当前位置: 仪器信息网 > 行业主题 > >

固态脂肪分析仪

仪器信息网固态脂肪分析仪专题为您提供2024年最新固态脂肪分析仪价格报价、厂家品牌的相关信息, 包括固态脂肪分析仪参数、型号等,不管是国产,还是进口品牌的固态脂肪分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合固态脂肪分析仪相关的耗材配件、试剂标物,还有固态脂肪分析仪相关的最新资讯、资料,以及固态脂肪分析仪相关的解决方案。

固态脂肪分析仪相关的资讯

  • 185万!中国科学院武汉植物园固态样品碳分析仪和多通道原位水质分析仪采购项目
    项目编号:OITC-G220321096项目名称:中国科学院武汉植物园固态样品碳分析仪和多通道原位水质分析仪采购项目预算金额:185.0000000 万元(人民币)最高限价(如有):185.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1固态样品碳分析仪1是105包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1多通道原位水质分析仪1否80投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • CEM公司推出新一代脂肪/水分快速分析仪
    (马修斯,北卡罗来纳州)09年10月27日,全球领先的微波实验室仪器的供应商CEM公司,推出了新的脂肪/水分快速分析仪——Smart Trac II。这款新产品每天可以测定的样品量是原来的2倍,测定结果比其它技术更准确。新产品本周首次在芝加哥举办的全球食品博览会中展出(展位#S6326)。   Smart Trac II结合了先进的核磁共振技术和可靠的微波干燥技术,快速准确地检测水分和脂肪,并且不需要使用溶剂和校准。该系统采用8秒种核磁共振分析脂肪和油脂,检测结果不依赖于样品的均一性,也不会受到颜色和质地变化的影响。   Smart Trac II比之前的产品体积更小、速度更快,能耗比传统方法减少95%,内置的LED显示屏可以很容易看出系统的运行情况。Smart Trac II符合AOAC标准,其中的方法可以很容易在不同仪器之间转移。 脂肪/水分快速分析仪——Smart Trac II   详情请联系培安公司:   电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288   Email: sales@pynnco.com   网站:www.pynnco.com http://cem.com/content606.html
  • 培安公司Oracle通用快速脂肪分析仪荣获2017 IFT 大奖
    2017年6月25日食品检测技术领先仪器供应商CEM公司的Oracle通用快速脂肪分析仪荣获2017 IFT 大奖。Oracle是CEM公司开创的革命性的产品,其突破了传统的NMR技术,无需新建方法即可分析未知食品样品的脂肪含量,检测结果和重复性符合并优于参考化学法。 Oracle通用快速脂肪分析仪2017 IFT 奖杯 此次有超过40个产品参与2017 IFT大奖评选,各评委均为来自于工业,学术,食品生产和安全等领域的技术专家。Oracle获奖的根本原因在于Oracle可以节约时间和控制成本,并可以提供比化学法更实用更快捷的检测方法,是具有科学价值的革命性脂肪检测技术。Oracle核磁法相比其他方法(如:索氏抽提,近红外,傅里叶红外法等)检测总脂肪具有更快速更便捷的优势。 IFT成立于1939年,从成立之初一直致力于推选食品科学的前驱技术。IFT为非盈利科学组织,有来自于超过95个国家的17000多名成员,这其中集合了食品科学家,技术专家,和来自于学术界、政府和工业领域的相关专家。CEM很荣幸成为这个科学团体的一员,为全球食品制造业带来革命性的检测技术。 “这是第一次有一项新的无损检测技术应用于食品中的脂肪检测,可在30S内直接检测总脂肪含量。” CEM公司CEO,Michael J. Collins说到,“无需预知样品的构成,无需方法选择即可准确检测食品脂肪含量,这在以前的技术是完全不可能实现的,这项新的检测技术即将成为食品检测的新标准,并将对全球食品工业产生长远的影响。” Oracle可能会成为脂肪检测的新国际标准并代替过时耗时的经典化学法。Oracle将应用于食品检测实验室,为了质量和过程控制也可配置自动机器人加样器,用于食品实验室的高通量检测。 Oracle自2016年10月发布以来,已经在食品生产和实验室深受好评。CEM为此项革命性新技术能给食品工厂和实验室提供更加快速准确的数据并满足验证要求而深感自豪!
  • CEM发布新品ORACLE通用快速脂肪分析仪 五年内或将成为行业新标准
    2016年12月7日,培安公司在北京亚洲大酒店隆重举行CEM新品发布会,来自食品检测和研究机构、食品企业等以及媒体的近40名代表出席了本次活动。CEM公司总裁Michael Collins、培安公司总裁刘伟现场向现场嘉宾介绍了CEM公司新推出的这款革命性产品——ORACLE通用快速脂肪分析仪。新品发布会现场培安公司总裁刘伟在致辞中表示,今天ORACLE脂肪分析仪的推出,具有划时代的历史意义,它的伟大意义在于:ORACLE使用物理学方法,彻底地改变了长达一百多年来传统的用化学方法测试脂肪的技术和历史。CEM专利的ORACLE脂肪氢核测试技术,把脂肪氢核信号与其他氢核信号相隔离,通过物理学核磁信号直接测量脂肪分子氢核的数量,从而得到脂肪的含量,彻底摆脱了传统的需要用不同化学方法测量不同的样品的复杂局面。今天ORACLE的推出,把目前各种传统的、化学的、或各种间接的脂肪分析技术,直接统一到测试脂肪氢核的物理学本质上来,直接回归到测试脂肪氢核的本质上来。培安公司总裁刘伟随后,CEM总裁Michael Collins向在场嘉宾介绍了这款独特的ORACLE通用快速脂肪分析仪产生的历史背景及其产品优势。食品行业脂肪分析传统上依赖传统的索氏湿法化学方法作为主要标准方法。而且不同的样品需要不同的酸碱水解前处理,这些漫长、过时、危险的检测过程重复性很差,且需要好几个小时甚至一天才可以完成。这些原因催生出了根据湿法化学方法进行校准的快速脂肪分析仪的使用。虽然检测速度更快了,由于检测结果受到样品成分的影响,这些系统通常需要建立大量的方法。现有的NMR技术能直接检测整个样品而不受样品表面性质影响,这使得这项技术能在一定程度上减少方法的建立。但是,所有目前的技术仍需要某种形式的方法建立和与传统的化学方法的结果相关联的大量的数据标定的问题。CEM总裁Michael Collins近5-6年,CEM一直尝试开发一项通用的脂肪检测技术直接测量脂肪含量。为了实现这一目标,CEM已经为之努力奋斗了数年,近两年才取得了可观的突破型的进展。如今推出的ORACLE通用快速脂肪分析仪,就是基于这项取得突破型进展的脂肪氢核测试技术——它能完全分离出任何类型样品或基质中的脂肪氢核的信号。ORACLE通用快速脂肪分析仪完全无需根据不同的样品建立方法,无需参考传统化学方法的结果,即可30s内分析任何未知食品样品中的脂肪含量,兼具可以媲美化学方法的准确性和无与伦比的重复性。“在五年内,ORACLE可能成为整个行业的新标准,用脂肪氢核的直接本质来统一所有的不同的方法,这是十分了不起的。”CEM公司总裁Michael Collins说:“过去20年里,我一直梦想着有台仪器拥有这个能力。CEM能给市场带来这革命性的新技术,让我感到非常自豪和兴奋。”ORACLE直接测试脂肪分子中的氢核 完全分离出样品中的脂肪氢核信号新品发布会最后,CEM总裁Michael Collins回答了现场用户和媒体记者的提问,并接受了多家媒体的采访。用户现场提问ORACLE获得用户和媒体关注ORACLE通用快速脂肪分析仪
