当前位置: 仪器信息网 > 行业主题 > >

显示器件

仪器信息网显示器件专题为您提供2024年最新显示器件价格报价、厂家品牌的相关信息, 包括显示器件参数、型号等,不管是国产,还是进口品牌的显示器件您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显示器件相关的耗材配件、试剂标物,还有显示器件相关的最新资讯、资料,以及显示器件相关的解决方案。

显示器件相关的资讯

  • 专注新型显示器件与存储器件检测 “小巨人”精智达IPO即将上会
    近日,深圳精智达技术股份有限公司(简称:精智达)更新了IPO招股书,公司拟在上交所科创板上市,将于2022年11月16日上会,保荐机构为中信建投证券。此次IPO,公司拟发行2350.29万股,发行后总股本的比例不低于25%,计划募资约6亿元,主要用于新一代显示器件检测设备研发项目、新一代半导体存储器件测试设备研发项目,以及补充流动资金。作为国内优秀的检测设备与系统解决方案提供商,精智达将借助上市契机,持续优化核心业务的盈利能力,加强科研投入,积极实施新型显示器件检测设备业务和半导体存储器件测试设备业务双轮驱动的发展战略。核心技术备受认可 大客户遍及行业龙头资料显示,精智达主要从事新型显示器件检测设备的研发、生产和销售业务,产品广泛应用于以AMOLED为代表的新型显示器件制造中光学特性、显示缺陷、电学特性等功能检测及校准修复,并逐步向半导体存储器件测试设备领域延伸发展,相关产品应用于以DRAM为代表的半导体存储器件制造的晶圆测试、封装测试及老化修复。作为国家级专精特新“小巨人”及高新技术企业,公司始终坚持研发导向、客户导向,致力于检测设备的自主可控和国产化替代。作为以技术为核心驱动的高端装备企业,公司建立了强大的研发团队和应用服务团队,拥有多项自主知识产权和创新成果。凭借多年的研发创新和生产、应用技术积累,公司一直把握行业客户对良率与效率提升的核心需求,与维信诺股份、TCL科技、京东方、广州国显、合肥维信诺等众多知名客户建立了稳定的合作关系,产品成功应用于上述主要客户的多条量产产线中,助力客户提升生产工艺水平,提高产品良率和生产效率,有效降低了国内新型显示器件厂商设备采购成本,有力推进检测设备的自主可控和国产化替代。公司结合显示器件检测行业技术要求及客户需求特点,从实现检测、修复功能过程中的实际问题出发,经过实践创新、自主研发,形成了检测设备领域的光学检测及校正修复、电学信号检测、精密机械自动化及控制、软件算法等技术,具备丰富的技术积累和量产经验。自进入市场以来,公司与下游客户深度合作,快速响应客户的定制化需求,并提供完善的售后服务,积累了成熟的量产经验,不断突破了技术难点、完善了技术体系,截至2022年4月30日,公司拥有已授权专利共计82项,其中发明专利25项,拥有已经登记的计算机软件著作权169项,并掌握了多项生产技术技巧、工艺控制参数等非专利技术。公司致力于先进产业技术探索,进行工程技术开发与成果转化。在国家推动新型显示器件产业发展的过程中,公司积极承担了深圳市技术攻关重点项目、深圳市2020年战略性新兴产业专项资金新兴产业扶持计划、深圳市2020年首台重大技术装备扶持计划等项目。公司作为主要起草单位与工信部电子第五研究所及行业龙头企业共同制定《移动终端用电容式触摸屏通用技术规范》,推动触摸屏行业技术规范的制定。报告期内,公司荣获中国电子材料行业协会、中国光学光电子行业协会液晶分会“中国新型显示产业链发展贡献奖”,这些成果和荣誉标志着公司研发实力和技术水平得到了业界的广泛认可。主业持续高增长 市占率大幅提升招股书显示,2019年—2021年,精智达实现营业收入分别为15719.63万元、28467.52万元、45831.36万元,同比分别增长81%、61% 实现净利润分别为45万元、2861.27万元、6741.97万元,由此可见,公司营收和净利润持续呈现高速增长态势。与此同时,公司资产质量也得到了明显改善,公司资产负债率已从2020年的41.74%下降至2021年的32.05%,净资产高达52991.51万元,是2019年的五倍。此外,公司盈利水平呈现大幅提升趋势,报告期内,公司净资产负债率由2019年的0.59%,大幅上升至2021年的14.67%,提升超14个百分点 不仅如此,公司现金流整体保持充裕,报告期内,公司经营性现金流量净额分别为-5079.75万元、2451.17万元、7774.56万元,近两年现金流持续呈现大幅净流入趋势。在业绩表现向好之际,精智达自身的市场占有率也得到明显提升。根据相关研究报告显示,公司在2021年中国大陆AMOLED行Cell/Module制程检测设备厂商销售额排名第三,市场占比约13% 在Cell/Module制程检测设备的投资占比60%以上的自动光学检测及校正修复设备这一主要细分市场,公司产品在中国大陆保有量份额从2017年的3%提升至2021年的15%,位居业内第二。经检索并统计中国国际招标网中标结果公告,公司于2019-2021年中标国内AMOLED新型显示器件检测设备项目31项,名列第三。值得注意的是,精智达以核心技术为基础,推出了覆盖新型显示器件Cell制程及Module制程的光学特性、显示缺陷、电学特性等功能检测及校准修复的各类设备,形成有较强竞争力且覆盖主要工艺节点的相对完备的产品线。公司是国内较早进入AMOLED检测设备领域并且布局较为完善的企业,凭借优秀的研发能力和可靠的产品品质,在光学检测及校正修复设备等多类设备市场均取得了稳定的份额,并且其设备技术能力也通过积累大量的设备生产制造经验得到持续强化。未来,公司将在保持已有的技术特点和技术优势之上,抓住新型显示器件及半导体存储器件产业的发展机遇,凭借公司在行业方面的核心技术优势、丰富的研发人才资源、多年沉积的专业化解决方案,紧跟客户需求与发展趋势,加大研发力度,研发出能更好的满足客户需求,更具竞争力的产品和解决方案,积极推进关键检测设备的自主可控和国产化替代。同时,公司致力于高端装备行业客户信任、员工自豪的世界级企业,将不断扩大产业链深度和广度、发挥规模化经营效应、加强品牌建设力度、拓展销售市场,提升公司核心竞争力。
  • 工信部:调整全国平板显示器件标准化技术委员会名称和业务范围
    2月2日,工信部发布《全国平板显示器件标准化技术委员会名称和业务范围调整公示》(以下简称《公示》),将有关调整建议予以公示。《公示》显示,全国平板显示器件标准化技术委员会将名称调整为全国电子显示器件标准化技术委员会。而业务范围也将从液晶显示器件、等离子体显示器件、有机发光二极管显示器件等平板显示器件调整为电子显示器件及相关部件领域的标准。据了解,随着新型显示技术的发展,国际电工委员会平板显示器件技术委员会(IEC/TC110)将名称变更为“电子显示技术委员会”,工作范围调整为“制定电子显示及相关部件领域的标准”。全国平板显示器件标准化技术委员会(SAC/TC547)作为IEC/TC110的国内对口组织,为更好地开展所辖领域国内国际标准化工作,经SAC/TC547全体委员表决同意,建议对SAC/TC547的名称和工作范围进行相对应的调整。附件:全国平板显示器件标准化技术委员会名称和业务范围调整建议.doc以下为《公示》原文:全国平板显示器件标准化技术委员会名称和业务范围调整公示为统筹做好电子显示领域国内国际标准化工作,有关单位提出了调整全国平板显示器件标准化技术委员会名称和业务范围的申请。为广泛听取社会各界意见,现将有关调整建议予以公示,截止日期2021年3月3日。 如有不同意见,请在公示期间将意见书面反馈至工业和信息化部科技司,电子邮件发送至KJBZ@miit.gov.cn(邮件主题注明:全国平板显示器件标准化技术委员会名称和业务范围调整公示反馈)。 公示时间:2021年2月2日-2021年3月3日 联系电话:010-68205241 地址:北京市西长安街13号 工业和信息化部科技司 邮编:100804 附件:全国平板显示器件标准化技术委员会名称和业务范围调整建议.wps
  • 湖南省出台新型显示器件产业链发展三年行动计划 3年冲刺1500亿
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 近日,湖南省工业和信息化厅发布《湖南省新型显示器件产业链发展三年行动计划(2020-2022)》。计划明确:到2022年,全省新型显示器件产业链规模超过1500亿元,形成以长株潭为核心,邵阳、永州、衡阳、郴州等多点支撑的产业格局。产业链规模企业过百家,力争1家企业冲刺千亿,5家企业过百亿。建设省级创新平台10个以上、国家级创新平台2个以上。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 461px height: 200px " src=" https://img1.17img.cn/17img/images/202002/uepic/369bc8ce-4882-4249-978c-4b5b512a8057.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 461" height=" 200" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong 《湖南省新型显示器件产业链发展三年行动计划(2020-2022)》具体内容如下: /strong /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 湖南省新型显示器件产业链发展三年行动计划(2020-2022) /strong /span /p p style=" text-align: justify text-indent: 2em " 新型显示产业是国民经济和社会发展的战略性、基础性和先导性产业。为进一步贯彻落实国家战略和省委省政府决策部署,提升产业基础能力和产业链水平,推动我省新型显示器件产业高质量发展,特制定本行动计划。 /p p style=" text-align: justify text-indent: 2em " strong 一、基础条件 /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 一是产业链条比较完整。形成了包括以高白超薄玻璃、蓝宝石晶体、透明导电膜靶材、聚酰亚胺散热膜等为主的上游产业;以显示面板、盖板、透明导电膜、增透膜、封装材料等为主的中游产业;以智能手机、平板电脑、智能手表、数码相机、车载导航仪、智能家居、工控仪器、医疗仪器、汽车电子等为主的下游产业。二是骨干企业实力较强。拥有蓝思科技、长城科技集团、比亚迪电子、彩虹集团、贵德集团、惠科光电、晶讯光电、达福鑫等骨干企业40余家。蓝思科技是全球消费电子产品防护玻璃行业的领导者,整体技术居国际先进水平,是国际一流品牌视窗防护面板的主要供应商。三是产业布局日趋优化。形成了以长沙为核心区,株洲、邵阳、衡阳等为辐射区的“一核多点”产业集聚态势。长株潭地区聚集了蓝思科技、株洲晶彩、长城信息、纽曼数码等从上游原材料到中游显示器件及模组到下游应用的一批企业。邵阳引进彩虹集团等企业,填补了产业链上游显示防护玻璃制造的空白。湘南地区借助靠近广东的区位优势,承接了贵德集团等一批生产液晶显示屏、触摸显示屏等显示模组的企业。四是创新资源优势明显。在新型显示器件领域拥有正高级专家、教授300多人,副高级专家700多人。建立了重点高校、龙头企业和科研机构为主力的产学研创新体系。已建有湖南省真空镀膜装备工程技术研究中心、视窗防护玻璃省级企业技术中心以及湖南云普检测技术服务有限公司,正在建设新型显示器件及组件研发的联合实验室。 /span br/ /p p style=" text-align: justify text-indent: 2em " strong 二、总体要求 /strong /p p style=" text-align: justify text-indent: 2em " 以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届二中、三中、四中全会精神,按照新发展理念和高质量发展的要求,抢抓新型显示产业超越发展重大机遇,坚持创新引领、龙头带动、配套提升、集聚发展、开放共享,以重大项目为抓手,推动创新链、产业链、资金链、政策链、人才链“五链”深度融合,着力突破关键核心技术,着力提升产业链水平,着力培育产业生态,加快打造国内重要的新型显示产业集聚区。 /p p style=" text-align: justify text-indent: 2em " strong 三、发展目标 /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 到2022年,全省新型显示器件产业链规模超过1500亿元,形成以长株潭为核心,邵阳、永州、衡阳、郴州等多点支撑的“一核多点”产业格局。产业链规模企业过百家,力争1家企业冲刺千亿,5家企业过百亿。建设省级创新平台10个以上、国家级创新平台2个以上。构建总量规模大、产业布局优、链条构架全、创新能力强的新型显示器件产业链。 /span /p p style=" text-align: justify text-indent: 2em " strong 四、重点任务 /strong /p p style=" text-align: justify text-indent: 2em " (一)实施“强玻引屏补端”工程 /p p style=" text-align: justify text-indent: 2em " 加速强玻、引屏、补端。以柔性、超高清、高性价比为技术重点发展方向,巩固消费电子品外观玻璃、2.5D/3D曲面玻璃、光学薄膜、触摸屏单体和模组等重点产品的市场地位,推动面板用/盖板用玻璃基板提质扩产。以智能终端产品用中小屏面板为突破口,加快布局TFT-LCD、柔性AMOLED面板、OLED生产线、新型中小尺寸面板。积极引进智能终端产品及零部件企业,培育智能手机品牌生产、手机/平板电脑方案、手机产业链关键零部件等企业集群,打造链条构架全的新型显示器件产业链。 /p p style=" text-align: justify text-indent: 2em " 加强产业配套支撑。鼓励产业链内、产业链间的配套与合作,充分发挥核心企业的规模效益,形成上中下游企业的战略供应关系,完善生产配套体系。立足我省有色、化工等产业基础,支持传统产业转型升级,积极进军基础零部件、关键材料、关键设备等领域。重点培育和引进IC驱动芯片等核心元器件设计、制造企业,新型金属及其氧化物靶材、湿电子化学品、高端光学膜材等关键材料企业,高精度智能成型设备、精密激光切割设备、玻璃检测、自动化设备等关键设备企业。 /p p style=" text-align: justify text-indent: 2em " 构建产业生态体系。以打造“PK”体系、“鲲鹏”计算产业生态为抓手,将新型显示器件产业发展融入智能网联、5G、工业互联网、大数据、云计算等数字产业发展之中,以行业融合应用促进新型显示产业发展。充分发挥湖南卫视和马栏山视频文创产业园生态平台优势,努力打造具有全球影响力的新型显示生态内容生产基地和应用示范区,逐步构建湖南特色的新型显示产业生态体系。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " (二)培育壮大市场主体 /span /p p style=" text-align: justify text-indent: 2em " 做强大企业。充分发挥蓝思科技、三安光电、惠科光电、彩虹集团、中国长城、贵德集团等骨干企业的引领作用,带动发展一批中小微企业。瞄准世界500强、大型跨国企业和行业领军企业,开展靶向招商、以商招商和补链招商。支持全球新型显示器件龙头企业在湖南设立研究机构、区域总部、创新中心、孵化基地。加快推进蓝思科技消费电子产品外观防护玻璃、邵阳彩虹特种玻璃二期项目、比亚迪电子智能终端、惠科光电8.6代OLED面板生产线、三安光电第三代半导体产业园、华为长沙移动终端生产基地、湘江鲲鹏产业基地、益阳智能视频终端基地等重大项目建设,争取国家战略项目落户湖南,增强产业发展后劲。 /p p style=" text-align: justify text-indent: 2em " 培育“小巨人”。针对上游原材料、核心元器件、模组面板、终端产品、应用服务等产业链关键环节,建立重点企业培育库,精准扶持,促进大中小企业融通发展。着眼细分领域,扶持一批& nbsp “小巨人”、“隐形冠军”,推动新型显示器件企业专业化、特色化发展。鼓励各类创新创业载体将新型显示器件作为优先引进和重点支持的领域,孵化培育创新创业企业。 /p p style=" text-align: justify text-indent: 2em " (三)推动产业集聚发展 /p p style=" text-align: justify text-indent: 2em " 加快产业集聚区建设。依托长株潭城市群,打造国家级新型显示产业集聚区。推动部省、省市联合培育和建设一批新型显示器件产业集聚区、创新示范区、特色小镇、众创基地。重点打造长沙新型显示器件、触控模组,邵阳盖板玻璃等显示功能原材料,株洲显示终端,永州、郴州显示模组等特色聚集区,形成以长株潭为核心,邵阳、永州、郴州等为支撑的“一核多点”产业集聚态势。依托长沙经开区、浏阳经开区等国家级产业园区,不断加强园区基础设施建设,提高园区服务水平,加速人才、资金、信息等要素聚集,吸引产业链“项目向集聚区集中、产业向园区聚集”。鼓励蓝思科技、比亚迪电子、中国长城等龙头企业通过兼并、重组、技术引进等手段,加快技术研发和产品创新,拓展产业链条,进一步提高产品和服务的市场占有率和品牌影响力。 /p p style=" text-align: justify text-indent: 2em " 完善公共服务平台。由龙头企业牵头,联合产业链上下游骨干企业、高校和科研院所,组建湖南省新型显示器件产业联盟,加强企业信息沟通和供需合作。完善长沙E中心、电子信息产业服务中心/湖南云普检测技术服务中心、浏阳经开区金融安全示范中心等现有平台,支持蓝思--华为技术研发联合实验室建设,并以此为依托搭建湖南省新型显示器件生产与应用示范平台,扶植一批省级重点实验室和省级工程技术研究中心。 /p p style=" text-align: justify text-indent: 2em " (四)提升技术创新能力 /p p style=" text-align: justify text-indent: 2em " 突破关键核心技术。加快突破金属网格电容触控技术、石墨烯屏触控技术、3D盖板、OGS触控贴合、高密封性薄膜封装等技术和工艺,掌握LTPS和Oxide背板规模生产技术。加强新型纳米银线材料、新一代有机发光材料的工程化研究,突破新型先进精密陶瓷技术、蓝宝石单晶生长技术。布局量子点、全息、激光、印刷OLED显示等前瞻性显示技术领域的理论和应用研究。加大电子墨水、柔性显示、SED显示、3D显示等新型显示技术的技术攻关。 /p p style=" text-align: justify text-indent: 2em " 加强技术创新协同。充分发挥省内高校在计算机、集成电路、材料学、自动化、光电等学科的优势,深化产学研用合作,加强高端元器件、触控及显示工艺领域、显示功能材料、前瞻技术及产品领域的研究,加速自主创新成果的产业化,提升新型显示器件产业链的研发能力和应用水平。支持产业链上中下游企业开展关键技术联合研发、专利运营、标准制定等工作,建立重点企业专利成果共享机制,盘活创新资源,建立产业技术联盟。 /p p style=" text-align: justify text-indent: 2em " (五)深化开放合作 /p p style=" text-align: justify text-indent: 2em " 主动对接国家新型显示产业发展战略,积极融入成渝鄂、长江中游城市群等世界级新型显示先进制造业集群,争取获得国家政策、资金支持。精准承接粤港澳大湾区、长三角产业转移,充分发挥湖南工程机械、轨道交通、电子信息、乘用汽车等重点领域的市场与产业优势,吸引粤港澳大湾区企业产业转移入湘,与长三角、珠三角地区打造共同管理、利益共享的承接产业转移示范区。办好世界计算机大会、新型显示器件产业链学术研讨会、产业对接会等交流活动,搭建国内外有影响力的技术交流合作平台。鼓励省内新型显示器件企业、科研机构与国内外龙头企业、研究单位开展多种形式的技术合作和人才交流。 /p p style=" text-align: justify text-indent: 2em " strong 五、保障措施 /strong /p p style=" text-align: justify text-indent: 2em " (一)加强统筹协调 /p p style=" text-align: justify text-indent: 2em " 成立产业链推进工作小组,由联系产业链的省领导挂帅,省工信厅牵头,省发改委、商务厅、科技厅等政府部门、高校科研院所相关专家、产业链龙头骨干企业参与。建立产业链联席会议制度,研究解决对产业链发展过程中出现的重要问题。加强跟踪研究和督促指导,做好重点领域统计监测。对带动能力强的重大项目,优先纳入省重点项目管理、优先安排省级专项资金支持、优先推荐申报国家有关专项计划,并给予土地、税收等全方位支持。 /p p style=" text-align: justify text-indent: 2em " (二)推动政策落实 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 进一步发挥政府资金的引导作用,充分利用现有资金渠道支持新型显示器件产业链发展。积极落实新型显示器件器件进口物资税收政策、进口设备增值税分期纳税等政策,争取我省新型显示器件有关进口物资及重大技术装备纳入国家进口税收优惠政策目录。落实首批次应用和重大技术装备成果转化奖励政策,将“补短板”、“填空白”的新型显示器件重点产品纳入首批次应用示范项目奖励,并争取进入国家重点产品首批次示范应用指导目录;对使用本省新型显示器件企业制造的显示终端产品及整机的首台(套)装备给予重点支持;将符合条件的新型显示器件、显示终端产品优先纳入湖南省两型产品政府采购目录。 /span /p p style=" text-align: justify text-indent: 2em " (三)优化市场环境 /p p style=" text-align: justify text-indent: 2em " 坚持以企业为主体、市场为导向,鼓励市场化竞争,充分发挥市场在资源配置中的决定性作用。加快落实支持民营企业发展的相关政策,发挥政府协调作用,维护公平竞争,营造健康有序的市场化发展环境。引导金融机构、社会资本以多种方式支持新型显示器件产业发展,减低企业融资成本。鼓励开发性和政策性金融机构,为符合条件的新型显示器件产业项目提供信贷支持。发挥省级投资基金引导作用,引导社会资本以多种方式投资新型显示器件产业链。 /p p style=" text-align: justify text-indent: 2em " (四)强化人才支撑 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 加强新型显示器件产业国内外领军人才及团队、高端技术人才、复合管理型人才、行业紧缺人才等引进,在引进奖励、税收优惠、住房补贴、家属随迁、子女入学等福利配套方面优先保障。成立新型显示器件产业专家咨询委员会,组建高端智囊团。强化职业技能人才保障,满足企业用工需求。鼓励省市重点院校、科研院所等在人才培养方面进行产学研合作,在专业人才教育、联合培养等方面强化合作。 /span /p
  • 可以“穿”的显示器
    你有想过“穿”在身上的显示器吗?按一按身上的衣服就能看新闻、发信息,甚至追剧。或许,这就快要变成现实了。多彩显示屏织物展示了扭曲下的柔软和稳定。图片来源:彭慧胜研究组  近日,复旦大学高分子科学系教授彭慧胜团队,成功将显示器件制备与织物编织过程融合,在高分子复合纤维交织点集成多功能微型发光器件,并揭示了纤维电极之间电场分布的独特规律,实现了大面积柔性显示织物和智能集成系统。  3月11日,论文在线发表于《自然》。审稿人评价其“创造了重要而有价值的新知识”。  实现没那么容易  从模糊到清晰、从单色到彩色、从笨重到轻薄… … 近几十年来,显示作为电子设备的重要输出端不断更新迭代。而如何将显示功能有效集成到电子织物中,同时确保织物的柔软、透气导湿、适应复杂形变等特性?这是智能电子织物领域面临的一大难题。  2009年,彭慧胜团队提出聚丁二炔与取向碳纳米管复合以制备新型电致变色纤维的研究思路,然而电致变色仅在白天可见,晚上无法有效应用。  2015年,团队在涂覆方法方面取得突破,成功解决共轭高分子活性层在高曲率纤维电极表面均匀成膜的难题,研发了纤维聚合物发光电化学池,最终实现了不同的发光图案。但经由发光纤维编织显示的图案数量非常有限,无法充分实现可控显示。  如何在柔软且直径仅为几十至几百微米的纤维上构建可程序化控制的发光点阵列,是困扰团队甚至这个领域的一大难题。  于是,彭慧胜在想,在织物编织过程中,经纬线的交织是否可以自然地形成类似于显示器像素阵列的点阵。  基于此,团队着眼于研制两种功能纤维——负载有发光活性材料的高分子复合纤维和透明导电的高分子凝胶纤维,两者在编织过程中的经纬交织形成电致发光单元,并通过有效电路控制制作出了新型柔性显示织物。  彭慧胜团队还提出了“限域涂覆”制备路线,采用柔韧的高分子材料作为发光浆料基体,将其均一可控地负载在纤维基底上。通过多次涂覆,提升纤维发光层厚度均匀性,涂覆固化后得到了能抵御外界摩擦、反复弯折的发光功能层。  弯折、水洗都不怕  这些直径不足半毫米的纤维材料,实验案台上还有多卷,颜色各异,乍一看与生活中的寻常纱线类似。  “而当我们给它们通上电,它们就显示出了独特一面——会发明亮的光。”彭慧胜拿起手边的一件卫衣,卫衣上的复旦大学校徽由发蓝光的纤维编织而成,接通电源后,蓝色的校徽图案在室内清晰可辨。  彭慧胜表示,从横截面方向看,其中一根为涂覆有发光材料的导电纱线,另一根是透明导电纤维,两者编织形成经纬搭接。“施加交流电压后,位于发光纤维上的高分子复合发光活性层在搭接点区域被电场激发,就形成一个个发光‘像素点’。”  就这样,研究人员制备出长6米、宽0.25米、含约50万个发光点的发光织物,发光点之间最小的间距为0.8毫米,能初步满足部分实际应用的分辨率需求。通过更换发光材料,还可实现多色发光单元,得到多彩的显示织物。  论文通讯作者之一、复旦大学陈培宁表示,比起传统的平板发光器件,发光纤维直径可在0.2毫米至0.5毫米之间精确调控,奠定了其“超细超柔”的特性。以此为材料梭织而成的衣物,可紧贴人体不规则轮廓,像普通织物一样轻薄透气,穿着舒适度良好。  但具有高曲率表面的纤维相互接触时,在接触区域会形成不均匀的电场分布,这样的电场不利于器件在变形过程中稳定工作。而在现实生活中,穿在身上的衣服难免会有磕磕碰碰,也需日常清洗。如何能使显示织物适应外界环境的改变,乃至抵御住反复摩擦、弯折、拉伸等外在作用力,保证发光的稳定性?  于是,研究人员通过熔融挤出方法制备了一种高弹性的透明高分子导电纤维。在编织过程中,该纤维由于线张力的作用,与发光纤维接触的区域发生弹性形变,并被织物交织的互锁结构固定。  陈培宁表示,实验结果表明,在两根纤维发生相对滑移、旋转、弯曲的情况下,交织发光点亮度变动范围仍控制在5%以内,显示织物在对折、拉伸、按压循环变形条件下亦能保持亮度稳定,可耐受上百次的洗衣机洗涤。  走出实验室  除显示织物之外,研究团队还基于编织方法实现了光伏织物、储能织物、触摸传感织物与显示织物的功能集成系统,使制备集能量转换与存储、传感与显示等多功能于一身的织物系统成为可能。  彭慧胜提到,该系统在物联网和人机交互领域,如实时定位、智能通讯、医疗辅助等方面表现出良好应用前景。  例如,在极地科考、地质勘探等野外工作场景中,只需在衣物上轻点几下,即可实时显示位置信息,地图导航由“衣”指引 把显示器“穿”在身上,语言障碍人群以此作为高效便捷交流和表达的工具… … 这些场景或许在不远将来就能走进人们的生活。  而且,研究人员已经把产品从实验室里“带了出来”,实现了发光纤维和织物的连续化稳定制备,有助于推动全柔性显示织物的规模化应用研究。  “我们也期待着产业界的合作者们加入,共同解决在实际应用中的具体问题。”谈及显示系统的未来发展道路,彭慧胜充满期待。
  • TCL华星第8.6代氧化物半导体新型显示器件生产线项目投产,月产能18万张玻璃面板
    9月29日,TCL华星第8.6代氧化物半导体新型显示器件生产线项目(简称“TCL华星广州t9项目”)正式投产。据了解,该项目投资350亿元,月产能18万张玻璃基板,是国内首座专门生产高端IT产品及专业显示的液晶面板高世代产线。钛媒体APP了解到, t9项目以IT、车载、医疗、工控和航空等不同应用场景下的显示产品为核心,可生产6吋到100吋全尺寸系列显示产品;在效率上,相较于G8.5代量产线,t9项目的手机及笔电代表尺寸的切割效率平均提升9%,主流笔电尺寸切割效率平均提升10%。经过前两年的高歌猛进,今年以来主要面板价格在不断下降,面板厂商们正在经历低谷。从今年半年报来看,包括京东方、深天马、信维诺等在内的面板厂商业绩均出现下滑。在此背景下,面板厂商们通过拓展新终端、多元化布局、降本增效等多种方式度过低谷。TCL华星t9项目此时投产,也是希望把握全球显示面板行业止跌反弹的机会。根据群智咨询(Sigmaintell)数据分析,预计全球液晶电视面板2022年10月止跌回稳。从32英寸到75英寸的液晶电视面板价格,今年10月都将与9月持平。显示器、NB面板价格10月的跌幅也将收窄。尽管全球消费电子市场备货旺季已逐渐进入尾声,但主力品牌库存继续下降及面板厂扩大减产幅度,将令全球中大尺寸液晶面板的价格在2022年四季度分阶段止跌企稳。TCL相关负责人认为,面对即将回暖的整体市场及旺盛的细分领域需求,t9项目将有助于TCL华星中尺寸业务进入规模化、体系化经营新阶段,进一步强化集聚发展趋势与竞争优势,使TCL华星持续夯实完善全尺寸领域产品矩阵和业务体系,构建发展新动能,成为TCL科技业绩增长主引擎之一。
  • 三维体扫描大型成像显示器亮相世博
    世博会徽标、招手的海宝、迎客的茶壶……在一个高2.8米、直径1.3米宛若水帘洞的圆柱体空间内,一件件上海世博会标志物栩栩如生地展现在人们眼前。没有观看角度的限制、无须佩戴特制眼镜,人们惊喜地体验到360度全景观看这些三维立体影像的璀璨感受。日前,由华东师大信息科学技术学院教授刘锦高课题组研发的“三维体扫描大型成像显示器”正式亮相,即将在世博会重大活动中使用。这一精准同步的光、机、电一体化高科技产品将引领人们感受真正的三维立体效果。   首创“旋转真三维”显示系统   真正的三维立体效果,是将物体的长度、宽度、深度(厚度)直观地进行再现。由于条件限制,多数三维立体效果在深度的展示上都有所欠缺,即使是观看3D电影,有时还是会受到观察角度的限制,无法完全享受身临其境之感。然而,华东师大研发的这套全新的三维体扫描电子系统的核心部件由数十枚32位CPU组成,它们的运算能力远胜一般的多核计算机。它将立体对象提取出不同的切面、切片进行显示,利用扫描在三维空间的体像素构成了立体图像,展示了一个最接近真实物体的立体画面。这套拥有水平与垂直视角的全角光场立体显示器,满足了水平视差与垂直视差的观看要求,再现人们观察世界的真实感受,并获得高亮璀璨的显示效果,从而带给人们质感的3D影像。   刘锦高课题组此次研制大型体扫描显示器仅用了短短几个月的时间,克服了一系列困难。目前,课题组已成功研制了一套大型显示系统及一套备份系统。显示器的首度公开亮相,标志着一种全新的大型立体显示方式的诞生。它突破了以往裸视三维立体显示技术(例如LCD、PDP技术等)需要借助二维平面来展现三维影像的瓶颈,通过对物体进行旋转扫描,将图像置于一个真实的立体空间,实现了真正意义上的三维立体显示。该研发工作得到了上海市科委的大力支持。   刘锦高表示,此套系统是我国自主研发的产品,属世界首例,拥有完全的自主知识产权。   探索计算机图形学新领域   “目前的计算机图形学主要基于平面光栅扫描理论。而这套新系统的研发为计算机图形学向三维体扫描方向的发展奠定了基础。”刘锦高告诉记者,三维体扫描大型成像显示器的研制成功,突破了传统计算机图形学理论,为图形扫描理论和技术的发展开辟了新的研究方向,并提供了有力的实例论证。   他表示,目前,体扫描计算机图形学还处于探索阶段,仍有许多问题需要进一步细化研究。“这对于我们科技工作者来说,意味着新的一轮挑战。”   力拓技术应用的崭新境界   这套显示系统在军事训练、医疗诊断、数据可视化、工程产品设计、景观建筑、视频游戏、虚拟现实、多媒体教学等方面具有广阔的应用前景。   “就以医疗诊断来说,我们通过CT、核磁共振获取的人体或器官扫描影像本来可以提供三维数据,但由于三维成像显示技术尚未成熟,目前只能以胶片或其他介质的二维形式来显示,需要有经验的医学专家才能判读,增加了诊断的难度。若将这些数据通过三维体扫描显示器来再现,就会有超乎想象的突破。再如,关于航天飞机的设计,我们可以在任何部件的设计改进之后马上显示其整体效果。”刘锦高如数家珍般给出不少例子。
  • 澳大利亚通报计算机和计算机显示器的强制性能效要求
    为了提高电器设备和各行业产品能源利用效率,提升显著的经济和环境效益,澳大利亚颁发了温室和能源最低标准法规(简称GEMS)并于2012年10月1日起生效,新的GEMS法规涵盖了以往的主要政策工作,包括强制性的最低能效标准(简称MEPS)和能源星级标签要求(简称ERLs),其主要目的是提高管制产品的能效,确保消费者能够做出选择,以提高能源、利用效率,降低能源消耗、能源成本和温室气体排放。GEMS法规规定凡是涵盖的产品,无论是在澳大利亚制造或出口至澳大利亚,在GEMS决定生效日期之后,必须满足决定的相关能效要求。   2013年6月12日,澳大利亚发布了G/TBT/N/AUS/75号通报,GMES法规中关于计算机和显示器的决定草案。   温室和能源最低标准(计算机)决定2013草案中规定了计算机产品的最低能效和产品性能要求,并给出了相关的测试方法,该决定拟于2013年10月1日起生效。其涵盖的主要设备包括台式计算机、一体式台式机、笔记本电脑、平板电脑(同时支持物理键盘和触摸屏)、小型服务器,不包括手持式计算设备(如PDA、掌上电脑或智能手机等)、游戏机、手持游戏设备、刀片式个人电脑、工作站、移动式工作站、不在小型服务器范围中的服务器设备、平板电脑(只支持触摸屏)、瘦客户机式计算机、高端的D类计算机。其中台式机、一体式台式机、笔记本电脑、平板电脑(同时支持物理键盘和触摸屏)须满足AS/NZS 5813.3: 2012中的年度典型能耗要求,小型服务器产品需要满足AS/NZS 5813.3: 2012中空闲状态和待机状态下的功耗要求。   其依据的主要标准:   AS/NZS 4665.1: 2005 外部电源性能要求第1部分:测试方法和能效标签   AS/NZS 5813.1: 2012 信息技术设备-计算机能效要求第1部分:能效测试方法   AS/NZS 5813.3: 2012 信息技术设备-计算机能效要求第2部分:计算机最低能效要求   AS/NZS 5814.1: 2012 信息技术设备-内部电源能效要求第1部分:能效测试方法   温室和能源最低标准(计算机显示器)决定2013草案中规定了计算机显示器产品的最低能效和能效标签要求,并给出了相关的测试方法。该决定拟于2013年10月1日起生效。其涵盖的主要设备包括对角尺寸不大于60英寸的计算机显示器,不包括专门用来显示数字信号或数字图片的电子显示器、专门用于显示广告的电子显示器、高性能电子显示器、专用电子显示器以及类似组合产品、电视机用显示器等类似装置。根据其显示器尺寸和分辨率,显示器应满足按照公式计算出的相应能效要求,显示器还应按照星级指数计算公式标识出相应的星级标签。   AS/NZS 4665.1: 2005 外部电源性能要求第1部分:测试方法和能效标签   AS/NZS 5815.1: 2012 信息技术设备-计算机显示器能效要求第1部分:能效测试方法
  • 显示器色彩校色解决方案—爱色丽i1 pro系列校色仪
    在当今数字化时代,显示器的色彩准确性对于设计师、摄影师、视频编辑以及所有视觉艺术工作者来说至关重要。一个精确校准的显示器能够确保所看到的色彩与最终输出的作品色彩一致,从而避免重工和客户不满的问题。针对这一需求,i1 Pro系列校色仪提供了一站式的显示器校色解决方案,它结合了先进的色彩测量技术和易于使用的软件,使得色彩管理变得既简单又精确。无论是进行日常的色彩校正,还是应对复杂的色彩管理挑战,i1 Pro系列校色仪都能提供专业级的准确性和可靠性。它支持广泛的显示器技术,包括LED、OLED、和传统的CRT显示器,确保无论在何种设备上,您的视觉作品都能展现出最佳的色彩效果。通过i1 Pro系列,实现色彩的一致性和准确性,让每一份工作都能达到预期的效果。正因如此,深入了解i1 Pro系列校色仪的具体功能和应用场景变得尤为关键。下文将详细介绍i1 Pro系列的核心技术、操作流程以及它如何在不同领域中发挥作用。我们还将探讨该系列校色仪如何帮助用户轻松管理和优化他们的色彩工作流,包括为打印、摄影和数字设计提供的特定解决方案。i1 Pro系列不仅代表了色彩管理技术的前沿,也体现了对用户友好性的深思熟虑,旨在让色彩校正过程既高效又无缝。继续阅读,您将发现i1 Pro系列如何成为提升您项目色彩精度的强大工具。一、爱色丽i1 Pro校色仪系列概述针对图像制作和印刷行业的专业人士,i1Pro 3校色仪设备专门设计以满足对于打印机、显示屏和投影机极高的色彩精度需求。该设备能够有效监测和保证显示与打印输出的品质,并且适用于专色的采集与管理任务。i1Pro 3校色仪利用其尖端技术,提供了卓越的准确度、可靠性以及更快的处理速度。其采用的全光谱LED光源,不仅易于维护、测量精准,还支持高效的一次扫描功能,使色彩管理过程更加高效和精确。二、i1 Pro校色仪系列特点与i1 Pro2相比,i1 Pro3系列在显示器校准方面迈出了重要一步,支持对高达5000尼特的高亮度显示器进行准确校准。它允许单台电脑连接多达四台显示器,或者多台电脑连接任意数量的显示器,以实现色彩一致性的精准校验。i1 Pro3采用了人体工程学设计,不仅易于操作和清洁,还能确保测量的准确性。它还提供实时用户反馈功能,帮助用户精确定位测量点,同时配备了微调和校正偏移的自检工具,确保测量结果的高精度。此外,i1 Pro3系列装备了爱色丽图形艺术标准(XRGA),这一标准保障了供应链各个环节数据的可靠性和重复性,确保了色彩管理过程的一致性和标准化。此升级显著提高了工作流程的灵活性和效率,特别是在多显示器环境下的色彩一致性管理。i1 Pro3系列的这些改进,特别是对高亮度屏幕的支持,打开了为未来显示技术提供精确色彩解决方案的大门,满足了市场上对高动态范围(HDR)内容创作和展示需求的增长。进一步地,i1 Pro3系列的设计考虑到了用户操作的便捷性,使得设备的日常使用和维护变得更加简单。其人体工程学设计不仅优化了用户的操作体验,还通过精确测量和实时反馈机制,降低了操作错误的可能性,提高了工作效率。凭借其内置的XRGA标准,i1 Pro3系列确保了测量数据在不同设备和供应链环节之间的一致性与准确性,为色彩管理领域设定了新的标准。这一点对于追求高质量输出和维持品牌色彩一致性的企业尤为重要,它保证了从设计到最终产品的每一步都能达到预期的色彩准确度。总之,i1 Pro3系列校色仪通过其高级功能和人性化设计,不仅简化了色彩校正流程,还为专业人士提供了一个强大的工具,以实现无与伦比的色彩精度和一致性,从而在各种应用场景中实现最佳的视觉效果。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 新品快讯:挑战测量环境新极限—EXO Handheld 显示器上市了
