、德国亚琛工业大学Richard Dronskowski教授、赛默飞世尔科技中国有限公司史楠楠和葛青亲博士的大力支持。相关工作得到了国家重点研发项目(2017YFB0206101)、中科院先导B(XDB44010000)、中科院百人计划C类和上海科技启明星项目(21QA1410800)的资助。文章链接:https://www.science.org/doi/10.1126/science.abi6332评论文章链接:https://www.science.org/doi/10.1126/science.abm7316
  • 上海微系统所新原理开关器件成果获2022年度中国科学十大进展
    3月17日,科技部高技术研究发展中心(基础研究管理中心)发布2022年度中国科学十大进展。中科院上海微系统所宋志棠、朱敏团队的“新原理开关器件为高性能海量存储提供新方案”脱颖而出,荣获2022年度中国科学十大进展(图1)。中国科学十大进展遴选活动由科技部高技术研究发展中心牵头举办,其遴选程序分为推荐、初选和终选3个环节。终选阶段,中国科学院院士、中国工程院院士、国家重点实验室主任等3500余位知名专家学者对30项候选科学进展进行网上投票,最终,得票数排名前10位的入选。图1 新原理开关器件成果荣获2022年度中国科学十大进展高密度与海量存储是大数据时代信息技术与数字经济发展的关键瓶颈。中国科学院上海微系统与信息技术研究所宋志棠、朱敏团队发明了一种新型基于单质碲和氮化钛电极界面效应的开关器件(图2),充分发挥纳米尺度二维限定性结构中碲熔融—结晶速度快、功耗低的独特优势,“开态”碲处于熔融状态是类金属、和氮化钛电极形成欧姆接触,提供强大的电流驱动能力,“关态”半导体单质碲和氮化钛电极形成肖特基势垒,彻底夹断电流。该晶-液态转变的新型开关器件,组分简单,可克服双向阈值开关(OTS)复杂组分导致成分偏析问题;工艺与CMOS兼容且可极度微缩,易实现海量三维集成;开关综合性能优异,驱动电流达到11 MA/cm2,疲劳108次以上,开关速度~15ns,尤其碲原子不丢失情况下开关寿命可大幅提升。该研究突破为我国发展海量存储和近存计算,在大数据时代参与国际竞争提供了新的技术方案。该成果发表在国际顶尖杂志Science (2021, 374, 1390-1394) 上。图2 新原理开关器件及其晶态-液态新型开关机理(Science, 2021, 374, 1390-1394)中国科学院上海微系统与信息技术研究所是我国著名的技术学科综合性研究所之一,前身是成立于1928年的国立中央研究院工程研究所。上海微系统所现有传感技术、集成电路材料、微系统技术三个国家级重点实验室,有无线传感网与通信、太赫兹固态技术、高端硅基材料三个中科院重点实验室。设有传感技术实验室、纳米材料与器件实验室,太赫兹固态技术实验室、微系统技术实验室、宽带无线通信实验室、硅基材料与集成器件实验室、超导电子学实验室、仿生视觉系统实验室、2020 X-Lab实验室等九个实验室。
  • 日大学开发出用于检测氢泄露的氢敏开关器件
    日本富山大学最近开发出一项钯钴合金氢敏开关器件技术,能够检测出低浓度的氢泄露并断开开关电路报警。该技术有望在燃料电池(包括燃料电池汽车)的普及中创造出良好的商业价值。  此次富山大学开发制作的钯钴合金氢敏开关器件,是利用钯钴合金常态磁性及吸收氢气后磁性降低的特性制作的。在没有氢气泄漏的正常状态时,载有钯钴合金的铜版被永磁铁的吸引而呈弯曲状,接通测试电路 当有氢气泄露时,该弯曲铜版上的钯钴合金磁性降低,铜版展平而切断测试电路,发出报警信号。与以往通过催化剂遇氢反应发热转导给半导体传感器的做法不同,该钯钴合金氢敏开关器件检测信号的传递更加直接,成本更低。  接下来,该大学将与有关企业合作,解决“缩短钯钴合金与氢气反应时间”、“降低(器件)对甲烷等其他气体的敏感性”等技术难题,进一步推动技术的实用化。
  • 科学家提出一种单质新原理开关器件 为研发海量三维存储芯片提供新方案
    中国科学院上海微系统与信息技术研究所宋志棠、朱敏研究团队在集成电路存储器研究领域获重大进展,成功研制出一种单质新原理开关器件,为海量三维存储芯片的研发提供了新方案。12月10日,这项成果发表于《科学》。  集成电路是我国的战略性、基础性和先导性产业,其中存储芯片是集成电路的三大芯片之一,直接关系国家的信息安全。然而,现有主流存储器——内存和闪存,不能兼具高速与高密度特性,难以满足指数型增长的数据存储需要,急需发展下一代海量高速存储技术。三维相变存储器是目前成熟的新型存储技术,其核心是两端开关单元和存储单元,然而,商用的开关单元组分复杂,通常含有毒性元素,严重制约了三维相变存储器在纳米尺度的微缩以及存储密度的进一步提升。  针对以上问题,宋志棠、朱敏与合作者提出了一种单质新原理开关器件,该器件通过单质Te与电极产生的高肖特基势垒降低了器件在关态的漏电流(亚微安量级);利用单质Te晶态(半导体)到液态(类金属)纳秒级高速转变,产生类金属导通的大开态电流(亚毫安量级),驱动相变存储单元。单质Te开关器件基于晶态—液态新型开关机理,与传统晶体管等完全不同,是集成电路全新开关器件。单质Te具有原子级组分均一性,能与TiN形成完美界面,使二端器件具有一致性与稳定性,并可极度微缩,为海量三维存储芯片的研发提供了新方案。  据悉,该单质新原理器件为我国首次发明,打破了外国公司的专利壁垒,为我国自主高密度三维存储器的研发奠定了坚实的基础。  意大利国家研究委员会微电子和微系统所教授Raffaella Calarco同期在《科学》上发表评论文章,认为该研究“取得的成果是前所未有的,为实现晶态单质开关器件提供了稳健的方法,此单质开关为3D Xpoint架构提供了新视角”。  相关论文信息:https://doi.org/10.1126/science.abi6332
  • 光交换,千万里,我追寻着你——H+S Polatis公司大容量高性能576×576光开关旗舰产品
    全球光开关技术的领导者——H+S Polatis公司,推出了业界端口密度最高的全光开关,其中Polatis 7000系列光开关是一款完全无阻塞全光矩阵开关,最大可支持576x576光纤端口,基于通过嵌入的NETCONF/YANG接口的SDN支持,相比传统电交换平台的能效高100倍以上,比市场上任何其他类似方案的交换容量提升80%!Polatis 576软件定义的光交换机具有弹性、冗余和模块化的结构,支撑了交换机在网络环境中的可靠性和可用性。为进一步保护关键业务服务,Polatis还配备现场可寻址的备用端口,任何端口的中断都可以通过将光纤移到备用端口并在软件中重新分配端口而迅速绕过。H+S Polatis 576x576矩阵光开关集成软件控制Polatis 7000系列光开关在开关性能和矩阵端口数目方面成为业界标杆产品,其电信级嵌入式控制接口允许无缝的集成软件定义网络(SDN)控制器。这些特性使Polatis的客户能够实现光纤连接的虚拟化、允许远程可靠地对网络物理层进行自动化的光纤指配,以及更复杂的系统集成测试套件的部署。使得大规模,灵活,动态的光网络实现成为可能。576x576无阻塞光纤端口矩阵使运营商能够在网络安全和网络监控、测试实验室自动化和数据中心交叉连接等应用中以紧凑的外形将更多的光纤远程连接在一起。带有MPO连接器的Polatis 576变体仅占用8RU的宝贵机架空间。HUBER+SUHNER 通信公司技术副总裁Nick Parsons说:“Polatis光路开关可以直接在光纤层实现网络自动化,在创建新的用户连接、升级数据中心线路速率、监控网络服务或管理测试操作时,可以节省时间、成本和电力。我们在新的Polatis平台中重新架构了核心交换机引擎,以弹性、分布式控制和紧凑的集成设计为特色,同时提高了能源效率和端口密度。576x576是为批量制造而设计的,并考虑到了未来的可扩展性。”DirectLight光开关技术低损耗的Polatis 576光交换机采用了获得专利的DirectLightTM透明暗光纤交换平台,该平台已在最具挑战性的数据中心、电信、研发生产测试等各类应用中得到了充分验证,有着超过20年的卓越表现。通过嵌入式NETCONF和RESTCONF接口支持软件定义网络(SDN),Polatis光交换机能够以光速数据延迟直接在光纤层实现对实时流量的动态路由、监控、保护和测试。DirectLight是一种暗光纤/无光开关技术,允许控制平台和数据平面的完全分离,允许在网状网中对光路进行路径的预配置,而不需要任何的光业务来保持完全透明的连接。基于DirectLight的全光交换机可以轻松实现可靠的远程选择性路由、在线性能监控和自动保护等。主要应用场景凌云光大矩阵全光交换解决方案凌云光自2001年起即关注光交换技术、产品与应用的推广,2015年正式与全球光交换厂家H+S Polatis公司建立战略合作伙伴关系,共同开创光交换应用的新时代。H+S Polatis 提供低损耗的全光交换解决方案,用于远程光纤层配置、保护、监控、重新配置和测试。H+S Polatis 6000/7000系列全光交换机性能卓越,支持完全无阻塞8×8~576×576矩阵规模,具有极佳的抗震性,支持宇航级应用。超低插回损,光学指标优异,支持单路双向传输和暗光纤交换,全光透明传输,与速率/协议无关,支持400G/800G及以上速率平滑升级,可选N×N对称以及任意端口配置结构(CC系列),满足SDN应用。可以广泛的应用在AI智算中心全光交换、卫星互联网、量子互联网和产线自动化测试等应用场景。