  • 岛津应用:基于DART直接离子化法的食品中脂肪酸和氨基酸的LCMS分析
    鲣鱼干是2013年加入世界非物质文化遗产的日本料理中必不可少的材料。它是经过煮熟、烘干、发霉等工序制造而成。通过发霉的工序,风味更加浓郁。发霉前的鲣鱼干称为“荒节”,发霉后的称为“本枯节”。 DART(Direct Analysis in Real Time)是一种对样品进行直接离子化的方法。通过与质谱仪组合使用,可省略预处理步骤,从而快速分析目标化合物。只要样品能被DART 离子源释放的气体离子化,可忽略样品的形态,即可对气体、液体、固体中的任意一种形态进行分析。通常,分析固态样品中特定成分的前处理(如提取)比较繁琐费时。使用DART则可简单进行筛选,提高了分析效率。 本文以前处理繁琐的固态样品为例,向您介绍无需样品前处理直接分析固态鲣鱼干中游离脂肪酸和氨基酸的分析示例。我们还对荒节和本枯节间的特性进行了分析。 本次分析中使用了DART-SVP(IonSense 公司,MA,USA)离子源和单四极杆质谱仪LCMS-2020。LCMS-2020 配置了最高速度达15,000 u/sec 的超快速扫描功能和15 msec 的超快速极性切换功能,在m/z 50~1,500 的大范围,一秒钟以内可进行正负双极性多次扫描,由此可同时检测到氨基酸(正离子模式)和脂肪酸(负离子模式)的双极性光谱。另外,由于只需要将样品举在仪器前即可分析,因此一个样品的测定时间仅需10秒左右,是一种高通量的测定方法。 连接DART 离子源的LCMS-2020 了解详情,敬请点击《直接离子化法DART 的应用(Ⅰ)使用LCMS-2020 对食品中的脂肪酸和氨基酸进行快速分析》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • Bettersize2600激光粒度分析仪检测脂肪乳粒度研究
    图1. 脂肪乳结构图脂肪乳自1962年瑞典成功开发以来,不仅作为能量补给剂,而且更加广泛地用作制药领域的药物载体。由于脂肪乳属热力学不稳定体系,有聚集和絮凝等现象,脂肪乳初乳的颗粒大小又对成品粒度有着重要的影响,而成品乳粒的粒度和分布是注射液脂肪乳质量的核心,关系到注射液的稳定性、有效性和安全性,因此需要在生产过程中对乳粒粒度进行严格控制。本次研究采用《中国药典 通则 0982第三法 光散射法》对脂肪乳进行粒度及分布测试。使用的仪器是丹东百特Bettersize2600激光粒度分析仪,所测的脂肪乳是经不同高压均质条件下得到脂肪乳。图2. Bettersize2600激光粒度分析仪脂肪乳的高压均质过程是利用液压动力所产生的超高压能量使物料通过狭缝瞬间释放,在剪切效应、空穴效应、碰撞效应的作用下使初乳达到均质、分散、乳化效果。用Bettersize2600对不同高压均质次数的三种脂肪乳进行粒度分布及体积平均径测试,得到如图3所示的结果。图3. 高压均质机工作原理及不同高压均质次数的粒度分布从图3可以看出,经过第一次高压均质后体积平均粒径D[4,3]为0.629μm,不符合药典小于0.5μm的要求,且1μm以上的乳粒超过10%;经过第二次均质后体积平均粒径D[4,3]为0.390μm,已经符合药典要求,但1μm 以上的乳粒还有约1%,还存在不符合药典的风险;经过第三次均质后体积平均粒径D[4,3]为0.312μm,已经没有1μm以上的乳粒,粒度分布也更窄,完全符合药典的要求。除了均质次数之外,温度、压力、乳化剂、稳定剂等条件也的影响脂肪乳粒度的重要条件。图4. 不同高压均质次数后的的脂肪乳显微图像对将经过一次、二次、次均质后的脂肪乳用显微图像系统拍摄乳粒图像,验证Bettersize2600激光粒度分析仪对大颗粒的测试结果。从图像上可以看出,一次均质后还有不少几微米的大颗粒,二次均质后这种大颗粒就明显减少,三次均质后就完全没有大颗粒了。结论:用Bettersize2600激光粒度分析仪可准确检测脂肪乳注射液的粒度分布和体积平均径,对脂肪乳及其制品的生产过程进行有效的质量控制。
  • 标乐“微观分析固态样品制备培训课程”上海站成功举办
    2011年11月8日,由标乐举办的&ldquo 微观分析固态样品制备培训课程&rdquo 在上海交通大学徐汇校区如期召开。来自上海、苏州、杭州等地来自各行业的120余名客户早早来到会场,将能容纳100人的会场坐得满满的。主办方标乐不得不临时更换会场,同时打开2台投影仪,为的是让每一名同学都能获得做好的学习效果。 课上,来自浙江大学的郦剑教授做了题为《现代金相制样技术的发展》的演讲,然后是题为《金属金相制样技术及结构分析》的演讲,授课的是交通大学的陈秋龙教授。上午的课程结束之后,同学们一起共进午餐。利用午餐时间,同学们充分交流了自己在工作中的心得。下午,依然是郦剑教授和陈秋龙教授,进行了题为《硬度测试发展及其应用分析》和《应力对金相制样分析的影响及解决办法》的讲授。 培训课程在掌声中结束。会后,同学们围住郦剑教授和陈秋龙教授,利用这个难得的机会,就工作中遇到的问题进行咨询。大家表示,通过这次培训课程,对固态样品制备知识有了更深入的了解,认识了诸多同行,收获颇丰,为今后的工作开展打下了坚实的基础,并结下了深深的友谊。
  • Supelco脂肪酸及脂肪酸甲酯分析产品用户回馈活动
    Supelco脂肪酸及脂肪酸甲酯分析产品促销 --为您提供一站式脂肪酸甲酯分析服务 2010年8月1日--2010年10月31日 活动规则: 1.凡在活动期间购买指定促销产品单次订单金额达10,000元,可获赠价值300元North face登山包一个或等值折扣 2.凡在活动期间购买指定促销产品单次订单金额达15,000元,可获赠价值600元伊莱克斯早餐吧一台或等值折扣 3.凡在活动期间购买指定促销产品单次订单金额达25,000元,可获赠价值1500元Ipod touch一台或等值折扣 脂肪酸/脂肪酸甲酯分析专用柱 Sigma-Aldrich/SUPELCO提供全面的脂肪酸分析气相色谱毛细管柱,满足您的各种需求。 SPTM-2560柱(强极性氰丙基硅氧烷类毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,完全符合GB5413.27-2010,GB5413.36-2010等国标和USP G5方法,并且是AOAC方法996.06和 AOCS 方法Ce 1h-05指定用柱; SPTM-2380柱(强极性氰丙基硅氧烷类毛细管柱), 用于顺反异构、双键位置异构的脂肪酸甲酯分离,符合USP G48方法; SLB-IL100柱(强极性离子液体固定相毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,是SP-2560和SP-2380柱的很好补充。 OmegawaxTM柱(聚乙二醇),用于不同碳链长度和不同饱和度(特别是omega-3和omega-6)的脂肪酸甲酯(FAMEs)的分离,符合USP G16方法,并且是AOAC方法991.39和 AOCS 方法Ce 1b-89指定用柱; Equity® -1柱(非极性聚二甲基硅氧烷),用于不同沸点的脂肪酸甲酯(FAMEs)分离,符合USP G1、G 2和G 9方法; NukolTM 柱(改性聚乙二醇),用于自由脂肪酸( Free Fatty Acids)的分析,符合USP G25和35方法; Discovery银离子交换SPE小柱 Discovery 银离子交换SPE小柱, 利用特有的技术将银离子(Ag+)嵌入SCX(磺酸基阳离子交换)载体上。在正相洗脱条件下,银离子(Ag+)仅对脂肪酸甲酯的双键有吸附作用,具体表现为: · 饱和的脂肪酸甲酯(无双键),不吸附,最快流出; · 顺式的双键,吸附作用比反式的强。