当前位置: 仪器信息网 > 行业主题 > >

环境空气传感器

仪器信息网环境空气传感器专题为您提供2024年最新环境空气传感器价格报价、厂家品牌的相关信息, 包括环境空气传感器参数、型号等,不管是国产,还是进口品牌的环境空气传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境空气传感器相关的耗材配件、试剂标物,还有环境空气传感器相关的最新资讯、资料,以及环境空气传感器相关的解决方案。

环境空气传感器相关的资讯

  • 上海市环境保护产业协会立项团体标准《环境空气 恶臭污染物的自动测定 传感器法》
    各有关单位:根据《上海市环境保护产业协会团体标准管理办法》的有关规定,由上海市环境监测中心等单位申请的团体标准《环境空气 恶臭污染物的自动测定 传感器法》,经我会组织专家评审,符合立项条件,现批准立项。请起草单位按照协会管理办法有关要求,严格把控标准质量关,切实提高标准制订的质量和水平,增强标准的适用性和实效性,按期完成各阶段工作任务。如有单位或个人对该标准项目存在异议,请在公示之日起10日内将意见以书面形式反馈至我会秘书处,逾期视作无意见。 联系方式:侯 隽 19512392335邮箱:houjunshaepi@163.com 上海市环境保护产业协会2023年12月6日立项的通知-环境空气 恶臭污染物的自动测定 传感器法.pdf
  • 【时讯】Bettair荣获“2023全球Most Accurate空气质量传感器“称号!
    在刚刚过去的 AIRLAB Microcapteurs 2023微传感器挑战赛上, Bettair 空气质量传感器被评为”2023全球Most Accurate空气质量传感器”。著名的AIRLAB挑战赛:AIRLAB 微型传感器挑战赛是由 Airparif(巴黎大区独立空气质量观测站)和 AIRLAB(开放式创新实验室)组织的最负盛名的国际竞赛。该竞赛旨在评估空气质量微型传感器在实际条件下的性能。在 2023 年的比赛中,Bettair NODE MK2空气质量监测仪脱颖而出,获得了室外多污染物传感器类别的冠军。值得注意的是,这是首次在法国和泰国同时对传感器进行测试挑战,以评估空气质量传感器在气候差异非常大的两个地区的空气质量监测性能,以便为潜在用户提供决策支持工具,同时促进创新。Bettair在这两个地方都获得了该奖项。该挑战赛的合作伙伴有:亚洲理工学院、曼谷市政府、综合空气质量科学与技术中心、EMPA、FIMEA、泰国国家计量研究所、联合国亚太经社会和世界气象组织等。更多挑战赛信息可见:Challenge Microsensors Edition 2023 | Airlab 这一全球认可不仅肯定了Bettair在过去几年中进行的艰苦开发和配置工作,而且还巩固了其在全球空气质量控制行业中的领先地位。Bettair工程师表示:“这一成就是bettair工程团队多年研发努力的结晶。”Bettai和dnota合作,在巴塞罗那、马德里、马洛卡、坎塔布里亚和庞特韦德拉拥有约 100 名专业人员和办事处,将持续致力于创新。预计将在 60 多个国家设立办事处和经销商,从而巩固其作为全球空气质量领导者的地位"。  Bettair NODE MK2是一款低成本的室外空气质量监测设备,可实时监测气体(NO、NO2、SO2、CO、O3、H2S、VOC、NH3、CO2)、颗粒物(PM10、PM2.5、PM1)、噪音和其他环境参数,如温度、相对湿度和气压。监测数据可通过设备连接的网络上传到统一的云平台,生成图表、报告和历史数据等,供用户随时查看、下载、分析。基于先进的专利性算法,设备的测量精度达到ppb级别(测量精度与传统空气质量监测站相近),且该算法可补偿不同环境条件的影响以及传感器老化造成的性能衰减。传感器可在2年时间无需任何维护持续获得高质量监测结果。Bettair提供了一种高效和大规模用于对城市或工业环境中的污染进行制图的工具。它提供了能更好地了解和减轻城市空气和噪音污染的信息和知识。“即插即用”的气体传感器盒设计允许在需要时轻松更换所有传感器。在其使用寿命结束时,可以用新的传感器盒替换,在一次操作中更新所有传感器。点击查看产品链接:https://www.instrument.com.cn/netshow/SH102145/C545719.htm
  • 泉科瑞达2024新款顶空气体分析仪——带有氧化锆传感器
    在现代工业与生活中,包装顶空气体分析仪以其高精度和多功能性,在食品、药品、电子产品等多个领域发挥着重要作用。其中,氧化锆传感器作为其核心部件,更是以其卓越的性能,确保了检测的准确性和可靠性。本文将深入探讨包装顶空气体分析仪中氧化锆传感器的应用,以及它如何精准检测各类产品。一、氧化锆传感器的技术原理与优势技术原理氧化锆传感器主要由氧化锆(ZrO2)和护套组成,分为加热式和非加热式两种。加热式氧化锆传感器通过内置的加热元件,使锆管内的温度保持在约700°C,从而确保传感器的稳定工作。在这种高温下,氧化锆成为氧离子导体,通过测量氧分压差产生的电动势,可以精确计算出被测气体中的氧含量。优势特点高灵敏度:氧化锆传感器对氧气的检测极为敏感,能够在极低的浓度下准确测量。快速响应:传感器反应迅速,能够在短时间内完成检测,提高生产效率。稳定性好:长期使用下,氧化锆传感器的性能稳定,测量结果可靠。寿命长:由于结构坚固,抗氧化腐蚀能力强,氧化锆传感器的使用寿命较长。二、氧化锆传感器在食品包装中的应用即食食品包装即食食品如方便面、即食米饭等,其包装内部的氧气含量直接影响产品的保质期和口感。使用包装顶空气体分析仪配合氧化锆传感器,可以快速准确地检测包装内的氧气含量,确保产品新鲜度。奶粉包装奶粉行业的残氧分析至关重要。残氧过高会导致奶粉氧化变质,影响产品质量。氧化锆传感器能够精确测量奶粉包装内的残氧量,为生产厂家提供关键数据支持,确保产品安全。肉类包装肉类产品在包装过程中需要严格控制氧气含量,以防止细菌滋生和氧化变质。包装顶空气体分析仪通过氧化锆传感器,实时监测包装内的氧气浓度,为肉类产品的保鲜提供有力保障。气调包装气调包装通过调节包装内的气体成分来延长食品的保质期和保持其口感。在这一过程中,氧化锆传感器发挥着不可或缺的作用。它能够精确监测并调整包装内氧气、二氧化碳及氮气等气体的比例,确保食品处于最佳的储存环境中。例如,在果蔬气调包装中,通过减少氧气含量并增加二氧化碳和氮气的比例,可以抑制果蔬的呼吸作用,延缓其新陈代谢,从而有效延长保鲜期。三、氧化锆传感器在药品包装中的应用药品稳定性测试药品在储存和运输过程中,包装内的氧气含量是影响其稳定性的关键因素之一。