当前位置: 仪器信息网 > 行业主题 > >

固体膏电阻定仪

仪器信息网固体膏电阻定仪专题为您提供2024年最新固体膏电阻定仪价格报价、厂家品牌的相关信息, 包括固体膏电阻定仪参数、型号等,不管是国产,还是进口品牌的固体膏电阻定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合固体膏电阻定仪相关的耗材配件、试剂标物,还有固体膏电阻定仪相关的最新资讯、资料,以及固体膏电阻定仪相关的解决方案。

固体膏电阻定仪相关的资讯

  • 《高绝缘电阻测量仪(高阻计)》国家校准规范顺利通过审定
    近日,全国电磁计量技术委员会在广西壮族自治区南宁市召开了全国电磁计量技术委员会年会暨国家计量技术规范审定会,来自计量、仪器仪表、电力等行业86个单位的代表200人参加了会议。北京市计量检测科学研究院电磁所张磊、谷扬和王跃佟三位同志参加了此次会议。会上,由北京市计量院作为主起草单位编制的《高绝缘电阻测量仪(高阻计)》国家校准规范顺利通过审定。   由北京计量院作为主起草单位编制的《高绝缘电阻测量仪(高阻计)》国家校准规范,经过起草组成员一年多的认真筹备,多方听取专家意见,顺利通过了专家审定。专家一致认为,起草组广泛征集了全国各个地区高阻计校准工作中存在的问题,特别是针对不同温湿度条件下进行了大量的实验工作,进行归纳汇总后,制定出适用于全国范围内的高绝缘电阻测量仪(高阻计)校准规范。经过与会专家的充分讨论,对高阻计校准规范的编制工作给予了充分肯定,全票通过审定。   电磁所张磊同志作为电磁委员会委员,全程参与了七项计量技术规范审议工作,认真听取规范起草人的报告,对规范报审稿进行了逐条审查,并且提出了宝贵意见。   《高绝缘电阻测量仪(高阻计)》修订工作,结合了全国各个地区的实际使用和工作情况,规范了高阻计的校准项目和方法,澄清了原来检定过程中存在的一些模糊问题,使生产者、试验者有统一的规范可依。会议之余,北京市计量院同志和同行进行专业上交流,了解更多行业动态,为北京市计量院电磁计量工作的发展起到良好推动作用。
  • 绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?
    绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?绝缘电阻仪器体积电阻表面电阻测试仪使用前请仔细阅读以下内容,否则将造成仪器损坏或电击情况。1. ◇检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. ◇接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx”两端开路的情况下,调零使电流表的显示为0000。然后关机。3. ◇应在“Rx”两端开路时调零,一般一次调零后在测试过程中不需再调零。 4. ◇测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. ◇将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。6. ◇电流电阻量程按钮从低档位逐渐拨,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. ◇测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档, 后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。8. ◇接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)9. ◇禁止将“RX”两端短路,以免微电流放大器受大电流冲击。10. ◇不得在测试过程中不要随意改动测量电压。11. ◇测量时从低次档逐渐拨往高次档。12. ◇接通电源后,手指不能触及高压线的金属部分。13. ◇严禁在试测过程随意改变电压量程及在通电过程中打开主机。14. ◇在测量高阻时,应采用屏蔽盒将被测物体屏蔽。15. ◇不得测试过程中不能触摸微电流测试端。16. ◇严禁电流电阻量程未在104档及电压在10V档,更换试样。技术指标1、电阻测量范围 0.01×104Ω~1×1018Ω2、电流测量范围为 2×10-4A~1×10-16A3、仪器尺寸 285mm× 245mm× 120 mm4、内置测试电压 100V、250V、500V、1000V5、基本准确度 1% (*注)6、内置测试电压 100V、250、500、1000V7、质量 约2.5KG8、供电形式 AC 220V,50HZ,功耗约5W9、双表头显示 3.1/2位LED显示安全注意事项1. 使用前务必详阅此说明书,并遵照指示步骤,依次操作。2. 请勿使用非原厂提供之附件,以免发生危险。3. 进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以免触电。4. 为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬空,不与外界物体相碰。5. 当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
  • 得利特升级多款液体介质体积电阻率测定仪
    石化产业是国民经济重要的支柱产业,产品覆盖面广,资金技术密集,产业关联度高,对稳定经济增长、改善人民生活、保障国防安全具有重要作用。但仍存在产能结构性过剩、自主创新能力不强、产业布局不合理、安全环保压力加大等问题。石油化工产业作为高污染性产业,面临结构性改革的矛盾,国家政策引导对于促进石化产业持续健康发展具有重要意义。得利特顺应发展研发生产了系列石油产品分析仪器。最近技术人员仍然继续着研发工作并且将原来的产品做了部分升级改造。A1150液体介质体积电阻率测定仪符合DL/T421标准,适用于测定绝缘油和抗燃油体积电阻率,可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点采用双CPU微型计算机控制。控温、检测、打印、冷却等自动进行。采用**转换器,实现体积电阻率的高精度测量。具有制冷和加热功能。整机结构合理,安全方便。技术参数测量范围:0.5×108~1×1014Ωcm分辨率:0.001×107Ωcm重复性: ≤15% 再现性: ≤25%控温范围:0~100℃ 控温精度:±0.5℃电极杯参数:极杯类型:Y-18      极杯材料:不锈钢显示方式:液晶显示打印机:热敏型、36个字符、汉字输出环境温度:5℃~40℃ 环境湿度:≤85%工作电源:AC220V±10% ,50Hz功 率:500W外形尺寸:500mm×280mm×330mm重  量:17.5kgA1151油体积电阻率测定仪按DL421.91《绝缘油体积电阻率测定法》的电力行业标准为依据,根据有源电桥的原理研制成功的一种新型电阻率测定专用仪器。具有结构简单、线性度好、灵敏度高、测试结果稳定、操作安全等优点,其性能远高于通常的电压电流法。仪器由参数测量系统、油杯加热控温系统两部分组成,具有自动计时、液晶显示功能。可测量绝缘油体积电阻率。 技术参数测试电压:500VDC测试范围: 10 7~10 13Ωcm重复性: >10 12Ωcm ≯25% ,<10 12Ωcm ≯15% 加热功率: 100W 控温范围: 10℃~100℃ 控温精度: ±0.5℃ 测量误差: ≤±10%测试电极杯: 3个环境温度:0~40℃相对湿度:≤85% 工作电源: AC220V±10%,50Hz
  • 【新品上线】得利特最新推出液体介质体积电阻率测定仪
    新品推荐——液体介质体积电阻率测定仪01产品介绍产品名称:液体介质体积电阻率测定仪型号:A1153执行标准:DL/T 421-2009《电力用油体积电阻率测定法》A1153液体介质体积电阻率测定仪适用于测定绝缘油和抗燃油体积电阻率。可广泛应用于电力、石油、化工、商检及科研等部门。02仪器特点1采用双CPU微型计算机控制。反应速度快,抗干扰强。2进样,控温、检测、打印、冷却,清洗自动进行,操作简便。3采用三电极双控温结构,控温精度高,温度波动≤0.5℃,避免因温度波动影响结果。4电极采用特殊工艺加工,表面光滑度Ra≤0.012μm,确保电极间隙2mm,从而使结果更准确。5电极杯绝缘材料选用PTFE高分子材料,受热不变型,且不吸水,既能保证空杯电容又有利于清洗油杯。6同时具有制冷和加热功能,既可以做绝缘油也可做抗燃油。一机两用经济实惠。7具有开盖防触电保护功能,开盖自动切断高压。03技术参数•测量范围:0.5×106~1×1015Ωm •分 辨 率:0.001×107Ωm•重 复 性:>1010 Ωm,≯25% <1010 Ωm,≯15% •再 现 性:≤25%•控温范围:10~100℃ •控温精度:±0.5℃•空杯电容:30pF±1pF •实验电压:DC 500V•显示方式:液晶显示•打 印 机:热敏型、36个字符、汉字输出 •工作电源:AC220V±10%,50Hz•功 率:500W•外形尺寸:500mm×380mm×350mm•重 量:17.5kgEND
  • 磁电阻特性测试仪
    成果名称 磁电阻特性测试仪(EL MR系列) 单位名称 北京科大分析检验中心有限公司 联系人 王立锦 联系邮箱 13260325821@163.com 成果成熟度 □研发阶段 □原理样机 □通过小试 &radic 通过中试 &radic 可以量产 合作方式 □技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介: 本仪器专门为材料磁电阻特性测试而设计的,采用流行的USB接口将高精度的数据采集器与计算机相连,数据采集迅速准确;用户界面直观友好,极大地方便了用户的使用。 MR-150型采用电磁铁产生强磁场,高精度名牌仪表采集数据,精度高稳定性好适合科研中各类样品的磁电阻特性测试。 MR-4型采用亥姆霍兹线圈产生磁场,无剩磁。采用高精度名牌仪表采集数据,精度高稳定性好适合科研中AMR、GMR、TMR各类样品的磁电阻特性测试。 MR-2型采用集成化主机和多通道USB接口数据采集卡采集数据,稳定性好适合科研教学中性能较好的磁电阻样品测试。 MR-1型采用手动调节磁场和人工读数,适合与大中专院校本科生研究生的专业实验中使用。 主要技术参数: 一、系统控制主机:内含可1路可调恒流源(0.3mA~50mA)、2路4 1/2数字电压表和1块USB接口24bit数据采集卡;功耗50W。 二、自动扫描电源:0~± 5A,扫描周期8~80s。 三、亥姆霍兹线圈:0~± 160Gs。 四、测量专用检波与放大电路技术参数:输入信号动态范围为± 30 dB;输出电平灵敏度为30mV / dB;,输出电流为8mA;转换速率为25 V /&mu s;相位测量范围为0~180° ;相位输出时转换速率为30MHz;响应时间为40 ns~500 ns;测量夹头间隔10mm。 五、计算机为PC兼容机,Windows XP或Windows 7操作系统。 六、数据采集软件在Windows XP和Windows 7操作系统均兼容。 应用前景: 本仪器可用于金属、合金及半导体材料的电阻变温测量。适合于高校科研院所科研测试及开设专业实验。目前该仪器已经应用在北京科技大学材料学院及哈尔滨工业大学深圳研究生院的研究生实验教学及课题组科研测量中,取得良好的成效。 知识产权及项目获奖情况: 本仪器拥有完全自主知识产权和核心技术,曾在全国高校自制实验仪器设备评选活动中获得优秀奖。
  • 绝缘电阻测试仪测量常见的有哪些问题?