反式的先流出,顺式的后流出; · 双键越多,吸附作用越强。双键少的先流出,双键多的后流出。 脂肪酸及脂肪酸甲酯标准品 Sigma-Aldrich/SUPELCO提供全面的脂肪酸及脂肪酸甲酯标准品, 质量保证&mdash SUPELCO品牌值得信赖,每个标准品均有分析证书(Certificate of Analysis) 品种齐全&mdash 从C 1到C 31一应俱全; 形式多样&mdash 纯品、溶液型,单标、混标全有; 特别是SUPELCO专有的37种脂肪酸甲酯混标(47885-U),涵盖了大部分常用脂肪酸甲酯标准品,完全符合国标GB5413.27-2010,深受广大用户喜爱! 衍生化反应瓶及反应加热器 反应瓶,内为锥形,容易移取微量样品,厚壁硼酸盐玻璃,配有Teflon/红橡胶垫,空心盖,可高压灭菌或离心。反应加热器,有两档温控范围可调节:室温~100℃,和75℃~ 150 ℃;有两种加热模块可选,一种是8孔的,适合3mL及5mL反应瓶;一种是12孔的,适合1mL及2mL反应瓶。衍生化试剂及衬管 衍生化试剂 Sigma-Aldich/SUPELCO 提供种类齐全的GC衍生化试剂,如:酯化试剂、硅烷化试剂、酰化试剂等。在脂肪酸的分析中,除了自由脂肪酸可以直接GC测定,其它脂肪酸必须要甲酯化之后才可以GC检测。三氟化硼甲醇溶液,就是最通用的脂肪酸甲酯化的试剂。并且大部分SUPELCO品牌的衍生化试剂,随货附有产品规格说明书,其中包括性质、特点、典型的衍生化步骤、机理、毒性、有害性和稳定性等信息,对于使用非常有帮助。 去活玻璃衬管 杯型玻璃衬管可以增加高分子量化合物在进样口的挥发,提高分辨力,降低进样口岐化。
  • 美国标乐微观分析固态样品制备培训(苏州)成功举办
    美国标乐于2011年5月10日在苏州左岸明珠酒店举办的微观分析固态样品制备培训已经圆满结束,来自苏州、常熟、上海等地共计80余名工程师参加了本次培训。 本次培训为期一天,除了标乐技术专家,更邀请了上海交通大学的陈秋龙教授和上海材料所的李炯辉教授为学员讲解。他们与学员们共同探讨了现代金相制样技术的的发展,黑色金属金相制样技术,有色金属金相制样技术,微电子行业和热处理行业的金相试样制备技术等问题。 培训过程中,学员和专家教授们互动活跃,面对面解决了很多实际工作中遇到的问题,并且对标乐先进金相制样技术有了进一步了解。 美国标乐还将于2011年5月12日在无锡凯宾斯基酒店举办为期一天的微观分析固态样品制备培训,欢迎大家报名参加。
  • 业界呼吁立即出台反式脂肪酸摄入标准
    近日,一场针对氢化油中富含反式脂肪酸的讨论格外热烈,中国食品安全再次遭遇信任危机,面对生活中随处可见的巧克力、冰淇淋、奶油饼干、面包、蛋黄派、咖啡伴侣等美味食品,消费者不禁发出疑问,我们到底还能吃什么?   此次舆论关注的焦点剑指食品中的反式脂肪酸。由于反式脂肪酸在中国缺乏相关国家标准和检测机制,部分媒体和消费者由于没有正确认识反式脂肪酸,于是谈之色变,加上部分专家的“灾难说”,烘焙食品行业正面临严峻考验。专家呼吁有关部门立即展开科学调查,出台适合中国的反式脂肪酸摄入标准,以保障消费者权益,促进食品工业健康发展。   什么是反式脂肪酸?   反式脂肪酸,又称反式脂肪、逆态脂肪酸或转脂肪酸,是一种不饱和脂肪酸。上世纪初,由于担心动物油脂中的饱和脂肪酸会威胁心脏健康,植物油遇高温不稳定且无法长时间储存等问题,科学家利用氢化过程,将液态植物油改变为固态,由此产生了反式脂肪酸。由于具备能带来宜人口感,并且易于长期保存等特点,反式脂肪酸受到现代食品工业的青睐,被大量运用于袋装食品或煎炸食品中。   根据相关部门对2005年到2009年国内市场上的52个食品品牌、167种加工食品进行测定,87%的样品含有反式脂肪酸,包括所有的奶酪制品、95%的洋快餐,蛋糕、面包、炸薯条类小吃等 约90%的冰淇淋、80%的人造奶油以及71%的饼干中,均含有反式脂肪酸。实际上,反式脂肪酸也存在于很多动物性产品中,如牛肉、羊肉等肉类,动物奶油、黄油、芝士等。   过量摄入有害健康   著名营养学家、中山大学公共卫生营养学院营养学系博士生导师蒋卓勤教授指出,过量摄入反式脂肪酸将会使心脑血管疾病的发病风险增大。相对于单不饱和脂肪酸和多不饱和脂肪酸,反式脂肪酸和饱和脂肪酸的“副作用”更大。   从本质上讲,反式脂肪酸是营养问题而非安全问题。反式脂肪酸并非砒霜毒药,与三聚氰胺、苏丹红等有害添加剂有本质的不同,它不是添加剂,而是是食品工业发展的必然产物,普遍存在于各种食品之中,既无法避免也没必要完全避免。   各国立法限制反式脂肪酸   丹麦是最早开始关注食物反式脂肪酸问题的国家。早在1994年,丹麦营养委员会就指出膳食中反式脂肪酸可增加冠心病的危险性。2003年,丹麦首先立法禁止销售反式脂肪含量超过2%的食材。   美国政府经过反复的论证和广泛的征求意见,于2003年7月11日通过最终条例,要求从2006年1月起,食品营养标签中必须标注产品的饱和脂肪酸含量及反式脂肪酸的含量。   欧洲的荷兰、法国、瑞典、德国等也相继对反式脂肪酸进行立法,对反式脂肪食品进行限售或禁售,通常规定食品中反式脂肪酸含量在5%以下。各国标准存在一定程度上的区别,而造成这种区别的主要原因并非营养科学是否先进,而是各国饮食结构的差异。   植物奶油通过科学工艺远离反式脂肪酸   近期有些报道针对将植物奶油作为反式脂肪酸的代名词是有失偏颇的。国外资料显示,目前,在加工植物奶油过程中,许多生产线对降低反式脂肪酸的含量,专门采用了相应的新工艺,如低温高压法,改用新的催化剂等,可以大幅度减少植物奶油中反式脂肪酸的含量,而更新的“完全氢化”工艺则可以根本不产生反式脂肪酸。发达国家纷纷立法限制或表明的,是食品中反式脂肪酸的含量,而不是植物奶油的含量。也就是说,并非所有的植物奶油都是“健康杀手”,而要看这些植物奶油究竟是哪种工艺所生产的。   国家标准呼之欲出   有别于西方膳食结构,今天的中国居民每人每天的反式脂肪酸摄取量平均为1.44克,占摄取总能量的0.61%,而美国的这一比例达到5%-10%左右。与此形成鲜明对比的是,中国居民的总脂肪摄入量超过了《中国营养膳食指南》建议供能比30%上线。随着洋快餐的兴起,这一系列数字在不断攀升。对中国居民来说,现阶段过分强调反式脂肪酸的摄入是不可取的,控制脂肪的摄入总量更为重要。   中国国家食品质量监督检验中心主任、中国食品工业发酵研究院副院长宋全厚此前在行业论坛中表示,我国在2006年通过了食品反式脂肪酸检测方法的研究课题,即将起草限制食品中反式脂肪酸含量的国家标准。另外,食品标签上关于反式脂肪酸含量的标识问题也在进一步商讨中。   业界呼吁监管机构以本次关注热潮为契机,立即出台反式脂肪酸国家标准,帮助消费者正确认识反式脂肪酸,增进对健康饮食的认识,培养消费者选择反式脂肪酸含量较低食物的良好意识。同时,还能促使生产企业严把质量关,改进工艺技术,在生产过程中严格控制反式脂肪酸含量。
  • 780万!清华大学固态物质元素分析系统采购项目
    项目编号:清设招第20221669号项目名称:清华大学固态物质元素分析系统预算金额:780.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01固态物质元素分析系统1套是设备用途介绍:对各类导电、非导电材料在多种形态下(包括粉末、薄膜、高分子等)的表面几个原子层(1~10纳米厚的表面)的化学组成、价态,深度剖析及成像、功函数特性的分析与表征,兼顾材料体相的原位分析。简要技术指标:1)能量扫描范围不小于0~4500 eV;2)最优能量分辨率不大于0.5 eV;3)具备样品的原位加热和冷却功能。合同履行期限:合同签订后12个月内完成设备交货、安装及调试工作。本项目( 不接受 )联合体投标。获取招标文件时间:2023年03月07日 至 2023年03月14日,每天上午8:00至14:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:登记报名网址:http://sbcgczxxfb.sysc.tsinghua.edu.cn方式:登记报名网址:http://sbcgczxxfb.sysc.tsinghua.edu.cn售价:¥0.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:清华大学地址:清华大学华业大厦1区5层实验室管理处联系方式:李美珍,627857132.项目联系方式项目联系人:李美珍电话:62785713