  • 开合可超1亿次!我国科学家研制碲开关升级新型存储器
    升温,碲变液态,开关闭合;降温,碲回归固态,开关断开… … 更奇妙的是,这样的“温控”开关小到纳米级,一开一闭的时间只有15纳秒,可以使用超过1亿次!  记者从中科院上海微系统所获悉,该所研究员宋志棠团队研制出由碲元素制成的全新开关器件,这种开关具有高驱动电流、低漏导和长寿命性能,有望让相变存储器这一新型三维海量存储器的性能进一步升级。该成果近日发表于《科学》杂志。  作为电子产品必备的元器件,存储器广泛应用于人们的工作生活,电脑里的内存条和硬盘就是其中最常见的两类。与此同时,在业界对存储器更高性能的不懈追求下,速度快、功耗低、微缩性能好、可三维集成的相变存储器受到热捧,被视为最有潜力的新型海量存储器。  “相变存储器由相变存储单元和开关单元构成,用一个相变存储单元加一个开关单元记录一个比特,但由于当前商用领域的开关组分复杂,制约了相变存储器在寿命和存储密度上进一步提升。”宋志棠说。  据文章通讯作者朱敏介绍,团队制备出60纳米至200纳米大小的碲开关器件以验证其性能。当碲处于液态时表现出金属性,可提供强大的驱动电流,当碲处于固态时,实现低漏导关断。另外,得益于单质碲组分均一,开关器件的一致性与稳定性进一步得到提升。  《科学》杂志同期发表评论文章称:“该成果是前所未有的,为实现晶态单质开关器件提供了稳健的方法,此单质开关为三维相变存储器架构提供了新的视角。”
  • 可自组装的DNA分子开关研制成功 DNA芯片有了雏形
    据美国物理学家组织网5月12日(北京时间)报道,美国杜克大学研究人员称,他们利用携带全部生命信息的DNA(脱氧核糖核酸)的独特双螺旋结构,将经过改造的DNA片段和其他分子进行简单混合,即可制造出无数个同样的、细小的、像华夫饼干一样的器件。利用这种技术,将来或只需一天时间就可达到现在全球每月的芯片生产量。   杜克大学电子和计算机工程学副教授克里斯德维耶认为,下一代电脑中或将不再使用硅芯片,而使用由DNA片段制造的逻辑芯片。   DNA由多对核苷酸碱基组成,这些碱基之间的关系非常密切,德维耶团队通过将这些碱基对以不同的顺序进行排列,得到了不同的DNA片段。这个过程类似于玩拼图游戏:混乱的拼图碎片会慢慢找到它们的邻居,最终成为一幅完整的拼图。研究人员要做的则是将无数个拼图碎片放在一起,然后拼出无数个同样的拼图。   在德维耶的实验中,“华夫饼干”“拼图”有16块,光敏分子放置在“拼图”的脊线上。当光线照射在光敏分子上时,光敏分子吸收光线,刺激电子,释放出的能量会使附近的另一类光敏分子吸收这些能量,并发射出不同波长的光线。仅用一个探测器就可将输出光线与输入光线区别开来。   研究证明,这些纳米结构能够有效地进行自组装,当在其上添加不同的光敏分子时,这个“华夫饼干”会显示出独特的“可编程”特性,因此,通过使用光线来刺激这些光敏分子,研究人员就能够制造出简单的逻辑门(开关)。使用更大一些的“华夫饼干”,可制造出更复杂的电路,而且这种可能性是无限的。   传统的电路使用电流快速地在“0”和“1”之间切换,而在新的器件中,光线可刺激由DNA制造的开关作出同样的反应,且速度更快。德维耶称,这是人们首次证明分子具有如此活跃且快速的处理和传感能力。   德维耶指出,这些“华夫饼干”器件可成为未来计算机芯片的基本组件。由于这些纳米结构从根本上来说就是传感器,因此,它亦可应用于生物医学。研究人员可据此制造出细小的纳米器件,以对作为疾病标识的不同蛋白作出反应。(刘霞)   谁要说原子弹可以做得像个“二踢脚”,你肯定得劝他回家量体温。有些事听着比这还要悬,但却千真万确。就说你正捏着这张报纸的大拇指吧,里面的遗传物质足够造出一台超级计算机的所有逻辑组件,而其潜在的计算和存储能力会让目前世界上功能最强大的计算机相形见绌。从16年前首次提出DNA计算机概念并证明其可行,到今天宣告“华夫饼干”式分子开关研发成功,实用的DNA计算机渐行渐近。关于它将如何改变人类生活,我敢断言,最权威的专家现在也只能看到皮毛。
  • 警惕|办公室马桶冲水开关 消毒前核酸检测呈阳性
    p style=" text-indent: 2em " span style=" text-indent: 2em " 新冠肺炎病例的居住、工作场所,感染风险有多大?近日,南昌市疾控中心前往新冠肺炎病例的居住、工作场所开展采样监测。 /span br/ /p p style=" text-indent: 2em " strong 警惕!南昌新冠肺炎病例家中和工作场所监测有重要发现 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/9b69ef77-490a-4d00-9e14-f070d541a589.jpg" title=" c26655b1-c4ca-413e-b624-4045bd69edd9.jpg" alt=" c26655b1-c4ca-413e-b624-4045bd69edd9.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 对病例工作场所的马桶冲水开关采样 /span /p p style=" text-indent: 2em " & nbsp 据了解,采样人员分别在消毒前后采集涂抹样本进行监测:其中病例居所,对病例家门帘、鞋面、背包、门把手、电灯开关、马桶盖、蹲坑冲水开关、水龙头、洗漱台、遥控器、冰箱门把手、厨具、餐具、沙发扶手、床头柜以及楼梯间楼梯扶手等常被触及的物体表面进行监测采样。病例办公场所,对办公场所的办公桌桌面、办公椅、水杯、鼠标、键盘、文件柜、马桶冲水开关等常被触及的物体表面进行监测采样。最后发现,病例家中的冰箱门把手、床头柜、蹲坑冲水开关、卫生间洗漱台和办公室的马桶冲水开关等5处,检测结果显示:消毒前,新冠病毒核酸检测阳性;消毒后,新冠病毒核酸检测阴性。 /p p style=" text-indent: 2em " strong 疾控中心提醒:疫期减少接触公共场所公共物品和部位 /strong /p p style=" text-indent: 2em " 南昌市疾控中心提醒,居家也要保持手卫生,除了在公共场所要注意保持手卫生,如减少接触公共场所的公共物品和部位等。居家保持手卫生同样重要,尤其是从公共场所返回、咳嗽手捂之后、饭前便后,用洗手液或香皂流水洗手,或者使用含酒精成分的免洗洗手液。当家庭成员中有出现发热、咳嗽等症状,家庭其他人员应及时做好隔离防护,并及时送出现症状的家庭成员就诊,戴好口罩,尽量选择私家车前往医院。同时应对其隔离或居住过的、接触的物品如地面、卫生间、门把手等进行消毒,并定时开窗通风。家庭日常以通风、清洁卫生为主,在传染病流行期间,也建议定期消毒,如家中的门把手、床头柜、开关、冰箱门、马桶冲水开关、洗手盆等物体表面,推荐使用酒精或者含氯消毒液,其中含氯消毒液使用有效浓度250~500mg/L(市售5%的84药液稀释100~200倍),擦拭完半小时后,用清水再次擦拭。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " ▊相关报道 /span /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200302/522949.shtml" target=" _blank" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " strong medRxiv: 首次发现,医院病房空气中检出新冠病毒 /strong strong /strong /span /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 209px " src=" https://img1.17img.cn/17img/images/202003/uepic/53606970-1286-4f28-abdf-725d63d1b1c2.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 209" border=" 0" vspace=" 0" / /p p /p p style=" text-indent: 2em " 2月27日,吉林大学第一医院华树成教授团队在医学预印本网站 medRxiv上发表关于“新型冠状病毒暴发期间医院环境卫生监测和医护人员保护的临床资料”重要成果。研究表明:疑似病人隔离区护士站相关物体表面和重症监护病人隔离病房空气中均可检出新冠病毒。 /p p style=" text-indent: 2em " 主要检测方法:采用自然沉降和空气颗粒取样器方法收集空气中的病毒。在早晨7点,消毒前,用棉签对预定的环境表面进行采样。密切接触的医务人员的样本为咽拭子样本。实时定量PCR方法用于确认COVID-19病原体是否存在。 /p p style=" text-indent: 2em " 检测结果:疑似患者隔离区的护士站检测样本表面上可检测到病毒,重症监护患者在隔离病房空气中可检测到病毒。