氧化锆传感器能够精确监测药品包装内的氧气浓度,帮助制药企业评估药品在不同氧气环境下的稳定性,从而制定更为科学合理的包装方案,保障药品的有效性和安全性。无菌包装验证对于需要无菌保存的药品,如注射剂、生物制品等,包装过程中的氧气含量控制尤为重要。氧化锆传感器能够实时检测包装密封后的氧气残留情况,确保包装的无菌状态,防止药品因氧化而失效或受到微生物污染。四、氧化锆传感器的未来发展趋势随着科技的不断进步和工业生产的日益精细化,氧化锆传感器在包装顶空气体分析仪中的应用将更加广泛和深入。未来,我们可以期待以下几个方面的发展:智能化与自动化:传感器将与物联网、大数据等技术相结合,实现远程监控、智能预警和自动调节等功能,提高生产效率和产品质量。高精度与长寿命:通过材料科学和微纳技术的不断创新,氧化锆传感器的灵敏度和稳定性将得到进一步提升,同时延长其使用寿命,降低维护成本。多气体检测:未来的氧化锆传感器可能具备同时检测多种气体成分的能力,满足更复杂、更多样化的工业需求。综上所述,包装顶空气体分析仪中的氧化锆传感器以其卓越的性能和广泛的应用前景,正成为现代工业中不可或缺的检测工具。随着技术的不断进步和市场的不断拓展,我们有理由相信,氧化锆传感器将在未来发挥更加重要的作用,为各行各业带来更加精准、高效的检测解决方案。以上内容由山东泉科瑞达仪器设备有限公司发布,关注泉科瑞达公众号了解更多
  • 珀金埃尔默发布了创新的实时空气质量传感器网络服务产品
    ElmTM服务为城市,社区和公民提供本地化的空气质量信息Waltham,Mass.-(商业线)-珀金埃尔默公司(缩写PKI),一个专注于人类健康和环境安全的领导者,今天宣布ElmTM发布(elm.perkinelmer.com),一个创新的空气监测服务,将为个人,智慧城市和可持续社区提供当地空气质量分析。ElmTM服务使相关实时空气质量信息可视化和易理解,提供的数据可立即通过在线和移动设备访问。“我们非常高兴地介绍我们创新的Elm解决方案,它将提升珀金埃尔默强大的检测能力和专业知识,并应用于理解和解释环境监测领域中空气质量变化”珀金埃尔默环境健康总裁Jon DiVincenzo说。“使用一种新颖的方法,Elm网络旨在创造更好的了解,让我们所有人理解长期影响人体健康的环境质量,帮助城市和人们做出更聪明、更明智的决定。”ELM网络包含多个空气监测传感器的设备。这些设备被放置在室外有需要获取实时空气质量信息的的地方,如工业区,街道,公园和学校。该传感器可测量七种类型空气质量指标,包括臭氧,颗粒物(扬尘等)和二氧化氮(NO2)等。每个设备连接到安全的Elm数据网络,每20秒发送来自传感器的读数,得以实现每分钟的空气质量状况观察。标准空气监测解决方案通常依赖于不同区域分布的有限数量的法规监测站所产生的数据。Elm服务通过获得相关和当地空气质量的数据,从而为客户提供一个重要视角。这种方法提供空气质量类别和污染趋势见解,也是目前常规监测方法很好的补充。“随着世界持续面临的越来越严重的空气污染,我们相信Elm数据服务的方式将是一个有价值的工具,当城市寻求创造更健康的社区,帮助居民做出健康的选择,在哪里生活,何时户外活动,仔细检查污染趋势,甚至实现更有效的城市规划项目。” 珀金埃尔默公司市场策略、环境健康副总裁安德烈杰克逊说。珀金埃尔默最近建立了Elm网络,收集在波士顿市区的学校、公园、道路和社区附近25个分散地信息。这个试点网络已经说明数据覆盖密度的增加,可改善获得相关和可用的空气质量信息。珀金埃尔默继续扩大其在10个国家的200多个传感器网络位置和预计到2015年从Elm中产生收益。请访问Elm全球地图elm.perkinelmer.com/map,可查看每天24小时的当前空气质量水平。Elm也将出现在下列EPA活动中:EPA’s“2014空气传感器”,北卡罗莱纳:6月9-11日国家环境监测会议(NEMC),华盛顿D.C.: 8月4-8日更多信息,请访问elm.perkinelmer.com 或发邮件至elm@perkinelmer.com影响未来业绩的因素本新闻稿包含有1995年《私人证券诉讼改革法案》含义范围内的“前瞻性”陈述,其中包括但不限于,有关未来每股收益的估计和预测、现金流和收入增长及其它财务结果的报告,有关我们客户及终端市场的开发以及有关业务发展机会和资产剥离的规划。诸如“相信”,“打算”,“预见”,“计划”,“预期”,“预计”,“预测”,“将会”和类似表述的词汇,旨在表明是前瞻性报告。这些报告基于管理层的当前设想和期望,但并不保证我们的假设或预期可证明是正确的。一些重要的风险因素可能导致实际结果与任何前瞻性报告中所描述、暗示或预计的结果有重大差异。这些因素包括但不限于:(1)我们产品的销售市场萎缩或未如预期增长;(2)全球经济和政治环境的动荡 (3)我们未能及时推出新产品 (4)我们实行收购和许可技术,或成功将所收购业务和许可技术整合融入现有业务,或使其盈利,或成功剥离某些业务的能力;(5)我们未能充分保护我们的知识产权 (6)我们任何许可或许可权的损失;(7)我们进行有效竞争的能力 (8)我们的季度运营业绩波动以及我们调整公司运营来解决意外变故的能力 (9)在第三方外包业务和进出口服务上的重大中断或这些服务价格上的显著增加 (10)原材料及耗材供给上的中断;(11)产品的生产及销售让我们遭遇到了产品责任索赔 (12)未能保持与适用政府法规的合规性;(13)监管变化(14)我们未能遵守医疗保健行业的法规;(15)与海外业务相关的经济、政治和其他风险 (16)我们留住关键人才的能力;(17)我们信息技术系统的重大中断 (18)我们获得未来融资的能力 (19)我们贷款协议中的限制;(20)我们实现无形资产全部价值的能力 (21)我们股票价格的大幅波动 (22)我们普通股股利的减少或消失;以及(23)我们在表10-Q上最新季度报告中以及我们提交给证券交易委员会的其他文件中标题“风险因素”下所描述的其他因素。对于本新闻稿发布日期之后事态发展所产生的结果,我们不承担任何更新前瞻性报告的责任或义务。关于珀金埃尔默公司 珀金埃尔默公司是一家全球性技术领先公司,专注于改善人类健康和环境安全。公司年报2013年收入约22亿美金,大约7600名员工分布于150多个国家,是标准普尔500指数公司之一。欲知详情,请致电1-877-PKI-NYSE或登录我们的网站:www.perkinelmer.com.cn。珀金埃尔默公司媒介: Jesse Steinberg, +1-646-556-9324 jsteinberg@apcoworldwide.com 来源:珀金埃尔默公司 获得新闻媒体提供
  • 传感器能为城市大气环境精细化管理做什么?