    赛莱默分析仪器旗下YSI品牌的EXO水质监测平台是一种为专业领域设计,适合野外应用的智能水质监测平台。它具备非常广阔的水环境监测能力,可以从容应对如河流、湖泊、海洋、河口和地下水等多种水环境的监测需求。 EXO水质监测平台自从上市以来便在全球范围内得到了用户的高度认可并被广泛应用,它稳定又准确的读数为世界各地的水质监测提供了强有力的数据支撑,得到了广大用户的一致好评。 而来自赛莱默分析仪器旗下YSI 品牌的新型 EXO Handheld,它被设计来充当 EXO 探头的显示器。记录实时数据、校准传感器、针对投放使用设置探头,并通过功能丰富的设备将水质数据传送至 PC端。它更针对水质监测过程中可能遇到的极端环境增加了 IP-67 等级防水、防撞外壳、可插拔连接器等新特点。 YSI旗下的专家本着以客户为中心的理念,根据用户需求不断钻研新技术,研发新功能,使新型 EXO Handheld在功能、特征以及可靠性方面实现了跨越式发展。 YSI 的新型 EXO Handheld可实现的功能: 新的形状能匹配 YSI 专业系列仪器,更轻便且符合人体工程学的感觉 内置可充电锂离子电池组,供电时间多达 48 小时 简化的用户界面,集成了帮助屏幕,能显著降低学习曲线 对于pH/ORP 传感器的自动缓冲识别 用户设置的校准提醒功能,确保采集最高质量的数据 集成 的USB 端口,即插即用 仪表盘上自适应大小的文本使用户眼睛能更容易地观测数据 YSI的新型EXO Handheld将与您共同挑战各种水质监测环境的新极限,不论晴雨、冰雹或下雪,赛莱默分析仪器旗下产品都会为您提供最可靠的数据。而赛莱默分析仪器的专家们仍将继续以客户需求为导向,持续钻研,为全球水质监测市场提供更优质的产品。 想了解EXO水质监测平台的更多信息,可登录赛莱默分析仪器官方网站http://www.xylemanalytics.cn进行查看,或咨询所在区域的销售代表。 欢迎关注赛莱默分析仪器官方微信微信号:XylemAnalyticsChina
  • Park 原子力显微镜发布AFM新品:针对新一代显示器,最大样品2200 mm!
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 6月23日,知名原子力显微镜(AFM)制造商Park原子力显微镜公司(Park Systems Inc.)宣布推出高分辨率、自动化原子力显微镜新品——Park NX-TSH,据介绍,Park NX-TSH的 /span span style=" text-indent: 2em color: rgb(0, 112, 192) " 龙门架设计 /span span style=" text-indent: 2em " 平板式探针扫描器专为最新一代显示器工厂的应用需求研发设计, /span span style=" text-indent: 2em color: rgb(0, 112, 192) " 最大样品可以测到2200 mm /span span style=" text-indent: 2em " 。另外,其模块化设计还可在提供样品3D形貌的同时提供微区电流测量。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 405px " src=" https://img1.17img.cn/17img/images/202006/uepic/c86270b5-68fa-4a86-aa11-aeafcc66248d.jpg" title=" 1.png" alt=" 1.png" width=" 450" height=" 405" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 112, 192) " strong 产品研发背景:迎合OLED新兴市场带来照明和屏幕技术的需求 /strong /span /p p style=" text-indent: 2em " 有机发光二极管(OLED)技术由于其扁平、薄如纸、柔韧性,并且具有漫射光的能力,该技术有望在未来几年显著推动市场增长。 /p p style=" text-indent: 2em " 数据显示,OLED面板市场在2020-2025年期间将以12.9%的复合年增长率增长,到2025年将达到455.5亿片。尽管受全球新型冠状病毒疫情影响而总体上将出现小幅下滑,但业内专家仍预计OLED面板将成为全球采用的一种重要的显示技术趋势,且屏幕尺寸将更大,分辨率将提高到8K,并将具有新的外形规格。 /p p style=" text-indent: 2em " 为了迎合OLED市场的需求,原子力显微镜制造商Park 原子力显微镜开发了Park NX-TSH,扩大了其Gen8 +和所有大型平板显示器的AFM工具。为制造下一代平板显示器制造商而开发,以克服300 mm样品尺寸的限制。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong Park NX-TSH:用于大样品分析,最大样品2200 mm! /strong /span /p p style=" text-indent: 2em " 尖端扫描头(TSH)是一种自动移动的扫描头,适用于对OLED,LCD,光子学用于最大尺寸达2200 mm的大样品进行工业AFM测量,用于大样品分析。自动的尖端扫描头采用气载台技术,可将x,y,z扫描仪直接移动到基板上的所需位置。 /p p style=" text-indent: 2em " “Park NX-TSH专为生产制造下一代平板显示器的半导体厂(fab)开发设计,并克服了300 mm的门槛限制。” strong Park市场部副总裁Keibock Lee谈道 /strong 。 /p p style=" text-indent: 2em " 自动化的Park NX-TSH系统通过龙门式尖端扫描仪系统克服了纳米计量学的挑战,该系统可直接移动到样品上的某个位置,并生成粗糙度测量,台阶高度测量,临界尺寸和侧壁测量的高分辨率图像。 /p p style=" text-indent: 2em " Park NX-TSH可以在x,y和z方向上扫描针尖,最大扫描方向为100 µ m x 100μm(x-y方向),z方向为15μm,并具有灵活的卡盘,可容纳大型和重型样品。随着对更大尺寸的平板显示器的需求增加到65英寸,75英寸甚至更多。Park NX-TSH通过自动尖端扫描系统克服了这些挑战,而在龙门式尖端扫描仪系统中克服了纳米计量学的挑战。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 374px " src=" https://img1.17img.cn/17img/images/202006/uepic/24d9eaff-04cb-43a0-a66b-5534c4a10458.jpg" title=" 2.png" alt=" 2.png" width=" 450" height=" 374" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " Park NX-TSH专为Gen8+和所有大平板显示器研发,不仅能够进行纳米级尺寸测量,也可进行微区电性测试。同时,Park NX-TSH还可以兼容多种型号机械手臂,实现自动化测量。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 295px " src=" https://img1.17img.cn/17img/images/202006/uepic/4a5a2c6d-45a6-4703-9155-50b765639ccd.jpg" title=" 3.png" alt=" 3.png" width=" 450" height=" 295" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 该全自动Park NX-TSH系统专为超大样品量身订造,扫描器可以固定在龙门架上,并能提供高分辨率的粗糙度测量,步长测量,临界尺寸和侧壁测量。 /p p style=" text-indent: 2em " Park NX-TSH将样品固定在样品卡盘上,连接到机架的尖端扫描头移动到表面样品的测量位置。这也使得Park NX-TSH尖端扫描头系统克服了样品尺寸和重量的限制。 /p p style=" text-indent: 2em " 原子力显微镜是一种准确、无损的纳米级样品测量方法,使用Park NX-TSH,可以在龙门式桥架上的OLED,LCD等上获得可靠的高分辨率AFM图像,从而系统的提高生产率和质量。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 值得关注的是, /strong /span Park 原子力显微镜将参加6月27日-29日上海新国际博览中心举办的Semicon China,并在展位E7549上现场演示新品Park NX-TSH和NX-Photomask,并将在稍后举行的SEMICON West展会上进行线上产品展示秀。届时,大家感兴趣可以现场观摩咨询。 span style=" color: rgb(127, 127, 127) " (地址:上海新国际博览中心;时间:2020年6月27-29日;展位:E7 7549) /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/202006/uepic/b4de76ec-87cf-40a1-b2d7-1e53b1e2b408.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 283" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 112, 192) " strong 关于Park原子力显微镜 /strong /span /p p style=" text-indent: 2em " Park原子力显微镜公司是目前世界上发展最快的原子力显微镜(AFM)制造商之一,为化学、材料、物理、生命科学、半导体和数据存储行业的研究人员和工程师提供了一系列完整的产品。 Park的客户包括20多家全球最大的半导体公司,以及亚洲、欧洲和美洲的国立研究型大学。Park 原子力显微镜是韩国证券交易所(KOSDAQ)的上市公司,公司总部位于韩国水原,地区总部位于美国加州圣克拉拉、德国曼海姆、中国北京、日本东京、新加坡和墨西哥墨西哥城。 /p
  • 汽车屏幕显示器色彩管理方案—i1Publish Pro 3屏幕校色仪
    随着汽车电子化的趋势逐渐加强,车载显示屏已经成为汽车的标配。车载显示屏不仅提供了驾驶信息,还涉及娱乐、导航、通信等多种功能。为了确保车载显示屏提供最佳的视觉体验和准确的信息呈现,色彩管理成为了关键。本文旨在探讨一套有效的汽车屏幕显示器色彩管理方案。一、标准色彩空间定义选定一个被广泛认可的行业标准色彩空间,例如sRGB或Adobe RGB,是确保色彩准确性和一致性的关键。sRGB是一个标准化的RGB色彩空间,适用于大多数常规应用和设备,如互联网、电视和打印。而Adobe RGB则提供了一个更广泛的色彩范围,特别是在绿色和蓝色方面,更适用于专业摄影和打印应用。对于车载显示器,选择合适的色彩空间至关重要,因为这关系到驾驶者和乘客的视觉体验。在生产过程中,所有的显示器都应该根据选定的色彩空间进行严格的色彩校准。这不仅确保了每个显示器的色彩准确性和生动性,还能够确保不同车型、不同生产批次,甚至不同供应商生产的显示器之间的色彩都能保持一致。二、屏幕显示器色彩校准设备为了实现准确的色彩显示,首先需要一个专业的色彩校准设备。这种设备能够读取屏幕的实际色彩输出,并与预设的标准进行对比,从而进行调整。i1Publish Pro 3是一款屏幕校色仪,设计用于为相机、显示器、数字投影仪、扫描仪和打印机创建自定义色彩配置文件。其目的是确保在整个从采集到输出的过程中,屏幕的色彩显示能够保持准确性。i1Publish Pro 3屏幕校色仪展现了其独特的优势。它可以在单次扫描中同时测量M0、M1和M2,大大加快了色彩校准的速度,这对于汽车产业中的大规模生产和严格的质量要求尤为重要。此外,与i1Pro 2相比,它的色块读取更小且精度更高,这为汽车显示器提供了更精确的色彩校准基准。i1Publish Pro 3屏幕校色仪不仅仅满足了汽车显示器的基本色彩管理需求。它的人体工程学设计确保了设备的易用性和准确性,这在汽车工业中尤为关键,因为即使微小的色彩偏差也可能影响到驾驶者的判断和安全。此外,i1Publish Pro 3在各种现代显示技术,如LED、等离子和OLED中都能实现逼真的色彩展现,为汽车显示器带来了前所未有的视觉体验。其深度集成的PANTONE色彩管理功能,也使得车载系统界面和品牌色彩能够保持一致,强化了品牌的识别度和用户体验。汽车屏幕显示器在为驾驶者和乘客提供信息和娱乐内容的同时,其色彩表现的准确性和一致性对于提升用户体验和确保信息传达的清晰度至关重要。i1Publish Pro 3屏幕校色仪针对此问题提供了专业且高效的解决方案。通过其高精度的色块读取、一次性的多模式测量以及对各种现代显示技术的全面支持,i1Publish Pro 3确保汽车屏幕无论在哪一款车型、哪一个生产线或是在哪种光线环境下都能呈现出一致且真实的色彩。这不仅增强了驾驶者的信心和安全感,还为乘客提供了更为舒适和沉浸的视觉体验。简而言之,借助i1Publish Pro 3,汽车制造商可以有效地解决车载显示器的色彩问题,为消费者提供更加卓越的驾驶体验。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请注官方微信公众号:爱色丽彩通
  • 10吨欧美电子垃圾入渝 一台显示器含铅1公斤
    海关查获走私电子垃圾   2009年5月,龙某与徐某在香港认识后,双方预谋从香港进口欧美国家的电子垃圾,利用内地低价劳动力,组装电子产品销售。经多次共谋,同年8月7日,两人以进口光驱为名,将10吨电子废物夹藏在集装箱里,从香港走私到内地。后该批货物被重庆海关查获。经有关部门检验认定,该批散装的废旧电子元件均属我国禁止进口的固体废物。   电子垃圾量大危害大   据龙某和徐某交待,这批电子垃圾是他们从欧洲和美国买来的,想偷运到国内后卖掉。   承办检察官介绍,根据国际条约《巴塞尔公约》,我国已将电子垃圾列入禁止进口的固体废物。电子垃圾不仅量大而且危害严重。特别是电视、电脑、手机、音响等产品,有大量有毒有害物质。   检方调查发现,这批电子垃圾中的显像管、阴极射线管、印刷电路板上的焊锡和塑料外壳等,都含有大量的有毒有害物质,一台电脑显示器中仅铅含量平均就达1公斤多。   据承办检察官介绍,回收加工再销售的电子产品质量不稳定,存在严重安全隐患。不能正确处理电子垃圾,大量有害物质就会渗入地下,造成地下水严重污染。如果进行焚烧,会释放大量有毒气体,造成空气污染,这些都会对生态和环境造成不可估量的破坏。   如何处理还未决定   记者了解到,这批电子垃圾烧也不好烧,很多电子元件也无法使用自然降解的方法进行处理。昨天,检方称,如何处理这批电子垃圾现在还未决定。   记者在网上查询发现,现在对于电子垃圾的处理,主要还是通过分解再利用的方式进行。但是对于如何处理走私而来的电子垃圾,各地尚无明确的办法。   电子垃圾   主要使用电流、电磁场工作的设备都叫电子设备 废弃不用的电子设备都属于电子废弃物。电子废弃物主要包括电冰箱、空调、洗衣机、电视机等家用电器和计算机等通讯电子产品的淘汰品。电子废弃物俗称“电子垃圾”。   对环境危害比较大的废旧电子产品包括电脑、电视机显像管内的铅,电脑元件中含有的砷、汞和其他有害物质等。   走私废物罪   是指逃避海关监管,将境外固体废物、液态废物、气态废物运输进境的行为,可处五年以下有期徒刑,情节特严重的,处五年以上有期徒刑,并处罚金。
  • 2012年电子元器件行业发展依靠创新
    内容摘要:2011年电子行业整体表现平淡,企业经营业绩也不佳,基本面缺乏亮点和创新,一季度、二季度处于行业淡季,下半年三、四季度,也没有迎来销售的旺季。   工控摘要:2011年电子行业整体表现平淡,企业经营业绩也不佳,基本面缺乏亮点和创新,一季度、二季度处于行业淡季,下半年三、四季度,也没有迎来销售的旺季。2012年1-3月电子元器件库存周转天数创近期新高,库存压力依然较大,总体来看,今年二季度难以出现实际性好转,将维持行业整体中性评级。   分析称:去年四季度我国电子元器件中,业绩增速方面光学元件表现的最佳,半导体盈利较差,LED和光学元件盈利较好,半导体和触摸屏较差,库存方面连接器和显示器件的去库存效果明显,其他均出现了增长,智能手机和被动元件扩张较为明显。今年1-3月,业绩增速方面连接器表现最好,半导体最差,智能手机首次出现净利润下滑,盈利能力方面LED表现最好,半导体最差,存货方面显示器件和PCB小幅下降,其他行业均上升,投资扩张力度方面,智能手机和PCB行业较为明显,半导体和显示器件最为谨慎。   在整体全球宏观经济下行的背景下,电子行业市场整体需求下降导致全球半导体行业收入增速不断下滑。全球主要的电子代工和晶圆代工等代表企业营业收入增速下滑直接反映出宏观经济对行业的负面影响。智能手机产业链及安防、POS机终端、智能电表芯片等市场刚性需求较强的相关公司增长确定性较高,将是2012年上半年值得重点关注的品种。   不单单是上述这些值得重点关注的品种,在传感器等上游产业中,我们也不难看到产业的春天。2012年第一季度有数据报告显示,原处于景气下行阶段的电子元器件制造业经营业绩略有上升,无论是国际领先的电子产品制造商,还是国内的电子元器件生产商,该季度业绩普遍有较大幅度的提高,订单量也稍有恢复。电子元器件行业的整体如何,仍是一个众人关注的谜。   物联网发展步伐加快,特别是从传感器等上游入手,将会推动整个产业链的发展。2011年12月,国家发布《物联网“十二五”发展规划》,规划提出要建立完善的物联网产业链,培育和发展10个产业聚集区,100家以上骨干企业。根据某数据网站预计,至2015年,中国物联网产业规模将达到7500亿元,年复合增长率将超过30%。物联网产业政策和发展专项资金的推出、关键技术的突破,对物联网新兴产业构成极大利好。物联网应用已进入实际应用阶段,传感器处于物联网产业链的上游,将是整个物联网产业中需求量最大和最基础的环节。   新型互联网的推动,必将会带来行业特别是电子元器件行业的大改革。在互联网不断的冲击下,经营的方式和推广手段也不尽相同。电子元器件行业相关的网站也如雨后春笋般兴起,选择适合自身发展的道路,才能够在新的浪潮下如日冲天!