  • 标乐“WORKSHOP” 微观分析固态样品制备培训课程——合肥站
    随着春天的脚步临近,标乐正式启动&ldquo WORKSHOP&rdquo 微观分析固态样品制备培训课程。&ldquo WORKSHOP&rdquo 培训课程是标乐明星培训课程之一,它的特点是时间紧凑,内容灵活,学员可在短时间内学习到诸多实用知识。培训不设门槛,任何对材料工艺技术和性能有了解的人均可参加。培训课程进入中国多年,获得参加者的一致好评。 2012&ldquo WORKSHOP&rdquo 培训课程将在全国十几个城市陆续进行。第一站,我们选择世界科技城市联盟城市之一的合肥市。 本次培训课程将在2012年3月14日在合肥工业大学分析测试中心举办,为期1天。课程不仅包括切割、镶嵌、表面制备、研磨、拋光、人工样品制备、显微/宏观硬度测试分析等基础知识,还安排实践操作环节,学员可以现场亲手操作标乐最新设备。授课老师方面,除了标乐资深技术专家,还邀请到浙江大学和合肥工业大学的教授做主题讲座。本次培训课程不收取任何费用。 如果您对本次课程感兴趣,可以直接与标乐市场部联络并索取报名表: 电话:400-000-3418 邮箱:lesley.chen@buehler.com 联系人:陈小姐
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 迪马科技提供反式脂肪酸检测解决方案
    反式脂肪酸危害健康的报道曾引起了社会的强烈关注。那么,我们身边究竟有多少食物正威胁着健康?脂肪酸是一类羟酸化合物,当链中碳原子以双链连接时,这个链就存在液态的顺式如植物油和固态的反式两种形态的脂肪酸。而反式脂肪酸对人体的健康存在危害,大量存在于牛奶、起酥油、糖果类脂肪、面包等食品中,可能引发动脉粥样硬化和冠心病等心血管疾病,糖尿病、干扰必需脂肪酸的代谢、抑制婴幼儿生长发育等。 检测区分脂肪酸的&ldquo 好坏&rdquo 就成为保证健康生活的重要工作之一。 迪马科技可为脂肪酸检测提供全面服务,如脂肪酸/脂肪酸甲酯分析专用GC色谱柱(如:Rt-2560,货号:252187),及相关的标准品和衍生化试剂。希望对您的食品检测工作有所帮助。 如欲了解更多详细信息,欢迎您随时联络迪马科技! 咨询电话:400-608-7719 Email:info@dikma.com.cn 相关产品网址:http://www.dikma.com.cn/Goods/index/cid/55 推荐产品如下: **Rt-2560柱(强极性氰丙基硅氧烷类毛细管柱), 可最大程度地分离顺反异构脂肪酸甲酯,完全符合GB5413.27-2010,GB5413.36-2010等国标和USP G5方法。 **DM-2330柱(强极性氰丙基硅氧烷类毛细管柱), 用于顺反异构、双键位置异构的脂肪酸甲酯分离,符合USP G48方法。 **DM-FAMEWAX(聚乙二醇固定液,极性类似于Omegawax),用于分析脂肪酸甲酯。 **DM-FFAP(改性聚乙二醇),用于游离脂肪酸( Free Fatty Acids)的分析,符合USP G25和USP G35方法。 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 客户访谈:ALS分析测试服务中心的Tim Lumb告诉你MQC+如何在脂肪分析中为客户节约成本
    客户访谈:ALS分析测试服务中心的Tim Lumb告诉你MQC+如何在脂肪分析中为客户节约成本为什么时域核磁共振可以为食品制造商节省这么多的钱?来自ALS分析测试服务中心的Tim Lumb做了一个面对面的案例研究,对比传统“skool”酸水解法与时域核磁共振方法用于测定固体脂肪、总脂肪和水分的含量。 并从提高可持续性、节省劳动力成本、提高速度和准确性方面分析,确认最终的赢家!Q:时域核磁共振在食品检测方面的主要应用是什么?Tim Lumb:我们大多数人熟悉时域核磁共振的地方是用于总脂肪分析,这可能是食品检测实验室中时域核磁共振最常用的方法之一。我们看到大多数欧洲国家已经接受时域核磁共振为标准方法,同时该方法在亚洲、澳大利亚、拉丁美洲也越来越受欢迎,现在核磁分析在美国也被接受。Tim Lumb:除此之外,我们看到现在很多标准的方法都在提及时间域核磁共振方法,包括像肉类和奶制品这样的产品。很明显,时域核磁已经在非常短的时间内得到广泛的使用和普及。Q:ALS何时开始使用时域核磁共振技术?Tim Lumb:ALS从2008年开始使用牛津仪器的时域核磁共振。在这之前,我们使用传统的酸水解方法分析脂肪总量,此方法中有一些十分冗长的过程,非常浪费时间。Q:传统的酸水解方法需要经历那些步骤?Tim Lumb:酸水解方法需要经历很多的步骤和阶段。首先,我们需要取一大块样本并放入容器中称重,然后加入大量的浓盐酸,并将其煮沸几小时,使样品浓缩。然后我们清洗并烘干样品,以除去所有剩余的酸。接着我们加热石油醚,使石油醚的冷凝回流液从样品中提取脂肪。我想不出除了实验室以外的其他任何地方,我们谈论沸腾的汽油是一件好事,当然这并不是我们做的最有趣的事情。一旦我们完成了几个小时的煮沸和收集脂肪,我们还需要把所有的溶剂都蒸发掉,直接将它们加热到大气中或者使用收集系统收集废液。Q:请您简单介绍一下时域核磁共振技术?Tim Lumb:我们再把刚刚的样品拿出来,放进一个容器中称重,到这里两种方法是一样的,但接下来的步骤就有很大的不同。首先,由于水分子将会影响时域核磁共振结果,我们需要确保样品至少低于10%的含水量,所以我们需要想办法去除它们。有两种常用的方法,第一种是我们可以把所有的样品都放进烘箱中烘烤16个小时,这样就能去掉所有的水分。或者我们可以使用一些快速的方法,但是通常你一次只能处理一个样本,称重并把它烘干,然后下一个样品。但是当使用烘箱干燥样品时,我们只需同时将所有样品放入即可。一旦干燥完成,我们就完成了样品含量测试的大部分时间。大多数人都会想知道样品中的含水量,所以如果我们此时进行称重,我们就可以计算出样品含水量的结果。然后我们将样品放在NMR分析仪中大约20秒,具体时间取决于你如何设置核磁共振参数。你可以设置进行8~16次测量,然后你可以非常快速的得到样品脂肪总量的平均结果。Tim Lumb:通过上面对酸水解法和时域核磁共振法的直接对比,我想你就会明白为什么我们实验室喜欢时域核磁这项技术了。
  • 大连化物所微型固态吸附棒萃取器和热解吸装置通过项目验收