    山东省济南市,2017年8月,首批100辆出租车装上了能监测PM2.5和PM10的传感器,使得济南成为全国首个利用出租车进行大气监测的城市。同年10月,又有200辆出租车加装道路走航监测设备。在北京,中国环境科学研究院大气环境研究所科研楼三层楼顶,一排排精密仪器正在不停运转,一组组数据被精确记录。传感器测试观测室里多台不同品牌不同型号的大气污染物传感器正在进行性能比对,这些数据将为改进传感器性能提供基础依据。从济南到北京,从车载传感器到传感器测试观测室,新型低成本大气传感器是中国环境科学研究院大气环境研究所的研究方向之一。作为生态环境部直属科研单位的中国环境科学研究院,近年来正在不断投入开展大气传感器的相关研发,为城市大气污染监测与溯源提供更精细的技术工具和数据依据。始于需求 源自基层大气传感器应用始于基层,源自2013年的一个电话。“我们从2013年开始研究城市网格化监测和大气传感器的应用,其需求来源于2013年山西省太原市的一个电话。”中国环境科学研究院大气环境研究所副所长高健告诉记者。2013年,全国首次开展城市空气质量六项参数监测,也就是这一年,太原市夏季出现了严重的臭氧污染。为了扭转不利局面,太原市政府找到了中国环境科学研究院团队。但当时的太原只有4个监测点位,很难全面代表整个城市的污染状况。无奈之下,高健团队利用手动采样的方法在太原布设了60个监测点位,没想到效果很好,整个城市的污染地图被很好地呈现出来。从那时起,高健带领团队开始寻找便捷、低成本、有一定精度的传感器产品,来替代成本高、耗人力大但精度高的手工方法。2013年—2016年,大气污染防治领域开始出现类似产品,“微型站”开始成为“标准站”的有效补充。2016年,高健团队组织了包括国内外十余个品牌的大气传感器评测工作,为时一年的细致评测后,发布了研究论文,阐述了大气传感器的适用条件、存在问题和改进方案。在大气污染防治应用方面,大气传感器也迎来了井喷,针对工地、企业、园区、港口等目标场景的固定式应用,逐渐发展到无人机搭载、船载、车载等移动方式。例如济南市生态环境局2018年全面建成1000余个微站,在市、区县、街镇三级大气污染联防联动中得到广泛应用,实现了济南市大气污染治理向公里级网格化精细监管、快速精准溯源、联动高效治理的转变。目前,环保无人机搭载传感器设备在全国多个工业园区进行污染源位置排查、环境应急监测,锁定排放源,联动环境应急处置。船载传感器也已在江苏、上海等地示范应用,监测内河、港口等重点区域的空气质量,补全移动源监管的重要环节。小小传感器 能解大问题每个城市有各自的“基因”,决定了人与路的关系。道路是城市的血管,密集处往往是人口聚居地,是商业发达区域,是各类污染排放聚集区。在济南,从你身边经过的出租车,或许不是寻常的出租车,它可能装载着传感器。这些设备从出租车的外观上是看不出来的,因为设备藏身在车灯里。别看传感器体积小,它能弥补固定环境监测器械分布不均匀的缺陷。“在项目初期,我们考虑可以利用出租车的覆盖范围广、监测结果不受人为干预的特点,在车顶上安装传感器,可实时监测污染情况,通过与现有的空气监测站等定点大气网格化监测数据相互补充、相互校准的方式,获得监测区域的大气质量数据,高效促进大气污染源头治理。”高健告诉记者。每3秒一组数据;定位精度小于20米,精准治理;300辆车每天合计行程超过 6.9万公里,数据超过360万组,平均每天可覆盖95%以上的主城区机动车道路……这些数据弥补了定点大气网格化监测的不足,依托传感器的有力支撑,可以实现城市毛细血管的净化与疏通。获取数据只是第一步,治理才是关键。相关部门可以根据从出租车传感器上获取的实时数据,精准锁定哪些地方有道路扬尘污染,从而进行精准治理,既节约时间,也节约了成本。在安徽省亳州市,除市区所有出租车外,还投入了近百辆装有大气环境监测系统的小型车辆,做到了监管全覆盖。相关人员一旦发现手机云图上出现颜色异常,就会第一时间在微信群里反映,通知对应的部门和执法人员到现场进行处理。截至目前,全国已有40多个城市,数千辆出租车安装并应用了这一传感器。“下一步,我们将加强研究,把传感器做精、做好,利用传感器体积小、成本低的优势,帮助城市更好地解决当地空气污染问题。”高健表示。新型传感器 面向新需求生态环境治理精细化是新时代生态文明建设的新要求、新考验。数据准确、参数齐全的新型传感器正在走上舞台。大气传感器需要解决的不仅仅是高时空分辨率的数据支撑,更是要通过多参数、全方位的监测,提升我们对城市污染来源和影响的科学认识。近年来,高健团队并没有停止对传感器技术前沿的探索。“新产品、新方法、新技术如雨后春笋般不断涌现,关键是要锁定最合适的产品和技术,解决科学需求。”中国环境科学研究院大气环境研究所助理研究员沈毅成告诉记者,“我们正在将新型的粒径谱传感器、黑碳传感器应用于走航监测中。新型的测量参数能够帮助我们区分道路扬尘、柴油车、汽油车尾气和城市本底污染,实现街区尺度的颗粒物来源解析。”目前,济南市的微站网络和走航出租车搭载的PM2.5传感器已经全部升级成为粒径谱传感器,能够将颗粒物的浓度细分成31个粒径区间,可以有效区分不同类型的颗粒物对PM2.5、PM10的相对贡献。“更加先进设备不断走出去,多元化的数据不断传回来,大数据赋能智慧环保已经到来。”沈毅成表示。
  • 环境气氛爆炸预警传感器
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 132" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " strong 环境气氛爆炸预警传感器 /strong /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " 中国科学院大连化学物理研究所 /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 联系人 /p /td td width=" 168" p style=" line-height: 1.75em " 关亚风 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " guanyafeng@dicp.ac.cn /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 & nbsp □通过小试 & nbsp √通过中试 & nbsp □可以量产 /p /td /tr tr td width=" 132" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 516" colspan=" 3" p style=" line-height: 1.75em " √技术转让& nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp □合作开发& nbsp & nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp 爆炸预警传感器适用于环境中任何可燃性气体、气溶胶或混合气体的爆炸限预警。当其浓度接近爆炸限但是还未到时,传感器提前发出报警。所研制的预警式爆炸传感器的探测原理是基于微化工强化反应原理,不论环境中可燃性气体的组成是什么,浓度为多少,只要在传感器内的微反应室内确实可以引起燃烧,但此时可燃物浓度还未达到环境条件下的实际爆炸限之前,传感器即发出警报。膨胀的气体在派出传感器的过程中,自由基全部淬灭。不会引发环境气体燃爆。 br/ & nbsp & nbsp & nbsp strong 主要技术指标: /strong br/ & nbsp & nbsp & nbsp 预警范围:低于正常燃爆下限30%~0%,或高于燃爆下限1%~30%,可设定。 br/ & nbsp & nbsp & nbsp 预警气体:氢气/空气、乙炔/空气、甲烷/空气、液化气/空气、天然气/空气、煤层气以及气溶胶等混合气体、超细金属粉末、超细煤粉、有机溶剂气凝胶等。 br/ & nbsp & nbsp & nbsp strong 技术特点: /strong br/ & nbsp & nbsp & nbsp 该传感器主要由燃烧反应微池、微孔气体通道、点火装置、爆炸检测和报警系统组成。传感器对环境中可燃性气体或气溶胶或混合气体,在爆炸下限浓度达到设定值时即可报警。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 在煤矿安全、石油化工、天然气、煤加工、制氢、化工厂、油库以及可燃气体泄漏现场救护等领域有着广泛应用。市场容量为8000-10000台/年。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 授权国防专利1件。 /p /td /tr /tbody /table p br/ /p p br/ /p