    绝缘电阻测试仪测量常见的有哪些问题?1 为什么在测量同一物体时用不同的电阻量程有不同的读数? 这是因为测量电阻时为防止过电压损坏仪器,如果出现过量程时仪器内保护电路开始工作,将测试电压降下来以保护机内放大器。在不同的电压下测量同一物体会有不同的结果。而且当测量电阻时若读数小于199,既只为三位数且di一位数为1 时,其准确度要下降。所以在测量电阻时当di一次读数从1 变为某一读数时,不应再往更高的量程扭开关以防对仪器造成过大的电流冲击。在实际使用时,即读数位数多的比读数位数少的准确度高。2为什么测量完毕时一定要将量程开关再拨到104档后才能关电源? 这是因为在测量时被测物体及仪器输入端都有一定的电容,这个电容在测量时已被充电到测量电时的电压值,如果仪器不拨到104挡后关电源这个充电后的电容器会对仪器内的放大器放电而造成仪器损坏。当被测量物体电容越大,测试电压越高时,电容器所储藏的电能越大,更容易损坏仪器,特别是在电阻的高量程或电流的低量程时因仪器非常灵敏,仪器过载而损坏的可能性更大。所以一定要将量程开关再拨到104挡后才能关电源。3为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果屏蔽不好也会因外界的电磁信号对仪器测量结果造成读数不稳。4为什么测量一些物体的电流时用不同的量程也会出现测出结果相差较大? 这是因为一般物体输出的电流不是恒定流,而仪器有一定内阻,若在仪器上所选量程的内阻过大以至于在仪器上的电压降影响被测物体的输出电流时会造成测量误差。一般电流越小的量程内阻越高,所以在测量电流时应选用电流大的量程。在实际使用时即只要电流表有读数时,读数位数少的小的比读数位数多的准确度高。 5 为什么测量完毕要将电压量程开关再拨到10V档后关闭电源? 这是因为机内的电容器充有很高的电压(zui高电压达1200V以上),这些电容器的所带的电能保持较长的时间,如果将电压量程开关再拨到10V档后关闭电源,则会将机内的高压电容器很快放电,不会在测量的高压端留有很危险的电压造成电击。如果仅拨电源线而不是将电压调至10V档,虽然断了电源,但机内高压电容器还有会因长时间保持很高的电压,将会对人员或其它物体造成电击或损坏。在仪器有问题时也不要随便打开机箱因机内高压造成电击,要将仪器找专业技术人员或寄回厂家修理。6为什么在测量电阻过程中不要改变对被测物的测试电压? 在测量电阻过程中如果改变对被测物的测试电压,无论电压变高或变低时都将会产生大脉冲电流,这个大的电流很有可能使仪器过量程甚至更损坏仪器。另一方面如果电压突然变化也会通过被测量物体的(分布)电容放电或反向放电对测量仪器造成冲击而损坏仪器。有的物体的耐压较低,当您改变测量电压时有右能击穿而产生大电流损坏仪器。如果要改变测量电压,在确保被测量物体不会因电压过高击穿时,要先将量程开关拨到104档后关闭电源,再从仪器后面板调整到所要求的电压。有的材料是非线性的,即电压与电流是不符合欧姆定律,有改变电压时由于电流不是线性变化,所以测量的电阻也会变化。
  • 材料变温电阻特性测试仪
    成果名称 材料变温电阻特性测试仪(EL RT-800) 单位名称 北京科大分析检验中心有限公司 联系人 王立锦 联系邮箱 13260325821@163.com 成果成熟度 □研发阶段 □原理样机 □通过小试 &radic 通过中试 &radic 可以量产 合作方式 □技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介: 本仪器专门为材料电阻特性变温测试而设计,采用专用高精度电阻和温度测量仪以及四端测量法减小接触电阻对测量的影响从而提高测量精度,样品采用氮气保护可连续测量-100℃~500 ℃条件下样品电阻随温度的变化。采用流行的USB接口将高精度的数据采集器与计算机相连,数据采集迅速准确;用户界面直观友好,能极大方便用户的使用。 主要技术参数: 一、信号源模式:大电流模式;小电流模式;脉冲电流模式。 二、电阻测量范围: 1&mu &Omega ~3M&Omega 。 三、电阻测量精度: ± 0.1%FS。 四、变温范围:液氮温度~900 ℃。 五、温度测量精度:热电阻0.1%± 0.1℃;热电偶0.5%± 0.5℃。 六、供电电源:220 VAC。 七、额定功率:500W。 八、数据采集软件在Windows XP、Windows 7操作系统均兼容。 应用前景: 本仪器可用于金属、合金及半导体材料的电阻变温测量。适合于高校科研院所科研测试及开设专业实验。 知识产权及项目获奖情况: 本仪器拥有完全自主知识产权和核心技术,曾在全国高校自制实验仪器设备评选活动中获得优秀奖。
  • 得利特升级油体积电阻率测定仪正式投入市场
    石油产品质量分析在其生产、储运和市场流通环节起着重要作用,石油产品分析仪器现已广泛应用于油田、炼油厂、陆海空交通运输、海关及油品质量监督部门。作为中国仪器仪表行业重要组成部分的油品分析仪器,在疫情席卷全球的情况下,仍然在各大行业中起到必不可少的作用。随着各项技术工艺的发展,仪器仪表产品也在不断的更新换代。各大分析仪器品牌如雨后春笋,在市场中同台竞技,用户可选择的产品也更多了。企业不断推出自己的品牌产品。在刚刚过去的半年里,又有不少企业研发出多项仪器仪表新品。 得利特为了跟上油品分析仪器发展大潮,不断积累经验,创新技术,研发升级自产油品分析仪,近日,又有一款升级产品投入市场,它就是油体积电阻率测定仪。下面得利特为大家讲一下它的升级点在哪里?A1151油体积电阻率测定仪按DL421.91《绝缘油体积电阻率测定法》的电力行业标准为依据,根据有源电桥的原理研制成功的一种新型电阻率测定专用仪器。技术参数测试电压:500VDC测试范围: 10 7~10 13Ωcm重 复 性:>10 12Ωcm ≯25% ,<10 12Ωcm ≯15% 加热功率: 100W 控温范围: 10℃~100℃ 控温精度: ±0.5℃ 测量误差: ≤±10%测试电极杯: 3个环境温度:0~40℃相对湿度:≤85% 工作电源: AC220V±10%,50Hz 升级点:1.采用双CPU微型计算机控制。2.控温、检测、打印、冷却等自动进行。3.采用**转换器,实现体积电阻率的高精度测量。4.具有制冷和加热功能。5.整机结构合理,安全方便。
  • 技术更新|介损及体积电阻率测定仪可测介质损耗因数
    如今市场需求总体继续扩大,但增速下降。一方面,随着城镇化和基础设施建设的不断深入,基本原材料的需求还将保持一定增速,但增速会有所降低,人们日常生活用品也不会有太大的提高;另一方面,人们的消费升级以及生活方式和消费模式的改变,将提高或改变市场需求,促进与经济发展相配套的石化化工产品升级换代。因此,预计“十四五”期间,传统石化化工产品,如成品油、大宗化工产品等,在很长的一段时间内消费保持低速增长态势,甚至有些个别产品还会有略微下降;而在与智能制造、电子通信、中高生活消费品和医药保健等有关的化工产品,主要是电子化学品、纺织化学品、化妆品原材料、快餐用品、快递服务用品、个人防护和具备特殊功能的化工新材料等,都将会有很大增幅。同时安全生产、绿色发展的要求日益提高。石化化工生产“易燃、易爆、有毒、有害”特点突出,尤其是近几年,化工行业事故频发,特大恶性事故连续不断,给人们生命财产造成重大损失,在社会各界造成极其恶劣的影响。随着我国城镇化的快速推进,原来远离城市的石化化工企业已逐渐被新崛起的城镇包围,带来了许多隐患。“十四五”期间,社会各界将更加紧盯各地石化化工企业,石化化工企业进入化工园区,远离城镇布局将成为必然要求,安全生产也将是企业必须加强的一门必修课。绿色发展已经在社会上形成共识,坚持绿色发展是行业必须要强化的理念,一方面要补足以往的环保欠账;另一方面还要针对不断提高环保标准买单,这对行业来说,是一个巨大的挑战。A1170自动油介损及体积电阻率测定仪符合GB/T5654标准,用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括诸如变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1、采用中频感应加热,室温加热至控温(90℃)并恒温自动测量仅需 15分钟。2、同时测量油介损及体积电阻率或任选一项。3、采用大屏幕液晶显示器,只需按照中文菜单提示,输入指令,仪器即可自动工作。4、具有通讯功能,可配置电脑进行实时监测,动态观察油介损值随油温变化并描绘成图。5、自动显示测量结果,并进行数据打印保存。6、具有过压、过流、短路保护,并具有高压指示,还具有报警提示功能。技术参数体积电阻率测量电压:DC500V±10%体积电阻率范围:2.5×106~2×1013Ω.m精度: 高于±10%电阻测量范围:2M~2TΩ介损测量范围:0.00001~1介损值分辨率:0.00001电容测量范围:10.0pF~200.0pF电容值分辨率:0.01pF空杯电容:60±5pF 介损值测量精度:±(1%读值+0.02%)电容值测量精度:±(1%读值+1pF)工作电源:AC220V±10%,50Hz测控温范围:室温~119.9℃测控温稳定度:±0.5 相对湿度:≤85%介损测量电压:1.5kV、2.0kV、2.5kV(常规使用2.0kV)(正接法) 环境温度:-5℃~50℃外形尺寸:480mm×400mm×420mm重  量:25.7kg
  • Nature Nanotechnology:冷冻电镜对固体-聚合物电解质界面表征
    固态锂金属电池在电动汽车应用中越来越受欢迎,因为它们用更安全的固态电解质代替易燃液体电解质,这种电解质还提供更高的能量密度和更好的抗锂枝晶形成的能力。固体聚合物电解质 (SPE) 因其可调节的机械性能和易于制造而成为极具前景的候选材料;然而,它们对锂金属的电化学不稳定性、中等的电导率和对Li/SPE中间相知之甚少阻碍了在实际电池中的广泛应用。特别是,与SPE相关的低库仑效率(CE)的起源仍然难以捉摸,因为关于它是否源于不利的界面反应或锂枝晶生长和死锂形成的争论仍在继续。在这项工作中,我们使用最先进的冷冻电镜成像和光谱技术来表征界面的结构和化学性质,和基于聚丙烯酸酯的SPE。与传统知识相反,我们发现由于沉积的锂枝晶与聚丙烯酸骨架和丁二腈增塑剂之间的持续反应,没有形成保护性界面。由于反应引起的体积变化,在锂枝晶内部形成了大量具有应力-腐蚀-开裂行为的裂纹。在此观察的基础上,我们利用液体电解质的知识引入添加剂工程,并证明使用氟代碳酸亚乙酯可以有效地保护Li表面免受腐蚀,从而产生致密堆积的Li0具有保形和稳定的固体电解质界面膜的圆顶。由于 1.01 mS cm-1的高室温离子电导率、0.57 的高迁移数和稳定的锂-电解质界面,这种改进的 SPE 提供了99%的优异锂电镀/剥离 CE 和 1,800 小时的稳定循环在 Li||Li 对称电池中(0.2 mA cm -2 , 1 mAh cm-2)。这种改进的阴极稳定性以及高阳极稳定性使得 Li||LiFePO4的循环寿命达到创纪录的 2,000 次循环,Li||LiCoO2全电池的循环寿命达到 400 次。使用基线 SN-SPE 电镀的含锂枝晶的 3D 形态和化学性质a、b、低温 HAADF-STEM 图像 ( a ) 和基于 HAADF-STEM 图像的低温断层扫描获得的代表性细丝的3D 重建 ( b )。c , a中细丝的 3D 横截面分析。d,来自不同区域的几种细丝的 EDS 图。结果表明,O、C、N、S 和 F 分布在整个灯丝的所有位置。e,灯丝的 EELS。在光谱中识别出 C、N 和 O 物种。a , b , 低温 HAADF-STEM 图像和 EDS 图:比例尺,指定区域的 3 μm ( a ) 和 4 μm ( b )。O、C、N、S和F在圆顶表面的富集表明形成了致密且均匀的SEI。