  • TOF-SIMS在光电器件研究中的应用系列之二
    1.引言有机发光二极管(Organic Light-Emitting Diode,OLED)是基于多层有机薄膜结构的电致发光的器件,用作平面显示器时具有轻薄、柔性、响应快、高对比度和低能耗等优点,有望成为新一代主流显示技术。然而,高效率和长寿命依然是阻碍OLED发展的重要因素,因为有机材料易降解和器件界面结构不稳定从而导致OLED器件失效。在此背景下,迫切需要了解器件的退化机制,从而在合理设计和改进材料组合以及器件结构的基础上,找到提高器件寿命的有效策略。 图1. 基于OLED柔性显示器件2. TOF-SIMS表面分析方法研究有机/无机混合OLED器件的界面效应是提高其性能和运行稳定性的关键步骤。在众多分析方法中,飞行时间二次离子质谱仪(Time of Flight-Secondary Ion Mass Spectrometer,TOF-SIMS)是表征有机层及其内部缺陷的有效分析工具。 TOF-SIMS是由一次脉冲离子束轰击样品表面所产生的二次离子,经飞行时间质量分析器分析二次离子到达探测器的时间,从而得知样品表面成份的分析技术,具有以下检测优势:(1)兼具高检测灵敏度(ppmm-ppb)、高质量分辨率(M/DM16000)和高空间分辨率(5)适用材料范围广:导体、半导体及绝缘材料。目前,TOF-SIMS作为一种重要的表面分析技术,可以用于样品的表面质谱谱图分析,深度分析,2D以及3D成像分析,所以被广泛应用于半导体器件、纳米器件、生物医药、量子材料以及能源电池材料等领域。 3.应用简介基于Alq3(8-hydroxyquinoline, aluminum salt,8-羟基喹啉和铝,分子结构见图2)的OLED器件,因其宽视角、高亮度和低功耗的特性,成为下一代平板显示器最有潜力的备选之一。这类器件具有“三明治”结构,在两个电极之间夹有多个有机层。对于OLED器件的研究不仅专注于探索有机材料,还要进行失效分析来确定故障(如显示黑点)产生的原因。在这里,我们展示了TOF-SIMS 对Alq3有机层进行了全面表征。 图2. Alq3的分子结构式 图3和图4均为市售Alq3材料在正离子模式下的TOF-SIMS谱。TOF-SIMS结果表明,利用Au+和Ga+离子源均可检测到Alq3碎片的质量特征峰,但Au+离子源对这些碎片的灵敏度更高。比如,对比相同离子电流下的Au+和Ga+离子束对质量数为315的Alq2分子碎片的灵敏度,发现前者灵敏度提高了23倍。此外,只有Au+离子源才能检测到质量数超过1000的质量片段。这些质谱体现出使用Au+源分析Alq3这类分子量较大的材料的优势。 图3. 正离子模式下Alq3的TOF-SIMS谱。分析条件: 一次离子束Au+,22 keV;样品电流:0.07 pA;分析面积:300 μm2;数据采集时间10 min。 图4. 正离子模式下Alq3的TOF-SIMS谱。分析条件: 一次离子束Ga+,15 keV;样品电流:0.3 pA;分析面积:300 μm2;数据采集时间10 min。 此外,Alq3薄膜必须在高真空条件下沉积才能保持其完整性。为研究大气对Alq3薄膜的影响,分别对暴露在空气前后的样品进行了TOF-SMIS表征,结果如图5所示。TOF-SMIS证明了暴露大气后Alq3薄膜发生了分解,并且随着暴露时间的增长,AlqO2质量片段的强度增加,表明水分和氧气会显著改变Alq3的组成。 图5. 负离子模式下Alq3在大气中暴露前后在的TOF-SIMS谱。分析条件: 一次离子束Ga+,15 kev;分析面积:300 μm2。 总之,三重离子束聚焦质量分析器(Triple Ion Focusing Time-of-Flight,TRIFT)结合Au+离子源能显著提高仪器的灵敏度和降低本底,增强TOF-SMIS检测Alq3等高质量数(大分子)材料碎片的能力。
  • Gaming显示技术简介
    薄膜晶体管半导体液晶显示器以其轻薄、低能耗、高画面品质等优势,在家庭娱乐、移动显示、工作办公、市场广告等几乎所有场景都有着广泛的应用。近年来,随着电子竞技比赛的快速发展,并成为国家级正式体育项目,游戏显示(Gaming),逐渐成为显示器件的一个重要发展分支。那么,Gaming 显示有什么特征? Gaming 显示的技术挑战及对策是什么?Gaming显示器的相关标准是什么呢?本文将针对上述问题一一进行介绍。一.Gaming显示器特征Gaming显示器专注于进行游戏画面显示,游戏画面具有元素丰富、色彩鲜艳复杂,且运动画面多、运动速度快等特点。因此,对于Gaming显示器而言,最大的特征是,为了更流畅平滑的将高速运动的游戏画面生动的显示出来,就需要显示器具有与之匹配的高刷新率;同时,为了匹配更高刷新率,也需要显示器具备与刷新率匹配的高响应速度,这样才能在高刷新率下,确保画面显示不会在帧与帧之间存在画面的拖尾;另外,由于游戏画面的产生是由显卡渲染而成,而显卡对于不同色彩复杂程度的画面渲染(Render)时间长短不一,如图1所示,针对某款游戏中的不同画面,显卡渲染时间最短只需要7ms,最长则需要32ms才能完成[1]。因此,对Gaming显示器,为了避免不同显示频率与画面频率不匹配导致画面异常,通常需要频率可根据画面内容在一定范围内自适应调节的功能。图1:游戏中不同画面渲染时间二.Gaming显示技术挑战及对策Gaming显示器的特征需求,对技术实现上会带来诸多挑战,不过,随着技术的不断向前发展和更新,针对这些挑战,从显示面板、驱动芯片、材料等各方面,都不断找到了很多改善对策,确保Gaming产品持续迭代升级。1. 高刷新率:高刷新率是Gaming显示器最主要的特征指标,也是主要的技术挑战。刷新率越高,意味着在1s时间内可以显示更多帧图像,对于高速运动画面中物体位置有更连续、更平滑、更清晰的呈现,因为玩家可以更准确的捕捉物体位置和预测运动轨迹,进而采取更精确、更及时的应对动作,占据游戏主动。因此,刷新率数值一定程度代表了显示器的档位,常规Gaming产品为120Hz和144Hz,更高阶档位Gaming产品有165Hz和240Hz,甚至360Hz及以上超高刷新率。高刷新率的技术挑战主要是面板的驱动能力需要大幅提升。这是因为显示面板都为逐行扫描显示,所有行扫描需在1帧时间内完成,如常规60Hz产品一帧总时间为1s/60Hz≈16.7ms。刷新率越高,则意味着留给每一帧画面扫描的时间相应减少,如120Hz产品一帧总时间为1s/120Hz≈8.3ms。这就需要提升驱动能力,确保在更短的时间内,完成相同的像素驱动。提升显示器的驱动能力,对液晶显示面板阵列的核心要求是确保高刷新率下像素的充电率。通常从两方面来提升,一方面是降低驱动负载,例如增加降低驱动线路走线厚度,降低电阻,或采用电阻率更低的走线材料,另外可以增大不同走线之间绝缘层的厚度,从而降低驱动走线的电容负载,等等;另一方面是提升驱动速度,例如可通过采用氧化物等迁移率更高的半导体材料和制程,提高驱动电流,从而提升驱动速度,等等。高刷新率的技术挑战还有传输速率、带宽等电路相关。刷新率越高,所占据的数据量也等比例增大,因此Gaming产品需要eDP等高速的传输接口和大带宽驱动系统,确保画面的正常显示。2. 快速响应:帧与帧之间切换所需的时间称为响应时间。LCD显示器是通过施加外部电压来控制液晶分子偏转,以调整液晶透光来达到画面显示的目的。而液晶分子从灰阶到灰阶的“偏转态→恢复态→偏转态”之间的响应过程需要一定的时间,即存在液晶延迟反应。因此,响应速度越快,画面越清晰。响应速度也是Gaming产品的重要指标,常规产品响应速度有3ms,高端产品液晶产品可实现1ms。如响应时间太大,超过一帧时间后,会出现需要显示当前一帧的信号时,液晶仍未在上一帧画面处未完全恢复,就容易在人眼视觉上产生拖尾现象。Gaming产品的技术挑战是显示画面运动速度快,很容易产生拖尾现象,进而使动态画面清晰度下降、画面不连贯,带给游戏玩家较差的视觉感受[2]。针对响应时间,通常采用开发快速响应液晶材料,液晶低盒厚设计、像素优化设计和电路驱动增强等对策,使得液晶偏转速度提升,减小响应延时,从而达到减轻画面拖影的目的。普通响应液晶与快速响应液晶的动态画面拖尾显示效果对比如图2所示。图2:普通响应液晶与快速响应液晶的动态画面拖尾显示效果对比3. 变频显示(VRR):如前所述,目前显示器的通用显示方式是在接收到显卡输出的画面信息后,逐行扫描将画面完整呈现出来,然后等待一段时间后(即V-blanking),进行下一次扫描显示,从而实现画面的反复更新。当液晶显示器的刷新率设定在固定值60Hz时,如果显卡生成图像的帧速也是60FPS(Frame per Second),此时我们就能看到顺畅的画面。但在实际使用中,由于图像处理器(Graphics Processing Unit,GPU)渲染图像的实时更新传输,显卡输出的帧速可能会高于或低于显示器的刷新率。当显卡GPU输出帧速高于显示器的刷新率时,会出现画面撕裂(Tearing),如图3所示。同样的,当显卡的输出帧速低于显示器的刷新率时会出现画面卡顿(Stuttering)和延迟(Lag)[3]。图3:显示画面出现撕裂示意图为了解决显卡输出帧速和显示器刷新率不匹配引起的图像撕裂和卡顿问题,传统的解决方式是采用垂直同步技术(V-sync)。V-sync技术主要是使显卡输出的视频信号发生在显示器帧切换的V-Blanking阶段,这样显卡输出的帧速就会强制保持与显示器的刷新率同步。然而显卡的性能往往限制了帧画面的处理速度,如果显卡渲染画面的时间比显示器的画面刷新率时间长,依然会出现某帧画面重复显示而引起视觉卡顿现象。因此,显卡厂商为了解决V-sync技术带来的画面卡顿问题,推出了可变帧刷新率(Variable Refresh Rate,VRR)技术。VRR技术通过调整帧与帧之间的V-Blanking长度达到改变帧率的目的,允许显示刷新率随着渲染帧率而动态变化,可以实现显示器的刷新率始终和显卡输出的帧频同步,即显示器的刷新率始终受到显卡的控制,随着显卡帧率的变化而变动,从而确保画面的连贯。图4为V-sync技术与VRR技术对比图,可以看出VRR技术通过调节V-Blanking长度避免了卡顿问题。图4:V-sync技术与VRR技术对比图三.Gaming显示相关标准根据不同的显示驱动方案,Gaming显示技术认证标准可分为AMD Free-Sync和NVIDA G-Sync两种。1.AMD Free-SyncAMD Free-Sync是由美国超微半导体公司推出的一项使用行业标准来实现动态调整刷新率的技术。Free-Sync技术主要是采用DP和HDMI接口,通过动态调整帧与帧之间的V-Blanking长度,可以将显示器的刷新率和兼容Free-Sync技术的显卡帧率进行同步,从而大幅降低画面输入延迟,消除游戏卡顿、撕裂现象,从根本上解决显示难题。目前,Free-Sync技术主要分为Free-Sync、Free-Sync Premium和Free-Sync Premium Pro三个等级。Free-Sync Premium相对于Free-Sync更进一步,其刷新率要求至少支持到120Hz,同时也支持低帧率补偿(Low Frequency Correcting,LFC)。LFC是指当帧率降低到显示器的最小刷新率以下时,会对当前帧率进行倍频,以便达到显示器刷新率范围以内。例如显示器范围为48~144Hz,当前帧频为40FPS,则进行2倍频处理为80FPS,从而以80Hz进行显示。而Free-Sync Premium Pro给电竞显示器带来了更多HDR(High Dynamic Resolution)功能,可以使电竞爱好者享受到HDR级别的视觉体验。表一列出了AMD Free-Sync标准三个等级规格的对比情况。项目Free-SyncFree-Sync PremiumFree-Sync Premium Pro无撕裂√√√低闪烁√√√动态刷新率F范围Fmin≤48HzFmax≥Fmin+20HzFmax≥120HzFmax≥120Hz低帧率补偿可选√(Max Hz)>2.4 x Min Hz√(Max Hz)>2.4 x Min HzGTG≤4ms≤4ms≤4ms色域可选可选≥DCI-P3 90%亮度范围可选可选Max ≥ 400 nitAve. ≥ 350 nitMin ≤ 0.25 nit色深可选可选≥ 10bit@DP/HDMI≥ 8bit@eDP表一:AMD Free-Sync标准三个等级规格对比在Free-Sync模式下,动态刷新率的实现主要是通过调整帧与帧之间的V-Blanking长度,刷新率越低,则V-Blanking越长。目前液晶显示器的像素开关单元TFT在关闭状态下仍存在一定的漏电流,这样随着时间增加,像素电容电荷量减少从而影响到液晶偏转,造成同一灰阶在不同的刷新率下存在一定的亮度差异。当这种亮度差异过大时,人眼就会感受到闪烁感。因此,亮度变化特征是评价液晶显示器是否支持Free-Sync技术的一项重要指标。其方式是,首先在常规60Hz下将显示器闪烁(Flicker)调整为最小值,然后在Free-Sync模式下,测试灰阶L128在最小刷新率Fmin下的亮度Lmin和最大刷新率Fmax下的亮度Lmax,要求亮度变化率满足公式(1): (1)同理,测试灰阶L255的亮度变化率满足公式(2): (2)2. NVIDIA G-SyncG-Sync技术是由NVIDIA公司提出的一种针对画面连贯性的技术,通过在显示器中内置G-Sync芯片实现与GeForce显卡进行通信。G-Sync技术也是通过调整V-Blanking长度来实现数据同步的。支持G-Sync技术的电竞显示器,可以根据显卡的输出帧速自动调节刷新率,从而解决画面的撕裂、卡顿问题。目前,NVIDIA将G-Sync技术分为了G-Sync Compatible、G-Sync和G-Sync Ultimate三个等级。普通的G-Sync Compatible只需要显示器支持VRR功能,并通过NVIDIA的兼容认证,而不需要在显示器中内置G-Sync芯片。因此,一般支持Free-Sync功能的电竞显示器都可以实现G-Sync Compatible。而G-Sync等级的电竞显示器则需要满足更高的要求,不仅要在显示器中内置G-Sync芯片,还要经过300多项兼容性和图像质量测试。G-Sync Ultimate等级是在G-Sync等级的基础上,通过引入高画质的HDR功能,赋予电竞显示器出色的无失真功能,使电竞爱好者充分感受到画面的每一处细节表现。表二列出了G-Sync标准三个等级的规格对比情况。等级VRR(无闪烁)300+图像质量认证HDR(≥1000nit)G-Sync Compatible√G-Sync √√G-Sync Ultimate√√√表二:NVIDIA G-Sync标准三个等级规格对比G-Sync标准Flicker值基本评价方式如下:首先在常规60Hz下调整闪烁测试图形画面使Flicker为最小值,然后在G-Sync模式下,保持显示画面为全屏L128灰阶,以显示器可支持的最低刷新率进行画面老化30min,然后通过使用测量设备找到当前L128画面的最差Flicker点,并使测量设备探头保持在此位置。最后按照G-Sync的刷新率方式,以步长12Hz,分别测量最低到最高刷新率下灰阶L128的Flicker值。测试结果要求,刷新率大于等于35Hz时,Flicker值小于-45dB(JEITA标准);刷新率小于35Hz时,Flicker值小于-43dB(JEITA标准);目前,可通过减小像素TFT Ioff漏电流、开发新液晶材料、Blanking区间数据插值等方法降低Flicker值,改善画面闪烁,提升显示品质。四.总结伴随着电子竞技产业项目的蓬勃发展,以电竞游戏为基础,信息技术为核心的电子竞技比赛对显示设备提出了更高的要求。以高刷新率、低响应时间、无卡顿撕裂、无画面闪烁等为特点的Gaming显示技术不断完善,越来越得到专业人士和游戏玩家们的认可。随着更多新技术的加持,Gaming显示技术也将给用户带来更加极致的观赏体验。参考文献:[1] Gerrit A Slavenburg, Marcel Janssens, Luis Lucas, Robert Jan Schutten, Tom Verbeure. Variable Refresh Rate Displays[C],SID 2020,46-1:669-672 [2] Wu S T . Fundamentals of Liquid Crystal Devices[M].John Wiley & Sons, 2006. [3] 邵喜斌,廖燕平,陈东川,等.薄膜晶体管液晶显示技术原理与应用[M].北京:电子工业出版社,2022
  • 铜铟硒薄膜晶体管助力高性能电子器件!