  • 环境监测将成为MEMS传感器的发展新方向
    p   自1990年至今,MEMS传感器的应用有三波演进 一开始内建在汽车的安全气囊中,而后则是用于消费性电子内部,第三波演进便是物联网崛起。而环境感测将是下一波MEMS传感器趋势。近年来消费者对于生活周遭的环境品质要求上升,因此带动一波环境传感器的需求上涨。 /p p   在智慧型手机以及穿戴式装置应用中,陀螺仪、加速度传感器和磁力计等动作传感器已发展成熟。制造商们开始找寻创新应用,意法半导体与博世公司都认为,环境传感器将是接下来微机电系统传感器一大重要发展方向。 /p p   意法半导体技术行销经理苏振隆表示,环境感测将是下一波MEMS传感器趋势。近年来消费者对于生活周遭的环境品质要求上升,因此带动一波环境传感器的需求上涨 无论是湿度、海拔高度、大气气压、紫外线,以及温度都可由环境传感器测得。 /p p   博世公司亚太区总裁百里博表示,未来内建于智慧型手机的环境传感器功能,将包括计算使用者消耗的卡路里数、显示位置的海拔标高、空气中的湿度、当下气温,以及感测环境中的光线等。 /p p   同时,百里博表示,未来内建于智慧型手机的环境传感器功能,将包括计算使用者消耗的卡路里数、显示位置的海拔标高、空气中的湿度、当下气温,以及感测环境中的光线等 为了满足物联网往后的应用需求,该公司会将物联网的传感器发展主力放在动作及环境监测上。 /p p   由于现在生活环境中空气污染严重,所以在环境传感器的应用中,与气体传感器相关的应用将会是环境传感器未来的关注目标。由于消费者希望借由此类传感器得知生活中空气污染物、有毒气体及细悬浮微粒的含量是否已达到危害人体的界线。 /p
  • 小小传感器 助力城市环境监测
    生态环境治理精细化是新时代生态文明建设的新要求、新考验,道路作为城市的血管,密集处往往是人口聚居地、各类污染排放聚集区。近年来我国科技工作者开展大气传感器的相关研发,为城市大气污染监测与溯源提供更精细的技术工具和数据支撑,助力提升大气污染防治精细化水平。在济南,技术人员将传感器“藏”在出租车中,实现对道路PM2.5、PM10等空气污染物浓度的实时移动监测,传感器定位精度小于20米,每3秒上传一组数据。300辆装有传感器的出租车每天合计行程超过 6.9万公里,数据超过360万组,平均每天可覆盖95%以上的主城区机动车道路,依托传感器的有力支撑,完美弥补了定点大气网格化监测的不足,能以最快速度掌握城市环境的具体情况。环境污染较为严重的区域还包括施工场地。土石方填挖、建筑材料装卸、建筑拆除及建筑垃圾消纳等施工工序中均会产生扬尘,想要实现城市治理精准化、精细化,借助物联网、传感器等数字化技术进行实时监测尤为关键。传感器接入扬尘监测云平台,则能够对施工场地的黄土覆盖、监控设施与扬尘监测设备PM2.5和PM10数值等方面进行监控,有利于及时落实防控措施情况,并对施工项目的扬尘治理工作进行有序推进,足以可见小小传感器可以针对施工场地起到日常监督管理的作用。资料图片:工作人员操作的智能无人监测船在对河道进行水质快速监测分析在水质监测方面,想要及时发现水生态环境问题,从而实现视觉感知、数据采集、图像分析、信息处理等数字化服务,监测平台可采取给摄像头增加滤光镜和布设水下传感器的方式,这项技术利用水质监测、视频监控等不同类型来源的水质数据进行算法模型分析,从而快速锁定污染源,将可能出现的水质污染情况、位置等数据及时传送到监管部门。相信在未来,数据准确、参数齐全的新型传感器会陆续登上舞台,通过多参数、全方位和更加精确的数据支撑进行环境监测,提升我们对城市污染的科学认识,助力城市生态环境一路向好。
  • 赛克玛在环保部2016年度“国家环境空气背景站监测技术培训班”做黑碳仪及能见度传感器专题报告
    由环境保护部环境监测司、中国环境监测总站组织的2016年度“国家环境空气背景站监测技术培训班”培训活动于7月5日在环境保护部北京会议培训基地拉开帷幕。 来自环保部各地方背景监测站的40余名代表前来参会。培训活动以“做好国家环境空气背景站及农村站运行维护工作,提高国家环境空气监测技术水平”为宗旨,代表们紧紧围绕该宗旨,与大家分享背景站监测技术及数据分析实践经验,并就议题进行深刻讨论。理论讲解 会间,来自湖北省环境监测中心的田站长就黑碳在背景站监测中对于源解析的意义及背景站黑碳监测的必要性与大家进行了分享和交流。北京赛克玛环保仪器有限公司作为环保部15个国家背景站黑碳仪及能见度传感器的供应商,就黑碳仪和能见度传感器在背景站的应用情况进行“黑碳仪及能见度传感器的日常维护及常见故障分析”专题报告,我公司工程师针对黑碳仪及能见度传感器的维护、常见故障排查及解决进行了深入浅出的讲解,并现场演示仪器设备的基本操作、常见故障的解决和数据的初步应用,受到参会代表的一致肯定与好评。现场演示[黑碳仪相关介绍] 黑碳作为生物质、化石燃料等含碳物质的不完全燃烧的产物,对光有强烈的吸收作用。黑碳的辐射强迫作用已经被世界公认,黑碳对环境及气候的研究已经成为国内外科研的热点。目前全球各国多有开展对黑碳进行长期监测的项目和计划,用以掌握黑碳的各地区背景值和时空变化规律及特征。黑碳在中国国家背景站、区域站、城市站点的观测十分重要,可为评估中国各地黑碳的基准值、排放量、传输、演变等提供长时序、高分辨率的数据。 北京大学环境学院胡敏教授课题组于2016年4月份在PNAS上发表的文章,识别出了黑碳在大气中发生性质演变的两个阶段,揭示了这两个阶段黑碳吸光能力的变化特征,美国著名大气化学家、美国国家科学院院士Veerabhadran Ramanathan高度评价此成果“弥合了对黑碳气候效应观测和模型模拟研究之间的2-3倍的鸿沟”“使科学界对黑碳气候效应的认识更加趋于一致”。另外,赵玉成、曹军骥等分别利用黑碳仪在青海瓦里关、青藏高原东南部进行长时间序列观测,分别就其年际变化以及对全球季风气候变化的影响进行深入讨论分析。2000 年以来瓦里关本底站黑碳浓度年际变化[赵玉成, 等. 瓦里关全球大气本底监测事实. 青海环境. 1999-2011]1955 年以来青藏高原东南部冰芯黑碳在非季风季节、季风季节及年平均的含量变化[曹军骥, 等. 黑碳在全球气候及环境系统中的作用及其在相关研究中的意义, 地球科学与环境学报, 2011] 北京赛克玛环保仪器有限公司目前已被美国Magee Scientific授权在国内生产AethalometerTM黑碳仪,该黑碳仪可实现黑碳浓度的实时监测,并根据七波段监测数据,进行源解析工作,为相关部门掌握黑碳的污染情况、来源分析及制定相关的减排措施提供可靠的技术支持。 目前在国内近300余台黑碳仪已经被气象、海洋、疾控、环保监测部门及高校与科研单位广泛应用于大气气溶胶黑碳监测、大气辐射传输的监测、气溶胶粒径分布监测、紫外吸收的芳香族化合物监测、含碳物质的燃烧排放监测、汽车尾气排放监测及疾病的传播与控制等领域,并取得丰硕的科研成果。黑碳仪国内应用情况 我公司已与美国Magee Scientific公司联合建成国内唯一的黑碳溯源标准实验室,整个标准溯源系统可追溯到NIST标准,用户可将黑碳仪定期返回我公司进行仪器溯源,以保证监测数据的可追溯性,该系统可为黑碳数据的质量控制提供保障,填补国内在黑碳标准溯源领域的空白。黑碳仪溯源标准实验室[能见度传感器相关介绍] Belfort仪器公司是设计和生产先进环境测量仪器的领先者。上世纪90年代Belfort致力于研究自动地表天气观察系统。当美国气象中心提出要将例行地表气象观察自动化的时候,Belfort参与了这个挑战,并且在设计和认证功能强大的自动地表观察系统的三个传感器过程中独占鳌头。Belfort公司生产的能见度传感器在中国已广泛应用于气象、交通、环保监测等领域,国内应用现已超过700台,并在众多国家重大项目中出色完成能见度状况观测任务。能见度传感器国内应用情况 广东省自2003年以来,开始利用Belfort能见度传感器建设覆盖全省范围的能见度观测网络,目前已有超过300台用于全省灰霾天气状况观测,及气象条件观测。Belfort能见度传感器优良的品质及可靠的数据在广东省气象、天气状况预报及分析中发挥着重要作用。能见度传感器在中国