c,镶嵌SEI的低温原子分辨率TEM图像,该镶嵌SEI由具有不同晶体取向的密集排列的纳米级域组成。(红色圆圈表示晶畴,红线表示晶格平面的取向。)d,SEI 内的 Li2O 纳米晶体的原子结构。晶面的晶格间距。纳米晶体由线和箭头表示。插图显示了盒装区域的快速傅里叶变换。FEC-SPE 衍生的 SEI 的化学成分和电化学性能溅射时间为 0 分钟和 10 分钟的 FEC-SPE 衍生 SEI 的a – c、 F 1 s ( a )、O 1 s ( b ) 和 C 1 s ( c ) XPS 光谱。LiF、Li 2 O和Li 2 CO 3被确定为SEI组分。d、e、XPS 定量分析源自 FEC-SPE ( d ) 和 SN-SPE ( e ) 的 SEI。FEC-SPE 衍生的 SEI 表现出更高的 F 含量和更高的 S 含量。F, 在 50 °C 下用原始锂金属测试的 FEC-SPE 的临界电流密度。Li||SPE||Li对称电池在升压电流密度下循环,在3.2 mA cm -2之前没有发生短路。充放电时间固定为0.5小时。g,在 PNNL 协议下测试的锂剥离/电镀 CE。h,在0.1 mA cm -2、0.1 mAh cm -2和室温下循环Li||FEC-SPE||Li电池时的EIS演变。在循环 18 小时后实现了低且恒定的电荷转移电阻。制备的 SPE 在大面积容量条件下的 Li 沉积形态和电化学行为采用不同正极材料、面积容量和 N/P 比的 FEC-SPE 基全电池的室温性能a,Li||FEC-SPE||LFP 电池在 0.5C 下的循环稳定性。LFP 的面积质量负载为2 mg cm -2。b,Li||FEC-SPE||LFP 电池在 0.5C 循环下第 1、500、1000、1500 和 2000 次循环的充放电曲线。c – e,长期循环稳定性 ( c )、充放电曲线 ( d ) 和Li||FEC-SPE||LiCoO 2电池在 22 °C 下的倍率性能 ( e )。LiCoO 2面积负载为~5 mg cm -2。f,具有有限Li阳极(2 mAh cm -2)和LiCoO 2的低N/P比电池性能阴极(~5 mg cm -2)。电池在 22°C 和 0.5C 下循环。g ,具有商业高负载LiFePO4和NMC811阴极的FEC-SPE基固态电池在低N/P比条件下的循环性能。电池在 0.2C 和 22°C 下以 5 mAh cm -2的 Li作为阳极进行循环结论在这项工作中,我们发现了 Li 负极的降解机制。我们发现,由于缺乏稳定的 SEI,Li 负极会由于副反应和体积变化引起的应力腐蚀而降解。通过使用冷冻电镜成像和光谱技术,我们彻底研究了固体聚合物电解质和Li 负极之间的固体-电解质界面的结构和化学性质。以此表征为指导,我们通过增材工程成功开发了一种新型 SPE 来控制 SEI 的形成,并最终证明了新型 FEC-SPE 在全电池中的应用,实现了长循环寿命( 2,000 次循环)、高电流密度和高面积容量。我们发现,固体聚合物电解质中的 FEC 添加剂可产生主要包含无定形 F 相关物质的富 F SEI,这最终可以在提高 Li 0负极的可逆性方面发挥重要作用。这项工作还为固体聚合物电解质提供了一种设计策略,即通过添加剂工程控制 SEI。论文信息论文题目:Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries通讯作者:Ruoqian Lin,Xiao-Qing Yang ,Kang Xu & Huolin L. Xin通讯单位:美国纽约州厄普顿布鲁克海文国家实验室化学部,美国陆军研究实验室,美国加州大学尔湾分校
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 【技术指导】油介损及体积电阻率测定仪的油杯三种清洗方法及常见故障
    油介损及体积电阻率测定仪油杯清洗方法、常见故障A1170技术指导产品介绍产品名称:油介损及体积电阻率测定仪产品型号:A1170概 述:油介损及体积电阻率测定仪用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。适应标准:GB/T5654油杯三种清洗方法测量前,应对油杯进行清洗,这一步骤非常重要。因为绝缘油对极微小的污染都有极为敏感的反应。因此必须严格按照下述方法要点进行。方法一:⑴ 完全拆卸油杯电极;⑵ 用中性擦皂或洗涤剂清洗。磨料颗粒和磨擦动作不应损伤电极表面;⑶ 用清水将电极清洗几次;⑷ 用无水酒精浸泡各零件;⑸ 电极清洗后,要用丝绸类织物将电极各部件的表面擦拭干净,并注意将零件放置在清洁的容器内,不要使其表面受灰尘及潮气的污染;⑹ 将各零部件放入100℃左右的烘箱内,将其烘干。有时由于油样很多,所以在测试中往往会一个接一个油样进行测试。此时电极的清洗可简化。具体做法如下:⑴将仪器关闭,将整个油杯都从加热器中拿出,同时将内电极从油杯中取出;⑵ 将油杯中的油倒入废油容器内,用新油样冲洗油杯几次;⑶ 装入新油样;⑷ 用新油样冲洗油杯内电极几次,然后将内电极装入油杯。这种以油洗油的方式可大大提高了测量速度,但如遇到特别脏的油样或长时间不用时,应使用方法一。方法二:⑴ 将电极杯拆开(参见油杯示意图)。⑵ 用化学纯的石油醚和苯彻底清洗油杯的所有部件。⑶ 用丙酮再次清洗油杯,然后用中性洗涤剂漂洗干净。⑷ 用5%的磷酸钠蒸馏水溶液煮沸5分钟,然后,用蒸馏水洗几次。⑸ 用蒸馏水将所有部件清洗几次。⑹ 将部件在温度为105~110℃的烘箱中,烘干60~90分钟。⑺ 各部件洗净后,待温度降至常温时将其组装好。方法三:超声波清洗方法⑴ 拆开油杯。⑵ 用溶剂冲洗所有部件。⑶ 在超声波清洗器中用肥皂水将所有部件振荡20分钟;取出部件,有自来水及蒸馏水清洗;在用蒸馏水振荡20分钟。方法四:溶剂清洗法⑴ 拆开油杯。⑵ 用溶剂冲洗所有部件,更换二次溶剂。⑶ 先用丙酮,再用自来水洗涤所有部件。接着用蒸馏水清洗。⑷ 将部件在温度为105~110℃的烘箱中,烘干60~90分钟。 当试验一组同类没有使用过的液体样品时,只要上次试验过的样品的性能优于待测油的规定值,可使用同一个电极杯而无需中间清洗。如果试验过的前一样品的性能值劣于待测油的规定值,则在做下一个试验之前必须清洗电极杯。常见故障1、屏幕显示“电极杯短路”答:首先查看内电极与外电极的定位槽是否对准,再检查“内电极”安装是否有松动。2、屏幕显示“请进行【空杯校准】”答:空杯电容值不在60±5pF的范围内的时候,需要空杯校准;①油杯的内外电极未放好或内电极未组装好,有放电现象;②油杯不干净,在内外电极之间有杂质需要进行清洗 。3、蜂鸣器响5声后仪器返回到开机界面。答:①检查空杯电容值是否在60±5pF范围之内,②检查油杯是否放 好,有无放电现象。4、在做直流电阻率时,电化60秒时间不变化。答:检查仪器的时钟是否在运转,调整时钟。5、被设电压参数个位显示不为零时,怎么办?答:用【减小】键使被设电压值变为最小,再用【增加】键调整即可。
  • 大化所利用固体核磁共振揭示MFI型分子芳烃受阻运动机理
    近日,大化所固体核磁共振及前沿应用研究组(510组)侯广进研究员、陈魁智研究员团队,利用固体核磁共振(ssNMR)技术,研究了客体芳烃分子运动行为,并对分子筛孔道的限域效应提出了新的理解。分子筛独特的微孔孔道结构赋予其限域效应,对吸附分离和择型催化发挥重要作用。通常,分子筛限域效应随吸附分子尺寸和分子筛孔道尺寸临近而愈发显著,但考虑到分子筛骨架结构、酸性位点分布和吸附分子构型之间的复杂关联,在分子尺度上借助实验研究分子筛限域效应较为困难。MFI型分子筛独特的直通孔道、zigzag孔道及孔道交叉共存的环境,对以甲基取代苯为代表的芳烃分子具有独特的限域效应,芳烃相关的反应和失活机理受到广泛关注。本工作中,研究人员借助2H NMR并结合DFT计算发现,体积较大的偏三甲苯在室温下即可被MFI型分子筛吸附并占据孔道交叉处。偏三甲苯的传输扩散在纯硅silicate-1中表现为沿直通孔道的一维扩散,在孔道交叉处表现为孔道结构关联的三维受阻运动行为。动力学过程速率由快到慢的顺序为甲基C3转动、朝向zigzag孔口112o翻转、朝向zigzag孔口和直通孔口间90o翻转、延直通孔道的跨孔扩散运动。研究还发现,在H-ZSM-5中,上述平动和转动行为受Brønsted酸位吸附影响,进一步受阻。该工作为MFI型分子筛对芳烃分子独特的限域效应提供了实验证据,对理解芳烃相关的反应和失活过程提供了新的见解。相关成果以“Untangling Framework Confinements: A Dynamical Study on Bulky Aromatic Molecules in MFI Zeolites”为题,于近日发表在ACS Catalysis上。该论文的共同第一作者是大化所510组博士研究生纪毅和刘正茂。该研究得到了国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 利用固体核磁共振揭示MFI型分子筛限域环境下的芳烃受阻运动机理
    近日,大连化物所固体核磁共振及前沿应用研究组(510组)侯广进研究员、陈魁智研究员团队,利用固体核磁共振(ssNMR)技术,研究了客体芳烃分子运动行为,并对分子筛孔道的限域效应提出了新的理解。分子筛独特的微孔孔道结构赋予其限域效应,对吸附分离和择型催化发挥重要作用。通常,分子筛限域效应随吸附分子尺寸和分子筛孔道尺寸临近而愈发显著,但考虑到分子筛骨架结构、酸性位点分布和吸附分子构型之间的复杂关联,在分子尺度上借助实验研究分子筛限域效应较为困难。MFI型分子筛独特的直通孔道、zigzag孔道及孔道交叉共存的环境,对以甲基取代苯为代表的芳烃分子具有独特的限域效应,芳烃相关的反应和失活机理受到广泛关注。本工作中,研究人员借助2H NMR并结合DFT计算发现,体积较大的偏三甲苯在室温下即可被MFI型分子筛吸附并占据孔道交叉处。偏三甲苯的传输扩散在纯硅silicate-1中表现为沿直通孔道的一维扩散,在孔道交叉处表现为孔道结构关联的三维受阻运动行为。动力学过程速率由快到慢的顺序为甲基C3转动、朝向zigzag孔口112°翻转、朝向zigzag孔口和直通孔口间90°翻转、延直通孔道的跨孔扩散运动。研究还发现,在H-ZSM-5中,上述平动和转动行为受Brønsted酸位吸附影响,进一步受阻。该工作为MFI型分子筛对芳烃分子独特的限域效应提供了实验证据,对理解芳烃相关的反应和失活过程提供了新的见解。相关成果以“Untangling Framework Confinements: A Dynamical Study on Bulky Aromatic Molecules in MFI Zeolites”为题,于近日发表在ACS Catalysis上。该论文的共同第一作者是大连化物所510组博士研究生纪毅和刘正茂。该研究得到了国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 上海微系统所等制备出石墨烯基量子电阻标准芯片