    日前,大连化物所承担的“十五”科技攻关项目专题“微型固态吸附棒萃取器和热解吸装置”通过科技部组织的专家验收。专家组认为:该课题主要针对茶叶、烟草、乳制品、软饮料和水样等样品中农药残留分析的样品处理,攻关目标明确,立项合理,具有广阔的应用前景;微型固态吸附棒采用溶胶-凝胶法制备吸附涂层,耐温高,使用寿命长。   大连化物所于2001年开始进行该专题攻关,从实验室原理样机开始,尝试了多种技术路线,在两年的时间里完成了整套微型固态吸附棒和热解吸装置的研制与开发工作。本项目所研究的萃取棒萃取相的制作工艺及原理与其它商品化的萃取棒有着很大的区别,本项目中采用的制膜技术为溶胶凝胶法,制得的萃取相耐溶剂冲洗且在高温下不发生热解吸。微搅拌吸附棒可以实现批量生产。热解吸装置设计巧妙,体积小,容易与气相色谱仪联用,与国外同类仪器相比,本装置借助气相色谱进样口完成样品传输线加热,在分析过程中采用保留间隙技术而避免了由于使用冷阱需对样品聚焦,因此设备简化、可靠并大大降低制造成本。所制得的萃取棒耐用、成本较低,解吸器设计合理,结构简单,适合大规模工业化生产,设备适合我国的国情。   该装置可广泛应用于芳香烃、多环芳烃、多氯联苯、农药、香味物质、酚类等挥发性半挥发性物质的分析,同时实现对非挥发性物质的分析检测。我国有1万多个农科所/站、卫生防疫站、产品质量监督检验所/站,进出口商品检验检疫局,其中的绝大多数需要对农产品和食品的农残进行分析,所以在这些领域推广应用该项技术,对提高我国农副产品的进出口监测水平有重要意义。
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf 关键词:三氟化硼甲醇 脂肪酸 甲酯化 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。
  • 瑞士华嘉与晶云药物联合将为中国制药界用户提供药物固态表征领域的一系列高端讲座
    晶云药物科技有限公司(简称晶云)已与华嘉(香港)有限公司—隶属大昌华嘉 (简称华嘉)签订合作协议,将会为华嘉在中国的广大制药界客户,提供药物固态表征领域的一系列高端讲座和培训,以共同推进中国制药界对固态表征仪器在制药界应用和其在药物研发过程中的重要性的了解。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。其中固态表征领域的产品就包括粒度仪,密度计,旋光计,接触角测量仪,BET比表面积测量仪等各种高端进口仪器。 “中国政府正在大力增加制药行业的投资力度,以提高中国在药物研发领域的能力和国际竞争力”,晶云首席执行官陈敏华博士说,“在药物的高级研发方面,中国制药业尚处于起步阶段。导致这个现象的部分原因是国内制药行业在对原料药和制剂的研发认知上,与美国和欧洲的制药行业尚有不小差距。虽然不少中国制药公司有能力购买昂贵的固态表征和其它分析仪器,但他们并不一定懂得如何正确的使用这些仪器,合理的阐释实验数据,并深刻理解其所提供的信息和对药物研发的作用。” 苏州晶云药物科技有限公司是中国首家并且也是目前唯一一家专注于药物晶型研究和提供药物固态信息领域研发方案的技术服务公司。晶云的科研人员拥有丰富的原料药和制剂的研发经验。无论是以研发创新药物为主的全球各大制药公司,还是以生产仿制药(包括原料药和制剂)为主的国内各制药公司,晶云都可以成为其在药物固态研发领域的紧密合作伙伴,为其提供药物固态研发领域的各种解决方案,其中包括药物晶型研究,盐型/多晶型/共晶型筛选,单晶的生长和结构鉴定,结晶工艺的优化,手性药物的结晶提纯,临床前制剂的研发,无定形药物制剂的研发等各个方向。晶云不局限于简单的为客户操作实验和提供实验结果,更重要的是给客户提供一个适合其需求并完全满意的全套研发方案。 晶云技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。晶云即将为华嘉客户提供的讲座和培训不仅包含了药物固态表征技术的基本理论,还将集中讨论如何利用这些仪器解决药物研发生产中碰到的实际问题,并辅以大量的制药行业中的案例分析。晶云和华嘉的一个共同使命就是帮助广大中国制药公司在新药研发领域迅速赶上欧美制药公司水平。相信由两家公司联合举办的讲座和培训将为成为实现这一使命的重要平台。 晶云药物科技有限公司 晶云药物科技有限公司(Crystal Pharmatech)总部设立在苏州工业园区内的生物纳米科技园,在美国新泽西州建有分部。核心团队由中美科学家及管理人员共同组成,拥有在全球前三大制药公司数十年的丰富研发和生产经验。团队利用掌握的核心技术开发出中国在药物晶型研究及提供药物固态信息研发方案的首个高新技术平台,并通过该平台为全球制药公司提供该领域的高级技术研发服务。公司拥有的享有自主知识产权的高新技术和高新仪器,结合团队目前已经完全掌握的该专业领域的核心技术,将保证技术平台不仅可以填补国内在该领域的空白,而且使技术平台处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,主要包括原料药及其中间体的成盐,共晶和多晶的筛选,原料药和制剂的表征和评估,晶型药物结晶工艺流程的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。 想了解更多信息,敬请登陆: http://www.crystalpharmatech.com/ 华嘉(香港)有限公司——隶属大昌华嘉大昌华嘉是一家著名的国际贸易集团,总部位于瑞士的苏黎世。华嘉公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。"科技的市场智慧”是对华嘉公司形象的准确概括。高品质的产品,专业的应用及完善的售后服务,对各种客户文化背景的深刻理解以及娴熟的市场贸易技巧使得客户获得的不仅是经济上的利益,而且是技术上的进步。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 想了解更多信息,敬请登陆:http://www.dksh-instrument.cn/
  • 便携式质谱及全固态ICP光源新仪器发布会
    仪器信息网讯,2009年11月27日下午,由中国计量科学院和清华大学、中国地质大学等单位研制的便携式质谱和全固态ICP光源新仪器发布会于BCEIA2009期间在北京展览馆A会议室成功召开,近100位相关部门领导、专家学者、仪器厂商代表和媒体记者参加了此次发布会。发布会由清华大学张新荣教授主持。 清华大学张新荣教授 便携式质谱   目前,质谱仪已经成为许多领域的必备分析仪器之一,在制药、生命科学、环境监测、食品安全、航天和军事技术等诸多热点领域发挥着越来越重要的作用。目前质谱仪大多体积庞大、价格昂贵且维护费用高,大范围推广使用有一定困难,特别是在制药和生物学领域。   由中国计量科学院和清华大学等单位共同研制开发的便携式质谱,小巧轻便,没有过多的耗材,可以在运动环境或恶劣气候环境下工作,不需外接电源,不需过多前处理,气、液、固态样品均可引入分析。此外,便携式质谱还可对未知样品进行鉴定和分析,实现快速痕量检测,能达到ppb级别的灵敏度。目前,便携式质谱已应用于环境样品分析、香精香料分析、农药残留和食品安全分析等领域,还可应用于突发事件、军事航天、有机物药物和有机毒物、公共安全等现场分析领域。 全固态ICP光源   目前ICP光源所用的射频电源正向全固态化、高稳定度、智能控制方向发展,提高ICP光源所用的射频光源的频率稳定度和功率稳定度、智能控制、轻便体积一直是ICP光源研制努力的方向。   由中国计量科学研究院和中国地质大学(武汉)共同开发的数字式高效全固态ICP光源为全数字化设计,其状态参数均可通过计算机采集、设置和控制 具有较高的工作效率、频率稳定性和功率稳定性 光源系统具有故障诊断功能、自动阻抗匹配功能和自动保护功能。目前该成果已申请1项发明专利和2项实用新型专利。 中国计量科学院黄泽健教授   中国计量科学院的黄泽健教授向大家介绍了便携式质谱的性能参数及构造特点。 清华大学分析中心林子青先生   清华大学分析中心的林子青先生重点介绍了低温等离子体离子源与便携式质谱仪联用的优势,以及常压便携式低温等离子体质谱仪的分析测试特性。 中国地质大学(武汉)机械与电子学院金星教授   中国地质大学(武汉)机械与电子学院的金星教授首先介绍了目前国内外ICP光源的研究现状,随后重点介绍了数字式高效全固态ICP光源的组成、设计思想、特点及相关研究结果。 