  • 浙江省市场监管局发布省地方标准《环境空气气态污染物(SO2、NO2、NO、O3、CO)传感器法自动监测系统技术要求及检测方法》
    浙江省市场监督管理局拟批准发布《环境空气气态污染物(SO2、NO2、NO、O3、CO)传感器法自动监测系统技术要求及检测方法》长江三角洲区域地方标准,根据《浙江省标准化条例》的规定,现将拟批准发布的报批文本予以公示,公示期2023年5月9日至2023年5月16日。有关单位和个人如有意见建议,可通过来信、来电、来访等形式,向浙江省市场监管局标准化处反映。单位反映的意见建议请加盖单位公章,个人反映的请署真实姓名。逾期不再接受意见建议。联系地址:浙江省杭州市莫干山路77号(省市场监管局标准化处),联系电话:0571-89761453,传真:0571-89761453,电子邮件:zjbz2012@126.com。附件:《环境空气气态污染物(SO2、NO2、NO、O3、CO)传感器法自动监测系统技术要求及检测方法》(公示稿).pdf2023年5月9日
  • 北京强度环境研究所自主研发的高量级冲击传感器成功替代国外同类产品
    近日,据北京强度环境研究所消息,北京强度环境研究所成功自主研发高量级冲击传感器,可替代国外同类产品。在航天工业以及使用火工品的其它领域,爆炸分离冲击测量对产品设计规范和试验标准制定具有重要意义,影响冲击信号测量的关键因素是冲击加速度传感器,而国外50000g及以上量级的冲击加速度传感器一直对我国禁运。为此,北京强度环境研究所自主研发了一种高g值冲击加速度传感器,采用机械滤波、金属记忆合金、特殊切型及组分的压电元件等设计方案,有效解决了爆炸分离冲击环境下容易发生的过载、零漂、饱和等多项技术难题。成功完成100000g冲击传感器研制,标定结果如下图,每10000g线性度偏差为0.13%,达到领域先进水平。产品经空气炮测试、爆炸冲击测试、激光比对测试及霍普金斯杆标定,达到了国外同类产品的技术指标,满足了国内爆炸分离冲击测量的需求。高量级冲击传感器标定结果高量级冲击传感器性能指标
  • Halo Sense 实验室空气质量传感器如期而至,闪亮上市
    依拉勃公司很荣幸地向大家宣布Halo Sense 实验室空气质量传感器如期而至,闪亮上市。现在订货,11月底即可交货。Halo Sense作为气体传感器,为持续监测您的实验室空气质量而设计,它可以检测到实验室内绝大多数有毒气体。目前有三个型号可供选择,分别是针对挥发性有机化合物(VOCs),酸和甲醛的。当Halo Sense 监测到有毒气体时,柔和光带会闪烁并伴有报警声来提醒您空气被污染了。Halo Sense通过注册专利的eGuard 软件可以实现实时监控并接收信息。它可直接与电脑相连,并通过eGuard软件开启或关闭;也可通过智能手机下载使用eGuard软件获取报警信息。由此,您可以确定实验室存在空气污染,并采取必要措施进行祛除。Halo Sense 一般固定在墙上并连接电源和当地网络,放置于化学实验室的敏感区域。它将确保实验室工作人员呼吸到的空气是安全的。 感谢所有的客户和合作伙伴对我们公司的信赖并选择我们的产品。关于依拉勃:依拉勃公司崇尚革新和创造。我们专注于研发、设计和提供给保护实验室人员安全的前沿过滤技术解决方案。作为创新者,依拉勃公司始终致力于安全、性能表现、能效和可持续性发展,自1968年以来,在无管净气型通风柜和净气型储药柜领域保持全球第一。 Erlab is proud to announce the official launch of the Halo Sense laboratory air quality sensor. This products will be available from the end of November 2016Halo Sense is a gas sensor which has been designed to continuously monitor the lab air quality for a large spectrum ofchemical vapors. It is available in 3 versions, for Volatile Organic Compounds (VOCs), Acids or Formaldehyde. When the Halo Sense detects chemical vapors, a soft band of LED light blinks and Beeps are emitted to let you know that the air is polluted. The Halo Sense shall be connected to a computer using the proprietary eGuard software to be turned on and off. It is also possible to connect it to a smartphone using the eGuard App to get the alarms. You can then take the necessary measures to identify the pollution source and eliminate it. Halo Sense shall be usually fixed to the wall and connected to power and to the local network in any sensitive area of the chemistry room. It will allow you to guarantee to your lab personnel that they are always inhaling a safe air.We thank for all our customers and partners for trusting our company and selecting our products. About Erlab:Erlab’s passion is innovation and invention. We focus on research & development, design, and manufacturing of cutting-edge filtration solutions for the protection of laboratory personnel. As an innovator, Erlab is committed to safety, performance, energy efficiency and sustainability and has remained number one in the world for ductless and filtering fume hoods since 1968.
  • 实验室安全“监督员”——Erlab实验室空气质量传感器Halo Sense如期上市
    2016年11月初,法国依拉勃Halo Sense 实验室空气质量传感器如期而至,闪亮上市。为这个寒冷的冬天带来了一抹暖阳。Halo Sense作为气体传感器,为持续监测您的实验室空气质量而设计,它可以检测到实验室内绝大多数有毒气体。目前有三个型号可供选择,分别是针对挥发性有机化合物(VOCs),酸和甲醛的。当Halo Sense 监测到有毒气体时,柔和光带会闪烁并伴有报警声来提醒您空气被污染了。Halo Sense通过注册专利的eGuard 软件可以实现实时监控并接收信息。它可直接与电脑相连,并通过eGuard软件开启或关闭;也可通过智能手机下载使用eGuard软件获取报警信息。由此,您可以确定实验室存在空气污染,并采取必要措施进行祛除。Halo Sense 一般固定在墙上并连接电源和当地网络,放置于化学实验室的敏感区域。它将确保实验室工作人员呼吸到的空气是安全的。 有机气体——适用于挥发性有机化学实验室 甲醛——适用于甲醛为主的实验室 酸——适用于酸为主的实验室
  • 化学传感器在环境领域中的应用-第十六届全国化学传感器学术会议分会报告