    电阻标准是电学计量的基石之一。为了适应国际单位制量子化变革和量值传递扁平化趋势,推动我国构建电子信息产业先进测量体系,补充国家量子化标准,开展电学计量体系中电阻的轻量级量子化复现与溯源关键技术研究至关重要。与传统砷化镓基二维电子气(2DEG)相比,石墨烯中的2DEG在相同磁场下量子霍尔效应低指数朗道能级间隔更宽,以其制作的量子霍尔电阻可以在更小磁场、更高温度和更大电流下工作,易于计量装备小型化。此外,量子电阻标准的性能通常与石墨烯的材料质量、衬底种类和掺杂工艺相关。如何通过克服绝缘衬底表面石墨烯成核密度与生长调控的瓶颈,获得高质量石墨烯单晶,并以此为基础,优化器件结构和工艺,开发出工作稳定且具有高比对精度的量子电阻标准芯片至关重要。近日,中国科学院上海微系统与信息技术研究所报道了采用在绝缘衬底表面气相催化辅助生长石墨烯,成功制备高计量准确度的量子霍尔电阻标准芯片的研究工作。相关研究成果以“Gaseous Catalyst Assisted Growth of Graphene on Silicon Carbide for Quantum Hall Resistance Standard Device)”为题,发表于期刊《Advanced Materials Technologies》上。研究人员首先采用氢气退火处理得到具有表面台阶高度约为0.5nm的碳化硅衬底,然后以硅烷为气体催化剂,乙炔作为碳源,在1300°C条件下,生长出高质量单层石墨烯。该温度条件下衬底表面台阶依然可以保持在0.5nm以下。采用这种方法制备的石墨烯可以制成量子电阻标准器件,研究团队直接将该量子电阻标准器件集成于桌面式量子电阻标准器,在温度为4.5K、磁场大于4.5T时,量子电阻标准比对准确度达到 1.15×10-8,长期复现性达到3.6×10-9。该工作提出了适用于电学计量的石墨烯基工程化、实用化的轻量级量子电阻标准实现方案,通过基于其量值的传递方法,可以满足不同应用场景下的电阻量值准确溯源的需求,补充国家计量基准向各个行业计量系统的量传链路。中科院上海微系统与信息技术研究所是该研究工作第一完成单位,陈令修、王慧山和孔自强为共同第一作者,通讯作者为上海微系统所的王浩敏研究员和中国计量科学研究院的鲁云峰研究员。该研究工作得到了国家重点研发计划、国家自然科学基金项目、中科院先导B类计划和上海市科委基金的资助。论文链接:https://doi.org/10.1002/admt.202201127
  • 1.5GHz固体核磁共振技术助力固体材料表面研究
    近日,中国科学院大连化学物理研究所固体核磁共振及催化化学创新特区研究组研究员侯广进团队与美国高场实验室博士甘哲宏等合作,在超高场(1.5GHz)固体核磁共振(NMR)技术应用于固体材料表面结构表征研究中取得新进展。氧化铝是重要的催化剂和催化剂载体,其表面的五配位铝被称为“Super-five”。五配位铝在金属活性中心分散,γ-Al2O3烧结相变,以及醇脱水反应中都起到关键作用。γ-Al2O3结晶度低,其表面五配位铝仅占总铝含量的3%左右,因此难以实现表面五配位铝的结构表征。目前,所有关于五配位铝的结构特征均是基于理论计算推测得到。本研究中,得益于超高场条件下显著提高的27Al NMR灵敏度和分辨率,科研团队采用高场多核、多维固体核磁共振技术,直接实验观测到五配位铝相关空间结构信息,首次揭示了γ-Al2O3表面的五配位铝以聚集态形式存在,且在水的作用下易于发生结构重构。科研人员制备了富含五配位铝的无定形氧化铝纳米片(Al2O3-NS)与γ-Al2O3进行对比研究,借助超高场27Al MAS NMR对Al2O3-NS和γ-Al2O3的铝物种分别进行定量分析。研究通过超高场的27Al-27Al DQ双量子相关实验,以及高场多核、多维固体核磁共振技术发现,γ-Al2O3表面与Al2O3-NS的不同配位铝物种的Al(n)-O-Al(n)链接方式相同,且表面羟基分布及铝与羟基的链接方式也十分相似,进而表明γ-Al2O3表面存在一层富含五配位铝的无定形结构。该研究有助于进一步剖析γ-Al2O3在金属分散、催化剂烧结等应用方面的“构-效”关系。相关研究成果以Nature of Five-coordinated Al in γ-Al2O3 Revealed by Ultra-high Field Solid-state NMR为题,发表在ACS Central Science上,并被选为内封面论文。研究工作得到国家自然科学基金、国家重点研发计划、辽宁省“兴辽英才计划”、大连市青年科技之星等项目的支持。
  • 美国福禄克推出全新超级精密电阻测温仪
    美国福禄克公司近日推出了由HART部门研发的全新1594A/1595A超级精密电阻测温仪,该仪器集准确度、价值和创新性于一身,可用于标准铂电阻(SPRT)、铂电阻(PRT)以及热敏电阻的检定和校准。   Fluke1594A/1595A超级精密电阻测温仪具有足够的准确度,满足基标准实验室所需。其准确度高达0.06ppm(0.000015°C),而其价格却经济实惠,完全可以满足二级实验室的预算需求。计量校准人员使用该超级精密电阻测温仪进行的所有测量都符合预期要求,方便随时验证,完全值得信赖。其领先于市场的特性包括:电阻比率自校准适用于所有测量,值得信赖;校准内部参考电阻,快速而简便;低测量噪声;快速的测量速度。
  • 高通量桌面型固体加样仪 | 全自动固体加样解决方案,样品无需特殊处理,全面提升加粉效率
    制药、食品饮料、生物研究、材料合成、再生能源、精细化工等行业,都离不开固体加样这一简单但重复性高、操作繁琐的实验步骤。手工固体投料加样方式通过取样称重等操作后,将一种或多种固体注入到烧杯、试管、反应釜等目标容器内,但这种操作会随着样品数量和种类的增加变的繁琐且极易出错。随着产业结构的优化升级,自动化固体投料的需求在各行业也在逐步增加。以制药公司为例,在处方前药物合成阶段,实验研发人员要做很多固体 - 催化剂筛选,反应条件优化等高通量实验,涉及大量的固体称量、配液等实验步骤,操作过程会遇到很多痛点难点问题:静电粉末难称量、高精度称量操作耗时、目标容器的标记和数据记录易出错、实验结果难以复现、出现问题难以追踪溯源、实验室一大堆瓶瓶罐罐影响整体形象、被重复低效工作所拖累等,这些问题使得许多制药公司寻求高通量自动化方式替代人工。自动化固体粉末加样的发展现状对于 “自动化称量” 的探索其实很早就开始了,如 20 世纪 70 年代出现的电子秤,应用电子技术提高了精度,与分装设备结合后,提高了固体称量分装设备的准确性。到了 21 世纪,出现了自动化固体称量分装设备,应用自动化、人工智能技术,可以做到智能化称量分装,但仍然需要实验人员对样品做预处理,如降低样品颗粒度,干燥样品、过滤样品等,方便称量和保证称量数据的准确度。发展到今天,国内外都研发出了不同称量范围和使用场景的自动化固体加样设备,实验人员有了多种选择,但依然面临很多挑战:1)单通道固体投料的方式无法应对当前复杂配方体系;2)原料桶切换仍需人工介入操作并未做到真正的解放人力;3)多类型原料的性状受到很大限制导致加样的精准度达不到需求。市场上高通量固体自动化加样产品较少,并且进口品牌处于领先优势地位,但进口设备也有很多问题也困扰着用户,如总价格高昂、运营成本高、货期长且不固定、服务响应不及时等。现有的自动化固体加样解决方案无法满足国内用户的需求,且固体加样技术的壁垒较高,面对这样的不利状况,需要国产仪器制造商攻坚克难寻找解决方案。晶泰智造的全自动固体加样解决方案晶泰智造固体投料技术通过软硬件的双重攻坚,突破传统加样技术壁垒,有效解决了原料颗粒大、流动性差、蓬松、静电大等难处理固体的加样问题。晶泰智造通过增加原料桶数量,使用先进的压电陶瓷激震等技术,配合高精度称重传感器,扩大接收容器兼容性,有效提升加样效率及精准度,真正做到了无人值守固体加样自动化。配合高效智能的自适应加粉算法,样品无需预处理,只需设定目标加样量和允许的最大加样偏差,通过软件智能算法参数调节即可完成固体加样流程。晶泰智造的工业级安全防护、Satrun_V 底层操作平台、数字孪生仿真平台,可以保证用户的数据安全和智能化体验。晶泰智造历经多个自动化固体加样的技术攻关和经验积累后,推出 ChemPlus&trade 桌面型固体加样仪。ChemPlus&trade 桌面型固体加样仪ChemPlus&trade 是一款结构紧凑的桌面型固体加样仪,支持多种固体原料和兼容不同接收容器,无需人工值守,自动完成重复耗时的称重固体加样操作。●应用领域● 产品特点&bull 高通量:可放置多种固体原料和接收容器,全面提升效率&bull 适用范围广:样品无需特殊处理,适用于大颗粒、蓬松、流动性差的粉末&bull 除静电:有效降低静电效应,加样更准确&bull 成本可控:耗材价格低廉,节省成本&bull 占地小:整机尺寸小,桌面型&bull 兼容性广:可兼容多种实验室常用尺寸小瓶&bull 数据追踪:条形码或二维码样品管理,支持审计追踪&bull 简易交互软件:可视化操作软件,易上手使用● 样品测试数据**以上测试数据仅供参考,具体数据结果以样品实际测量为准。
  • 老品牌●新王者 | Nanoanalytics跨膜电阻检测仪家族再添一员
    德国Nanoanalytics是一家专业从事表面、界面和微观分析领域材料表征的公司,他们拥有自己的研发团队和实验室,研发的产品具稳定性和创新力,并且在生命科学的微观检测领域中也有着很多核心产品。其中,实时无标记检测细胞跨膜电阻仪(cellZscope)自发明以来,便广受细胞屏障(消化道、呼吸道、血脑屏障)、药物转运、纳米药物研发、中枢神经系统疾病,肿瘤等领域研究者的认可,并助力用户在期刊中发表多篇学术论文(PNAS、Cell Rep.等),点击文末链接即可获取学术论文清单。cellZscope E型号仪器做为Nanoanalytics家族的一员,具有全自动实时动态检测跨膜电阻的功能、 6通道实时无标记测量,可兼容不同大小的transwell培养皿等特点,一经推出,即获得国内外客户的一致好评。对于通量要求不高的用户,它无疑是佳利器。在即将到来的2020年,也是Nanoanalytics成立20周年之际,该公司又将重磅推出一款“产品”:cellZscope 3型号仪器,并计划于春季正式发布。cellZscope 3除了Nanoanalytics产品线具有的常规优势外,还具有:★ 超高速测量(24孔的时间分辨率小于30秒),★ 可将多四个细胞模块连接到一个控制器。★ 可完成平行测量96孔细胞样本。综合上述特点,新型号cellZscope 3型仪器,在屏障研究中,将大大提高研究样本的通量,尤其是在药物研发中,96孔通量可以进行一定程度的药物筛选,这也将进一步拓展cellZscope型号仪器的应用。 拓展应用:★ 细胞屏障(血脑屏障、鼻黏膜及消化道屏障等)的特性★ 紧密连接动力学★ 新型药物研发★ 药物或毒物对细胞屏障功能的影响★ 肿瘤侵袭转移★ 免疫细胞在中枢神经系统疾病中的作用论文清单1. NanoAnalyticCellZscope--发表文章列表:http://www.qd-china.com/productsColor.aspx?id=232&s=cellZscope
  • 国家重点研发计划项目"低场量子电阻测量仪"通过验收
    近日,由514所航天河公司牵头的国家重点研发计划“重大科学仪器设备开发”专项“低场量子电阻测量仪”项目顺利通过国家科技部、高技术研究发展中心组织的综合绩效评价验收。 验收会以视频的方式进行,科技部高技术研究发展中心组织了来自清华大学、北京大学、中科院、中国计量院等单位的国内顶级技术专家和财务专家形成的评审专家组。项目负责人徐思伟研究员对项目执行情况进行了汇报、黄晓钉研究员对项目技术进展进行了汇报。 专家组严格按照项目任务书,对项目目标和考核指标完成情况、研究成果水平及创新性、成果示范推广及应用前景、项目组织管理及内部协作配合、人才培养等情况进行综合绩效评价。经过质询和讨论,专家组一致认为:项目攻克了多项核心技术,高质量完成了任务书规定的研究内容和考核指标,通过终期验收。 “低场量子电阻测量仪”项目由514所航天河公司牵头,北京东方计量测试研究所、中国计量科学研究院、中船重工鹏力(南京)超低温技术有限公司、中国科学院电工研究所、湖南银河电气有限公司、中国工程物理研究院计量测试中心和北京博华鑫诺科技有限公司联合承担。项目组经三年艰辛努力,研制出新型量子电阻测量仪,可满足国内电阻计量和精密电阻测量的广泛需求。 项目组利用“低场量子电阻测量仪”产品的技术优势,已经在型号测试、军工计量和高精度仪表研制领域开展了应用研究,对装备计量保障和国产精密仪器技术指标的提升发挥了重要作用。后续,514所将进一步持续开展推广应用工作,服务国计民生。