中国科学院大连化学物理研究所的张玉奎院士   中国科学院大连化学物理研究所的张玉奎院士表示:便携式质谱及全固态ICP光源的成功研发,表明我国在分析仪器科学技术自主创新方面已经取得了重大进展,成果的发布代表科学仪器研制项目的成功,但通向产业化的道路仍很漫长,希望在领导和相关部门的支持下,更快实现产业化。 中国科技部财条司郑健博士   中国科技部财条司郑健博士首先代表科技部条财司吴学梯副司长向研发便携式质谱及全固态ICP光源的成功研发表示祝贺,之后郑健博士谈到:在有关领导和专家的支持与关注下,中国科学仪器硕果累累,自主创新能力已经达到一定高度,为“十二五”推动科学仪器自主创新奠定了基础。 国家质量监督检验检疫总局姚泽华副处长   国家质量监督检验检疫总局姚泽华副处长谈到:国家质量监督检验检疫总局非常关注科学仪器国产化、专用仪器的开发及方法的研究。他非常高兴地看到目前国产仪器取得的成就,希望在相关部门领导的关怀下,研发单位和相关企业一起努力,共同推进国产科学仪器的产业化进程。 清华大学精仪系分析主任王晓浩教授   清华大学精仪系分析主任王晓浩教授首先代表金国藩院士感谢科技部等相关部门多年来的支持,并希望便携式质谱仪在技术上能有所突破,能够更快更早地进入市场,期待和中国计量科学院能在相关领域有更深入更广泛的合作。 中国计量科学研究院化学所李红梅所长   中国计量科学研究院化学所李红梅所长表示:在科技部、应用领域专家和其他企业的关注下,研发项目取得了阶段性的成功,并希望在今后产业化发展的道路上,能够得到更广泛的支持和鼓励。同时,李所长代表研发团队作出承诺:再接再砺,在分析仪器领域做出自己应有的贡献。 国家标准化管理委员会副主任方向研究员   国家标准化管理委员会副主任方向研究员发言:便携式质谱及全固态ICP光源是“十五”和“十一五”成果的延续。这些技术是属于国家的,也是属于大家的,选择在BCEIA2009这种技术氛围的环境下举行发布会,是希望业内同仁共同努力,将成果转换成产品,推进新成果的产业化进程。 专家观看仪器现场演示 发布会现场
  • 福斯发布福斯多功能乳品分析仪MilkoScan FT3新品
    MilkoScan™ FT3乳成分分析仪,是丹麦福斯分析仪器基于乳品行业超过40年行业经验,为乳制品分析提供了一全新的智能方法,具有更广泛的适用性及高度稳定性。从初级原料奶,到最终产品,帮您完成产品标准化生产,满足每个生产节点的质量控制。可用于:-原料奶分级,按质论价,掺假筛查-生产过程中的质量标准化与优化控制-集团化质量管理与控制-成品质量监测 采用傅立叶变换红外光谱技术(FTIR)符合AOAC分析化学家协会IDF国际乳品联合会标准认证。 -广泛的适用性。无需样品前处理,粘稠酸奶直接检测独特的智能流路系统能够处理各种形态的样品,根据每个样品的特性进行自动适应调整。几乎可直接检测市面上所有乳制品,粘稠样品无需前处理,直接检测。 -优异的稳定性与传递性。极低的台间差,降低80%定标调整工作基于专利技术的自动标准化功能,消除仪器漂移和变化,保证定标稳定,使产品质量始终如一。极高的稳定性保障了每台机器间的性能高度一致,实现定标在不同MilkoScan™ FT3间准确传递。只需调整中央主机定标,将调整定标传递到网络中其他MilkoScan™ FT3即可,大大降低工作量和运营成本。 -质量稳定可靠,全机仅3个保养零备件相比上一代乳品分析仪,MilkoScan™ FT3全机仅有3个保养零备件,更易维护。独一无二的智能自诊断系统,持续监控仪器状态,实现超长寿命。 技术参数样品类型:液态、粘稠液态、半固态乳制品(如原奶、纯奶、花色奶、酸奶、乳饮料、奶油、冰淇淋配料、豆奶、植物蛋白饮料、乳清、炼乳及浓酸乳清蛋白等分析参数:脂肪, 蛋白, 乳糖, 总固形物, 非脂乳固体, 冰点, 滴定酸度, 密度, 游离脂肪酸, 柠檬酸, 酪蛋白, 尿素, 蔗糖, 葡萄糖,果糖,半乳糖检测速度:30秒相对准确度(牛奶): 1.0% CV(脂肪、蛋白、乳糖、总固形物) 4.0 m°C (冰点)相对精确度(牛奶): 0.25% CV(脂肪、蛋白、乳糖) 0.20% CV(总固形物) 1 m°C (冰点)样品量: 8.0ml流路系统:全自动清洗和调零。清洗根据样品形状进行自动适应调整湿度控制:自动干燥系统网络功能:LIMIS, FossManager™ 重量和体积:43kg \ 750x450x408mm创新点:-广泛的适用性。无需样品前处理,粘稠酸奶直接检测 独特的智能流路系统能够处理各种形态的样品,根据每个样品的特性进行自动适应调整。几乎可直接检测市面上所有乳制品,粘稠样品无需前处理,直接检测。 -优异的稳定性与传递性。极低的台间差,降低80%定标调整工作 基于专利技术的自动标准化功能,消除仪器漂移和变化,保证定标稳定,使产品质量始终如一。极高的稳定性保障了每台机器间的性能高度一致,实现定标在不同MilkoScan™ FT3间准确传递。只需调整中央主机定标,将调整定标传递到网络中其他MilkoScan™ FT3即可,大大降低工作量和运营成本。 -质量稳定可靠,全机仅3个保养零备件 相比上一代乳品分析仪,MilkoScan™ FT3全机仅有3个保养零备件,更易维护。独一无二的智能自诊断系统,持续监控仪器状态,实现超长寿命。 福斯多功能乳品分析仪MilkoScan FT3
  • 雪景科技携固态热调制器亮相PEFTEC大会
    p   两年一度的石油环境检测技术大会(PEFTEC, Petroleum, Refining, Environment Monitoring Technologies Conference)于2017年11月29-30日在比利时著名港口城市安特卫普召开。本次大会主题包括实验室检测、石油化工产品分析,环境排放监测、便携式与在线采样技术、标准物质与方法、质量控制等。吸引了全球石化炼油、环境检测、以及分析仪器行业的数百名专家学者和仪器厂商参加。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/dc6bcff0-da1b-47f5-9948-ebbfc43c649f.jpg" style=" " title=" IMG_20171129_100536_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/c619152a-5e82-4c70-9f7f-62dd0963efdd.jpg" style=" " title=" IMG_20171130_141622_副本.jpg" / /p p   雪景科技作为唯一一家中国仪器厂商参加本次大会,展出了公司自主开发的基于半导体制冷技术的全二维气相色谱热调制器SSM1800。全二维气相色谱是一种具有强大分离能力的分析技术,可用于石油化工、环境检测、食品香料等行业中复杂样品的分离分析。相比传统气相色谱,全二维技术可极大提高峰容量和分辨率,一次可同时分析上千种化合物。这项技术在欧洲和北美应用较为广泛,很多实验室都有配备,积累了丰富的实用经验。但传统全二维技术需要使用液氮等制冷剂,运行成本较高,而且附属设备多,操作维护也比较复杂。主要集中于高端实验室。雪景科技开发的SSM1800采用革命性的调制方式,彻底摈弃了制冷剂使用,其独特的设计和方便简捷的操作颠覆了人们对全二维气相色谱技术的认知,吸引了广大参会的色谱应用者前来观看咨询。 /p p   在了解了固态热调制器的工作原理和实际效果后,很多用户产生了浓厚的兴趣。他们表示,“SSM1800是一个令人兴奋的产品。它的出现极大简化了全二维分析的操作和维护过程,降低了这项高端分析手段的技术门槛。由于全二维技术在石化和环境行业中针对复杂体系出色的分析效果,固态热调制技术将对今后全二维气相色谱在相关应用中的普及推广起到了非常积极的作用。” /p p    strong 雪景电子科技(上海)有限公司简介 /strong /p p   雪景科技(J& amp X Technologies)是一家由海归博士创立的初创公司,致力于新型全二维气相色谱技术的设计、研发、生产、和应用。公司总部设在上海,另外在南京、北京设有分支机构。雪景科技自主开发的全球首款不使用制冷剂的固态热调制器SSM1800于2016年面世,目前已应用于国内多家高校、科研机构和企事业实验室,受到用户的广泛好评。同时雪景科技积极开拓海外市场,目前与一些国外知名分析实验室开展合作,共同推广方便易用的全二维气相色谱技术,实现其在普通实验室和常规分析上的普及应用。 /p