    2023年9月23-24日,由中国仪器仪表学会分析仪器分会化学传感器专业学组(专业委员会)主办的第十六届全国化学传感器学术会议(SCCS2023)于山东省济南市举办,两天时间里,湖州师范学院教授王桦(冯路平代讲)、华中科技大学副研究员闫凯、江苏大学副教授殷秀莲、南京大学教授毛亮、中国科学院长春应用化学研究所副研究员余登斌、中国科学院烟台海岸带研究所研究员张志阳在分会场带来了关于化学传感器在环境领域中应用的精彩报告湖州师范学院教授 王桦(冯路平代讲)报告题目:《纳米医学与环境智能传感监测技术及其产业化应用》冯路平介绍道,医学与环境标志物传感的基体材料包括:微纳通道结构的介孔导电材料可用于吸储液体中的标志物,可折叠柔性聚合物用于包埋标志物敏感的导电探针并印制功能电极,改性石墨烯Jet ink打印导线用于连接探头以及微型电化学处理器及信号输出装置,最后通过电聚合、分子自组装、功能涂覆、溶胶-凝胶法等技术将功能材料修饰于微电极上制成高通量芯片探头。通过该技术可研发出智能标志物传感探针,用于对人体健康及水中环境污染物实现在线监测华中科技大学副研究员 闫凯报告题目:《新型光电化学传感体系的构建及其分析应用》闫凯基于环境分析和生物分析的技术发展要求,以光电极性能优化、传感装置小型化、多目标物检测的光电化学传感搭建为目标,在基于近红外光电活性增强的半导体材料构建高性能光电化学传感体系、构建非铂阴极单室PFC用于自供能光电化学检测、基于图案化刻蚀导电基底构建比率型多目标物传感平台研究三个方面进行讨论,实现用电催化、光催化和酶催化来降解污染物。江苏大学副教授 殷秀莲报告题目:《基于图像模式识别的三维荧光光谱库技术及其在水体污染物检测中的应用》殷秀莲教授对自己的研究介绍道,利用三维荧光技术进行多维数据获取,取得每种污染物28个浓度样本,共28×4张EEM图谱图像,其中5×4张作为测试样本,定性识别准确率为100%。该方法为荧光光谱数据库建立和EEM数据分析开辟了一条新的途径,所提出的特征获取、特征提取及谱检索技术,对其他的光谱数据库建立有借鉴意义。此外,为AI大模型在荧光光谱分析中的应用提供数据准备基础,在水环境监测等领域提供帮助。南京大学教授 毛亮报告题目:《海水中氚的食物链传递风险》毛亮教授从核设施和核污染等热点问题出发,结合氚在食物链中的传递规律和内在机制,研究了氚在海洋中的生物效应。他介绍道,采用放射性同位素标记示踪技术进行研究,发现杜氏蓝藻会通过光合作用使氚水快速转化为有机氚,并经过食物链暴露使丰年虾体内有机氚含量上升,最后通过食物链逐级传递。毛亮教授的研究对当下核废水污染问题极具意义,他总结道,核污染中的氚危害不能仅看海水中浓度,更要关注其化学效应。中国科学院长春应用化学研究所副研究员 余登斌报告题目:《水体综合毒性比色检测新方法开发》基于水体检测任务的需要和国家环境政策导向,发展各种水体毒性检测新方法对检测多场景水体必不可少。余登斌介绍道,根据电化学检测原理,分别研发出了利用基因工程改造的绿脓杆菌分泌的大量绿脓菌素构建了免外加媒介体的水体毒性比色检测方法;利用电致变色普鲁士蓝阴极和生物阳极构建了水体毒性可视化检测传感器;基于E. coli-BQ快速颜色反应实现了水体毒性比色/电化学双信号检测和智能手机辅助RGB模型检测;基于容解性不大的铁盐稳定释放下Fe3+生物合成普鲁士蓝指示剂成功构建了水体毒性比色/电化学检测及酶标仪辅助的高效检测方法。同时,他还提到,新技术相较于传统方法具有操作简便、检测全面、快速灵敏等特点,并支持在线监测。中国科学院烟台海岸带研究所研究员 张志阳报告题目:《面向海岸带环境分析监测的光学纳米传感方法研究》海岸带环境分析监测是了解海洋生态系统健康的重要手段,但海岸带污染物情况复杂,环境分析难度大,基于此,张志阳团队发展光学纳米分析原理与技术,为海岸带生态安全与健康提供支撑。他以样品检测案例介绍道,针对污染物,利用纳米材料的光学特性,开发高灵敏纳米比色传感器/阵列和表面增强拉曼传感器,可实现对目标物的检测、鉴定及讲解分析。最后,张志阳提出展望,未来将强化交叉学科,进一步探究传感原理在环境检测上的应用。随着环境保护意识的不断提高和环境监测技术的不断发展,电化学传感器在环境监测领域的应用前景越来越广阔。未来,电化学传感器将朝着更灵敏、更稳定、更耐用的方向发展,实现环境数据的实时采集和远程监控,同时将探索更多的应用领域,为保护人类的生存环境做出更大的贡献。
  • “传感器+”技术助力大气监测网络建设
    --基于云校准+人工智能,成本仅为传统技术的1/7 为精准把脉空气质量状况,有的放矢地实施科学监管,“多、快、好、省”地完成空气质量监测的目标,各地都在积极落实各级政府和企业大气污染防治责任,有效传导治霾工作压力,建设完善大气环境监测网络体系。 河北省目前建议,在传输通道8城市的1464个乡镇推行建设小型空气站,主要测定pm2.5和so2两个参数。 据了解,目前市场上存在两种监测方法和产品能满足上述需求,一种是标准方法的小型空气站(以下简称小型站),其中pm2.5分析仪采用β射线法,so2分析仪采用紫外荧光法;另一种是传感器技术的微型空气站(以下简称微型站),其中pm2.5采用光散射法,so2采用电化学法。 作为新型监测方法,传感器方法已在全国近50个城市得到应用,安装布点近1万台。鉴于传感器技术的发展和完善,微型站的监测已经得到普遍认可。其中,河北省已经制定并发布了网格化监测的地方标准(db13),国家环境监测总站及北京市环境监测中心已经开展相关技术规范的制定工作,中国环境科学研究院也出具了权威使用报告。 那么,相比传统的监测方法,传感器技术在大气环境质量监测的应用具备哪些突出的优势?能否大范围推广呢? 投资运营成本低9台小型站投资可安装66台微型站 据了解,目前市场上销售的小型站价格在30万元~50万元区间,站房建设成本约1万元,年运维费约5万元;而相比,微型站的价格在6万元~7万元区间,年运维费约1万元。 以河北省廊坊市香河县为例,县辖9个乡镇,共需9台设备。以小型站投资计算,设备总费用一次性投入大约450万元,年运维费大约45万元;以微型站投资建设计算,设备一次性投入总费用大约60万,年运维费大约9万元。两者相差近376.5万元。按9台小型站的首年总费用估算,可以安装66台微型站。 河北省传输通道8城市有1464个乡镇,因此共需1464台设备,如果选用小型站,设备总费用大约需要7.32亿元,运维费用首年大约需要7320万元,总费用大约共计8亿元。如果选用微型站,1464台设备费用只需要9516万元,运维费用首年只需要1464万,总费用1.1亿。如果按照1464台小型站的首年总费用计算,大约可以安装10736台传微型站,基本实现河北省传输通道8城市网格化密集布点,精准监控的功能。 最大化提升服务质量满足快速、准确、全参数、全场景,多功能监测要求 成本的大幅降低,并不意味着传感器法产品在满足技术要求方面打折扣。在现实应用中,标准方法的小型站只能监测两种参数,对安装要求高,前期需要方案设计、点位筛选和站房建设的准备,在协调好电源后,需要包括1名专业人士在内的2人~3人,3天才能安装完成。同时,后期维护和数据校准繁琐,需要消耗大量的人力物力。 相对而言,基于云校准+人工智能技术平台的传感器型微站不仅小巧轻便、易安装,而且准确性满足当前环境监测的需求,成本低,能耗少,基本不需要现场运维,充分考虑现代仪器使用的自动化、智能化功能,可以实现快速、准确、全参数、全场景、多功能监测的要求。 此外,在数据的准确性上,传感器型微型站绝对偏差小、误差可控,完全符合国家标准的要求。以在河北省某县所布点的传感器微型站为例,通过与该县环保局标准站的数据进行比对(关于仪器准确性的具体对比方法参照hj618-2011标准规定),将传感器数据与国标站数据进行线性回归分析,以传感器设备数据为横轴,标准站数据为纵轴,计算回归曲线的斜率k和截距b(图1和图2),根据公式(|1-k|)*100%计算,pm2.5、so2数据与国站数据对比变化趋势一致,准确性较好,长期误差在10%以内。 图1. 传感器微型站与某县环保局标准站pm2.5准确性对比图2. 传感器微型站与某县环保局标准站so2准确性对比 管理功能更加强大有效帮助地方落实大气污染防治责任标准方法的小型站,只是小版本的传统空气站,仅用于表征各乡镇空气质量状况,无法充分完善大气环境监测网络系统功能,达不到精细化溯源的功能。 