  • 电阻为零的超导微处理器问世 能效高出半导体同类产品八十倍
    根据最近的一项估计,目前数据中心的耗能已高达全球电力的2%,这一数字在10年内有望攀升到8%。为逆转这种趋势,科学家们正考虑以全新的方式简化数据中心的微处理器。日本研究人员将这一想法发挥到了极致,创建了一种电阻为零的超导微处理器。基于AQFP的MANA微处理器。图片来源:IEEE频谱网站《IEEE固态电路》杂志报道,这种超导微处理器可为更高能效的计算能力提供潜在的解决方案,但新设计目前需要低于10开尔文(或—263℃)的超冷温度。研究人员创建的这种绝热超导微处理器,从原理上讲,在计算过程中不会从系统中获得或损失能量。这个新的微处理器原型称为MANA(单绝热集成体系结构),是世界上第一个绝热超导体微处理器。它由超导铌组成,并依赖于称为绝热量子通量参量电子(AQFP)的硬件组件。每个AQFP由几个快速作用的约瑟夫森结开关组成,这些结开关只需很少的能量即可支持超导体电子设备。MANA微处理器总共由2万多个约瑟夫森结(或1万多个AQFP)组成。研究人员解释说,用于构建微处理器的AQFP已经过优化,可以绝热运行,从而可在相对低的时钟频率(高达10GHz左右)下恢复从电源中汲取的能量。与传统超导电子产品数百吉赫兹的运行频率相比,这个数字要低得多。但这并不意味着MANA达到了10GHz的速度。实验显示,MANA的数据处理部分可在高达2.5GHz的时钟频率下运行,这使其与当今的计算技术相当。这种铌基微处理器的入门价格取决于低温和将系统冷却至超导温度的能源成本。不过,即使将冷却成本计算在内,与最先进的半导体电子设备(如7纳米鳍式场效应晶体管)相比,AQFP的能源效率仍然高出约80倍。由于MANA微处理器需要液氦水平的低温,因此它更适合于使用低温冷却系统的大规模计算基础架构,例如数据中心和超级计算机。
  • Quantum Design中国子公司塞贝克系数/电阻测量系统ZEM于清华大学安装验收
    2019年3月,Quantum Design中国子公司(以下简称QDC)顺利完成清华大学材料学院的塞贝克系数/电阻测量系统ZEM的安装验收工作,QDC工程师紧接着对用户进行了相关知识和设备操作的全面培训。这是清华大学所采购的六套塞贝克系数/电阻测量系统ZEM系列产品。 由日本ADVANCE RIKO公司生产的塞贝克系数/电阻测量系统ZEM可实现对金属或半导体材料的热电性能的评估,材料的塞贝克系数和电阻都可以用ZEM直接测量。该设备采用温度控制的红外金面加热炉和控制温差的微型加热器,因此能实现实验过程中的无污染控温。同时,设备全自动电脑控制,允许自动测量消除背底电动势,拥有欧姆接触自动检测功能。除ZEM标准配置外,还可根据用户不同需求定制高阻型,增加薄膜测量选件、低温选件等。 2018年7月,QDC与日本ADVANCE RIKO公司正式达成协议,作为其热电材料测试设备在中国的代理商继续合作,并将日本ADVANCE RIKO公司的相关设备在中国大陆、香港和澳门进行进一步推广。同时,QDC将在日本ADVANCE RIKO公司的协助下,在北京建立热电材料测试设备演示中心和技术服务中心,更好地为中国热电材料的发展提供产品展示、技术支持和售后服务。
  • 《固体废物鉴别标准 通则(征求意见稿)》避免认定不清 堵上管理漏洞
    2024年1月10日,为贯彻《中华人民共和国环境保护法》《中华人民共和国固体废物污染环境防治法》等法律法规,加强对固体废物的管理,保护环境,保障人体健康,生态环境部对《固体废物鉴别标准 通则》(GB 34330-2017)进行了修订,现公开征求意见。现行《固体废物鉴别标准 通则》(GB 34330-2017)(以下简称标准)实施以来,我国固体废物管理改革步伐加快,涉及固体废物鉴别的新问题不断出现。为进一步加强固体废物管理,完善固体废物属性鉴别依据,进行第一次修订。本标准规定了不作为固体废物管理的物质、依据产生来源的固体废物鉴别、依据利用处置方式的固体废物鉴别、副产物和利用固体废物生产的产物的固体废物鉴别以及监督管理要求。本标准适用于物质(或材料) 和物品(包括产品、商品)(以下简称物质) 的固体物鉴别本标准适用于液态废物的鉴别。本标准遵循延续性原则、坚持问题导向、坚持减污降碳协同增效等基本原则。通过标准的修订以满足我国固体废物风险管控的要求、推进“无废城市”建设的需要、固体废物进口管理制度改革要求、综合保税区和自由贸易区相关业务需要,从而保障固体废物鉴别质量和公正性。我国固体废物产生强度高,但利用处置能力不足、相应的成本较高,随着国内对涉及固体废物尤其是危险废物的违法行为打击力度日益加强,企业利用现行标准中较为模糊的条款,将固体废物“改头换面”躲避监管的苗头逐渐显露。近年来固体废物非法转移和倾倒呈现高发态势,其中不乏因对固体废物属性认定不清,导致以原料或产品的名义转移固体废物事件发生。为避免因固体废物属性认定不清导致固体废物游离于管理之外,急需通过标准的修订堵上管理漏洞。固体废物鉴别是推进城市固体废物精细化管理,推动固体废物资源化和健全“无废城市”建设相关制度的前提和关键。《“无废城市”建设试点工作方案》将健全标准体系作为主要任务,提出通过“完善综合利用标准体系,分类别制定工业副产品、资源综合利用产品等产品技术标准”,推动大宗工业固体废物资源化利用的具体措施。现行标准中关于固体废物和副产品的判定准则是指导固体废物综合利用标准制定的基础,需根据最新管理要求做出相应调整。随着禁止洋垃圾入境制度的深入推进,我国固体废物进口管理逐步加严,将固体废物报成正常商品以规避我国监管的问题日益凸显。口岸的固体废物鉴别需求不断增加,需要根据鉴别案例中反映出的新问题对标准进行修改。现行标准对二手产品(旧货)和固体废物的判别界线较为模糊,一方面存在固体废物“以废充旧”非法入境的风险,另一方面也会使正常的检测、维修、再制造业务受到一定影响。考虑到保税检测、维修及再制造业务的需要,急需补充完善我国固体废物鉴别相关规则。附件:征求意见单位名单.pdf固体废物鉴别标准 通则 (征求意见稿).pdf《固体废物鉴别标准 通则(征求意见稿)》编制说明.pdf征求意见反馈单.pdf
  • 生态环境部发布《中华人民共和国固体废物污染环境防治法(修订草案)(征求意见稿)》
    p   近日,生态环境部发布关于公开征求《中华人民共和国固体废物污染环境防治法(修订草案)(征求意见稿)》意见的通知,通知中指出为深入推进我国固体废物污染环境防治工作,有效防范固体废物污染环境风险,根据全国人大立法工作计划,在认真调查研究的基础上,生态环境部研究起草了《中华人民共和国固体废物污染环境防治法(修订草案)(征求意见稿)》。 /p p   为充分了解各方面意见,进一步做好修订工作,现就《固体废物污染环境防治法(修订草案)(征求意见稿)》(附件1)公开征集意见。各机关团体、企事业单位和个人均可参照意见建议格式(见附件3),向生态环境部提出意见和建议,征集意见截止时间为2018年8月18日。 /p p   联系人:生态环境部熊晶 姜栋栋 /p p   电话:(010)66556293 /p p   传真:(010)66556252 /p p   邮箱:swmd@mep.gov.cn /p p   通信地址:北京市西城区西直门南小街115号 /p p   邮政编码:100035 /p p   附件: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" http://img1.17img.cn/17img/files/201807/ueattachment/46290a7b-0dbc-4c87-91f7-a6457eefeab2.pdf" target=" _self" title=" " textvalue=" 1.中华人民共和国固体废物污染环境防治法(修订草案)(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " 1.中华人民共和国固体废物污染环境防治法(修订草案)(征求意见稿).pdf /a /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" http://img1.17img.cn/17img/files/201807/ueattachment/de67f325-209c-4fb1-a211-fda27d34f21b.pdf" target=" _self" title=" " textvalue=" 2.《中华人民共和国固体废物污染环境防治法(修订草案)(征求意见稿)》修订说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " 2.《中华人民共和国固体废物污染环境防治法(修订草案)(征求意见稿)》修订说明.pdf /a /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" http://img1.17img.cn/17img/files/201807/ueattachment/07cc994d-b6a9-460e-a2af-f51b11ffb9f9.doc" target=" _self" title=" " textvalue=" 3.反馈意见建议格式.doc" style=" color: rgb(0, 112, 192) text-decoration: underline " 3.反馈意见建议格式.doc /a /span /p
  • 重庆市固体废弃物运输有限公司590.00万元采购固体废弃物
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 一线员工工作餐用餐采购项目(第二次)招标公告 重庆市-渝北区 状态:公告 更新时间: 2024-01-19 一线员工工作餐用餐采购项目(第二次)招标公告 一线员工工作餐用餐采购项目(第二次) 招标公告1.招标条件 本招标项目为一线员工工作餐用餐采购项目(第二次)招标,招标项目资金为企业自筹,项目已具备招标条件。现委托重庆招标采购(集团)有限责任公司对该项目进行国内公开招标,欢迎有能力的潜在投标人参加投标。2.项目概况与招标范围 2.1 项目概况:重庆市固体废弃物运输有限公司工作餐供餐服务,为公司管辖内中心城区人员提供全年365日早餐、午餐、晚餐和夜餐的一线员工工作餐。本次招标合同估算金额约590万元。 2.2招标范围:为公司管辖内主城各区人员提供全年365日早餐、午餐、晚餐和夜餐的工作餐供餐服务及随餐食品饮料供应,服务人数约590人,最终以实际供餐人数为准。 2.2.1用餐标准: (1)早餐:为流质类食品1种+非流质类食品3种(注:非流质类食品中煮鸡蛋(或卤鸡蛋)须每日提供。流质类食品: 牛奶、豆浆、蔬菜粥、稀饭、银耳汤、八宝粥等。非流质类食品:包子、馒头、大饼、糕点、面包、油条、蒸饺、汤圆、煮鸡蛋(或卤鸡蛋)等。(早餐用餐人员约350人)。 (2)午餐:为两荤两素一个汤菜(肉汤)及米饭。(午餐用餐人员约340人)。 (3)晚餐:为两荤一素一个汤菜(素菜为当季时令蔬菜)及米饭。(晚餐用餐人员约150人)。 (4)夜餐:为两荤两素一个汤菜(肉汤)及米饭(夜餐用餐人员约150人)。 注:根据季节变化实时更新早中晚夜餐菜品搭配,同时午餐/夜餐含随餐饮料,牛奶,水果,午餐和夜餐不能同享。 2.2.2送餐时间:按照招标人所属各站点实际用餐时间为准(详见《附表:配送站点详细地址及就餐时间》),如需临时调整用餐时间,以双方协商时间为准。 