  • 日立应用|固态电池电极的原位观察
    液态锂电池是目前新能源领域最主要的能源解决方案,但是不论是磷酸铁锂还是三元材料都很难突破350Wh/kg的能量密度,在提高能量密度的同时还伴随着很多安全隐患。而固态电池与传统锂电池最大的区别在于电解质,它使用固体电解质代替了电解液和隔膜。 传统锂电池(左)和固态电池(右)结构固态电池的优点1、固态电解质大大降低热失控风险;2、固态电池电化学窗口更高,可以匹配高能的电极,大幅提高理论能量密度;3、固态电池可以简化封装,缩减电池重量,提高体积能量密度。固态电池现阶段的发展障碍1、大部分固态电解质电导率较低,快充性能不佳;2、循环过程中物理接触变差,影响使用寿命;3、制备工艺复杂。而固态电池电极之间、电极与电解质之间的形貌和结构对于电池整体的性能和安全性有重要的影响,也是研究固态电池性能的关键。目前,日本在固态电池领域的研究相对领先,其中以氧化物、硫化物路线为主。本文中我们利用日立扫描电镜、离子研磨仪、真空转移系统和原位样品台等设备,对固态电池在充放电过程中电极之间的形貌和结构变化进行了观察。固态电池正极中含有金属锂,在空气状态下容易发生反应,因此我们需要对整个制样和观察过程隔绝空气。日立独特的真空转移系统可以将样品在手套箱、电子显微镜、离子研磨仪以及原子力显微镜之间隔绝空气转移,从而避免了样品在转移过程中的氧化。 日立真空转移系统由于固态电池的电极界面需要通过切割才可以观察到,本文采用日立的离子研磨仪(IM4000Plus)对整个电池进行无损切割,从而获得电池电极的界面。离子研磨仪采用Ar离子加工,可以大大减少加工损伤,同时加工过程是在真空下完成的,配合真空转移系统可以将样品转移到扫描电镜中观察。离子研磨截面加工过程和日立离子研磨仪IM4000Plus为了实现通电状态下的原位观察,我们采用了可以原位通电的样品台,且此样品台可以配合真空转移系统工作,可以保证样品从离子研磨仪切割完后隔绝空气转移到原位样品台上,再通过扫描电镜的交换仓转移至样品仓观察。 原位真空样品台本次观察的固态电池由NCA(Ni-Co-Al)正极、硫化物固态电解质和铟对极组成,分别对电极施加不同的电压和时间,观察电极界面的变化。从下图(a)可见,在施加3.1V电压时,固态电极和铟对极之间有一层In-Li合金层;从(b)图可见在施加3.5V电压60min后合金层向In层扩散(箭头所示);从(c)图可见在施加3.7V电压110min后,Li的扩散更加明显。由此可见,在高电压或者长时间通电下In-Li合金层会逐渐变宽,Li向In层逐渐扩散。整个过程都是通过日立高端冷场电镜Regulus8230在低电压下观察实现的。Regulus8230可以在低电压下获得背散射电子图像,看到In-Li合金层与电极之间的成分衬度,从而判断Li是否扩散。 固态电池截面原位观察(a)电压3.1V(b)电压3.5V,60min(c)电压3.7V,110minSEM型号:Regulus8230,加速电压:1.5kV,放大倍率:1,000x,信号:HABSE日立为固态电池的原位观察提供了离子研磨仪、真空转移系统、原位样品台和扫描电镜一整套方案,可以满足新能源客户对锂电池形貌和结构的研究。参考文献:Long, Lizhen. et al. Polymer Electrolytes for Lithium Polymer Batteries. Journal of Materials Chemistry A. 26 (2016): 138-169.Zhu, Gaolong, et al. Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small 2019, 1805389-1805402.公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 活动回顾|东西分析参加第二届固态电解质技术与市场发展论坛暨第七届先进电池电解质/隔膜材料技术国际论坛
    2024年6月12-13日,第七届先进电池电解质/隔膜材料技术国际暨第二届固态电解质技术与市场发展论坛在苏州召开。东西分析携AA-7050型原子吸收分光光度计参加了此次活动。第七届先进电池电解质/隔膜材料技术国际论坛暨第二届固态电解质技术与市场发展论坛由中国化学与物理电源行业协会和中国电子科技集团公司第十八研究所共同主办,论坛上,来自各地的专家学者和企业代表围绕“提升锂电行业新质生产力”的主题,就固态电解质技术、先进电池电解质/隔膜材料技术等方面展开深入讨论。他们通过分享最新的研究成果、技术进展和市场趋势,为与会者带来前沿的学术报告和技术分享。东西分析展台前,参观交流的观众络绎不绝。此次东西分析展出的展品是AA-7050型原子吸收分光光度计。这款仪器以其精准度高、操作简便、功能强大等特点,赢得了参观者的一致好评。在展台前,工作人员以专业的态度,耐心地向每一位观众介绍这款仪器在电池领域应用中的实际案例和检测效果。电池,作为可再生能源发电体系中关键组件,肩负着推动全球可持续能源发展的重要使命。为确保电池材料及产品的安全可靠性,从电池原材料至电解质的每一个环节,均需经过严格的精确分析测试。这些测试可以全面评估电池的性能、寿命及安全性,为电池行业的稳健发展奠定基础。东西分析公司,依托其丰富的质谱、光谱、色谱等多条产品线,为电池行业提供了一套全方位的分析测试解决方案。这些方案可以进一步提升电池的性能和品质,从而推动电池行业的健康发展,为可持续能源事业贡献力量。仪器推荐电池材料中重金属检测推荐仪器适合分析电池材料中的重金属含量,满足《GB/T 11064.4-2013、GB/T 11064.5-2013、GB/T 11064.6-2013碳酸锂、单水氢氧化锂、氯化锂中钾量、钠量、钙量和镁量的测定 火焰原子吸收光谱法》、《YS/T 1472.4-2021 富锂锰基正极材料中锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定 电感耦合等离子体发射光谱法》等检测需求。电池材料中有机成分检测推荐仪器气相色谱质谱联用仪适用于分析电池电解液溶剂及相关原料中的有机成分,比如环状碳酸酯(PC、EC)、链状碳酸酯(DEC、DMC、EMC)及羧酸酯类(MF、MA、EA、MA、MP等)。电池材料检测及产品中气体检测推荐仪器气相色谱可用于电池产气分析,电池电解液原料纯度分析等,符合《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《HG∕T 5786-2021 工业用碳酸丙烯酯》等标准检测要求。电池材料中离子检测推荐仪器离子色谱适用于分析电池电解液溶剂及相关原料中的氟离子,氯离子,硫酸根等,满足《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《GB/T19282-2014 六氟磷酸锂的分析方法》等标准的检测需求。请点击下方链接,获取电池行业的全面解决方案实用干货|助力锂电行业,共迎科技未来
  • 破解“化骨绵掌”幕后黑手——叛变的脂肪细胞