基于云校准+人工智能技术平台的传感器微型站,由于成本低、准确度高,可以实现高密度精细化布点,使得每个乡镇监测点位由目前的一个增加到几十个甚至上百个,由此形成的传感网络能覆盖从污染源到受体区域,监控污染形成的全过程,通过提供高精度空气质量地图、区域热点分析、污染排名分析和其它基础统计分析,准确定位污染源,通过污染事件监控报警、污染溯源分析和专业的数据分析报告为科学精准治霾提供有力支撑,具有更强大的功能。 据了解,目前基于云校准+人工智能技术平台的传感器微型站已经在全国二十多个城市安装布点,实现了高密度精准化监管功能。其中在河北某两个县的23个乡镇,一共布点了43台设备,总费用约345万元,实现了以下监测功能:一是完善大气环境监测网络系统;二是实时监控各乡镇街道的污染状况;三是实现各乡镇街道空气质量排名,提高管理效率;四是精确地找到污染源位置,达到追溯污染源的功能;五是有效帮助各级政府和企业落实大气污染防治责任。 图3是大数据软件平台对某县各乡镇站点一个月内(20170720-20170820期间)pm2.5浓度日均值进行排名,从图中可以看出,某县污染浓度高的地方集中在周边的东北部和西北部,几个站点排名靠前,其中k镇污染浓度最高,排名第一,而核心区域内pm2.5污染浓度最低,排名靠后。 图3.某县各乡镇站点pm2.5浓度排名统计效果图 图4为某县各镇pm2.5发生污染事件频次的统计图图5为某县各点位pm2.5发生污染事件频次的分布图 从另一个维度,用事件发生次数代表污染源排放情况。通过对该县监测站点颗粒物pm2.5污染事件的统计分析(图3)和(图4),可以看出,污染事件的高发区域集中在该县周边地区的东北部及西部地区,而核心区域内污染事件的频次最低,其中k镇污染频次为最高,统计时间段内发生污染次数为12次,污染频次最低的h管区和u管区集中在核心区域,观测期间内均发生3次污染。这与浓度排名分析结果相符,进一步印证了监测数据的科学性。 综上所述,基于云校准+人工智能技术平台的传感器微型站费用低,是传统小型站费用的1/7,技术上满足环境监测要求,而且功能更加智能强大,有现成的案例可以参考,极大地节省了人力和物力上的投入,适合实现高密度精细化布点,使得每个乡镇监测点位由当前的一个增加到几十个,由此形成的传感网络能覆盖从污染源到受体区域,监控污染形成的全过程,通过提供高精度污染地图、多种数据统计分析、污染来源追踪及精准定位等功能,能真正实现完善城市大气环境监测网络体系功能,有效传导治霾工作压力,为科学精准治霾提供有力支撑,实现更多的价值。
  • 华电智控发布环境空气厂界无组织超标报警传感装置TVOC装置PID新品
    产品描述:TVOC-600环境空气厂界/无组织超标报警传感装置,适用于环境空气、厂界及无组织的挥发性有机物在线监测,设备为立杆或壁挂式安装,响应灵敏,可监测环境空气中低浓度挥发性有机气体,并支持扩展风速风向监测。产品特点:? 采用进口高性能PID传感器,精度高,响应快,量程可选择;? 防尘控湿及防凝露技术,排除环境空气中杂质干扰,保障检测精度;? 采用7寸触摸屏显示与操控;? 具有超标报警功能,报警限值可灵活配置;? 具有数据存储功能,可存储1年以上历史数据;? 支持扩展风速风向监测;? 内置无线传输模块实时上传数据,通讯协议符合HJ212-2017标准;? 另有防爆型产品可选,满足爆炸性环境使用需求,已取得防爆认证证书;技术参数:? 量程范围:0-20/200ppm可选? 示值误差:<±3%F.S.? 检出限:1.5ppb? 重复性:<1%? 响应时间:T90<10s? 有线输出:4-20mA,RS232? 通讯方式:3G/4G? 报警方式:声光报警 创新点:泵吸式或扩散式可选 内置7寸触摸显示大屏,可查询历史记录 内置无线传输模块 可增加声光报警器、风速风向等设备 环境空气厂界无组织超标报警传感装置TVOC装置PID
  • 从源头抓起,舒茨氟利昂传感器助力排放治理!
    氟利昂是一种化学物质,全称为氟氯碳化烃,化学式为CFC,也被称为Freon,它是一种无色、无味、无毒的气体。氟利昂具有稳定性高、不易燃、绝缘性好等特点,因此在制冷领域有着广泛的应用,主要是作为制冷剂。氟利昂制冷剂如发生泄漏,常温常压下均为气体,略有芳香味。但制冷机房相对环境密闭,而氟利昂特性,比空气质量重,会下沉到地面累积,氟利昂本身是无毒的,但当它与空气混合到一定浓度时,就会发生事故,造成窒息、死亡或严重伤害。人体吸入过多之后,会出现缺氧的状态,因此需要在制冷机房安装氟利昂传感器,检测氟利昂气体浓度。舒茨氟利昂传感器舒茨氟利昂传感器作为德国原装进口产品,以其卓越特点脱颖而出。具有准确度高、灵敏度高、可靠性高、易于使用等优点,它能够准确测量氟利昂浓度,适用于极低浓度的探测,且具有长时间的稳定运行能力。 主要特点 采用双波长技术的非色散红外(NDIR)气体传感器专为壁挂式检测器和室内空气监测设备的小浓度范围(2000 ppm范围)制冷泄漏检测而设计。其灵敏度和高精度也适用于食品储存设施、空调系统和科学研究领域。&bull 低漂移&bull 通过扩散进入气体&bull 3-6伏直流电源电压&bull LED状态指示&bull 可检测多种制冷剂应用场景舒茨氟利昂传感器可用于不同场景。制冷与空调系统监测:氟利昂传感器可以用于检测和监测制冷与空调设备中的氟利昂泄漏情况,确保系统的安全运行,减少对环境的损害。工业制造和化学工艺控制:一些工业及化学生产过程中需要使用氟利昂化合物。氟利昂传感器可以用于监测氟利昂的浓度,确保其在安全的范围内,并及时采取措施以防止泄漏。环境监测:氟利昂传感器可以应用于监测室内和室外环境中氟利昂的浓度,帮助评估环境污染程度和采取相应措施进行治理。温室气体排放控制:氟利昂是一种温室气体,对全球变暖有重要影响。氟利昂传感器可以应用于监测和测量氟利昂的排放量,帮助发现潜在的排放问题,并采取措施减少温室气体排放。 具体参数 测量原理非色散红外(NDIR),双波长测量范围0...1000 ppm全刻度响应时间约30秒数字分辨率1ppm重复性≤±20ppm线性误差(直线偏差)≤±30ppm长期稳定性(零)12个月内≤±50ppm长期稳定性(跨度)12个月内≤±60ppm工作温度-20...+40℃舒茨氟利昂传感器为德国原装进口产品,采用非色散红外原理原理,实现对氟利昂气体浓度的检测。此外,配备特定的传感器芯片,如集成化芯片和微控制器等,以提供高灵敏度、高选择性、快速响应和低功耗等优点。这种结构优势使氟利昂传感器能够有效监测氟利昂气体,实现快速、准确的气体浓度测量,并适用于各种应用场景,为环境保护和可持续发展做出贡献。
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 光学气体传感器你选对了吗
    根据应用场景选择合适传感器光学气体传感器是多种分析设备的核心部件,直接决定了仪器的性能指标和功能,仪器设计之初,传感器选型非常重要。市面上各种原理、各个厂家的光学气体传感器琳琅满目,指标参数参差不齐,要如何选择最合适、性价比最高的传感器呢?实际上每款传感器都有其优缺点和适用范围,要么性能指标有优势,要么可靠性更值得信赖,要么价格便宜等等。要根据具体需求和应用场景选择合适传感器,比如经常要测量组分繁杂、湿度高的气体,最好选择UVDOAS、FTIR这类色散分光原理的气体传感器。关于传感器的性能、体积、功耗、扩展性、价格等要综合权衡。 传感器性能指标权衡选择光学气体传感器,首先传感器的关键指标参数要优于预研仪器的设计参数,除体积重量外,一般要考虑以下几点要素,(每个要素都很复杂,本期先简单描述,后面几期再根据反馈详细分析):1. 测量气体种类和干扰。前者好理解,要和仪器的目标气体一致,比如开发环境空气CO2分析仪器选择低量程LY-NDIR双通道CO2模块就完全能满足要求,但在背景气中有干扰组分的就要同时考虑干扰组分的同时测量,这是很多仪器开发者经常忽略的问题。比如开发污染源SO2分析仪选择NDIR原理就要考虑烟气常见组分CH4的干扰,因为红外波段CH4在SO2吸收峰处同样有吸收,会带来正干扰,当然选择紫外差分原理的如LY-UVDOAS系列的传感器就不用考虑CH4干扰。2. 量程、检出限和线性误差。分别代表了传感器的实际测量范围、最低响应浓度和结果正确度,其中量程和检出限指标是一对有点矛盾的参数,一般长光程设计的传感器,会有低的检出限和量程指标,反之亦然,当然,也有少数高端的传感器可以两者都兼顾,比如崂应的UVDOAS系列传感器,通过自适应调整光谱波段算法,测超低浓度时选择强吸收谱段反演计算测,超高浓度时选择弱吸收谱段反演计算,这样两个参数都能获得很优秀的指标。