2.2.3供货方式:为送餐、供餐点就餐、送餐+供餐点就餐三种方式(只能选择其中一种方式)。 (1)送餐:需为招标人工作区域内(渝中区、江北区、南岸区、渝北区、沙坪坝区、九龙坡区、两江新区、巴南区等中心城区,具体地址详见《附表:配送站点详细地址及就餐时间》)的所有项目人员提供配餐送餐服务,送餐方式原则上每周菜品不重复,每月菜品重复率不超过3次。送餐地点为招标人指定地点。食品加工人员具备有效期内健康证持证上岗,加工操作场所在100平方及以上。 (2)供餐点就餐:需在招标人工作区域内(渝中区、江北区、南岸区、渝北区、沙坪坝区、九龙坡区、两江新区、巴南区等中心城区,具体地址详见《附表:配送站点详细地址及就餐时间》)自有(或租赁,或连锁)餐厅,就餐环境干净卫生,在100平方及以上距离(详见《附表:配送站点详细地址及就餐时间》)定点送餐点两公里范围内,公里数测距以发布公告至投标截止期间电子地图中显示车辆驾驶行程截图为准。到店15分钟能及时就餐,投标人为招标人工作人员发放有效电子就餐卡,持有电子就餐卡的人员可在投标人任一供餐点就餐。供餐点就餐菜品由招标人工作人员按照餐标自行点餐。 (3)送餐+供餐点就餐:需为招标人工作区域内(渝中区、江北区、南岸区、渝北区、沙坪坝区、九龙坡区、两江新区、巴南区等中心城区,具体地址详见《附表:配送站点详细地址及就餐时间》)提供配餐送餐服务,送餐方式原则上每周菜品不重复,每月菜品重复率不超过3次。送餐地点为招标人指定地点;自有(或租赁,或连锁)餐厅,就餐环境干净卫生,在100平方及以上距离(详见《附表:配送站点详细地址及就餐时间》)定点送餐点两公里范围内,公里数测距以发布公告至投标截止期间电子地图中显示车辆驾驶行程截图为准。员工到店能在15分钟及时就餐,投标人为招标人工作人员发放有效电子就餐卡,持有电子就餐卡的人员可在投标人任一供餐点就餐。供餐点就餐菜品由招标人工作人员按照餐标自行安排。 2.3服务地点:招标人工作区域内(渝中区、江北区、南岸区、渝北区、沙坪坝区、九龙坡区、两江新区、巴南区等中心城区,具体地址详见《附表:配送站点详细地址及就餐时间》)。 2.4服务期:项目服务期1年,自合同签订之日起计算。3.投标人资格要求 3.1本次招标实行资格后审,投标人应同时满足下列资格条件: 3.1.1投标人具有独立法人资格。 3.1.2投标人具备有效的《食品经营许可证》。 3.1.3 2020年1月1日至投标截止日止(以合同签订时间为准),投标人具备1个合同金额400万元及以上的送餐或供餐服务业绩。 3.1.4具体资格要求以投标人须知前附表1.4.1为准。 3.2本项目不接受投标人以联合体形式投标。4.招标文件的获取 4.1 获取时间:从2024年1月 19日09时00分到2024年1月26日17时00分(北京时间)。 4.2 获取方式:投标人在招标公告规定的招标文件获取时间内每天(法定公休日、法定节假日除外)持单位介绍信(或法人授权委托书)、单位营业执照复印件(需加盖单位法人章)以及本人身份证原件和复印件在重庆市江北区五简路2号重庆咨询大厦A座904室报名领取招标文件及相关资料。 4.3 招标文件每套售价200元,获取招标文件时一并缴纳,售后不退。未购买招标文件的投标人,招标人和招标代理机构将不予接收其投标文件。 4.4 投标人可向代理机构提交书面质疑,提问时间从本公告发布之日起至2024年1 月29日12时00分(北京时间)前。 4.5 招标人应于2024年1 月29 日17时00分(北京时间)前通过邮件形式向各投标人发布澄清(如有)。5.投标文件的递交5.1 投标文件递交的起止时间(投标截止时间,下同):2024年2月19日9时30分至2024年2月19日10时00分。5.2 开标地点:重庆咨询大厦开标厅,具体详见开标当天重庆市江北区五里店五简路2号重庆咨询大厦A座负一楼指示牌。5.3开标时间:2024年2月19日10时00分(北京时间)。5.4 逾期送达,或未送达指定地点,或未密封的投标文件,招标人不予受理。6.发布公告的媒介本次招标公告在《中国招标投标公共服务平台(http://www.cebpubservice.com)》、《重庆国际投资咨询集团网(http://www.cqiic.com/)》和《重庆招标采购集团有限责任公司网(http://www.cqzbcg.com/)》上发布。7.联系方式 招标人名称:重庆市固体废弃物运输有限公司 地址:重庆市渝北区夏家坝智慧固废物流转运港综合楼办公室211室 联系人:周老师 电话:023-67886881 招标代理机构名称:重庆招标采购(集团)有限责任公司 地址:重庆市江北区五简路2号重咨大厦A座904室 联系人:王老师 电话:023-67103538 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:固体废弃物 开标时间:2024-02-19 10:00 预算金额:590.00万元 采购单位:重庆市固体废弃物运输有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆招标采购(集团)有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 一线员工工作餐用餐采购项目(第二次)招标公告 重庆市-渝北区 状态:公告 更新时间: 2024-01-19 一线员工工作餐用餐采购项目(第二次)招标公告 一线员工工作餐用餐采购项目(第二次) 招标公告1.招标条件 本招标项目为一线员工工作餐用餐采购项目(第二次)招标,招标项目资金为企业自筹,项目已具备招标条件。现委托重庆招标采购(集团)有限责任公司对该项目进行国内公开招标,欢迎有能力的潜在投标人参加投标。2.项目概况与招标范围 2.1 项目概况:重庆市固体废弃物运输有限公司工作餐供餐服务,为公司管辖内中心城区人员提供全年365日早餐、午餐、晚餐和夜餐的一线员工工作餐。本次招标合同估算金额约590万元。 2.2招标范围:为公司管辖内主城各区人员提供全年365日早餐、午餐、晚餐和夜餐的工作餐供餐服务及随餐食品饮料供应,服务人数约590人,最终以实际供餐人数为准。 2.2.1用餐标准: (1)早餐:为流质类食品1种+非流质类食品3种(注:非流质类食品中煮鸡蛋(或卤鸡蛋)须每日提供。流质类食品: 牛奶、豆浆、蔬菜粥、稀饭、银耳汤、八宝粥等。非流质类食品:包子、馒头、大饼、糕点、面包、油条、蒸饺、汤圆、煮鸡蛋(或卤鸡蛋)等。(早餐用餐人员约350人)。 (2)午餐:为两荤两素一个汤菜(肉汤)及米饭。(午餐用餐人员约340人)。 (3)晚餐:为两荤一素一个汤菜(素菜为当季时令蔬菜)及米饭。(晚餐用餐人员约150人)。 (4)夜餐:为两荤两素一个汤菜(肉汤)及米饭(夜餐用餐人员约150人)。 注:根据季节变化实时更新早中晚夜餐菜品搭配,同时午餐/夜餐含随餐饮料,牛奶,水果,午餐和夜餐不能同享。 2.2.2送餐时间:按照招标人所属各站点实际用餐时间为准(详见《附表:配送站点详细地址及就餐时间》),如需临时调整用餐时间,以双方协商时间为准。 2.2.3供货方式:为送餐、供餐点就餐、送餐+供餐点就餐三种方式(只能选择其中一种方式)。 (1)送餐:需为招标人工作区域内(渝中区、江北区、南岸区、渝北区、沙坪坝区、九龙坡区、两江新区、巴南区等中心城区,具体地址详见《附表:配送站点详细地址及就餐时间》)的所有项目人员提供配餐送餐服务,送餐方式原则上每周菜品不重复,每月菜品重复率不超过3次。送餐地点为招标人指定地点。食品加工人员具备有效期内健康证持证上岗,加工操作场所在100平方及以上。 (2)供餐点就餐:需在招标人工作区域内(渝中区、江北区、南岸区、渝北区、沙坪坝区、九龙坡区、两江新区、巴南区等中心城区,具体地址详见《附表:配送站点详细地址及就餐时间》)自有(或租赁,或连锁)餐厅,就餐环境干净卫生,在100平方及以上距离(详见《附表:配送站点详细地址及就餐时间》)定点送餐点两公里范围内,公里数测距以发布公告至投标截止期间电子地图中显示车辆驾驶行程截图为准。到店15分钟能及时就餐,投标人为招标人工作人员发放有效电子就餐卡,持有电子就餐卡的人员可在投标人任一供餐点就餐。供餐点就餐菜品由招标人工作人员按照餐标自行点餐。 (3)送餐+供餐点就餐:需为招标人工作区域内(渝中区、江北区、南岸区、渝北区、沙坪坝区、九龙坡区、两江新区、巴南区等中心城区,具体地址详见《附表:配送站点详细地址及就餐时间》)提供配餐送餐服务,送餐方式原则上每周菜品不重复,每月菜品重复率不超过3次。送餐地点为招标人指定地点;自有(或租赁,或连锁)餐厅,就餐环境干净卫生,在100平方及以上距离(详见《附表:配送站点详细地址及就餐时间》)定点送餐点两公里范围内,公里数测距以发布公告至投标截止期间电子地图中显示车辆驾驶行程截图为准。员工到店能在15分钟及时就餐,投标人为招标人工作人员发放有效电子就餐卡,持有电子就餐卡的人员可在投标人任一供餐点就餐。供餐点就餐菜品由招标人工作人员按照餐标自行安排。 2.3服务地点:招标人工作区域内(渝中区、江北区、南岸区、渝北区、沙坪坝区、九龙坡区、两江新区、巴南区等中心城区,具体地址详见《附表:配送站点详细地址及就餐时间》)。 2.4服务期:项目服务期1年,自合同签订之日起计算。3.投标人资格要求 3.1本次招标实行资格后审,投标人应同时满足下列资格条件: 3.1.1投标人具有独立法人资格。 3.1.2投标人具备有效的《食品经营许可证》。 3.1.3 2020年1月1日至投标截止日止(以合同签订时间为准),投标人具备1个合同金额400万元及以上的送餐或供餐服务业绩。 3.1.4具体资格要求以投标人须知前附表1.4.1为准。 3.2本项目不接受投标人以联合体形式投标。4.招标文件的获取 4.1 获取时间:从2024年1月 19日09时00分到2024年1月26日17时00分(北京时间)。 4.2 获取方式:投标人在招标公告规定的招标文件获取时间内每天(法定公休日、法定节假日除外)持单位介绍信(或法人授权委托书)、单位营业执照复印件(需加盖单位法人章)以及本人身份证原件和复印件在重庆市江北区五简路2号重庆咨询大厦A座904室报名领取招标文件及相关资料。 4.3 招标文件每套售价200元,获取招标文件时一并缴纳,售后不退。未购买招标文件的投标人,招标人和招标代理机构将不予接收其投标文件。 4.4 投标人可向代理机构提交书面质疑,提问时间从本公告发布之日起至2024年1 月29日12时00分(北京时间)前。 4.5 招标人应于2024年1 月29 日17时00分(北京时间)前通过邮件形式向各投标人发布澄清(如有)。5.投标文件的递交5.1 投标文件递交的起止时间(投标截止时间,下同):2024年2月19日9时30分至2024年2月19日10时00分。5.2 开标地点:重庆咨询大厦开标厅,具体详见开标当天重庆市江北区五里店五简路2号重庆咨询大厦A座负一楼指示牌。5.3开标时间:2024年2月19日10时00分(北京时间)。5.4 逾期送达,或未送达指定地点,或未密封的投标文件,招标人不予受理。6.发布公告的媒介本次招标公告在《中国招标投标公共服务平台(http://www.cebpubservice.com)》、《重庆国际投资咨询集团网(http://www.cqiic.com/)》和《重庆招标采购集团有限责任公司网(http://www.cqzbcg.com/)》上发布。7.联系方式 招标人名称:重庆市固体废弃物运输有限公司 地址:重庆市渝北区夏家坝智慧固废物流转运港综合楼办公室211室 联系人:周老师 电话:023-67886881 招标代理机构名称:重庆招标采购(集团)有限责任公司 地址:重庆市江北区五简路2号重咨大厦A座904室 联系人:王老师 电话:023-67103538