    一项对多发性骨髓瘤(multiple myeloma,MM)患者样本的研究已经证明了“重新编程”的脂肪细胞,即使在癌症已经得到缓解后,是如何导致长期的骨损伤的。一项对多发性骨髓瘤(multiple myeloma,MM)患者样本的研究已经证明了“重新编程”的脂肪细胞,即使在癌症已经得到缓解后,是如何导致长期的骨损伤的。以分子复合物作为靶标可减轻小鼠体内骨损害病变的严重程度,提示针对MM这种常见的且使人虚弱的并发症的可能治疗对策。当癌性浆细胞积聚在骨髓中并对其他血细胞的制造生产产生不利影响时,就会发生这种恶性肿瘤。超过80%的MM患者的骨骼也出现溶骨病变,这可能导致严重疼痛和骨折。即使成功治疗了癌症,这些损伤也无法愈合,从而导致骨愈合的长期缺陷和较低的生活质量。为了理解为什么溶骨病变不能愈合,Huan Liu和他的同事研究了活动期骨髓瘤患者、缓解期患者和健康对照组的骨髓样本。他们观察到,靠近溶骨病变的部位含有大量的骨髓脂肪细胞(脂肪细胞)。与骨髓瘤细胞一起培养的脂肪细胞“逆生长”为重新编程状态,释放抑制骨形成和促进骨分解的酶。进一步的分析显示,骨髓瘤细胞通过激活一种叫做PRC2的分子复合体来转化脂肪细胞,进而抑制一种叫做PPARγ的受体的活性。脂肪细胞中,PRC2复合体组分EZH2失活可阻止其重新编程,并降低MM缓解期小鼠模型中骨损伤的严重程度,这表明恢复PPARγ活性有助于治疗患者的骨损伤。
  • 岛津LC/MS/MS短链脂肪酸分析方法包的在日发售
    近日LabSolutions LCMS用岛津LC/MS/MS短链脂肪酸分析方法包的在日本上市。 1.Question 想通过LC/MS分析肠道菌群产生的短链脂肪酸,是否存在一个适用于衍生步骤的合理测定平台?2.Solution 请使用LCMS-8060和短链脂肪酸分析方法包。 本方法包特点 分析对象——短链脂肪酸和有机酸已知肠道细菌生成的短链脂肪酸包括乙酸、丙酸、丁酸等,据报告这些物质与肥胖和糖尿病等生活习惯病有关。通常,短链脂肪酸具有高度挥发性和高亲水性,因此在正常的反相系统中进行LCMS分析比较困难。为此,本方法包将3-硝基苯肼(3-NPH)衍生的短链脂肪酸(C2至C5)作为分析对象,通过设置MRM离子对,可同时分析与中央代谢途径有关的有机酸(22种成分)。 MRM跃迁的设置在设置MRM跃迁时,通过设定3-硝基苯肼衍生物的特征产物离子,可以提高选择性。另外,一部分有机酸含有衍生自酮的羰基,所以将与羧酸与羰基反应的3-硝基苯肼衍生物作为MRM离子对的对象。 包括衍生化在内的预处理方案本方法包的使用说明书涵盖了包括3-硝基苯肼衍生步骤在内的预处理方案,按照该步骤,可在引入后立即开展衍生化~分析和解析工作。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • HBANK固态氢储氢器——全国独家代理
    汉氢科技股份有限公司(H Bank Technology Inc.)是固态储氢器(solid state hydrogen storage)设计制造与氢能技术支援的领导厂商。 H Bank亦已成为全球固态储氢器(solid state hydrogen storage)领导品牌。 H Bank的技术团队已经累积了超过三十年的金属氢化物(metal hydrides)研发以及其应用领域的开发经验。 凭借着在金属氢化物领域中百折不挠的热诚以及无比的实践力,Hbank成功地将金属储氢技术应用于不同应用市场,并完成商品化的产品,例如在化学分析仪器领域、燃料电池领域、以及氢气混合燃料之燃烧系统上。 上海纳锘仪器有限公司现与汉氢科技股份有限公司(H Bank Technology Inc.)签订合同,成为HBANK产品的国内独家代理。 公司为客户提供产品技术支持和服务。 如预了解HBANK的产品和技术,欢迎来电垂询: 上海纳锘仪器有限公司   地址:上海市莲花南路1388弄8号楼碧恒广场1503-1504室[201108]   电话:021-60900829,60900830,61131031,61131051   传真:021-61131052   E-Mail:info@nano-instru.com   --------------------------------------------------------------------------------   浙江办事处   地址:浙江杭州莫干山路425号瑞祺大厦814室[204888]   电话:0571-81954578   传真:0571-81954579   E-Mail:sales@nano-instru.com   纳锘仪器--提供给您纳米级的专业细致服务!
  • 专业检测,“乳”此简单 | 解析乳制品中脂肪酸的组成
    乳脂肪是高质量的脂肪,主要成分是多种饱和脂肪酸和不饱和脂肪酸。乳制品中的脂肪酸是膳食的主要组成部分, 具有广泛的生理活性和生物学效应。其中亚油酸、α-亚麻酸是人体必需脂肪酸,人体不能自行合成 而必须从食物中摄取。而二十二碳六烯酸、二十碳五烯酸则与人体免疫、衰老发生、胎儿发育和基因调控等过程密切相关。有些人会担心乳制品中的反式脂肪酸问题,因为大量摄入反式脂肪酸会增加心血管疾病的危险。而牛奶中天然存在反式脂肪酸,婴幼儿配方乳粉中也发现了存在反式脂肪酸,因此国家在乳制品标准中对反式脂肪酸制定了限量标准。乳制品中脂肪酸的组成和含量不仅和乳制品的营养、口感密切相关,也直接关系到乳制品的安全。随着我国消费者对乳与乳制品的需求量逐年增长,乳制品中脂肪酸的组成作为评价乳与乳制品的重要指标之一。脂肪酸的检测的分析方法文献报道的很多,如光谱法、色谱法、电泳分析法等,其中红外光谱法和色谱法比较常用。目前乳制品中脂肪酸检测标准主要包括 GB 5009.168-2016 食品安全国家标准 食品中脂肪酸的测定和SN/T 2326-2009 食品及油脂中反式脂肪酸含量的检测傅立叶变换红外光谱法,采用的仪器是气相色谱和红外光谱。原奶脂肪酸检测消费者期望了解牛奶中饱和脂肪酸和不饱和脂肪酸的比例。对于原奶而言,奶牛的饲料,基因遗传,体脂肪情况都会影响牛奶脂肪酸的组成,采用LactoScope™ FT-A 多功能乳品成份分析仪,不需要对牛奶进行衍生化处理,直接来检测原奶中的脂肪酸组成,可以进行牛奶指纹的建立,奶牛疾病筛查以及饲料的监控。LactoScope™ FT-A 多功能乳品成份分析仪,专为高性能和多功能仪器的大型工厂和实验室而设计,通过将革新的FTIR 光谱仪,均质单元,泵单元及加热系统整合,最快测量时间为每个样品30 秒,典型精度小于1% CV。满足AOAC 标准检测方法和ICAR 认证。脂肪酸组成分析乳制品相关产品尤其婴幼儿配方乳粉、婴幼儿特殊医学用途配方乳粉等产品对于脂肪酸亚油酸,α亚麻酸以及两者的比值有严格的规定,采用的方法是气相色谱法。CLARUS气相色谱拥有升、降温速率快的柱温箱,2 分钟内柱温箱从450℃降到50℃, 改进的毛细管柱进样口,在很大程度上降低样品分解,减少残留,提高线性。可以一次进样分析37种脂肪酸。37种脂肪酸色谱图反式脂肪酸反式脂肪酸是所有含有反式双键的不饱和脂肪酸的总称,其双键上两个碳原子结合的两个氢原子分别在碳链的两侧。反式脂肪酸有天然存在和人工制造两种情况。人乳和牛乳中都天然存在反式脂肪酸,牛奶中反式脂肪酸约占脂肪酸总量的4—9%。世界卫生组织以及各国主管部门对反式脂肪酸的规定是基于它对心血管健康的影响而制定的。2010年我国颁布的《食品安全国家标准 婴儿配方食品(GB 10765-2010)》4.3.3条款规定,“反式脂肪酸最高含量<总脂肪酸的3%”。采用的方法也是气相色谱法。反式脂肪酸气相色谱图:了解更多应用资料和产品信息,扫描下方二维码,下载珀金埃尔默解析乳制品中脂肪酸的组成相关资料。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制