即在物体表面和空气中都检测到了新冠病毒。 /p p style=" text-indent: 2em " 空气样本的阳性率分别为3.57%(1/28),表面样品的阳性率为0.77%(1/130),总阳性率为1.26%(2/158)。 /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200228/522812.shtml" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 香港确诊新冠肺炎患者的宠物狗测出弱阳性反应 /span /strong strong span style=" color: rgb(0, 176, 240) " /span /strong /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 192px " src=" https://img1.17img.cn/17img/images/202003/uepic/b4612c94-9b2d-45e5-8d19-88d6d5ae1519.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 192" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 2月28日凌晨,香港特区政府发布新闻公报,称特区政府渔农自然护理署(渔护署)发言人今日(二月二十八日)表示,一只居于2019冠状病毒病确诊者家中的狗只对有关病毒测试呈弱阳性反应。 /span /p p style=" text-indent: 2em " 渔护署发言人表示,为确保公众及动物的健康,署方强烈建议2019冠状病毒病确诊者的宠物(哺乳类动物)接受检疫。它会被送往渔护署指定动物居留设施接受为期14天的检疫和兽医学监察,及按情况进行新型冠状病毒测试。 /p
  • 研究发现开启衰老进程的基因开关
    身体衰老是从什么时候真正开始的?最近,美国西北大学科学家通过研究线虫(C. elegans)发现,当动物到达生殖成熟期后,一种基因开关会开启衰老进程,关闭细胞的压力反应机制,使成熟细胞开始走下坡路。相关论文发表在最近的《分子细胞》杂志上。  据每日科学网站7月23日报道,在动物中,包括线虫和人类,热休克反应(指生物机体在热应激或其他应激状态下所表现出的以基因表达变化为特征的防御适应反应)对正当的蛋白质折叠和保护细胞健康必不可少。研究人员观察了线虫的热休克反应,发现在它达到成熟后8小时,所有基因开关都关闭了它们的细胞压力保护机制,控制这一开关的是成熟初期的生殖干细胞(负责制造卵子和精子)。保护性热休克反应在线虫成熟初期的4小时里急剧下降,这正是生殖成熟的精确开始。虽然线虫仍然行为正常,但科学家能看到分子变化和蛋白质质量控制的下降。  这一成果建立在10年研究的基础上。基因开关发生在生物的两大细胞系统——生殖系和身体系之间。一旦生殖系完成了任务,产生了卵子和精子,它就会给身体系的细胞发信号,关闭保护机制,使成熟动物开始衰老。研究人员指出,虽然他们研究的是线虫,但这种在衰老中起关键作用的基因开关保存在包括人类在内的动物体内。  “我们看到在成熟早期,保护性热休克反应开始迅速垮掉。”论文高级作者、美国西北大学的理查德默里莫托说,“衰老并不是连续发生的各种事件。在线虫系统中,我们发现了一个非常精确的衰老开关。这些基因开关在8小时里逐渐进入成熟细胞,使热休克反应及其他细胞压力反应同时受到抑制,这真是让人意想不到的。”在一项实验中,研究人员阻断了生殖系发送的关闭信号,结果发现成熟动物的身体组织会继续保持强健和抗压能力。  研究认为,衰老与身体的质量控制下降有关,掌握更多“质量控制系统”在细胞中的工作原理,有助于使人类细胞更强健,延迟与衰老有关退行性疾病的发生。默里莫托说:“根据我们的研究,把这种基因开关扳回去,增强细胞抗压能力而保护机体免于衰老,或许是一种可行的方式。”
  • 福建申报筹建低压开关质检中心批准
    近日,由福建省质监局中心检验所申报的国家低压开关电器产品质量监督检验中心(福建)获得国家质检总局批准筹建。   低压开关电器产品通常包括低压电器元件和低压成套开关设备产品,相关产业主要集中分布在福建、广东、江苏、浙江、上海等东南沿海地区。福建省目前约有600家低压开关电器及装置生产企业,年产值约有150亿元,占全国总产值比重超过20%。
  • 河南省高压开关重点实验室落户平高电气
    我市省级重点实验室建设取得零的突破。1月31日,记者从市科技局获悉,我市《关于申报河南省高压开关重点实验室建设项目的请示》日前获得省科技厅批准,由平高电气公司组建的“河南省高压开关重点实验室”成为我市首家省级重点实验室。   据了解,“河南省高压开关重点实验室”将在现有实验条件的基础上,进一步加强和完善基础设施建设,整合科研方向,扩大对外合作研究,充分发挥学科优势和特点,以重点项目为突破,边建设、边研究、边开放,把实验室建成相对独立,能为我省高压开关研究提供服务,实行“开放、流动、联合、竞争”运行机制的科研实验基地、人才培养基地和学术活动中心。   该实验室的成立将有力地促进我市自主创新能力建设,保持技术的领先性,实现关键技术的突破,提高我国装备制造业技术和水平。
  • 德国科威尔进口流量开关网站营销平台即将开通
    为方便客户对我公司进口流量开关的选购,德国科威尔中国办事处与电商台取得合作,不就我公司将开发自己的网络营销平台、百度搜索信息服务平台。2013年11月28日,科威尔开通全国服务热线:400-6021-188 ,欢迎用户咨询选购。   德国科威尔 (KEWILL)成立于1975年,是当前世界上最大的小口径流量监控器和开关生产工厂,30年专注于工业自动化解决方案。1993年通过了ISO9001国际认证,1999年发明了热传温差技术并成功运用到流量检测领域并已成为行业标准。科威尔(KEWILL)公司拥有严格的质检管理体系和完善的售后服务体系,高品质、高性价比、高质量售后服务和良好的声誉奠定了其在行业内世界领先地位。  随着科威尔中国市场网络营销渠道、经销商渠道的建立,售后服务体系的完善,一对一定制设计生产的理念。30年的专注造就了科威尔世界顶尖的产品质量和品质,30年完善的售后服务和合理的性价比造就了科威尔国际品牌的影响力,德国科威尔——值得您信赖的品牌。  文章来源:德国科威尔中国办事处 更多进口流量开关信息http://www.jkllkg.com
  • 新材料领域:物联无线微功耗电容感应触摸开关
    研究人员利用新型印刷技术制备了平面型薄膜电容感应芯片,并基于迷你单片机及低功耗蓝牙无线通讯技术,开发了一种低成本的新型物联无线微功耗电容感应触摸开关技术,其可以实现远程无线触摸控制开关,无须与墙面接触,使用十分方便, 本产品应用广泛,除了常见的智能家居系统,还可以在智能建筑、智能医院、智慧旅店、智慧养殖等系统中使用。主要技术指标(或参数):   1、功耗:50-100mW;   2、最大无线操作距离:100m;   3、无线通讯设备类型:蓝牙;   4、使用寿命:大于10万次;   5、工作温度:-10℃~60℃;   6、工作湿度: 10~95%RH;   7、符合人体工学设计;   8、外观精致时尚;   9、安装方便。   应用领域:   智能家居、智能建筑、智能医院、智慧旅店、智慧养殖等系统中使用的远程无线触摸控制开关。   市场前景:   现代生活需要人性化的电工开关产品。电工开关是每个人每天都要亲密接触的,操控次数远超过其它电器。传统的机械式电工开关,从发明灯泡到现在一直都在使用,它满足了人们的基本控制需求。然而在各种智能电子设备早已实现了触摸操控功能的今天,传统机械式操控的墙壁电工开关已经远远落后时代的需求。   此外,电工开关企业竞争需要产品升级换代。当前,电工企业处在一个转型期,低端产品已经无利可图。据有关部门统计,目前国内生产传统开关(插座)的电工企业大约有2800余家,具备生产许可资格的约有1500余家。加上西蒙电气、罗格朗等一大批外资企业凭借资本、技术、品牌等优势纷纷抢滩中国,国内电工市场竞争空前激烈。目前主要集中在品牌、价格、外观、材质上恶性竞争,传统开关(插座)利润的赢利空间大幅度下滑。业内人士普遍认为,相对于几年前,现有各类开关(插座)产品利润下降了10%-18%,产品为微利经营状态。所以,整个电工行业需要提升产品档次,企业需要新的经济增长点。   拟转化的方式(或合作模式):   可采用研究所与企业通过成果转让或技术入股等方式,共同推进该成果的产业化。   相关图片:
  • 南京某实验室空气开关线路老化 引发大火