  • 金华市固体废物管理中心220.00万元采购固体废弃物
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 关于固体废物全过程管理平台运行及维护项目的公开招标公告[金华市固体废物管理中心] 浙江省-金华市-婺城区 状态:公告 更新时间: 2022-11-17 招标文件: 附件1 金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目的公开招标公告 项目概况 金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目招标项目的潜在投标人应在浙江省“政采云”平台获取招标文件获取(下载)招标文件,并于2022年12月08日 09:30(北京时间)前递交(上传)投标文件。 一、项目基本情况 项目编号:TY2022-FW342-ZFCG342 项目名称:金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目 预算金额(元):2200000 最高限价(元):2200000 采购需求: 标项名称:金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目 数量:1 预算金额(元):2200000 简要规格描述或项目基本概况介绍、用途:根据《浙江省人民政府办公厅关于印发浙江省强化危险废物监管和利用处置能力改革实施方案的通知》、《省生态环境厅省公安厅关于做好工业固体废物精密智控闭环监管数字化改革试点工作的通知》等文件要求,我市需开展危险废物持证经营单位、小微收集点、重点产废企业智能监控措施,建立一个有序的固体废物全过程信息化管理平台,实时有效的监控固体废弃物从产生到处置的整个生命周期,联网企业实现危险废物产生、贮存、运输、处置等环节全过程监管。具体要求详见“第二章招标需求”。 备注:公益一类事业单位不属于政府购买服务的承接主体,不得参与本项目投标。具体内容详见文件 合同履约期限:标项 1,详见文件 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单。 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:/至2022年12月08日,每天上午00:00至12:00,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):浙江省“政采云”平台获取招标文件 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月08日 09:30(北京时间) 投标地点(网址):通过浙江政府采购网政府采购云平台实行在线投标响应。 开标时间:2022年12月08日 09:30 开标地点(网址):浙江省金华市婺城区金华市双龙南街858号财富大厦4楼开标3室政府采购开标3室 五、采购意向公开链接 https://zfcg.czt.zj.gov.cn/innerUsed_noticeDetails/index.html?noticeId=8885270 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 1.《浙江省财政厅关于进一步发挥政府采购政策功能全力推动经济稳进提质的通知》 (浙财采监(2022)3号)、《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号))、《浙江省财政厅关于进一步加大政府采购支持中小企业力度助力扎实稳住经济的通知》 (浙财采监(2022)8号)已分别于2022年1月29日、2022年2月1日和2022年7月1日开始实施,此前有关规定与上述文件内容不一致的,按上述文件要求执行。 2.根据《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号)文件关于“健全行政裁决机制”要求,鼓励供应商在线提起询问,路径为:政采云-项目采购-询问质疑投诉-询问列表:鼓励供应商在线提起质疑,路径为:政采云-项目采购-询问质疑投诉-质疑列表。质疑供应商对在线质疑答复不满意的,可在线提起投诉,路径为:浙江政府服务网-政府采购投诉处理-在线办理。 3.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,对采购文件需求的以书面形式向采购人提出质疑,对其他内容的以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。质疑函范本、投诉书范本请到浙江政府采购网下载专区下载。 4.其他事项:本项目通过浙江政府采购网政府采购云平台在线开标,投标人无须到开标现场,但须准时在线参加,直至评审结束。开标截止时间后30分钟以内投标人登录“政采云”平台,用“项目采购-开标评标”功能进行解密投标文件。若投标人在规定时间内投标文件无法解密或解密失败(含未提交),则投标无效。八、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:金华市固体废物管理中心 地 址:金华市环保大楼 传 真: 项目联系人(询问):王先生 项目联系方式(询问):0579-82181572 质疑联系人:王先生 质疑联系方式:0579-82181572 2.采购代理机构信息 名 称:金华市天盈财务咨询有限公司 地 址:金华市创新街18号南楼四楼,金华市农科教大楼西侧对面 传 真:0579-82460882 项目联系人(询问):卢丽云 项目联系方式(询问):0579-81338925、82162067 质疑联系人:夏翰宇。 质疑联系方式:0579-82474058 3.同级政府采购监督管理部门 名 称:金华市财政局政府采购监管处 地 址:金华市双龙南街801号财政局510办公室 传 真:/ 联系人 :徐老师 监督投诉电话:0579-82468735 若对项目采购电子交易系统操作有疑问,可登录政采云(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。 CA问题联系电话(人工):汇信CA 400-888-4636;天谷CA 400-087-8198。 附件信息: 342定稿(公开-电子12月8日9点半开标)金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目2.docx194.7K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:固体废弃物 开标时间:2022-12-08 09:30 预算金额:220.00万元 采购单位:金华市固体废物管理中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:金华市天盈财务咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 关于固体废物全过程管理平台运行及维护项目的公开招标公告[金华市固体废物管理中心] 浙江省-金华市-婺城区 状态:公告 更新时间: 2022-11-17 招标文件: 附件1 金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目的公开招标公告 项目概况 金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目招标项目的潜在投标人应在浙江省“政采云”平台获取招标文件获取(下载)招标文件,并于2022年12月08日 09:30(北京时间)前递交(上传)投标文件。 一、项目基本情况 项目编号:TY2022-FW342-ZFCG342 项目名称:金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目 预算金额(元):2200000 最高限价(元):2200000 采购需求: 标项名称:金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目 数量:1 预算金额(元):2200000 简要规格描述或项目基本概况介绍、用途:根据《浙江省人民政府办公厅关于印发浙江省强化危险废物监管和利用处置能力改革实施方案的通知》、《省生态环境厅省公安厅关于做好工业固体废物精密智控闭环监管数字化改革试点工作的通知》等文件要求,我市需开展危险废物持证经营单位、小微收集点、重点产废企业智能监控措施,建立一个有序的固体废物全过程信息化管理平台,实时有效的监控固体废弃物从产生到处置的整个生命周期,联网企业实现危险废物产生、贮存、运输、处置等环节全过程监管。具体要求详见“第二章招标需求”。 备注:公益一类事业单位不属于政府购买服务的承接主体,不得参与本项目投标。具体内容详见文件 合同履约期限:标项 1,详见文件 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单。 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:/至2022年12月08日,每天上午00:00至12:00,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):浙江省“政采云”平台获取招标文件 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月08日 09:30(北京时间) 投标地点(网址):通过浙江政府采购网政府采购云平台实行在线投标响应。 开标时间:2022年12月08日 09:30 开标地点(网址):浙江省金华市婺城区金华市双龙南街858号财富大厦4楼开标3室政府采购开标3室 五、采购意向公开链接 https://zfcg.czt.zj.gov.cn/innerUsed_noticeDetails/index.html?noticeId=8885270 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 1.《浙江省财政厅关于进一步发挥政府采购政策功能全力推动经济稳进提质的通知》 (浙财采监(2022)3号)、《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号))、《浙江省财政厅关于进一步加大政府采购支持中小企业力度助力扎实稳住经济的通知》 (浙财采监(2022)8号)已分别于2022年1月29日、2022年2月1日和2022年7月1日开始实施,此前有关规定与上述文件内容不一致的,按上述文件要求执行。 2.根据《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号)文件关于“健全行政裁决机制”要求,鼓励供应商在线提起询问,路径为:政采云-项目采购-询问质疑投诉-询问列表:鼓励供应商在线提起质疑,路径为:政采云-项目采购-询问质疑投诉-质疑列表。质疑供应商对在线质疑答复不满意的,可在线提起投诉,路径为:浙江政府服务网-政府采购投诉处理-在线办理。 3.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,对采购文件需求的以书面形式向采购人提出质疑,对其他内容的以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。质疑函范本、投诉书范本请到浙江政府采购网下载专区下载。 4.其他事项:本项目通过浙江政府采购网政府采购云平台在线开标,投标人无须到开标现场,但须准时在线参加,直至评审结束。开标截止时间后30分钟以内投标人登录“政采云”平台,用“项目采购-开标评标”功能进行解密投标文件。若投标人在规定时间内投标文件无法解密或解密失败(含未提交),则投标无效。 八、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:金华市固体废物管理中心 地 址:金华市环保大楼 传 真: 项目联系人(询问):王先生 项目联系方式(询问):0579-82181572 质疑联系人:王先生 质疑联系方式:0579-82181572 2.采购代理机构信息 名 称:金华市天盈财务咨询有限公司 地 址:金华市创新街18号南楼四楼,金华市农科教大楼西侧对面 传 真:0579-82460882 项目联系人(询问):卢丽云 项目联系方式(询问):0579-81338925、82162067 质疑联系人:夏翰宇。 质疑联系方式:0579-82474058 3.同级政府采购监督管理部门 名 称:金华市财政局政府采购监管处 地 址:金华市双龙南街801号财政局510办公室 传 真:/ 联系人 :徐老师 监督投诉电话:0579-82468735 若对项目采购电子交易系统操作有疑问,可登录政采云(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。 CA问题联系电话(人工):汇信CA 400-888-4636;天谷CA 400-087-8198。 附件信息: 342定稿(公开-电子12月8日9点半开标)金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目2.docx194.7K