    【研究背景】可溶液加工半导体是固态电子设备制造中的重要材料,因其在电子器件如逻辑电路和显示器等领域的应用而备受关注。与传统的硅等材料相比,这类半导体具有可扩展性、成本效益和高吞吐量等优点,尤其在高速逻辑电路和高分辨率显示背板的应用中展现出巨大的潜力。然而,这些材料的性能却受到结构缺陷的严重限制,这些缺陷主要来源于溶液前驱体的沉积过程,限制了其在新兴电子应用中的采用,因此亟需解决缺陷导致的性能问题。为了克服上述问题,美国伊利诺伊大学厄巴纳-香槟分校Cao Qing课题组在可溶液加工半导体的研究中取得了新进展。该团队设计并制备了基于铜铟硒(Cu-In-Se)化合物的薄膜,并实现了高性能晶体管的制造。通过在薄膜中有意引入多种异质缺陷,研究人员成功形成了规则的电气无害缺陷复合体,从而清除了能带隙中的深能级陷阱利用这些有序缺陷化合物,团队显著提高了载流子传输性能。实验结果显示,CuIn5Se8 晶体管的场效应迁移率达到了 58 ± 10 cm² V⁻ ¹ s⁻ ¹ ,最大值超过 90 cm² V⁻ ¹ s⁻ ¹ ,并且实现了超过 35 μA μm⁻ ¹ 的高开态电流密度。该器件在开/关比和亚阈值摆幅方面表现出色,均匀性和稳定性也优于其他溶液加工半导体。进一步的应用展示中,CuIn5Se8 晶体管与碳纳米管薄膜晶体管集成,成功构建了 3D 高速互补逻辑门和高分辨率微型 LED 显示器,推动了该领域的发展,为解决可溶液加工半导体在应用中的缺陷问题提供了新的思路和技术路径。携手们开始探索层状鲁德尔斯登-波普尔钙钛矿(RPPs)作为新型发光材料。RPPs因其固有的量子阱结构和可控的光电特性,显示出优越的激子动力学和高PLQY,尤其是在高生成率下,固有PLQY超过30%。此外,通过调节量子阱宽度或有机配体的成分,RPPs可以实现可调的发射波长。这些特性使得RPPs成为高性能LED的潜在材料,尽管基于纯单晶层状RPPs的微米级PeLEDs尚未得到广泛报道。【表征解读】本文通过透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)等高分辨率表征手段,发现了CuIn5Se8薄膜的晶体结构及其缺陷特征,从而揭示了材料在高性能薄膜晶体管中的应用潜力。在TEM/STEM表征中,使用了Thermo Scios 2双束扫描电子显微镜/聚焦离子束系统制备横截面样品,进一步利用FEI Themis Z分析型TEM/STEM进行高亮度场发射电子源(X-FEG)成像,以获得高角度环形暗场成像(HAADF)图像和对应的能谱(EDS),为CuIn5Se8的微观结构提供了重要的信息。本文针对CuIn5Se8薄膜晶体管的电气特性,通过高分辨率的微观机理表征,得到了其载流子迁移率及其与晶体缺陷的关系。这一发现进一步挖掘了材料在集成电路和显示技术中的应用潜力。在电子器件制造过程中,使用了光刻和电子束蒸发等技术精确地制作了源极、漏极和栅极电极,结合原子层沉积(ALD)法制备的HfO2栅氧化层,确保了器件的良好电气性能。通过对电气特性和微观结构的深度分析,得到了CuIn5Se8薄膜在低功耗逻辑电路中的应用前景,特别是在3D单片集成互补逻辑电路中的重要性。在此基础上,本文通过一系列表征手段,包括原子力显微镜(AFM)、Rutherford背散射(RBS)、X射线光电子能谱(XPS)等,对CuIn5Se8和其制备的薄膜晶体管进行了综合表征,结果显示出其优异的电气特性和稳定性。这些表征手段的结合使我们能够深入研究CuIn5Se8的物理化学特性,并为其在微型LED显示器中的应用奠定了基础。【图文速递】图 1. Cu-In-Se 薄膜的沉积与表征。图 2. 基于溶液沉积的 Cu-In-Se 薄膜构建的晶体管。图 3. Cu-In-Se 化合物的计算电子能带结构和载流子传输特性。图 4. CuIn5Se8 晶体管的电气特性。图 5. 单片集成 CuIn5Se8 和碳纳米管薄膜晶体管的 3D 反相器。图 6. 高速环振荡器。图 7. 由 CuIn5Se8 晶体管驱动的单片微型 LED 显示屏。【科学启迪】本文通过高分辨率透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)等先进表征技术,深入揭示了薄膜的微观结构特征及其晶体缺陷,为后续材料设计奠定了基础。其次,针对薄膜晶体管的载流子传输特性,采用电子束蒸发和原子层沉积等方法进行微观机理分析,展示了如何通过精确控制制备工艺来提升器件性能。此外,通过原子力显微镜(AFM)和X射线光电子能谱(XPS)等手段,深入探讨了薄膜的表面形貌与成分均匀性对电子器件性能的影响。这表明,材料的微观特性与其宏观性能密切相关,强调了在材料开发过程中综合考虑微观结构与电学特性的重要性。综上所述,本文不仅推动了Cu-In-Se薄膜材料的应用进展,也为其他新型半导体材料的研究提供了宝贵的经验和启示,促进了柔性电子、光电子器件等领域的技术创新。原文详情:Hsien-Nung Wang et al. ,Solution-processable ordered defect compound semiconductors for high-performance electronics.Sci. Adv.10,eadr8636(2024).DOI:10.1126/sciadv.adr8636
  • 亚微米分辨红外+拉曼同步测量技术——打破传统芯片/半导体器件失效分析局面
    前言芯片是科技领域核心技术,是电子产品的“心脏”,是“工业粮食”。在新一轮科技革命与产业变革背景下,大力推动高科技产业的创新发展对于抢占全球高科技领域制高点、增强产业发展优势和提高国际竞争力的战略作用更加凸显。 而如何解决芯片/半导体器件有机异物污染问题,成为众多科研工作者的研究难题。虽然元素和无机分析存在高空间分辨率技术,如SEM-EDX,但在微米和亚微米尺度上识别有机污染物一直是巨大挑战。在过去的几十年里,传统的傅里叶变换红外光谱FTIR/ QCL显微技术虽然得到了广泛的应用,但在关键问题上存在一些局限性,例如相对较差的空间分辨率(5-20 μm)和对仪器介绍图1. 设备及原理图 基于光学-光热技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage可实现远场红外+拉曼显微镜的同步测量,该技术具有非接触、免样品制备、亚微米分析等优点,已广泛应用于硬盘和显示器等器件的成分分析。mIRage扩展集成的同步拉曼显微镜,主要用于目标物的应变/应力、掺杂浓度、DLC等测试。获取的高质量反射模式光谱可以通过亚微米红外拉曼同步测量系统mIRage在商业数据库中进行光谱比对检索,终确定亚微米到微米的污染物成分。mIRage光谱的显著优势:1. 亚微米红外空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须制备样品;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索 的污染识别和控制对于把控制造过程以及高科技产品开发至关重要,随着愈发严格的标准和产品尺寸的缩小,识别较小的污染物变得越来越重要和困难。mIRage的先进光学光热红外(O-PTIR)技术的出现彻底改变了微电子器件微小缺陷的红外化学分析方法。mIRage的工作原理是用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,集成拉曼光谱仪后,mIRage系统可提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。 精彩案例分享 在本文中,我们将介绍通过亚微米红外+拉曼同步测量技术对只有几微米尺寸的缺陷进行电子器件失效分析的研究,案例中的硬盘组件和显示组件由希捷技术提供。 图2为微电子器件免制样,原位测量数据。该案例展示了互补的、验证性的mIRage红外光谱和拉曼光谱的信息。尽管mIRage红外光谱是在反射模式下采集的,但它完全可以与FTIR/ATR数据库中的光谱相媲美。通过与KnowItAll(Wiley)红外光谱和拉曼光谱数据库进行比对,确定这种特殊的污染物可能是一种聚醚(缩醛)材料。污染可能源于研发过程中的异物,包括聚合物、润滑剂等。在此次测试中,mIRage获取的谱图与标准谱峰位重合度超过95%。图2. 左:可见图像显示6 µm缺损位置,右上:与标准数据库比对未知物质的红外光谱;右下:与数据库比对未知物质的拉曼光谱 在许多情况下,传统红外仪器可能会收到一些物质的影响无法直接接触到污染物。图3显示了金属薄膜下20 μm的黑色污染,从金属薄膜的白色圆形分层中可以看到,这是由于有缺陷的薄膜晶体管显示器突出造成的。传统的ATR显微镜的使用将受到薄膜存在的限制,阻碍直接接触污染粒子。此类样品可以通过mIRage进行光谱焦平面定位实现光谱检查,无需额外的样品制备或对粒子进行物理提取。特别是在1706 cm−1波段有强宽红外吸收带的存在,表明污染粒子可能是硫化的苯乙烯-丁二烯橡胶(SBR),已氧化形成羧酸。图3. 左上角:样品和测量的示意图;左下:光学图像缺陷;右:缺陷区域不同位置的mIRage红外光谱。颜色对应于光学图像上的标记。 结论综上所述,我们引进的革命性红外拉曼同步测量系统mIRage在显微红外方面取得了重大进展,如亚微米分辨率测量(~500 nm)、非接触模式测量(非ATR)、非破坏性和免样品制备、点线/面多模式分析、无任何色散/散射伪影以及提供数据库检索等。希捷科技选择mIRage系统是为了研究制造工艺和产品早期开发的污染改善问题。本文介绍的基本原理和实例表明mIRage在识别硬盘和相关精细电子行业的缺陷和污染方面有诸多优势。在红外显微光谱的重要发展领域中,mIRage技术具有颠覆性的潜力。而拉曼光谱仪的联用进一步拓展了它的能力,实现亚微米红外+拉曼显微镜同步测量(同一时间、同一点、同一空间分辨率),以提供互相印证的补充和确认信息。亚微米分辨红外拉曼同步测量系统mIRage的应用领域正在不断扩大,涵盖了聚合物、药学、司法鉴定、半导体器件缺陷分析、生命科学、环境地质、古生物等众多传统领域。
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • 感恩节直播有礼!光电材料器件研究与表征技术主题网络会议倒计时!