    4月11日下午2点,南京市察哈尔路上的察哈尔小学突然着火。据了解,着火点是学校里的一处自然实验室的空气开关线路老化所致,火苗又点燃了室内的酒精灯,才烧起大火。但由于发现及时,消防到达时火已经被扑灭。另外,学校老师率领全校学生紧急转移,没有人员伤亡。   “哎呀,实验室方向怎么冒黑烟啦!”11日下午2点,察哈尔小学的一处学生自然实验室内突然着火。记者在现场看见,自然实验室里的受损情况严重,桌椅已经被烧得不成样子。一位学校老师告诉记者,学校的自然实验室是给学生平时做生化试验用的,所以室内存放了一些可燃的材料。事发时,学生正在教室里上课,自然实验室里并没有学生。一位知情人士透露,起火原因可能是自然实验室里的空气开关设备老化,线路破损所致。“实验室里还存放着酒精灯。”这位知情人士称,可能火苗点燃了酒精灯才让火势进一步扩大。   由于发现及时,校方立即组织学生大转移,把全校学生转移至校外,等候通知。“因为平时也训练过。”这位工作人员介绍,所以转移时并没费太大功夫,学生情绪也没有波动。据学校老师介绍,去年学校就做过一次消防演习。火情发生后,在15分钟以内,学校1至4楼,1到6年级的所有学生全部转移到了校外。全校身强力壮的老师一齐上阵,锅碗瓢盆一起上,才把火扑灭。剩余的老师则是负责学生的转移工作。   据一位消防战士透露,虽然到达时火已经被扑灭,但该地区仍然存在安全隐患。这位消防战士称,消防车开到距学校不到300米的地方,由于道路狭窄就无法再往前开了,给救火工作带来一定困难,万一遇到火势比较大,后果不堪设想。目前,察哈尔小学校方已经给学生放假,让学生等候通知。
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 2022宁波国际电子元器件产业展览会
    2022中国(宁波)国际电子元器件产业展会时间:2022年 5 月 12-14 日展会地点:宁波国际会展中心同期举办:2022宁波国际照明展览会规模:6大展馆50000平方 参展企业1200家 专业观众50000+主办单位:宁波电子行业协会 中国电器工业协会电工合金分会 支持单位: 宁波市磁性材料商会宁波磁性材料产业集群发展促进中心浙江省磁性材料应用技术制造创新中心浙江省磁性材料产业创新发展服务综合体承办单位:宁波万众展览服务有限公司展会背景电子元器件产业是电子信息产业的基础支撑,汽车电子、互联网应用产品、移动通信、智慧家庭、5G、物联网、消费电子产品等领域成为中国电子元器件市场发展的源源不断的动力,带动了电子元器件的市场需求,也加快电子元器件更迭换代的速度,对我国电子元器件产业的发展既是机遇也是挑战,中国企业要立足当下展望未来,抓住机遇,投入更多的人力、物力、财力,加快新一代具有自主知识产权的新型元器件研发,把中国电子元器件的生产技术提升到新的高度。2022国际电子元器件产业展览会分别于2022年5月12-14日在宁波国际会展中心举办,2022年7月13-15日在厦门国际会展中心举办、2022年12月1-3日在深圳国际会展中心举办。是专注于电子元器件行业国际性、专业化的展会平台,汇聚众多电子元器件具有影响力的参展商,完整展示电子元器件产业链,打造深度的技术交流平台,通过行业趋势解读、政策导向与技术分享,充分挖掘行业发展新需求,共同开拓市场新机遇。展示范围:电子元器件:电阻、电容器、电位器、电感器、电子管、散热器、集成电路、被动元件、敏感元器件、无线技术、存储器件、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电池、电源、开关、微特电机、电子变压器、继电器、印制电路板、集成电路、各类电路、压电、晶体、石英、陶瓷、印刷电路用基材基板、电子胶(带)制品、EMI/EMC电磁兼容技术等;开关、连接器、接插件及线束展区:电子开关、拨动开关、船形开关、按扭开关、微动开关、旋转开关、键盘开关;端子连接器、防水连接器、防爆连接器、导线连接器、圆形连接器、线缆连接器、射频同轴连接器、矩形连接器、光纤连接器、音频连接器、家用电器连接器、军用连接器、电子连接器、电力连接器、特种连接器、工业连接器、印制电路连接器、重载连接器;插头、插座、开关、端子、端子、连接器接触器、硅胶按键、IC圆孔插座、插针、排针;接线端子、绝缘护套、导线及绝缘包扎材料等;电子线材:电源线、音视频线、电脑周边线、汽车插叛头线、线材、线束、扎线、 电磁线、护套线、视线、高温耐热电线等;尼龙扎线带、配线槽、配线标志、接线头、接线端子、线扣、电线固定头、固定座等各类配线器材等。电子材料:磁性材料、胶粘材料、散热材料、防水材料、焊接材料、防静电材料、介电材料、半导体材料、压电与铁电材料、导电金属及其合金材料、气体绝缘介质材料,纳米材料、绝缘材料、电子五金件、电工陶瓷材料、敏感材料、封装材料、压电晶体材料、电子精细化工材料、电子轻建纺材料、电子锡焊料材料、PCB制作材料、光电子材料、电磁波屏蔽材料、电子功能工艺专用材料、电子化学材料及部品等;电子生产设备:线束和连接器生产设备、线圈生产设备、元器件制造设备、表面贴装技术、焊接技术、点胶注胶、涂层设备、测试测量和质量保证、机器人、运动控制、驱动技术、洁净室技术、LED制造设备、材料加工、有机和印刷电子产品、电池和电能存储生产技术、PCB及电路载体制造、电子专用工具等;电子仪器仪表、测试测量及电子生产自动化技术:电子仪器仪表、电子在线测试仪器、电子生产自动化技术产品、环境测试设备仪器、气候环境模拟试验设备、机械环境模拟试验设备、可靠性试验设备等;展示交流1.与全球电子制造、配套中心的长三角地区的电子制造配套企业共同成长。 2.获得范围、高密度的强势宣传,拓展更多的商业机会。 3.与国内外同行业领导厂商同台展示、切磋技术。 4.接触长三角地区最具影响力的业界人士及用户企业最终决策者、实力买家和研发工程师。信息交流这意味着要知道如何与观众的多样化交换信息,展前、展中、展后、更有效地与观众进行对话,直接与他们建立联系。 1.考虑有效的展台风格及布局,便于更多的产品展示,并专注观众视觉焦点着重展示,让观众消息交流方便。 2.制定观众邀请计划,吸引观众莅临展台。不仅发送电子邮件来邀请客户,还可以通过展品快讯发送邀请。 3.展览期间约见重要客户,并创建一个充实的预约日程。 4.准备展品文档,如演示 PPT、视频和小册子,并可为海外观众提供外语版本。专业观众及买家1.消费类、计算机、通讯、工控与自动化、照明、航空航天、军工等行业的采购订单大量涌向展会现场。 2.智能终端、汽车与汽车电子、新能源、电力、医疗、三网融合、云计算、物联网、轨道交通等新的行业也从四面八方汇聚展会现场,寻求合作。 3参观观众50%以上是从事采购和研发工作。 4.团体参观的买家主要包括:中国电子集团、福群集团、比亚迪集团、创维集团、康佳集团、中兴通讯、华为集团、TCL 集团、 天马微电子、珠海格力电器、三星电子、深圳长城开发、富士康科技集团、美的集团、盈科、惠而浦、万和、富信、德力、亚艺 电子、步步高集团以及各个行业协会企业代表等。宣传推广1.数百家行业媒体通过其官网和优质数据库,同时发布展商的最新展品。 2.行业优秀媒体长期对展会进行大规模的宣传、报道。 3.展会档期各大门户网站对展会进行重点的专题报道。 4.广播电台、电视台多时段、多频率的对展会现场进行全方位报道。新闻发布 利用NBIECE的独特宣传能力,有计划的进行企业宣传。 1.展前,未雨绸缪的发布新闻稿、展品技术新闻稿。 2.展中,充分利用组委会邀请的众多媒体资源,更多的做企业品牌,形象推广。 3.展后,做好会后回顾工作,在行业、协会、媒体等渠道进行广泛传播。增值服务1.市场推广服务:门票、新品、微博微信、展商专访及报道、新产品/新技术推介会、买家洽谈活动、会刊、现场广告。 2.除常规方式外,NBIECE还拥有一支专业的队伍协助您充分利用展会平台进行市场推广。参展流程1、参展企业确定面积及选定展位;2、填妥参展申请回执(合同)并签字盖章,然后将该表传真或扫描至承办单位;3、展位选定后,企业3个工作日内须将参展费用汇入指定帐户,否则不予保留所选展位;4、组委会将于展前一个月将参展商手册寄给参展单位;5、大会会刊将免费为参展企业刊登企业简介(200字内)。 大会组委会:宁波万众展览服务有限公司TEL:+86-21-62963333FAX:+86-21-62966328联系人:张先生 19921817222微信同号邮箱:shll1688@vip.sina.com展会预定:联系人:杨女士 17717968860(微信同号) 3571565401展会官网:www.eci-expo.com
  • 温馨小贴士|长假前后,发生器正确开关机指南(二)
    上周给大家普及了Peak Precision系列气体发生器的开关机注意事项后,Peak收到了众多咨询,其中大部分是想了解Peak的明星产品Genius NM32LA的开关机步骤。下面Peak就来跟大家分享一下:Genius NM32LA关机操作:1.确认氮气发生器后端应用设备停止使用氮气2.按POWER按钮来关闭氮气发生器,氮气发生器前面板上的压力表会慢慢归零,关机完毕开机操作:1.确认氮气发生器的供电正常,为220V,50/60 Hz2.确认氮气发生器的排水管道已经连接妥当,注意:排水管道在排水时,会有少量气体排出,与排水管道连接的容器不能密封,需与大气相通;排水管道也可直接通往地漏,盛放废水废液的容器需定期清空3.确认氮气发生器的氮气供应管道已经和应用设备连接4.按POWER按钮来启动氮气发生器,前面板上的压力表读数会缓慢(约3分钟左右)上升到100psi, 然后空压机停止工作5.启动完毕,氮气发生器可以正常供气注意:a.将发生器放置在一个温度低于25摄氏度、湿度小于50%的洁净室内环境中b.发生器在摆放时,后端需预留一定空间来散热c.发生器在供气时,空压机循环工作,若空压机连续工作或发生器前面板上HIGH DUTY灯亮,请及时联系PEAK公司大伙学会了吗?再结合之前的Precision系列气体发生器的开关机步骤,希望大家都能过一个安心的长假!