  • 中环电炉发布1750℃炉温SX-G03173M台式高温箱式电阻炉新品
    产品特点一、结构实用性;先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。二、使用安全性;1、炉门开启自动断电功能;使炉门打开后自动断电。2、超温保护功能;当温度超过允许设定值后,自动断电及报警。3、漏电保护功能;当炉体漏电时自动断电。以上功能确保了使用的安全性。三、控制智能化;1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。2、国产智能控温系统可定值升温(不可编程),国产程序控温系统可编辑30段程序控温,进口程序控温系统可编辑40段程序控温。3、电炉内配置有485转换接口,可实现与计算机相互连接,通过专用的计算机控制系统来完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、输出报表等功能。四、设计独立性;该设备为专利产品,具有多项独立自主的知识产权专利,外观美观、结构合理、使用方便。彩色触摸屏显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。 电炉特殊保护功能电流限幅功能此功能延长了硅钼棒加热元件使用寿命对用户供电设备免受大电流冲击提供安全保护,保护用户在误操作时电炉使用安全。 电流缓启动功能对用户供电设备免受大电流冲击提供安全保护,即使中途取放物料,也可使测温系统随时响应温度变化。 炉膛材料采用专利新型陶瓷耐火材料炉温可达1750℃1、使用温度高达1750℃;可长时间使用在1700℃;2、无纤维-无环境污染和人体健康危害的危险 高纯度,不吸波;3、洁净度高。材料都经过高温烧结,不含有机粘接剂和有机挥发物;4、强度高,不易掉渣。耐磨,抗冲刷;5、适用于还原气氛和碱性气氛;创新点:1750℃炉温SX-G03173M台式高温箱式电阻炉 1750℃炉温SX-G03173M台式高温箱式电阻炉
  • 实现对电阻器良好的质量控制?FLIR红外热像仪帮助德国客户做到了
    电子元件是电器设备中数量最多的零件,因此降低电子元件的故障率,对于生产商们而言至关重要。确保实现这一目标的有效方式是检查每个独立元件,从而确保质量控制。今天,小菲就来给大家说说一家法兰克福制造商通过使用FLIR公司提供的热像仪系统,对电阻器良好的完美质量控制的案例!产品故障率较高,问题亟待解决Isabellenhütte Heusler是一家生产汽车行业用的热电偶电阻合金、接线板合金和被动元件的制造商,其位于法兰克福附近的迪伦堡。Isabellenhütte的产品被汽车行业用于燃油喷射系统和其它电子控制单元。这家公司因其产品质量过硬而享有很高的国际声誉。为获得和维持其全球客户要求的高质量标准,这家公司在质量控制和研发方面注入巨资。但尽管大力投资,客户仍上报5%的故障率。依据Isabellenhütte的严苛标准,即使10-8的故障率也被视作不可接受。因此,该公司决定对所有部件实施良好控制。部件缺陷可能产生于部件制造过程中,这些缺陷随后会导致内置电子器件故障。结果是最终电子系统达不到设计的耐久性,为设备供应商和汽车公司带来潜在质量问题。全自动质量控制得益于FLIR热成像系统红外热成像系统的监控过程Isabellenhütte采用的解决方案是安装一套来自FLIR公司的红外热像仪系统。该系统被用于检测生产过程中的每个部件。在质量控制过程中,每个电阻器在极短时间内被充电。该系统能在不足1秒时间内拍摄一张红外图像,以此检查电阻器可能存在的缺陷。下图中显示的热点是由于故障设备的表面温度较高造成的。有缺陷的电阻被FLIR热像仪捕捉到拍摄完成后,通过电脑将检测到的highest温度与电阻器的平均表面温度进行对比。如果MAX值和平均值之间的差值超过预定义值,那么意味着该部件存在异常热点。当检测到热点,会自动产生一个触发信号,将故障部件从生产线中移除。从进入到退出检测机器,整个过程不足1秒。相应的部件故障区域的热图像保存在数据库中,用于统计过程控制。集成FLIR红外热像仪的系统可以检测到电阻中最小的缺陷“FLIR红外热像仪是良好方案”“经证实,红外热成像技术,尤其是FLIR红外热像仪,是确保我们的质量标准比以往更高的良好方法,”Isabellenhütte生产经理Eichman先生表示。“我们如今全天24小时自动化监控我们的生产,由于不再需要操作员进行监控,我们能节约人力成本。我们对红外热像仪的初始投资在极短时间内便可收回。更重要的是,我们实现了对每一个电阻的良好质量控制,使我们能够向客户交付完美无瑕疵的产品,极大地降低后续系统的故障率!”每个部件都由FLIR热像仪单独检查毫无疑问,Isabellenhütte努力提供完美产品的做法受到要求苛刻的客户的高度赞扬,正是这些产品让客户始终居于其各自领域的领导地位。FLIR 红外热成像监控系统用于此应用的红外热像仪是FLIR ThermoVisionTM A320M。现如今有更多性能出色的产品可以完美替代它。比如FLIR A310,它是一款紧凑小巧的固定安装式红外热像仪,可安装在几乎任何地方。它可以检测到最小0.05℃的温差。独有的测量分析功能和报警功能使FLIR A310成为许多应用的理想工具。还有连续状态和安全监控用红外热像仪——FLIR AX8,它具备视频流输出功能,能提供每一个装置和自动报警的实时视频。兼容以太网/IP和Modbus TCP,因此可将分析和报警结果轻松共享至可编程逻辑控制器。目前,FLIR还有多款产品可供选择哦~FLIR A310FLIR AX8状态监控的目的是在故障发生前识别问题,防止发生成本高昂的停机事件。FLIR连续状态和安全监控用红外热像仪有助于您防止意外断电、非计划停机、服务中断和机电设备故障,非常适合监测配电柜、加工和制造区域、数据中心、发电和配电设施、运输和公共交通、仓储设施和冷库等。
  • 【热电资讯】新一代塞贝克系数/电阻测量系统-ZEM-3连续成功落户西湖大学、上海交通大学
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。近期,我司在西湖大学理化公共实验平台及上海交通大学材料学院连续成功交付使用了新一代塞贝克系数电阻测量系统-ZEM-3。该设备可实现金属或半导体材料的热电性能评估以及塞贝克系数和电阻的测量。其特的红外金面加热炉(高1000℃)和控制温差的微型加热器可实现温度的控制;整个测量过程由计算机全自动控制,能够在指定的温度下执行测量,允许自动测量消除背底电动势;并且ZEM-3还可实现欧姆接触自动检测功能(V-I曲线),不仅可以用创的适配器来测量薄膜,也可定制高阻型。Quantum Design中国子公司 工程师在为客户介绍设备 这两台设备于疫情期间运抵国内,为保证用户的科研使用需求,Quantum Design中国子公司调集技术力量,在满足学校防疫要求的前提下与用户紧密合作,于近日顺利完成了设备的安装培训工作,所有技术指标均符合要求,设备正式交付使用。西湖大学的设备已进入校设备共享平台,对校内外用户开放共享。目前,所有中国用户购买的ZEM系列产品,均由Quantum Design中国子公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国子公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 西湖大学理化公共实验平台网站截图 该设备为日本Advance Riko, Inc.生产。日本Advance Riko公司成立近60年来专业从事“热”相关技术和设备的研究开发,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国子公司引进日本Advance Riko公司的:小型热电转换效率测量系统Mini-PEM、热电转换效率测量系统PEM、塞贝克系数/电阻测量系统ZEM及大气环境下热电材料性能评估系统F-PEM等一系列先进热电材料测试设备。2018年7月,Quantum Design 中国子公司与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。延伸阅读:为更好服务国内热电材料研究领域的客户,满足客户体验需求, Quantum Design中国子公司与日本Advance Riko公司携手推出厚度方向热电性能评价系统ZEM-d 免费样品测试活动。活动时间自即日至2020年9月30日止,如您有样品测试需求,欢迎通过留言、官方微信平台、电话010-85120280或邮箱info@qd-china.com联系我们,公司将有专人对接,与您协调具体的样品测试工作。
  • 生态环境部发布国家生态环境标准《固体废物鉴别标准 通则(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》《中华人民共和国固体废物污染环境防治法》等法律法规,加强对固体废物的管理,保护环境,保障人体健康,我部对《固体废物鉴别标准 通则》(GB 34330-2017)进行了修订,现公开征求意见。标准征求意见稿及编制说明可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。有关意见通过信函或电子邮件的方式反馈我部。征求意见截止时间为2024年2月29日。  联系人:生态环境部固体废物与化学品司石国英  地址:北京市东城区东长安街12号  电话:(010)65645749  传真:(010)65645745  邮箱:swmd@mee.gov.cn  邮编:100006  附件:1.征求意见单位名单     2.固体废物鉴别标准 通则 (征求意见稿)     3.《固体废物鉴别标准 通则(征求意见稿)》编制说明     4.征求意见反馈单  生态环境部办公厅  2024年1月4日  (此件社会公开)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制