    11月24日上午,在2022年感恩节之际,仪器信息网将携手日立科学仪器(北京)有限公司特别举办“追光逐电 与日俱新”光电行业主题网络会议。此次会议将聚焦光电材料器件研究进展与相关表征技术,同时,作为感恩节直播活动,直播间将设置多轮千元红包雨、精美礼品抽奖回馈参与直播的广大用户。【直播免费报名倒计时,赶快点击报名】一、活动背景光电产业是将光子学、电子学、信息学技术相融合的高新技术产业,是围绕光信号产生、传输、处理和接收等环节,开展各类零件、组件、设备制造及应用市场商业行为活动的总和。光电行业虽是一个新兴产业,但已呈现出生机勃勃的发展态势,产值指标一路扶摇直上。据数据,2019年光电行业总体规模已超过1.5万亿元,预计全球光电市场仍会持续以两位数的速度增长。正是这种快速增长的产业发展速度,吸引了众人的眼球,带动了世界各国光电相关产业的发展。光电子材料、器件是光电子技术的关键和核心部件,是现代光电技术与微电子技术的前沿研究领域,对应材料、器件的表征测试技术对于光电技术发展至关重要。为推动光电表征测试技术及光电产业的发展,仪器信息网携手日立科学仪器(北京)有限公司,11月24日特别举办“追光逐电 与日俱新”光电行业主题网络会议,邀请光电材料、器件研究专家及检测技术专家,以线上报告分享形式,共同探讨光电产业检测技术的最新进展。二、活动时间11月24日 09:30 –12:00三、活动报名点击会议官网报名,或扫码以下二维码报名https://www.instrument.com.cn/webinar/meetings/hitachi2022/ 四、活动日程时间 报告题目演讲嘉宾09:30会议开场及红包雨主持人09:32薄膜光电器件中的界面能带结构陈琪(中国科学院苏州纳米技术与纳米仿生研究所 研究员)10:00日立电镜在光电行业的应用(三维形貌观察和失效分析)周海鑫 (日立科学仪器(北京)有限公司 电镜市场部 副部长)10:28抽奖及红包雨:小米充电宝主持人10:30面向未来显示的量子点发光材料与器件宋继中(郑州大学 教授)11:00日立光谱在光电材料研发测试中的应用王锡树(日立科学仪器(北京)有限公司 光谱应用工程师)11:28抽奖及红包雨:新秀丽双肩包主持人五、活动福利直播间千元惊喜红包雨(需要在微信内进入直播);优质问答奖,日立甄选高定礼盒;二等奖,新秀丽双肩包;三等奖,小米充电宝六、活动嘉宾宋继中 郑州大学 教授【嘉宾简介】本科毕业于郑州大学,曾在显示面板公司-友达光电从事OLED研发,目前为郑州大学教授。近年来一直从事发光显示材料及器件教学及科学研究。在发光显示领域,首次实现了铯铅卤量子点的电致发光,被Science、Nature Nanotechnology等评价为“首次(first)发展”、“发起了(initiated)”、“开启了(opened)”该LED体系。研究成果在Nature Photonics、Advanced Materials等期刊上共发表SCI论文80余篇,被SCI他引12000余次,获国家发明专利授权20项。支持国家优秀青年基金、江苏省杰出青年基金等项目。2015、2017年连续指导第十四届(一等奖)、第十五届(特等奖)“挑战杯”全国大学生课外学术科技作品竞赛,获第十五届“挑战杯”全国大学生课外学术科技作品竞赛优秀指导教师奖。【分享题目】面向未来显示的量子点发光材料与器件【分享摘要】全无机铯铅卤(CsPbX3)量子点发光二极管(QLEDs)具有窄而可调谐的发射光谱,显示出高纯度和真实的色彩,被认为是未来柔性和高清显示有力的候选者。报告的内容包括: 1. 率先构筑了该体系量子点发光器件,被评论为“发展(developed)”、“发起(initiated)”了该方向; 2. 针对应用化受限于电-光转换效率低的问题,提出了该体系量子点表面态及缺陷态的调控思路,发展了“混合溶剂纯化”、“杂化钝化”、“界面钝化”、“异质相”等策略,与国际同行交替刷新了器件的最高效率; 3. 针对应用化受限于难以规模化生产的问题,发展了“三配体协同”的方法,实现了高效量子点的规模化合成。陈琪 中国科学院苏州纳米技术与纳米仿生研究所 研究员【嘉宾简介】陈琪,研究员,博士生导师,创新实验室副主任,获评国家优秀青年科学基金,江苏科技创新U35攀峰提名奖,苏州杰出青年岗位能手等。担任Chinese Chemical Letters青年编委,TCL集团技术顾问等。2014年获中国科学技术大学博士学位,2014-2017年在中科院苏州纳米所和美国华盛顿大学从事博士后研究;2017-2020年任中科院苏州纳米所副研究员,2021年晋升为研究员。研究领域为新能源、新型显示器件中的材料与界面。迄今在Nature Commun.,J. Am. Chem. Soc.,Adv. Mater.,Energy Environ. Sci.,Nano Lett.等期刊发表论文50余篇。作为项目负责人承担科技部国家重点研发计划课题,国家自然科学基金,龙头企业合作项目等十余项。【分享题目】薄膜光电器件中的界面能带结构【分享摘要】薄膜光电器件,包括太阳能电池,光电探测器,发光二极管和激光器等,是由电极层,界面层和活性层等多层薄膜堆叠组成的光-电或者电-光转换器件,包含丰富的层间甚至层内异质结,其中的关键科学问题是界面能带结构与器件性能的构效关系。薄膜光电器件的界面能带结构非常复杂,不仅随空间位置改变,而且在工况下动态演变,难以根据界面材料组成由理论模型准确推测。 本人致力于发展横截面扫描探针显微术,突破薄膜光电器件垂直封闭结构的限制,解决包埋界面能带结构的工况表征难题。通过界面能带结构与器件性能之间构效关系的准确理解,解析薄膜光电器件未知工作机理,从而为界面设计提供判据,突破器件性能瓶颈。周海鑫 日立科学仪器(北京)有限公司电镜市场部副部长【嘉宾简介】周海鑫博士毕业于北京化工大学,主修高分子材料和化学专业,曾在德国马克斯普朗克高分子研究所电镜中心工作,主要负责电镜的测试和相关研究工作,对扫描电镜和透射电镜的原理、操作及应用非常熟悉。周博士目前主要负责日立表面科学相关产品的技术支持、应用开发和产品推广,具有将近10年的电镜相关领域工作经验。【分享题目】日立电镜在光电行业的应用(三维形貌观察和失效分析)【分享摘要】电子显微镜作为重要的微观表征设备,已经广泛的应用于光电行业。本报告将重点介绍日立各类电镜及其相关产品的特点以及其在光电相关行业的应用案例,包括各类光电材料的形貌观察和成分分析,光电器件的三维形貌观察和失效分析,光电薄膜的粗糙度测量及界面分析等。王锡树日立科学仪器(北京)有限公司光谱应用工程师【嘉宾简介】王锡树,日立科学仪器(北京)有限公司 分析应用部 光谱产品工程师,硕士毕业于上海师范大学,目前主要负责日立紫外-可见-近红外分光光度计、荧光分光光度计等光谱产品的应用工作,拥有多年光谱分析测试技术和应用解决方案等方面的工作经验。【分享题目】日立光谱在光电材料研发测试中的应用【分享摘要】介绍日立荧光光度计和紫外可见近红外分光光度计对光电材料的表征
  • 桐力TOCA三代开始,全贴合显示技术的普及时代来了
    全贴合技术作为显示行业的一个关键技术不仅让用户有极致的光学体验,还能够优化整机结构实现轻薄和制造后段的极简工艺,是显示行业未来一个主力技术赛道。近年车载显示技术开始推广分体显示模组,各大车厂纷纷开始推出全贴合用车载显示器件,但始终因为两个难题导致在显示应用普及全贴合技术的过程进展缓慢:难题一,车载盖板表面3A(AG\AR\AF)技术的普及让传统贴合OCR水胶或OCA片材胶无法得到充足的UV固化能量,市场需要一款非UV固化的热固性OCA片材粘接材料。难题二,车载显示屏产品造型的多样化,制造工艺的复杂性以及成本偏高都对传统的贴合材料和工艺提出了更高的要求。基于以上原因,桐力在发挥TOCA一代(100%有机硅)、二代(丙烯酸链有机硅)优势的基础上,根据全贴合应用领域的发展和需求,对公司研发技术成果进行了系统性的整合,顺势推出了这款革命性的全贴合材料——TOCA三代。TOCA——Tolyy Optically Clear Adhesive,是桐力光电基于特有的纳米研发技术开发的一系列光学胶膜(oca)的统称。具有光学效果优质、耐候性能突出、贴合方式灵活、性价比高等优势。如果说TOCA一代解决了传统有机硅胶水施胶工艺复杂的问题,TOCA二代解决了大尺寸全贴合问题,那么TOCA三代就是在以上产品优势整合基础上的升华。TOCA三代在性能上具有粘接强度高、非UV固化、针入度和厚度可调等优势,能够基于Oled、α-si、Lpts、IPS推出不同的产品,并通过工艺和设备帮助贴合企业解决曲面、长条、拼接等不同类型的工艺难题。桐力TOCA三代从单体材料生产、聚合反应、涂布生产均在自有工厂进行,通过与模切工厂及代理伙伴的合作将交付周期压缩到十个工作日内。TOCA三代搭配桐力自主研发设计的核心贴合设备,在一次良率、用工投入、工艺上均实现了质的飞越。据统计,搭配TOCA三代和桐力设备的产线可实现一次良率98%及以上,节约40%以上的人力,且工艺极简,换线灵活,经济效益巨大。目前桐力TOCA对外销售多采取in-house商业模式,即桐力输出核心设备和技术,帮助客户灵活搭建产线,结合TOCA产品的使用,为客户高效搭建生产条件,减少客户初期投入和产线调整的成本控制。目前TOCA三代产品已广泛应用于众多旗舰车型,TOCA系列胶膜目前已形成超30万㎡/月稳定出货。OCA过去由于价格、工艺等原因,一般仅用于消费类产品,车载等其他领域应用较少,TOCA系列推出后,搭配贴合设备以及核心工艺,桐力真正意义上把光学胶膜(OCA)的贴合成本降到了可以普及的阶段。发布会最后,桐力光电董事长石东表示,随着桐力TOCA三代产品的推出,桐力将基于材料、工艺、设备整合从车载显示向全贴合产品的其他领域延伸,桐力广招代理和模切伙伴,希望与大家一起打造国产材料的民族品牌,让应用创新不受材料约束,让创新材料赋能中国智造。苏州桐力光电股份有限公司成立于2012年,主营光学胶粘剂和光学粘接片材胶,基于自有知识产权的材料、工艺和设备方案,为显示行业输出全贴合完整方案。企业愿景:成为全球工业领域顶尖的光学粘接方案领导者企业使命:基于高效率和年轻化,搭建工业胶粘剂高水平研发平台,用创新材料造福人类企业核心价值观:客户第一、价值创造、学习成长
  • 西安交大前沿院邵金友教授在原子/分子团簇与器件制造领域取得新进展
    原子/分子团簇是物质结构的一种新形态,具有独特的本征性质。从原子/分子团簇到器件的跨尺度制造,将为高端装备和新兴电子等产业发展带来深刻变革。团簇的多物质构效关系、宏量制造、团簇结构跨尺度构筑以及团簇器件的高性能制造等是原子/分子团簇器件制造的关键发展方向,主导着从原子到产品制造的发展历程。把握这些发展背后的重要机遇,将有助于占领原子级制造研究的制高点,引领原子级制造方法的变革。由原子/分子团簇直接构筑功能器件或构件,是产品制造的新形式,在先进制造领域具有重要的意义,其中包括两个方面。首先,可以微缩器件的特征尺寸并提高制造精度。在集成电路的发展中,越小的器件尺寸意味着更高的集成度和更好的性能。利用原子/分子团簇直接构筑功能器件或构件可以将器件尺寸缩小到原子水平,将成为在后摩尔时代提高芯片性能的重要途径。其次,该策略更具颠覆性的意义,因为它可以突破分子和晶体的限制,通过对原子的精细操控来创造新分子、新材料和新器件。因此,原子/分子团簇直接构筑功能器件或构件不仅是由原子尺度物质科学支撑的先进制造技术,而且是推动物质科学发展的一种未来技术,甚至是未来物质科学的一种新形态,其必将颠覆现有制造方式获得的产品性能,深远影响高端国防装备和新兴电子产业的未来发展。另一方面,通过对原子结构的调控,能够提高材料的工作温度,实现陶瓷增韧,为高超航天器提供新型耐高温材料与结构。在电子产业领域,将原子/分子团簇等按照一定的方式进行组装能构筑具有特定功能的器件,如具有超高分辨率、超高亮度、超快响应能力的新型显示器、红外光电探测系数数倍增强的超敏传感器以及单分子电子器件及其构建的下一代集成电路等。基于上述背景,西安交通大学精密微纳制造技术全国重点实验室/前沿科学技术研究院邵金友教授等从团簇新材料的宏量制造、新型功能器件的原子/分子团簇构筑、团簇—器件的跨尺度制造工艺和装备等三个方面概括了原子/分子团簇与器件制造领域的主要研究进展,总结了原子/分子团簇与器件领域的关键科学问题及面临的挑战,并对其未来发展方向和发展战略给出了建议。特别地,建议从以下三个方面重点关注其中的科学问题研究:1. 在原子/分子团簇及晶胞结构的形性调控机制与宏量制造方面。建议重点研究量子力学在团簇生成及晶胞结构调控过程中的作用机制与控制方法,为原子/分子团簇和晶胞的高性能制造提供量子力学调控原理;研究团簇和晶胞结构形态与材料特性之间的构效关系,为优异特性的材料制造提供合理设计;研究特定形性团簇和晶胞的稳定性和一致性控制方法,为团簇及晶胞的宏量制造提供关键方法保障。2. 在团簇结构的定域组装方法及异质/异构界面特性的调控方面。建议重点研究团簇组装和图形化过程中的界面力学作用机制,为团簇结构制造提供关键理论支撑;研究“自下而上”与“自上而下”相结合的团簇结构定域组装机制与调控方法,实现团簇微纳结构的一致性、批量化制造;研究团簇异质/异构界面的力、热、光、电等基本物理特性形成机制与控制方法,实现团簇结构的基本性能调控。3. 在团簇—微纳结构—器件性能映射关系与一体化高性能制造工艺和装备方面。建议研究团簇形性特征、微纳结构功能特征、器件性能表现三者之间的相互映射关系,为器件功能和性能设计提供理论依据;研究由团簇材料到宏观器件的一体化制造新工艺和新方法,为高性能团簇器件制造提供创新工艺技术;研究典型团簇器件的创新印刷装备,为团簇器件的制造和应用提供制造装备范式。该研究成果以《基于原子/分子团簇结构的材料与器件制造》(Manufacturing From Atomic and Molecular Clusters to Devices)为题发表于材料领域高水平期刊《中国科学基金》。西安交通大学精密微纳制造技术全国重点实验室/前沿科学技术研究院邵金友教授为论文的第一/通讯作者。论文链接:DOI: 10.16262/j.cnki.1000-8217.2024.01.028 邵金友教授简介邵金友,现任西安交通大学科研院常务副院长、曾任职前沿科学技术研究院院长、机械学院副院长、国家杰出青年基金获得者、机械工程学院领军学者、博士生导师。主要从事微纳制造、电子皮肤与可穿戴电子、生物仿生与软体机器人、医工交叉等方面的研究工作。国家自然科学基金“纳米制造的基础研究”重大研究计划重大集成项目首席、国家重点研发专项项目首席,担任国家第六次科技预测(2020-2035规划)极端制造领域专家、十四五国家重点研发计划“高性能制造技术与重大装备”重点专项指南专家。已发表SCI论文160余篇,其中以第一和通讯作者在Nature Communications、Advanced Materials,ACS Nano等国际高水平期刊发表论文80余篇,SCI他引约3100余次,在第一、通讯作者SCI论文中,多篇被Advanced Materials,Advanced Functional Materials,Small,Nanoscale,IEEE Nanotechnology等期刊选为封面亮点论文,入选英国物理学会、美国化学学会和英国化学学会的精选论文或热点论文,被Wiley Video Abstracts,Material View,Advanced Science News,Nanowerk等国际知名学术新闻网站作为研究亮点评述。以第一发明人获得国家授权发明专利22项,获得美国PCT发明专项2项。
  • 2022宁波国际电子元器件产业展览会