  • 爱松特发布ISOTECH爱松特 电桥转换开关新品
    1、准确度:全量程优于0.07 ppm,比率测量准确度优于0.017ppm(比率:0~0.25&0.95~1.05)。2、支持的探头:铂电阻温度计、热敏电阻、热电偶。3、通道数:3通道(可任意设置显示通道类型,可扩展到90个通道)。4、分辨率:满量程0.001ppm,0.001mk。5、内部标准电阻:25Ω,100Ω,400Ω。6、内部电阻稳定度:TCR<0.05ppm/℃ Annual Stability<2ppm/year。 7、电流精度:0.1~1mA ±0.4% of Value,±0.7μA,resolution 280nA。8、电阻范围:0~100KΩ。9、保温电流功能:有。10、测量时间:电阻测量时间操作系统:内置Window CE操作系统,无需外配计算机。15、内部开关方式:新型的半导体开关16、探头连接端子:Cable Pod”连接器,允许4mm插头,扁形接头和裸线17、端子接触材料:镀金的碲-铜。18、低噪音技术:新型的σ-δ模数转换器和低噪音的前置放大器。19、运行环境:15-30℃/50-85, 10-90%RH(所有指标要求) , 0-50℃/32-12, 0-99%RH (运行的)20、电源:88-264V(RMS),47-63Hz (通用的),20W,1.5A (RMS)创新点:★准确度:全量程优于0.07ppm,比率测量准确度优于0.017ppm(0~0.25&0.95~1.05) ★支持的探头:铂电阻温度计、热敏电阻、热电偶 ★通道数:3通道(可任意设置显示通道类型,最多可扩展到90个通道) ★大屏触摸屏操作 ★内置Windows CE操作系统,无需外置电脑 ★具有USB插孔,可连接键盘和鼠标,所记录的数据以Excel表格的形式导出 ★具有保温电流功能,可消除因功率带来的不确定度 ISOTECH爱松特 电桥转换开关
  • 英国Pickering公司推出新款基于MEMS的射频开关模块
    Pickering Interfaces与Menlo Microsystems的合作将新的开关技术引入PXI射频多路复用开关,以显著地提高性能。2023年6月26日,于英国Clacton-on-sea。Pickering Interfaces公司作为生产用于电子测试及验证领域的信号开关与仿真解决方案的主要厂商,于今日发布了一款采用新的开关技术的PXI/PXIe射频多路复用开关模块新产品。新款基于MEMS的射频多路复用开关是无线通讯和半导体测试的理想选择,与传统 EMR(电磁继电器)开关相比,操作寿命大大延长(高达300倍)、切换速度更快(高达60倍)、带宽更高,射频功率处理能力更强。插入损耗也与EMR相当,并且远低于固态开关。   新产品家族基于Menlo Microsystems的Ideal Switch®构建。这是首款性能特性能够支持要求严苛的射频测试环境,比如半导体、消费者无线设备和各种S波段的应用(包括移动服务、卫星通讯和雷达)的商用MEMS组件。“Pickering多年来一直在密切关注MEMS(微机电系统)技术,”Pickering Interfaces的开关产品经理Steve Edwards说。“Menlo Micro凭借Ideal Switch成为第一家提供满足射频测试所需规格的量产MEMS开关的公司。”   Menlo Microsystems的创始人兼全球营销高级副总裁Chris Giovanniello指出:“我们与Pickering Interfaces的合作伙伴关系建立在专注于下一代射频产品和应用的五年合作之上。“现在,我们的 Ideal Switch 已被Pickering用来构建首批射频多路复用开关,我们期待进一步推进我们的创新技术的发展。”   40-878 (PXI)和42-878 (PXIe)是50Ω 4:1 射频多路复用开关。为了适应不同规模的测试应用,40/42-878系列提供单组、双组或四组多种规格选择,都仅占用一个PXI或 PXIe机箱插槽。用户可以灵活地选择机箱,最大程度地减少所需插槽的数量。40-878也可以在Pickering的所有LXI/USB模块化开关机箱中安装使用。因此,受PXI、LAN或USB控制的不同的开关解决方案具有相同水平的高性能。该模块提供SMB或MCX连接器,用户可以选择最适合其应用的接口。另外,Pickering还提供类型齐全的线缆解决方案。   Pickering的开关产品经理Steve Edwards对新产品作了说明:“40/42-878系列提供大于30亿次的操作寿命,远超基于EMR的解决方案(通常为1千万次操作),最大程度地减少由于继电器损坏或需要维护造成的系统停机。仅50us的切换速度使得这些开关可以在EMR的一次切换时间内进行多次切换,因此最大程度地减短了测试周期时间,以及提高了系统吞吐量。快速切换的优点使得这款产品适用于类型广泛的各类应用。”   “另外,40/42-878提供4GHz的带宽(现有的EMR产品带宽为3GHz),可以支持新的更高频率的测试要求,因此有助于延长测试系统的使用寿命。提高了带宽的同时也提高了射频承载功率,超过了EMR解决方案的10W功率。”Edwards说:“最后,与固态解决方案不同,40/42-878中使用的MEMS开关具有低插入损耗,在4GHz时通常小于1.4db —— 与EMR解决方案相当,但具有基于MEMS设计的所有优势。”   40/42-878系列随附驱动程序,可在所有主流的软件编程环境中使用。在操作系统方面,支持所有微软当前的Windows版本和主流的Linux版本,以及其他实时硬件在环(HiL)工具。另外,Pickering为所有模块提高三年质保。
  • 太赫兹器件研究取得系列进展
    p   中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关 同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》。 /p p   太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。 /p p   通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线。 /p p   另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线。 /p p   此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。 /p p   上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中科院和教育部等关键项目的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/2420c70a-1699-4d09-9881-605198df6544.jpg" title=" 1.png" / /p p style=" text-align: center " 硅介质超表面器件示意图以及其对太赫兹波超快调控的实验结果 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/c2bbe902-a857-47af-9110-dac15eec004e.jpg" title=" 2.png" / /p p style=" text-align: center " 金属-VO2复合超表面器件示意图及其电开关、光存储功能的实验结果 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/d4a3ee1d-337a-4aa6-812d-3a05c3fe2e87.jpg" title=" 3.png" / /p p style=" text-align: center " La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜在太赫兹波段的介电常数和激发光功率关系 /p p br/ /p p br/ /p
  • 最新研究证实癌症存在基因“开关”
    最新研究证实癌症存在基因“开关” 瑞典和芬兰ELISA试剂盒研究人员最新研究发现,基因组区域中一种特定核苷酸变异与大肠癌和前列腺癌患病风险有着重要联系,是引发这两种癌症的“开关”。 瑞典卡罗林斯卡医学院和芬兰赫尔辛基大学研究人员在ELISA试剂盒上报告说,他们在动物实验中移除了实验鼠体内存在核苷酸变异风险的基因区域“Myc335”,结果发现,其体内“MYC”的基因表达受到强烈抑制,而老鼠的健康状况并未受到负面影响。此前研究发现,“MYC”的过度表达与癌变有重要关联,许多癌症患者体内的MYC基因都过度活跃。 研究人员说,虽然ELISA试剂盒研究表明这段基因组区域的特定核苷酸变异只将患癌风险增加了20%,但和其他已知的遗传变异或基因突变相比,它与遗传性癌症的基因联系更为密切。 研究人员认为,新发现有助于未来的癌症防治,但距离相应药物的问世还需要很多年的深入研究。Mouse Macrophage Inflammatory Protein 2,MIP-2 ELISA Kit 小鼠巨噬细胞炎性蛋白2(MIP-2)ELISA试剂盒 规格: 96T/48TMouse Macrophage Inflammatory Protein 3α,MIP-3α ELISA Kit 小鼠巨噬细胞炎性蛋白3α(MIP-3α/CCL20)ELISA试剂盒 规格: 96T/48TMouse Macrophage-Derived Chemokine,MDC ELISA Kit 小鼠巨噬细胞来源的趋化因子(MDC/CCL22)ELISA试剂盒 规格: 96T/48TMouse major histocompatibility complexⅠ,MHCⅠ/H-2Ⅰ ELISA Kit 小鼠主要组织相容性复合体Ⅰ类(MHCⅠ/H-2Ⅰ)ELISA试剂盒 规格: 96T/48TMouse major histocompatibility complex-Ⅱ,MHC-Ⅱ/H-2Ⅱ ELISA Kit 小鼠主要组织相容性复合体Ⅱ类(MHC-Ⅱ/H-2ⅡELISA试剂盒 规格: 96T/48TMouse major histocompatibility complex-Ⅲ,MHC-Ⅲ/H-2Ⅲ ELISA Kit 小鼠主要组织相容性复合体Ⅲ类(MHC-Ⅲ/H-2Ⅲ)ELISA试剂盒 规格: 96T/48TMouse malondialchehyche,MDA ELISA Kit 小鼠丙二醛(MDA)ELISA试剂盒 规格: 96T/48TMouse mammary carcinoma Marker-CA153 ELISA Kit 小鼠乳腺癌标志物-CA153ELISA试剂盒 规格: 96T/48TMouse matrix metalloproteinase 2/Gelatinase A,MMP-2 ELISA Kit 小鼠基质金属蛋白酶2/明胶酶A(MMP-2/Gelatinase A)ELISA试剂盒 规格: 96T/48TMouse melanocyte antibody,MC Ab ELISA Kit 小鼠黑色素细胞抗体(MC Ab)ELISA试剂盒 规格: 96T/48TMouse Melatonin,MT ELISA Kit 小鼠褪黑素(MT)ELISA试剂盒 规格: 96T/48TMouse Methemoglobin,MHB ELISA Kit 小鼠高铁血红蛋白(MHB)ELISA试剂盒 规格: 96T/48TMouse Methylase ELISA Kit   小鼠甲基化酶(Methylase)ELISA试剂盒 规格: 96T/48TMouse monocyte chemotactic protein 4,MCP-4 ELISA Kit 小鼠单核细胞趋化蛋白4(MCP-4/CCL13)ELISA试剂盒 规格: 96T/48TMouse Motilin,MTL ELISA Kit 小鼠胃动素(MTL)ELISA试剂盒 规格: 96T/48TMouse Mucin-5 subtype AC,MUC5AC ELISA Kit 小鼠粘蛋白/粘液素5AC(MUC5AC) ELISA试剂盒 规格: 96T/48T
  • 臻驱科技“一种功率半导体器件选型方法”专利获授权
    天眼查显示,臻驱科技(上海)有限公司近日取得一项名为“一种功率半导体器件选型方法”的专利,授权公告号为CN112946449B,授权公告日为2024年7月19日,申请日为2021年1月28日。背景技术功率半导体器件作是电力电子工业中变频/整流/逆变器等设备的核心,决定了系统的关键电气性能。因此筛选出性能优异、适合应用的功率半导体器件是器件评估、驱动设计以及系统设计的重要步骤。现有目前对功率半导体器件的评估方式大部分主要参考器件的数据手册,从而进行简单的测试应用,满足需求即可。但是各个功率半导体器件厂商的数据手册中的数据和应用中的工况是不同的,因此难以作为评判不同厂商器件优劣的证据。这带来的问题在短期内可能会影响产品整体的输出能力甚至产品失效,长期会影响器件的寿命。发明内容本申请实施例中提供了一种功率半导体器件选型方法,属于功率半导体器件评估技术领域,包括:步骤一,得到功率半导体器件的开关速度和驱动电阻的离散点;步骤二,得到开关速度和驱动电阻的相关曲线;步骤三,基于实际工况的要求获得工作开关速度值,获得功率半导体在工作开关速度值对应的匹配驱动电阻值;步骤四,基于配置匹配驱动电阻值下的功率半导体器件,获得功率半导体器件关断和/或开通时的电流变化和电压变化,判断功率半导体器件的性能。通过本申请的处理方案,解决了现有技术中对于特定工况不能准确评判功率半导体器件性能的问题。
  • 第三代半导体材料与器件相关标准盘点
    第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)等为代表的宽禁带半导体材料。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.3eV),亦被称为高温半导体材料。从目前第三代半导体材料及器件的研究来看,较为成熟的第三代半导体材料是碳化硅和氮化镓,而氧化锌、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。碳化硅(SiC)和氮化镓(GaN),被行业称为第三代半导体材料的双雄。基于第三代半导体的优良特性,其在通信、汽车、高铁、卫星通信、航空航天等应用场景中颇具优势。其中,碳化硅、氮化镓的研究和发展较为成熟。以SiC为核心的功率半导体,是新能源汽车充电桩、轨道交通系统等公共交通领域的基础性控件;射频半导体以GaN为原材料,是支撑5G基站建设的核心;第三代半导体在消费电子、工业新能源以及人工智能为代表的未来新领域,发挥着重要的基础作用。近年来,随着新能源汽车的兴起,碳化硅IGBT器件逐渐被应用于超级快充,展现出了强大的市场潜力,第三代半导体发展进入快车道。随着第三代半导体,特别是氮化镓和碳化硅的市场爆发,相关标准也逐渐出台。无规矩不成方圆,只有有了规矩,有了标准,这个世界才变得稳定有序!标准是科学、技术和实践经验的总结。为在一定的范围内获得最佳秩序,对实际的或潜在的问题制定共同的和重复使用的规则的活动,即制定、发布及实施标准的过程,称为标准化。为规范第三代半导体材料的发展,相关组织和机构也出台了一系列的标准。(以下第三代半导体标准只统计其作为宽禁带半导体材料的现行相关标准)碳化硅(SiC)碳化硅(SiC)材料是功率半导体行业主要进步发展方向,用于制作功率器件,可显着提高电能利用率。可预见的未来内,新能源汽车是碳化硅功率器件的主要应用场景。特斯拉作为技术先驱,已率先在Model 3中集成全碳化硅模块,其他一线车企亦皆计划扩大碳化硅的应用。随着碳化硅器件制造成本的日渐降低、工艺技术的逐步成熟,碳化硅功率器件行业未来可期。相关标准如下,标准号标准名称CASA 001-2018碳化硅肖特基势垒二极管通用技术规范CASA 003-2018p-IGBT器件用4H-SiC外延晶片CASA 004.1-20184H-SiC衬底及外延层缺陷 术语CASA 004.2-20184H-SiC衬底及外延层缺陷 图谱CASA 006-2020碳化硅金属氧化物半导体场效应晶体管通用技术规范CASA 007-2020电动汽车用碳化硅(SiC)场效应晶体管(MOSFET)模块评测规范CASA 009-2019半绝缘SiC材料中痕量杂质浓度及分布的二次离子质谱检测方法T/IAWBS 013-2019半绝缘碳化硅单晶片电阻率非接触测量方法T/IAWBS 012-2019碳化硅单晶抛光片表面质量和微管密度测试方法-共焦点微分干涉光学法T/IAWBS 011-2019导电碳化硅单晶片电阻率测量方法-非接触涡流法T/IAWBS 010-2019碳化硅单晶抛光片表面质量和微管密度检测方法-激光散射检测法T/IAWBS 008-2019SiC晶片的残余应力检测方法T/IAWBS 007-20184H碳化硅同质外延层厚度的红外反射测量方法T/IAWBS 006-2018碳化硅混合模块测试方法T/IAWBS 005-20186英寸碳化硅单晶抛光片T/IAWBS 003-2017碳化硅外延层载流子浓度测定汞探针电容-电压法T/IAWBS 002-2017碳化硅外延片表面缺陷测试方法T/IAWBS 001-2017碳化硅单晶DB13/T 5118-2019 4H碳化硅N型同质外 延片通用技术要求DB61/T 1250-2019 SiC(碳化硅)材料半导体分立器件通用规范GB/T 32278-2015 碳化硅单晶片平整度测试方法GB/T 30867-2014 碳化硅单晶片厚度和总厚度变化测试方法GB/T 30868-2014 碳化硅单晶片微管密度的测定 化学腐蚀法SJ/T 11501-2015 碳化硅单晶晶型的测试方法SJ/T 11503-2015 碳化硅单晶抛光片表面粗糙度的测试方法SJ/T 11504-2015 碳化硅单晶抛光片表面质量的测试方法SJ/T 11502-2015 碳化硅单晶抛光片规范SJ/T11499-2015 碳化硅单晶电学性能的测试方法SJ/T 11500-2015碳化硅单晶晶向的测试方法GB/T 31351-2014碳化硅单晶抛光片微管密度无损检测方法GB/T 30656-2014碳化硅单晶抛光片GB/T 30866-2014碳化硅单晶片直径测试方法氮化镓(SiC)氮化镓,是氮和镓的化合物,是一种直接能隙的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性半导体泵浦固体激光器的条件下,产生紫光(405nm)激光。GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件。