    2022中国(宁波)国际电子元器件产业展会时间:2022年 5 月 12-14 日展会地点:宁波国际会展中心同期举办:2022宁波国际照明展览会规模:6大展馆50000平方 参展企业1200家 专业观众50000+主办单位:宁波电子行业协会 中国电器工业协会电工合金分会 支持单位: 宁波市磁性材料商会宁波磁性材料产业集群发展促进中心浙江省磁性材料应用技术制造创新中心浙江省磁性材料产业创新发展服务综合体承办单位:宁波万众展览服务有限公司展会背景电子元器件产业是电子信息产业的基础支撑,汽车电子、互联网应用产品、移动通信、智慧家庭、5G、物联网、消费电子产品等领域成为中国电子元器件市场发展的源源不断的动力,带动了电子元器件的市场需求,也加快电子元器件更迭换代的速度,对我国电子元器件产业的发展既是机遇也是挑战,中国企业要立足当下展望未来,抓住机遇,投入更多的人力、物力、财力,加快新一代具有自主知识产权的新型元器件研发,把中国电子元器件的生产技术提升到新的高度。2022国际电子元器件产业展览会分别于2022年5月12-14日在宁波国际会展中心举办,2022年7月13-15日在厦门国际会展中心举办、2022年12月1-3日在深圳国际会展中心举办。是专注于电子元器件行业国际性、专业化的展会平台,汇聚众多电子元器件具有影响力的参展商,完整展示电子元器件产业链,打造深度的技术交流平台,通过行业趋势解读、政策导向与技术分享,充分挖掘行业发展新需求,共同开拓市场新机遇。展示范围:电子元器件:电阻、电容器、电位器、电感器、电子管、散热器、集成电路、被动元件、敏感元器件、无线技术、存储器件、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电池、电源、开关、微特电机、电子变压器、继电器、印制电路板、集成电路、各类电路、压电、晶体、石英、陶瓷、印刷电路用基材基板、电子胶(带)制品、EMI/EMC电磁兼容技术等;开关、连接器、接插件及线束展区:电子开关、拨动开关、船形开关、按扭开关、微动开关、旋转开关、键盘开关;端子连接器、防水连接器、防爆连接器、导线连接器、圆形连接器、线缆连接器、射频同轴连接器、矩形连接器、光纤连接器、音频连接器、家用电器连接器、军用连接器、电子连接器、电力连接器、特种连接器、工业连接器、印制电路连接器、重载连接器;插头、插座、开关、端子、端子、连接器接触器、硅胶按键、IC圆孔插座、插针、排针;接线端子、绝缘护套、导线及绝缘包扎材料等;电子线材:电源线、音视频线、电脑周边线、汽车插叛头线、线材、线束、扎线、 电磁线、护套线、视线、高温耐热电线等;尼龙扎线带、配线槽、配线标志、接线头、接线端子、线扣、电线固定头、固定座等各类配线器材等。电子材料:磁性材料、胶粘材料、散热材料、防水材料、焊接材料、防静电材料、介电材料、半导体材料、压电与铁电材料、导电金属及其合金材料、气体绝缘介质材料,纳米材料、绝缘材料、电子五金件、电工陶瓷材料、敏感材料、封装材料、压电晶体材料、电子精细化工材料、电子轻建纺材料、电子锡焊料材料、PCB制作材料、光电子材料、电磁波屏蔽材料、电子功能工艺专用材料、电子化学材料及部品等;电子生产设备:线束和连接器生产设备、线圈生产设备、元器件制造设备、表面贴装技术、焊接技术、点胶注胶、涂层设备、测试测量和质量保证、机器人、运动控制、驱动技术、洁净室技术、LED制造设备、材料加工、有机和印刷电子产品、电池和电能存储生产技术、PCB及电路载体制造、电子专用工具等;电子仪器仪表、测试测量及电子生产自动化技术:电子仪器仪表、电子在线测试仪器、电子生产自动化技术产品、环境测试设备仪器、气候环境模拟试验设备、机械环境模拟试验设备、可靠性试验设备等;展示交流1.与全球电子制造、配套中心的长三角地区的电子制造配套企业共同成长。 2.获得范围、高密度的强势宣传,拓展更多的商业机会。 3.与国内外同行业领导厂商同台展示、切磋技术。 4.接触长三角地区最具影响力的业界人士及用户企业最终决策者、实力买家和研发工程师。信息交流这意味着要知道如何与观众的多样化交换信息,展前、展中、展后、更有效地与观众进行对话,直接与他们建立联系。 1.考虑有效的展台风格及布局,便于更多的产品展示,并专注观众视觉焦点着重展示,让观众消息交流方便。 2.制定观众邀请计划,吸引观众莅临展台。不仅发送电子邮件来邀请客户,还可以通过展品快讯发送邀请。 3.展览期间约见重要客户,并创建一个充实的预约日程。 4.准备展品文档,如演示 PPT、视频和小册子,并可为海外观众提供外语版本。专业观众及买家1.消费类、计算机、通讯、工控与自动化、照明、航空航天、军工等行业的采购订单大量涌向展会现场。 2.智能终端、汽车与汽车电子、新能源、电力、医疗、三网融合、云计算、物联网、轨道交通等新的行业也从四面八方汇聚展会现场,寻求合作。 3参观观众50%以上是从事采购和研发工作。 4.团体参观的买家主要包括:中国电子集团、福群集团、比亚迪集团、创维集团、康佳集团、中兴通讯、华为集团、TCL 集团、 天马微电子、珠海格力电器、三星电子、深圳长城开发、富士康科技集团、美的集团、盈科、惠而浦、万和、富信、德力、亚艺 电子、步步高集团以及各个行业协会企业代表等。宣传推广1.数百家行业媒体通过其官网和优质数据库,同时发布展商的最新展品。 2.行业优秀媒体长期对展会进行大规模的宣传、报道。 3.展会档期各大门户网站对展会进行重点的专题报道。 4.广播电台、电视台多时段、多频率的对展会现场进行全方位报道。新闻发布 利用NBIECE的独特宣传能力,有计划的进行企业宣传。 1.展前,未雨绸缪的发布新闻稿、展品技术新闻稿。 2.展中,充分利用组委会邀请的众多媒体资源,更多的做企业品牌,形象推广。 3.展后,做好会后回顾工作,在行业、协会、媒体等渠道进行广泛传播。增值服务1.市场推广服务:门票、新品、微博微信、展商专访及报道、新产品/新技术推介会、买家洽谈活动、会刊、现场广告。 2.除常规方式外,NBIECE还拥有一支专业的队伍协助您充分利用展会平台进行市场推广。参展流程1、参展企业确定面积及选定展位;2、填妥参展申请回执(合同)并签字盖章,然后将该表传真或扫描至承办单位;3、展位选定后,企业3个工作日内须将参展费用汇入指定帐户,否则不予保留所选展位;4、组委会将于展前一个月将参展商手册寄给参展单位;5、大会会刊将免费为参展企业刊登企业简介(200字内)。 大会组委会:宁波万众展览服务有限公司TEL:+86-21-62963333FAX:+86-21-62966328联系人:张先生 19921817222微信同号邮箱:shll1688@vip.sina.com展会预定:联系人:杨女士 17717968860(微信同号) 3571565401展会官网:www.eci-expo.com
  • 导致电子天平无法显示的原因及解决方法
    实验室电子天平是精密仪器,客户常常报怨这种问题或那种问题的,出现问题一般都是需要专业的人员才能维修,我们客户自己能不能自行解决呢?电子天平普通常规出现的问题有开机后完全无显示,以下给大家详细介绍7种无显示的常见现象的原因:      1、开启问题_开启后完全无显示      (1)天平放置的环境太差改善环境;      (2)天平菜单中的参数设置不好调入菜单后,用&ldquo RESET&rdquo 功能,正确退出菜单,回到出厂设置;      (3)称重室内留有手的体温尽量减少这一人为因素      (4)被称量物体的温度未与天平达到等温将样品放置在天平旁等温。      (5)样品存在吸水性、放水性、静电、磁性&hellip &hellip 等特性。参照&ldquo 梅特勒&mdash 托利多天平正确称重/电子分析天平,克服上述影响,才能正确称量和微量天平的正确使用&rdquo      2、开启问题_开启后完全无显示:      (1)天平放置的环境太差:环境因素包括:振动、气流、温度、外部磁场,必须改善上述环境,关闭称量室的防风窗,天平才能正常工作。      (2)天平菜单中的参数设置不好:调入菜单后,用&ldquo RESET&rdquo 功能,正确退出菜单,回到出厂设置;      3、开启问题_开启后完全无显示:      1、干燥剂的吸水和放水形成了不同方向的气流,引起了空气浮力的变化,导致称量不稳定,应该将称量室内的干燥剂移走保持稳定的称量环境;      4、开启问题_开启后完全无显示:      (1)未装称盘:断电后,先装正确的称盘,再开启天平;      (2)称盘错:用符合该天平的正确称盘      (3)称盘与防风圈相碰:因安装不当产生的原因,请找出相碰的原因重新正确安装。      5、开启问题_开启后完全无显示:      (1)电源插座上没有220V电流接通交流电座;      (2)交流适配器出错,选择适合我国工作的220V~交流适配器(外接变压器);AB-S/A8-1.4v~50/60HZ6VA;PB-S/A9.5-20VDC6W;AB/PB/GB9.5-14.5V50/60HZ1.5VA;      (3)交流适配器烧毁,更换交流适配器;      6、开启问题_开启后完全无显示      (1)校准数据丢失,重新校准天平;      (2)瞬时干扰影响;      7、开启问题_开启后完全无显示:      采用内校的天平,AB-S/A,PB-S/A;采用外校的天平,AB/PB/GB/SB;      (1)天平放置环境太差防风窗未关闭,改善天平的放置环境,关闭所有防风窗      (2)校准特点:AB-S/A天平1小时预热后,做第一次自动校准;第二次环境是天平开启2小时后;然后天平保持通电状态150小时后,准时自动校准如有需要,可以随时手动触发校准(内校)。      (3)校准出错:AB/PB/GB/SB用了错误、的外部砝码进行外校。在进入外校程序时,天平会出现一个闪动的砝码数值,使用这一数值的砝码进行外校。(4)AB-S/APB-S/A天平显示器右上方出现&ldquo CALL&rdquo :当显示器上出现&rdquo CALL&ldquo 时,显示器使天平现在工作不准了,需要做内校了。作完内校后&ldquo CALL&rdquo 会自动消失。      我们在选购及使用电子天平时必须考虑精度等级。对称量范围的要求:选择电子天平除了看其精度,还应看最大称量是否满足量程的需要。通常取最大载荷加少许保险系数即可,也就是常用载荷再放宽一些即可,不是越大越好。 下面为欧洲瑞德威电子天平的图片
  • 显示屏色彩管理与校正解决方案
    显示屏在当今社会扮演着至关重要的角色,触及游戏、办公、影视娱乐、零售业、交通出行等多个领域。屏幕的性能标准因应用而异,展现出广泛的多样性。这种多样性不仅体现在技术规格和视觉效果上,还反映了不同制造商和用户群体对于色彩精确度与一致性的独特需求。在这个基础上,探索各行各业的显示屏色彩测量与管理解决方案成为一项挑战,但也为技术创新和应用优化提供了广阔的空间。了解和应对这些需求,意味着能够提供定制化的色彩管理方案,以适应不同领域对视觉表现和色彩准确性的具体要求。一、电子价签的应用在现代零售环境中,电子价签正在逐渐取代传统的纸质标签,为商家提供了便捷的库存管理和产品信息更新方式。顾客也能通过扫描价签上的二维码,迅速获取商品的详细信息。然而,随着电子价签的普及,显示技术的色彩准确性和价签外壳颜色的一致性成为了重要考虑因素,尤其是在维护品牌形象和消费者体验的一致性方面。为了有效管理和控制色彩的一致性,采取以下措施至关重要:利用i1 Pro3高精度色彩测量工具及其配套软件,评估显示屏在不同颜色反射下的色彩饱和度,以及在亮度和色调方面的显示准确性。这种方法不仅帮助确保显示内容的视觉效果符合预期,也为优化用户体验提供了基础。采用Ci6x系列便携式色差仪测量电子价签外壳的色差(ΔE)数据,以准确分析和判断外壳的颜色偏差及其一致性。这一步骤对于保证产品外观质量和增强品牌识别度至关重要。通过这些专业的色彩管理工具和方法,商家可以有效地解决显示屏色彩不准确和价签外壳颜色不一致的问题,从而确保产品信息的准确传达和品牌形象的统一性。二、大尺寸高精度拼接屏应用在现代视觉展示领域,大尺寸高精度拼接屏广泛应用于多样化的场景中,随着技术的进步,这些拼接屏的边框越发微小,色彩呈现能力显著提升。尽管如此,保持各个组成单元在非工作状态下的色彩一致性依旧是一项挑战。观察从特定角度可见,即便是同一大屏,不同小屏组件展示的颜色差异明显,有的显色较深,有的则较浅,这些视觉差异影响了整体的观看体验。为了有效地管理和控制这些色彩差异,以下步骤是关键:利用高精度色彩测量工具,如eXact或Ci6x系列设备,来详细采集每个拼接屏单元的色彩数据。这一过程能精确识别各单元间的色差。根据测量得到的色差数据,将拼接屏单元按照色差大小进行系统性排序和安装,确保色差较小的单元相邻排列。这样的安排促使相邻屏幕之间的色彩差异最小化,整体色彩表现呈现出更加均匀和连贯的视觉效果。通过采用这些精细的色彩管理策略,可以大幅提升大尺寸高精度拼接屏的视觉一致性,从而优化整体观赏体验,满足高端显示需求。三、手机屏幕的应用在当代生活中,手机已成为人们日常使用频率最高的电子设备之一,随着消费者对视觉体验要求的提高,手机屏幕的色彩展现成为了一个重要的关注点。特别是在手机处于息屏或关机状态时,黑色显示的一致性尤为关键,这不仅关系到视觉效果,还影响到用户对品牌的整体印象。为了确保手机屏幕黑色显示的一致性以及在使用过程中的显色效果,以下色彩管理策略是必不可少的:反射测量:采用高端色彩测量仪器,如Ci7x00系列台式分光光度仪或Ci6x系列便携式分光光度仪,进行手机显示屏的颜色数据和反射率的准确测量。通过这些精确的数据,可以有效地进行色差管理,确保每一块生产出来的手机屏幕在色彩上的一致性。透射测量:推荐使用Ci7800或Ci7600台式分光光度仪,对手机触摸屏的透光率和雾度进行专业测试与分析。这种测量不仅有助于评估屏幕材料的质量,也是优化显示效果和提升用户体验的关键环节。通过上述色彩管理方法,可以在手机研发阶段就确保屏幕的色彩表现和质量达到高标准,从而满足消费者对高品质视觉体验的期待。四、专业显示器/笔记本终端客户对于专业设计师和摄影师而言,使用的显示器或笔记本电脑在色彩的准确性和一致性上有着极高的要求。他们常面临的挑战包括图像和视频的色彩无法真实还原或存在严重的色偏问题,以及难以评估所使用的显示设备是否达到了专业颜色标准。为确保色彩的准确管理和控制,以下方法是至关重要的:色彩校正解决方案:采用i1 Pro3色彩管理工具,这款集硬件与软件为一体的校色解决方案能够精确测量并校正显示设备的关键色彩参数,如白点、Gamma曲线、对比度和RGB色彩平衡。通过这一过程,可以建立精确的ICC色彩特性曲线,并将其加载至Windows或MAC操作系统,从而实现对显示设备的精准校正。后校正评估:在完成校正过程后,再次利用i1 Pro3等高精度测量工具对已校正的显示设备进行色彩精准度和色彩均匀性的综合评估。这一步骤不仅确保了校正结果的有效性,还能为用户提供详细的检测报告,展示校正前后的色彩表现差异。通过上述专业的色彩管理和校正流程,专业用户可以确信他们的显示设备在色彩还原和表现上达到了行业标准,有效提升了工作效率和创作质量。这种方法不仅适用于新设备的初次校正,也适合作为定期维护的一部分,以保持设备性能的持续优化。五、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • “十三五”新型显示重大科技成果落地对接及产业发展研讨会隆重召开
    中国质量新闻网讯(记者 王越)9月18日,在科学技术部高新技术司、科学技术部高技术研究发展中心、广东省科学技术厅的指导下,由韶关市人民政府主办,国家新型显示技术创新中心、新型显示产业技术创新战略联盟联合季华实验室、福州大学共同承办的国家“十三五”新型显示重大科技成果落地对接及产业发展研讨会在韶关隆重召开。大会围绕“十三五”期间的新型显示方向重大科技成果、显示产业当前和未来亟需发展的关键装备以及印刷OLED、Micro LED显示、Nano LED、激光显示等新型显示技术进行深入研讨与交流。全国政协教科卫体委员会副主任、科学技术部原副部长、国家新型显示技术创新中心理事长、季华实验室理事长兼主任曹健林,中国科学院院士于起峰,科学技术部高新技术司副司长雷鹏,科学技术部高技术研究发展中心副主任卞曙光,工业和信息化部中小企业局二级巡视员廉莉,广东省科学技术厅二级巡视员龚建文,佛山市常务副市长郑海涛,韶关市市委书记王瑞军,以及国家新型显示技术创新中心主任闫晓林,与产业界、学术界、媒体界代表出席会议。近200位嘉宾在国家新型显示技术创新中心和季华实验室的统筹下,新型显示产业技术创新战略联盟的组织下齐聚韶关,共同见证国家“十三五”新型显示发展取得的丰硕成果,共商未来产业发展方向。(大会现场)推动显示强国建设,落实“十三五”新型显示科技成果对接2016至2020年,“十三五”这五年,中国显示人积极践行显示产业新发展理念和高质量发展要求,抢抓机遇,克难奋进,全面落实“十三五”的各项部署。在实现“科技大国”迈向“科技强国”的伟大征途中,在国家科技计划的支持下,通过“十三五”专项的实施,我国显示技术整体实现满足国家重大战略需求,抢占未来产业发展制高点;支持国民经济绿色、可持续发展;引领科技变革、重塑国际产业格局三大总体目标,带动产业规模超过万亿元,减少二氧化碳排放3亿吨,年节电3400亿度,形成专利1200项。“十三五”显示方向总体实现突破印刷OLED/QLED/电子纸发光与显示材料、印刷TFT材料与器件的关键共性技术;构建6个重点新材料全流程创新链,印刷显示材料国产化率已达45%;建立G4.5印刷显示工艺开发平台、G8.5印刷OLED面板制造和G8.5高性能玻璃基板等6-8个公共平台。整体完成新型显示产业在基础前沿研究、共性关键技术、产业化应用示范等领域等8大任务部署,同时在新机制有机发光材料、量子点激发态的合成控制、印刷型AMQLED显示屏样机、高分辨率印刷及柔性显示、高密度小间距LED显示项目、激光显示等新型显示方向取得众多科技成果。(“十三五”国家重点研发计划“战略性电子材料”重点专项总体组副组长、福州大学教授郭太良总结“十三五”新型显示方向重大科技成果)补短链建新链,筹划推进“显示制造装备国产化”目前,中国虽已是全球最大的显示行业的供应基地,但距离“显示强国”目标仍存在一定差距,其中最大瓶颈在于部分关键性材料和装备仍然依赖进口。特别是面对国际显示产业竞争日趋激烈和国际疫情冲击的形势下,对中国整个显示产业链、供应链也敲响了警钟,对材料和设备的国产化、本地化的需求迫在眉睫。“在科技部发布‘十四五’‘新型显示与战略性电子材料’重点专项后,如何应对核心装备短板,成为显示产业最关注的问题之一。”曹健林理事长在发言中介绍,在国家新型显示技术创新中心的统一部署下,由季华实验室联合我国装备领域的优势研究单位和产业链上下游企业共同发起“显示制造装备璀璨行动计划”,组建“显示制造装备创新联合体”,开展国产制造装备的国产化行动,发力显示制造装备核心技术攻关。(曹健林介绍“显示制造装备璀璨行动计划”)“‘显示制造装备璀璨行动计划’拟在未来10年持续推进,发力显示制造装备核心技术攻关和率先推动产业集群落地发展,构建‘政产学研用融’协同创新体系,彻底解决我国新型显示产业链核心装备‘卡脖子’问题。”