标准号标准名称CASA 010-2019GaN材料中痕量杂质浓度及分布的二次离子质谱检测方法T/IAWBS 013—2019半绝缘碳化硅单晶片电阻率非接触测量方法T/GDC 69—2020氮化镓充电器GB/T 39144-2020 氮化镓材料中镁含量的测定 二次离子质谱法GB/T 37466-2019氮化镓激光剥离设备GB/T 37053-2018 氮化镓外延片及衬底片通用规范GB/T 36705-2018 氮化镓衬底片载流子浓度的测试 拉曼光谱法GB/T 32282-2015 氮化镓单晶位错密度的测量 阴极荧光显微镜法GB/T 32189-2015 氮化镓单晶衬底表面粗糙度的原子力显微镜检验法GB/T 32188-2015 氮化镓单晶衬底片x射线双晶摇摆曲线半高宽测试方法GB/T 30854-2014 LED发光用氮化镓基外延片蓝宝石(Al2O3) 蓝宝石晶体属于人造宝石晶体,主要应用于制作LED灯的关键材料,也是应用于红外军事装置、卫星空间技术、高强度激光的重要窗口材料。蓝宝石晶体是一种氧化铝的单晶,又称为刚玉。蓝宝石已成为一种重要的半导体衬底材料。标准号标准名称SJ/T 11505-2015 蓝宝石单晶抛光片规范GB/T 35316-2017 蓝宝石晶体缺陷图谱GB/T 34612-2017 蓝宝石晶体X射线双晶衍射摇摆曲线测量方法GB/T 34504-2017 蓝宝石抛光衬底片表面残留金属元素测量方法GB/T 34213-2017 蓝宝石衬底用高纯氧化铝GB/T 34210-2017 蓝宝石单晶晶向测定方法GB/T 33763-2017 蓝宝石单晶位错密度测量方法SJ/T 11505-2015 蓝宝石单晶抛光片规范GB/T 31353-2014 蓝宝石衬底片弯曲度测试方法GB/T 31352-2014 蓝宝石衬底片翘曲度测试方法GB/T 31093-2014 蓝宝石晶锭应力测试方法GB/T 31092-2014 蓝宝石单晶晶锭GB/T 30858-2014 蓝宝石单晶衬底抛光片GB/T 30857-2014 蓝宝石衬底片厚度及厚度变化测试方法DB44/T 1328-2014 蓝宝石图形化衬底片测试技术规范GB/T 14015-1992 硅-蓝宝石外延片其他标准第三代半导体被广泛的应用于IGBT功率器件中和发光材料中,对此,我们盘点了宽禁带半导体、功率器件和光电子器件标准。标准号标准名称CASA 002-2021宽禁带半导体术语T/IAWBS 004-2017电动汽车用功率半导体模块可靠性试验通用要求及试验方法T/IAWBS 009-2019功率半导体器件稳态湿热高压偏置试验GB/T 29332-2012半导体器件 分立器件 第9部分:绝缘栅双极晶体管(IGBT)GB/T 36360-2018 半导体光电子器件 中功率发光二极管空白详细规范GB/T 36358-2018 半导体光电子器件 功率发光二极管空白详细规范GB/T 36357-2018 中功率半导体发光二极管芯片技术规范GB/T 36356-2018 功率半导体发光二极管芯片技术规范GB/T 36359-2018 半导体光电子器件 小功率发光二极管空白详细规范SJ/T 11398-2009 功率半导体发光二极管芯片技术规范SJ/T 11400-2009 半导体光电子器件 小功率半导体发光二极管空白详细规范SJ/T 11393-2009 半导体光电子器件 功率发光二极管空白详细规范现行SJ/T 1826-2016 半导体分立器件 3DK100型NPN硅小功率开关晶体管详细规范SJ/T 1834-2016 半导体分立器件 3DK104型NPN硅小功率开关晶体管详细规范SJ/T 1839-2016 半导体分立器件 3DK108型NPN硅小功率开关晶体管详细规范SJ/T 1833-2016 半导体分立器件 3DK103型NPN硅小功率开关晶体管详细规范SJ/T 1831-2016 半导体分立器件 3DK28型NPN硅小功率开关晶体管详细规范现行SJ/T 1830-2016 半导体分立器件 3DK101型NPN硅小功率开关晶体管详细规范SJ/T 1838-2016 半导体分立器件 3DK29型NPN硅小功率开关晶体管详细规范SJ/T 1832-2016 半导体分立器件 3DK102型NPN硅小功率开关晶体管详细规范IEC 60747半导体器件QC/T 1136-2020 电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法JB/T 8951.1-1999 绝缘栅双极型晶体管JB/T 8951.2-1999 绝缘栅双极型晶体管模块 臂和臂对需要注意的是,CASA和IAWBS属于团体标准、GB属于国家标准、DB是地方标准。仪器信息网为了更好地服务半导体行业用户,特邀请您参与问卷调研,麻烦大家动动小手完成问卷,参与即得10元话费!活动结束还将择优选择10名认真填写用户送出50元话费!!!http://a72wfu5hktu19jtx.mikecrm.com/zuXBhOy
  • 芯联集成“半导体器件的制备方法及半导体器件”专利获授权
    天眼查显示,芯联集成电路制造股份有限公司近日取得一项名为“半导体器件的制备方法及半导体器件”的专利,授权公告号为CN118073206B,授权公告日为2024年7月23日,申请日为2024年4月22日。背景技术半导体器件中的金属氧化物半导体(Metal Oxide Semiconductor,MOS)器件,因具有开关速度快、损耗小、可靠性高等优点,在诸如电源控制和驱动电路等领域得到越来越广泛的应用。例如,金属氧化物半导体器件中的横向扩散金属氧化物半导体(LaterallyDiffused Metal Oxide Semiconductor,LDMOS)器件,具有耐高压,大电流驱动能力以及低功耗的优点,而且容易与互补金属氧化物半导体器件工艺兼容,因此常用于射频功率电路和电源控制电路,以满足耐高压以及实现功率控制等方面的要求。功率集成电路高电压、大电流的特点常常要求金属氧化物半导体器件具有高击穿电压和低比导通电阻。场板技术是一种广泛应用的用于提高金属氧化物半导体器件的击穿电压的技术,但是目前结合场板技术的金属氧化物半导体器件的制作工艺较为复杂。因此如何在较好地提升金属氧化物半导体器件的击穿电压的同时,简化制作工艺是目前亟需解决的问题。发明内容本申请实施例涉及一种半导体器件的制备方法及半导体器件,属于半导体技术领域。半导体器件的制备方法包括:提供半导体材料层,半导体材料层中包括第一器件区,第一器件区中包括漂移区和体区;在部分漂移区的表面形成场氧化层;形成从场氧化层的表面延伸至漂移区的内部的至少一个第一沟槽;形成覆盖第一沟槽的内壁的第一介质层;在部分体区的表面形成栅介质层;形成填充于第一沟槽并延伸至部分场氧化层和栅介质层的表面的导电层;其中,位于第一沟槽中的导电层构成第一场板;位于第一场板和场氧化层的表面的导电层构成第二场板;位于栅介质层的表面的导电层构成栅电极层。如此,在有效提升器件击穿电压的同时使得器件的制备工艺较为简化。
  • 合工大在数字控制开关电源研究领域取得新进展
    p 近日,合肥工业大学电子科学与应用物理学院(微电子学院)集成电路设计研究中心提出并实现一种具有高分辨率、高位宽的数字脉宽调制器混合结构,相关成果以“A High Resolution DPWM Based on Synchronous Phase-Shifted Circuit and Delay Line”为题发表在电子工程类国际著名期刊IEEE Trans. Circuits Syst. I, Reg. Papers(2020, 67(8):2685-2692)。 /p p 数字控制开关电源是目前开关电源领域的研究重点和发展趋势,具有集成度高、稳定性好、控制算法易于实现、可重构等优点。然而,数字电路固有的采样误差、延时等问题,成为影响数字电源性能的关键因素。作为数字电源控制系统的重要模块,数字脉宽调制器(DPWM)的作用是将多位数字控制信号转换成一位占空比信号,类似于数模转换器,其性能直接决定数字电源的整体性能。 br/ /p p 该团队针对高性能数字脉宽调制器展开一系列研究,前期工作包括首次提出DPWM关键路径中的逻辑和互连延时所引起的占空比增量现象,并对该占空比增量进行补偿,最终实现11位、时间分辨率53ps的数字脉宽调制器,该成果发表在电子工程类国际著名期刊IEEE Trans. Power Electron.(2018, 33(12):10794-10802)。在此基础上,该团队进一步对DPWM关键路径的时序进行优化设计,并提出新型相移同步电路和快速进位链构成数字脉宽调制器,最终实现14位、时间分辨率41.3ps的数字脉宽调制器。上述工作为高性能数字开关电源的实现提供了有力技术支持。 br/ /p p 该论文得到国家自然科学基金委和中央高校基本科研业务费专项资金的资助。合肥工业大学为该论文唯一署名单位,作者包括程心副教授(第一作者)、解光军教授、张章教授(通讯作者)。 br/ /p p 论文链接: a href=" https://doi.org/10.1109/TCSI.2020.2977146" _src=" https://doi.org/10.1109/TCSI.2020.2977146" https://doi.org/10.1109/TCSI.2020.2977146 /a br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202008/uepic/f30e1c1f-6965-44f7-89e6-5fe8b1fb7581.jpg" title=" 基于同步相移电路和延时链的高分辨率数字脉宽调制器结构.png" / br/ /p p style=" text-align: center " 图一& nbsp 基于同步相移电路和延时链的高分辨率数字脉宽调制器结构 /p p br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202008/uepic/17858686-4ed3-4374-92db-92b6d67087f2.jpg" title=" 数字脉宽调制器的线性度、时间分辨率测试曲线.png" / /p p style=" text-align: center " 图二& nbsp 数字脉宽调制器的线性度、时间分辨率测试曲线 /p