曹健林理事长指出,计划到2030年实现我国新型显示装备的自主可控。参会的显示制造领域核心装备及面板企业表示将积极参与重点研发计划及相关项目,上下协同完成装备国产化推进的系列任务攻关,并深信通过该行动,必将根本性改变“卡脖子”问题,为显示产业持续健康发展贡献来自中国企业的一份力量。中国创新力凝聚,新型显示产业跑出“加速度”当前,全球显示市场的竞争主要聚焦于“屏幕”的制造和技术研发。我们在解决产业所需材料和装备等问题的同时,也应看到了过去中国显示产业在新型显示技术方面的努力。经过多年的努力,新型显示技术更可谓“百花争艳”。除了处在主赛道上的LCD、OLED技术之外,我国新型显示产业渐进式的创新正持续推进,量子点(QLED)、Mini LED、Micro LED、Nano LED、激光等新兴显示技术也在竞相发展,为显示终端市场提供了更多差异化产品,创造了新的应用场景,成为促进行业发展的巨大变量。Micro LED被称为具有颠覆性和变革型的下一代主流显示技术,“具备驱动、发光、信号高速传输和空间定位为一体的高发光效率显示器件,可引入人工智能技术完成高度智能型高速信息交互空间网络。”郭太良教授指出,各大显示企业都在研发Micro LED显示量产化相关技术,中国企业在部分领域位居世界前列,目前专利申请量位居世界第一。印刷OLED技术仍处于研发到量产的攻坚阶段,“在印刷OLED材料及墨水、打印装备等要素条件均已具备。”广东聚华印刷显示技术有限公司总经理付东介绍到。经过多年努力,我国印刷OLED已取得了阶段性的成果,据了解,全球第一条8.5高世代印刷OLED产线有望在不久的将来落地广州。激光显示迎来了自主可控发展的战略机遇期,“激光显示是涉及基础学科、平台技术、应用技术、终端产品的综合性技术,符合下一代显示高清化、大屏化、全色化、护眼的发展方向。”中国科学院理化技术研究所研究员毕勇介绍到,近几年通过国家的持续支持,带动企业加大投入,目前我国激光显示产业规模处于国际领先地位。(与会领导及嘉宾合影)2021年是“十四五”的开局之年,也是中国新型显示产业面临从跟跑向并跑、领跑跨越的关键时刻。要在“十四五”开好局起好步,看见新气象、迎来好成绩,尤其需要我们巩固“十三五”已取得的成果,做好重大科技成果转化。本次大会围绕“‘十三五’新型显示科技成果对接”及“显示制造装备国产化”展开研讨,落实了一批新型显示领域重大科技成果的产业应用,提升显示产业竞争力,完善产业链,解决关键技术设备等卡脖子问题的战略需求,促进显示产业可持续健康全面发展,推动我国构建以国内大循环为主体、国内国际双循环相互促进的新发展格局,对帮助中国新型显示产业尽早摆脱“卡脖子”问题,实现显示强国目标具有重要战略意义。
  • 领先世界的高辉度型与超小型3原色激光光源诞生
    —以国际化、新产业化为目标,产学联合共同制订纲要— 在NEDO项目中,大阪大学和岛津制作所以扩大可见光半导体激光用途为目的实施合作研发,开发出领先世界的高辉度型与超小型3原色激光光源,并对这两种激光光源模块做装机实验进行了性能评价。 此外,还以大阪大学为中心成立产学合作组织,制定了与光源相关的安全性纲领文件。今后,将继续开展活动推进其实用普及,引导纲领文件的学习,支持国际标准化提案,实现新工业化目标。图1 领先世界水平的高辉度3原色激光光源模块 图2 世界最小型3原色激光光源模块1.概要 在NEDO项目中,大阪大学和岛津制作所联手,利用3原色可见光半导体激光技术,开发出了两种3原色激光光源模块。一种用于高辉度显示装置、激光照明领域,是该领域目前辉度最高的模块(如图1);另一种用于扫描型激光投射,是可单光纤输出的目前世界最小尺寸的超小型模块。 将上述模块装入9家制造商的设备后,对其进行性能评价。评价结果显示,与LED等其他光源相比,无论是小型化、节能性还是颜色重现性等各方面,激光光源都有其独特的优势。 从这一激光特性来看,可望其未来应用前景相当广泛,从智能手机、笔记本终端等小型电器,到几十米高的剧场、建筑物投射等的大型放映装置皆可应用。 针对限制了激光应用普及的特性及安全性问题,2014年,大阪大学(光学中心、副主任、特聘教授 山本和久)作为发起人,成立了可见光半导体激光应用协会,近期,制订了相应的3原色激光光源模块的性能指标、可靠性及安全性纲领文件,完善了可见光半导体激光技术应用的基础。今后,将继续推进可见光半导体激光的应用普及活动,推进纲领文件学习,支持国际标准化提案,实现新工业化目标。 此外,2016年3月14日在日本桥生命科学中心,由可见光半导体激光应用协会、大阪大学科学中心以及NEDO共同举办的“可见光半导体激光应用研讨会”也对这些成果进行介绍。2.最新成果(1)领先世界水平的高辉度型和超小型3原色激光光源双双诞生 最新开发的高辉度型3原色激光光源模块,用于高辉度显示计及激光照明用途,红、绿、蓝三色激光都具有超10W的高输出功率,实现了领先世界的高辉度(如图3)。超小型3原色激光光源模块用于扫描型激光投射,主体部分仅有0.5cc大小,堪称目前世界最小尺寸。通过调节绿色波长,这些光源可再现自然色(如图4)。图3高辉度型模块特性检测实例 图4超小型模块特性检测实例 近些年,一些投影设备开始采用激光作为光源。电影院、大厅等场所对辉度要求不断增高,有时必须达到10000lm以上的辉度(全光束),但10000lm以上光源目前最常使用的是氙灯和高压汞灯,LED无法实现如此高的辉度。 最新的高辉度模块,利用3原色半导体激光(SHG型除外)可以实现10000lm级以上的高辉度。小型高辉度半导体激光有望在影院级的大型投影仪上投放使用,不仅能提供高清大画面,还能节约电力消耗。 个人、家庭使用的小型投影仪由于几乎没有光线扩散,因此利用激光投影可以不受投影面的距离、形状限制,获得清晰图像。例如,如果内置于智能手机,则可以轻松地在墙面上投射出清晰画面。此外,这种特点也可用于人眼方面,如未来可用于开发头戴式显示器(HMD),使用强度对人眼无害的激光直接对视网膜进行扫描,即使患有近视的人群,也可以看到清晰图像。超小型模块应用需求广泛,今后会继续朝着更加小型化的方向发展。 最新技术优势众多,通过调节内置的半导体激光元部件的数量,可以灵活地满足大规模高输出需求或小规模低输出需求,还可利用光纤实现光源和发光部分分离等。例如,应用于汽车头灯,不仅可对前方照明度和照射位置进行调节,还可随意选择光源本身的安装位置。(2)可见光半导体激光应用协会的设立、运营以及纲领文件的制定 可见光半导体激光应用协会以大阪大学为主体,主要探讨有关3原色激光光源模块的规格、性能指标以及可靠性、搭载产品的安全性等课题,在项目进行期间已制订完成了6项纲领文件。该组织还由其他51家相关机构组成,包括市场上8成的相关行业元件装置生产商及机器生产商、大学研究机构等。 该协会正在就确保激光对人眼安全性的技术标准进行探讨,激光安全性制约着可视化半导体激光的应用。此外,还将致力于解决激光成像技术中的问题——散斑现象。散斑现象,形成于激光扫描投影时,是正常画面中混入干扰图样后无法准确反映画面的现象。现在,以大阪大学为中心,开发了可靠的散斑图检测技术,在此基础上制定了视觉上能够允许的散斑标准。 以上6种纲领文件将逐步公布,该项目合作完成后还将各自推进国际标准化方案提出进程。 图5 散斑;激光干涉图样 图6散斑检测装置关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 叶志镇院士/何海平教授:钙钛矿复合材料在液晶显示与X射线成像中的应用研究
    近日,浙江大学材料学院叶志镇院士团队在高光效、高稳定钙钛矿复合结构方面取得重要进展,研究成果以“Highly efficient and ultra-stable CsPbBr3 composites for LCD devices and X-ray imaging”为题发表在国际知名学术期刊Journal of Materials Chemistry C (doi:10.1039/d3tc04701f)上。浙江大学为该论文第一单位,王朋博士、王昭宇博士、朱美怡博士为共同第一作者,叶志镇院士、何海平教授、樊超博士为共同通讯作者。钙钛矿量子点是一种具有优异光学性能的零维半导体结构,其具有高量子产率、可调控的发光波长、极高的缺陷容忍度等优点,在照明、显示、成像等应用领域具有极高的商业价值。然而,由于量子点的尺寸在纳米量级,表面缺陷对量子点的光学性能影响很大。表面缺陷的富集会导致量子点荧光淬灭,并且影响其稳定性。因此,表面钝化和封装对实现高光效、高稳定性的钙钛矿量子点至关重要。有鉴于此,王朋博士等联合开发了一种改良的固态煅烧方法,实现了钙钛矿量子点表面钝化和封装一体化,提升了固态煅烧制备钙钛矿量子点的光效和光、热稳定性,并进一步将这些量子点应用于宽色域液晶显示和高灵敏度X射线探测中。该工作通过用3-(癸基二甲基铵)-丙烷磺酸盐内盐(DPSI)钝化CsPbBr3量子点表面,并进一步用二氧化硅模板(MS)封装这些量子点,获得了具有93.2%高光致发光量子产率的超稳定CsPbBr3-DPSI/MS纳米复合材料。在苛刻的协同老化条件下(温度60℃,湿度90%RH,功率密度3500 W/m2的蓝光照射)保存1000小时后,CsPbBr3-DPSI/MS仍然保持其初始光致发光强度的90%。该工作在不同时间尺度下观测了有/无DPSI钝化量子点的发光寿命,发现DPSI钝化可以有效抑制钙钛矿浅能级缺陷,可以有效提升钙钛矿量子点激子复合效率。这些CsPbBr3-DPSI/MS材料与KSF荧光粉共同作用在液晶显示器的背光模块中,可以实现111.7%NTSC的宽色域显示性能。此外,这些CsPbBr3-DPSI/MS材料表现出优异的X射线探测性能,实现了16 lp/mm的X射线成像空间分辨率和339 nGyair/s的低检测极限。DPSI钝化抑制浅能级缺陷提升量子点光效以上图中可见,CsPbBr3-DPSI/MS复合材料的荧光量子产率提高到了93.2%。在405nm的飞秒激光激发下,条纹相机获取得到的图像表明,CsPbBr3-DPSI/MS平均寿命从323ps(钝化前)增加到454ps,这也证实了DPSI在钙钛矿量子点表面的有效钝化作用。配置推荐关于本文中准二维钙钛矿复合材料的测试部分,超快时间分辨光谱数据使用卓立汉光公司的ST-10条纹相机获得,稳态瞬态荧光光谱数据采用OmniFluo900稳态瞬态荧光光谱仪获得。ST-10条纹相机时间分辨率可达到5ps,可匹配多种焦长光谱仪,快速追踪超快发光的动力学过程。OmniFluo900为模块化搭建结构,通过搭配不同的光源、检测器和各类附件,为紫外/可见/近红外发光测试提供综合解决方案,也为钙钛矿发光器件、钙钛矿光伏器件及钙钛矿量子点的研发提供有利工具。 条纹相机超快时间分辨系统 OmniFluo900系列稳态瞬态荧光光谱仪 免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发。
  • 在COVID-19爆发期间监测施工现场的空气质量
    Aeroqual中国展台:https://www.instrument.com.cn/netshow/SH104262/原文作者:Craig Loynes,Aeroqual市场部经理 社会各界都应在打击COVID-19的传播中发挥作用。社交距离和限制进入工作场所、公共场所是实现此目标的关键策略。尽管世界上大部分地区的人们都在适应“封锁”中的生活,并贴出孩子们打扮成蜘蛛侠打扰电话会议的照片,但从事“必要性业务”(包括许多建筑工地)的人们仍在设法适应新的工作模式。 “必要的”建筑工地在COVID-19爆发期间继续正常运行 许多建筑工地已被列为基本业务。这意味着他们可以在COVID-19爆发期间继续开展工作,但这使许多工人,他们的家人和更广泛的社区感到不满。 关于哪种类型的建设项目应该和不应该认为是必要性的存在着很多争论,必要性业务的清单也在不断变化。在纽约州的建设热点中,州长安德鲁库莫(Andrew Cuomo)表示,他愿意审查哪些项目至关重要。 在同一份声明中,库莫州长的发言人强调说:“所有建筑工地都必须实行社交距离”,并且“如果一个工地不能保证其工人的健康和安全,则必须关闭。” 以下是一些示例措施,可帮助您减轻在建筑工地传播COVID-19的风险: • 指导所有工人保持良好的社交距离。• 关闭共享区域,例如午餐室。• 采取轮班制减少同一时间现场工人的数量。• 轮班之间要间隔一个小时,以对施工现场进行消毒。• 在允许工人进入现场之前对他们进行体温测量。 COVID-19期间的空气质量监测利器–为建筑工地而设计 如果您的建筑工地继续运行,并且您希望在COVID-19爆发期间安全地收集空气质量监测数据,或者如果该工地已经关闭而您仍希望监测粉尘值,Aeroqual可以满足您的要求。我们的空气质量监测仪专为室外粉尘监测而设计,这意味着它们需要的维护量更少,从而减少了您去现场的需要。另外,所有数据都可以通过Aeroqual的云端软件进行远程访问。我们喜欢称之为粉尘监测2.0版。我们的各种室外在线空气质量监测仪都包括一台小型计算机和一个WIFI路由器,可将仪器快速连接到云端。这样,您可以在任何时间通过任何网络浏览器都可以在移动设备,平板电脑或办公室台式电脑上轻松访问数据。 您可以实时访问,分析和报告数据,并在一个地图上查看您的所有仪器,从而准确了解它们的性能以及何时需要维修。我们的技术支持团队可以对仪器进行远程故障排除和远程软件更新,从而尽量地减少停机时间和您访问施工现场的需要。我们的显示器可以通过手机短信和电子邮件触发实时警报,让您知道何时采取措施。您甚至可以使用这些相同的警报来自动和远程触发现场设备,例如控制洒水器以抑制灰尘或关闭对环境构成威胁的设备。 在COVID-19爆发期间,粉尘监测2.0可以让您远离不必要的现场工作而承受的风险。 与我们联系,我们已经在这个充满挑战的时刻准备好为您提供支持。Aeroqual中国咨询热线:400-860-5168转4262
  • 容量法水分分析仪采用彩色大屏幕显示
    库仑法/容量法水分分析仪/化学水份测定仪/化学水分测定仪 型号:RSL-CA-2001 是CA--100的改升型 2 采用彩色大屏幕显示 3 有带排液口, 或不带排液口两种设计供 选择 4 有两个USB接口, 可储存数据及外接打印机 5 可连接两组滴定池, 或两组容量滴定管,和两组汽化器 6 附设帮助系统 7 测量自动消除电上的污染物对检测结果的影响,无需人手清洁电 8 支持GLP/GMP型号RSL-CA-200型库仑法微量水份测定仪检测方法恒流化检测,可扩充为双通道检测滴定控制脉冲电解电流控制电解电流430毫安滴定速度2.2毫克水/分(36ugH2O/sec)本底补偿自动修正,程背景显示(μgH2O/sec)测量范围10微克~100毫克水灵敏度0.1微克水密度±3微克(对10微克至1毫克或以上的水) RSD0.3%或以下(1毫克或以上的水)搅拌方法磁力搅拌滴定池容量150ml显示5.7英尺彩色LCD显示屏文件20个文件,50个复合文件数据通常储存近100数据计算能水分含量计算,统计计算,再计算打印预制打印机在主机上附加能双通道同时测定 简单模式及复合模式*1溴数及溴值模式 步程序升温*3可接电子天平,样品重量自动输入RS-232可接电脑(选项)支持GLP,帮助能,电自动清洗能USB口具有储存数据能,还可做为 对外连接口自动日历显示及打印(年、月、日、时、分、秒)计算能复合模式:10个固定公式、2个选加公式 4个固定单位、2个选加单位 简单模式:1个固定公式 溴模式:10个固定公式,2个选加公式统计计算内标及外标浓度再计算打印机21位点阵打印机(纸宽58mm)记忆备份充电起2个月以上自检模式记忆体清除,文件清除 日期和时间设定及显示 电子天平连接设定 电子天平I/F测试 电脑I/F设定,电脑I/F测试有效性(显示器检验、打印机检验、记忆体检验、水分测定检验)环境温度5-40℃环境湿度85%以下(避免露状天气)电源交流220/240伏,50/60赫兹,310伏安体积主机:约330(长)X320(宽)X148()mm搅拌器:约120(长)X180(宽)X148()mm重量主机:约5公斤 搅拌器:约1公斤
  • 新品首发|叶面积测定仪采用微电脑技术,LCD大液晶显示技术
    叶面积测定仪是一种用于测量植物叶片面积的仪器,它能够快速、准确地测定叶片的面积,帮助科学家和研究人员了解植物的生长状况和光合作用能力。 叶面积测定仪通常由传感器和显示器等组成,可以测量不同形状和大小的叶片面积。使用时,将叶片放在传感器上,传感器会感应到叶片的形状和大小,并将数据传输到显示器上,从而得到叶片的面积。 产品链接→https://www.instrument.com.cn/netshow/SH104275/C523091.htm叶面积测定仪的作用主要有以下几点: 了解植物生长状况:通过测量叶片面积,可以了解植物的生长状况和发育情况,帮助科学家和研究人员判断植物的健康状况和生长环境。 评估光合作用能力:叶片是植物进行光合作用的主要器官,通过测量叶片面积可以评估植物的光合作用能力,进而了解植物的生长情况和产量。 优化作物管理:通过测量不同品种、不同生长阶段的叶片面积,可以帮助科学家和研究人员优化作物管理,提高作物的产量和品质。 总之,叶面积测定仪是一种重要的植物生理生化分析仪器,广泛应用于植物科学、农学、林学等领域的研究与生产。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制