  • 可替代继电器的RF-MEMS开关技术提高仪器可靠性
    p   11月10日,Analog Devices, Inc. (ADI)宣布在开关技术领域取得的重大突破,提供用户期盼已久的替代产品,以取代100多年前即被电子行业采用的机电继电器设计。由继电器导致的多种性能局限早在电报问世之初就已存在,ADI公司全新的RF-MEMS开关技术解决了此类局限,从而能够开发出更快速、小巧、节能、可靠的仪器仪表。随着采用该技术的产品正式发布,原始设备制造商(OEM)能够显著改进自动测试设备(ATE)以及其他仪器仪表的精确性和多功能性,以帮助客户降低测试成本和功耗,缩短产品上市时间。未来的MEMS开关系列产品将在航空航天和防务、医疗保健以及通信基础设施设备等行业内取代继电器,让这些行业的OEM能够为客户提供体积相似,但功耗和成本更低的产品。 /p p   ADI公司将MEMS开关技术真正投入商用Analog Devices, Inc. (ADI),今日宣布在开关技术领域取得的重大突破,提供用户期盼已久的替代产品,以取代100多年前即被电子行业采用的机电继电器设计。作为全新产品系列的第一代产品,与传统机电继电器相比,ADI公司的ADGM1304和ADGM1004 RF MEMS开关的体积缩小了95%,速度加快了30倍,可靠性提高了10倍,而功耗仅为原来的十分之一。 /p
  • 中科大单分子器件基础研究获新进展
    将大大提高器件集成度,从而构造更小更快能耗更少的电子设备   中国科学技术大学合肥微尺度物质科学国家实验室单分子物理化学研究团队,利用低温超高真空扫描隧道显微镜,巧妙地对三聚氰胺这个比头发丝的六万分之一还细的小分子进行了单分子手术,将其从普通化工原料转变为既有二极管效应又有机械开关效应的双功能单分子器件,为单分子器件的多功能化开辟了新的思路。这一成果发表在近期出版的美国《国家科学院院刊》(PNAS)上。   随着电子器件不断小型化,科学家期望利用单个分子构建电子元件。近年来,国内外不少研究组在实验上成功地利用已有分子的固有性质实现了单分子器件功能,但在构建单分子器件中仍然面临着两个重要课题:一方面,考虑到寻找具有理想电子学功能的分子十分困难,通过分子手术的方法对已有分子进行改造显得十分必要 另一方面,对分子器件进行功能集成是我们进入分子电子学时代的一个关键,如果能够在单个分子上实现多功能集成,将大大提高器件集成度,从而构造更小、更快、能耗更少的电子设备。   该团队通过3年的实验和理论研究的紧密合作,发现三聚氰胺分子可以通过人工单分子操控被改造为具有显著二极管效应和开关效应的双重功能分子。在室温下,三聚氰胺分子吸附到铜表面时会发生化学反应脱去两个氢原子,从而与表面铜原子形成化学键,得到与表面垂直的吸附构型,分子的输运曲线表现为正负电压下对称的特征。通过扫描隧道显微镜对其进行单分子手术,将分子支链的一个氢原子“移植”到分子中间的环上,实现了三聚氰胺分子的异构化,造成分子轨道相对于费米面的不对称性,使得输运特性显示出明显的二极管效应。通过非弹性隧穿电子的多电子激发过程进一步诱导其顶端N-H键的可逆转动,得到电导不同的双稳态结构,实现了单分子机械开关效应。   美国《国家科学院院刊》审稿人认为,该工作“结果可靠,创新性强,代表了这个领域的发展水平”。   据悉,这项成果是该研究团队利用分子手术实现对单分子磁性控制后,再次成功地通过分子手术技术取得的重要研究成果。该工作获得了科技部重大科学研究计划、国家自然科学基金、中科院知识创新工程方向性项目的资助。
  • 我国科学家在单分子器件研究方面取得重要进展
    p   利用单个分子构建电子器件有希望突破目前半导体器件微小化发展中的瓶颈,其中实现可控的单分子电子开关功能是验证分子能否作为核心组件应用到电子器件中的关键步骤。 br/ /p p   在国家自然科学基金(资助号: 21225311, 91333102, 21373014, 21190033, 91221202, 61321001)等的资助下,北京大学化学与分子工程学院郭雪峰课题组联合美国宾夕法尼亚大学Abraham Nitzan教授课题组、北京大学信息科学技术学院徐洪起教授课题组及其他合作者于2016年6月17日在Science上发表了单分子器件研究领域的最新进展“Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity”(《通过共价键构筑的具有稳定且可逆光开关导电性的单分子结》),该文的核心内容是利用二芳烯分子为功能中心、石墨烯为电极首次成功地实现了真实稳定可控的单分子光电子开关效应研究的突破(图1)。论文链接: a href=" http://science.sciencemag.org/content/352/6292/1443" _src=" http://science.sciencemag.org/content/352/6292/1443" http://science.sciencemag.org/content/352/6292/1443 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201606/noimg/e529f9bb-e43b-498c-a226-c1cd21c93e44.jpg" title=" 1.jpg" / /p p style=" text-align: center " 图1 石墨烯–二芳烯单分子器件的示意图 /p p   研究者们发展起来的碳基单分子器件结构提供了更坚实的单分子器件研究平台,使得以前无法开展的工作成为可能,这将孕育着新的突破。 /p p   该项研究证明功能分子确实可以作为核心组件来构建电子回路,这是将功能分子应用到实用的电子器件迈出的重要一步,在未来高度集成的信息处理器、分子计算机和精准分子诊断技术等方面具有巨大的应用前景。Science同期的Perspective Article以“Designing a robust single-molecule switch: A single-molecule switch works at room temperature”为题对此工作发表了长篇评述(Science 2016,17, 1394)。 /p p br/ /p
  • 德国科威尔进口液位开关|进口液位计2013年最后一次促销活动即将举行
    继上次“双十一”购物狂欢节科威尔推出特价优惠活动取得不错的成绩后,适逢2013年最后一个月,科威尔又推出了“双十二”特价活动,这将是科威尔在2013年的最后一次促销活动,欢迎广大客户来电咨询:全国统一服务热线:4006 021 188 电话:021-54430662  参加本次促销活动的产品有:  ●导杆型液位开关LV系列  ●侧装式磁翻柱液位计LMS系列  ●机械式温度开关TK10系列  ●电磁流量计FE20系列  ●柱塞式流量开关FP53系列  更多关于科威尔液位开关|液位计等促销信息:http://www.ywkg.cn
  • 德国莱茵TUV颁发新年首张大中华区开关目击试验室证书
    2012年2月7号,上海——新年伊始,德国莱茵TUV向浙江中讯电子有限公司颁出了首张莱茵TUV大中华区开关目击试验室证书。颁证仪式于2月3日在浙江温州举行。出席人员有:莱茵TUV大中华区零部件产品线总经理夏波先生,签证部Lukas Schubert先生,浙江中讯电子有限公司总经理郑建中先生,实验室主任瞿海亮先生等。     凭藉此张开关目击试验室证书,浙江中讯电子可以在其试验室完成所有莱茵TUV要求的测试 并且数据将直接得到莱茵TUV的认可。基于测试数据,莱茵TUV将在一周之内颁发浙江中讯电子TUV及CE证书 这些测试数据还将直接用于一些国际证书的颁发,如俄罗斯GOST证书,阿根廷S证书,澳洲ITACS证书,加拿大及美国cTUVus证书等。浙江中讯电子有限公司总经理郑建中表示:“浙江中讯电子将切实用好此张证书,并且努力提高试验室数据的准确性,做强、做大试验室。”夏波同时表示:“此张证书说明我们莱茵对浙江中讯电子开关产品安全和质量的充分认可以及对双方试验室合作的充分信任,客户同时也可以体验到与莱茵合作,行销全球畅通无阻的一站式服务。我们希望与客户保持的不仅仅是生意,更是长期的合作伙伴。”   浙江中讯电子有限公司试验室成立于2000年,2007年实施ISO 17025体系,同年通过CNAS试验室认可,2009年通过莱茵TUV上海UA审核,此次开春之际获得莱茵TUV大中华区首张开关目击试验室证书。浙江中讯电子是浙江省高新技术企业,且建有省级研发中心,其生产的多款开关被认定为“省级高新技术产品”、“国家火炬计划项目”、“温州品牌产品”、“中讯”商标被评为“温州知名商标” 企业先后获得 “浙江省科技中小型企业”、 “乐清市明星企业”等称号。   德国莱茵TUV是全球零部件产品安全和质量认证的领先者,凭借多年来的国际声誉及丰富的全球网络,德国莱茵TUV一直致力于为中国企业提供更本地化的测试及一站式的认证解决方案,全面助力中国企业进入全球市场。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制