3. 响应时间、重复性和稳定性响应时间一般是T90、T10,表征了传感器的响应速度,跟气室体积、气体流速和平滑算法都有关系,因此也与精度、检出限指标有点负相关。关于重复性和稳定性,一般是在环境条件稳定的情况下,反复多次测量结果的一致性程度。4. 漂移(零漂、量漂)和适用温度范围漂移指标分为不同时间的漂移,常见的有1h/4h/8h/24h/月/年漂移,便携式仪器,小时漂移更重要,在线运行仪器月漂移也很重要,这关系到仪器设计或运行时的调零周期,有些仪器还需要设计自动调零气路。适用温度范围,在本文中不仅指传感器可工作的温度范围,还代表确保传感器精度/线性误差满足指标的温度范围,温度对光学气体传感器的影响非常大,所以需要确定精度是在什么温度范围内能满足。有些传感器比如崂应UVDOAS/NDIR/NDUV系列,采取了大量的措施确保了温度适用性,指标表里的误差均是指在工作温度范围内都能满足的误差;也有很多传感器指标误差中仅仅在室温条件满足(有些在指标表中看不出,有些会用温度漂移1℃示值漂移不超过满量程的多少来描述),这样就意味着仪器设计中要考虑增加对气体传感器应用环境的恒温设计或温度补偿算法,以满足仪器的高低温性能指标要求,据了解在多个领域的标准中都有仪器高低温适用性指标要求,毕竟仪器的客户群体大多分布在全国各地,四季温差、昼夜温差跨度非常大。5. 考虑升级和可扩展性,在仪器整个生命周期中,满足当前设计指标就可以?还是会根据市场需求而扩展升级(这种情况在快速发展的行业中是经常出现的,污染源监测行业指标就一直随着环保需求而不断收紧)?如果是后者,在核心传感器选型时就要考虑传感器的指标可扩展性,市面有少数高端传感器具备扩展空间,比如崂应的大部分UVDOAS传感器和NDIR传感器可以在硬件不变的情况下升级扩展量程,LY-UVDOAS更是可以在原基础上扩展测量气体的种类,然而这些扩展功能是基于深厚的技术水平的,能做到、做好的不多,有仪器扩展升级考量的要仔细甄别,选择对的传感器,有利于仪器的快速升级、缩减研发时间和成本。关于光学气体传感器的价格和价值这是个有意思的话题,本文简单一说。市面上不同传感器价格差异很大,这跟很多因素有关,最关键的还是指标。有些传感器是半定量的,有个不离谱的示值就可以,仅作为一个参考,这种很便宜;有些较准确,可以作为阈值判断用,价格一般;有些给出精确示值,比如误差在±5%以内,属于工业级的,价格较高;有些更高端的传感器给出更精确示值、表现非常好的环境使用性,比如误差在±2%甚至±1%以内,价格很高。不同等级的传感器,价格差异是数量级的,毕竟气体传感器做到一定精度指标之后,每一点小的提升,都会需要付出很高的成本代价去实现。所以,要根据预研仪器的要求和定位选择最合适的传感器。另外,传感器的附加值差异也很大,比如价格对比时,不要单独看一个传感器的价格,要看测一种气体的价格,比如多通道LYNDIR传感器一种气体的价格就明显低于多个单一气体传感器,同时去除了相互间的干扰,节省了体积,对仪器设计而言,增加功能同时省时、实力、省空间,性价比自然高很多。关于传感器之外的隐形附加价值也要权衡。比如购买崂应的传感器,就附加了定制化的解决方案,协助根据应用场景选择最佳好传感器、设计时用好,高质量的售后服务和可能的升级空间。最后,传感器基本选好了后,还要实测,尤其上文中提到的几个关键指标,毕竟光学气体传感器良莠不齐,自己测过才知道。欢迎致电崂应咨询交流。
  • 四方光电扬尘传感器荣获中国传感器与物联网产业联盟应用创新奖
    p   中国传感器与物联网产业联盟组织的首届“SIA感知领航优秀项目征集”活动评选结果本周出炉,四方光电激光扬尘传感器PM3006,通过采用独特的激光散射测量技术,实现了室外扬尘在线监测、大气网格化监测、室外公共场所等户外极端工况下空气品质中PM2.5、PM10和TSP多参数的同时准确测量,并在国内外多个项目中得以成熟应用,经过专家组的评选,最终荣获“应用创新优秀项目奖”。 /p p   我国室外扬尘及网格化监测领域,早期多采用称重法和β射线吸收法的监测仪,该设备无法实现在线实时监测,投入费用昂贵且后期维护成本高,无法大批量得到应用。而民用净化器中大量应用的激光粉尘传感器,又因为存在无法满足室外-30~70℃全天候的温度环境,及无法满足建设工地等实际使用场景经常喷洒降霾的水雾影响或者下雨潮湿的高湿环境要求而难以得到使用。在户外环境下使用民用空气净化器上的传感器,室外的高温和低温都容易使传感器损坏,水雾也经常被误判为雾霾而造成爆表。同时与国家大气环境监测网提供的PM2.5/PM10/TSP的多项数据对比,民用激光粉尘传感器由于激光功率小、采样流量小,导致PM10计数率很少,因此PM10的分辨率很低,很多厂家只能根据PM2.5的数值按照比例计算出PM10和TSP,这样的监测数据存在严重失真。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/c279e9b9-a525-43ca-82b0-f5bb97aa49c7.jpg" title=" 图1.png" alt=" 图1.png" / /p p   通过对激光散射探测技术(LSD)近10年的技术积累和对应用市场客户真实需求的把握,四方光电研制出了扬尘传感器-PM3006,其采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样装置、高湿度环境的水雾去除装置等,开创新的低成本实现了对室外扬尘的准确测量,PM2.5和PM10的实时监测数值与β射线吸收法监测设备,准确测量的相关性可以达到0.9以上。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/e1766e01-f47b-4bc6-a759-1aa4ccc14219.jpg" title=" 图2..jpg" alt=" 图2..jpg" / /p p   扬尘传感器PM3006得以成功量产并批量应用积累的经验,为进一步满足用户差异化的使用需求,四方光电进一步开发出了可以搭配气泵使用的扬尘传感器PM3003S,及完全不受流量变化而影响测量精度的扬尘传感器PM3006S-P。 br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/4b7c34ab-586e-4207-bf4f-c1c59ad862b1.jpg" title=" 图4 (2).jpg" alt=" 图4 (2).jpg" / /p p   /p p   为了更好的满足客户设计及计量的需求,四方光电在核心传感器的基础上开发出了在线扬尘监测模组,方便客户更容易及更快速的实现监测系统的设计,大大缩短开发周期。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/3d17b26d-18cb-40e4-9c30-8e13cb82cb7b.jpg" title=" 图5.jpg" alt=" 图5.jpg" / /p p   自2003年创立至今,四方光电始终坚持核心技术创新之路,除光散射探测(LSD)之外,公司还掌握了非分光红外(NDIR)、超声波(Ultrasonic)、紫外差分吸收光谱(UV-DOAS)、热导(TCD)、激光拉曼(LRD)等核心气体传感技术,形成了气体传感器、气体分析仪器两大类产业生态,产品广泛应用于国内外的空气质量监测(室内、室外、汽车)、固定和移动污染源监测、工业过程节能减排监测、健康医疗和智慧计量等领域。 /p
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • LUFFT超声波风传感器在风功率预测市场的应用
    前言 风电功率预测是指对未来一段时间内风电场所能输出的功率大小进行预测,以便安排调度计划。风功率预测意义重大:通过风功率预测系统的预测结果,电网调度部门可以合理安排发电计划,减少系统的旋转备用容量,提高电网运行的经济性;提前预测风功率的波动,合理安排运行方式和应对措施,提高电网的安全性和可靠性;对风电进行有效调度和科学管理,提高电网接纳风电的能力;指导风电场的计划检修,提高风电场运行的经济性。 测风塔系统测风塔系统是风功率预测重要组成部分,其包括:风塔、传感器、电源、数据处理存储装置、安全与保护装置和传输设备等。传感器分为风速传感器、风向传感器、温度传感器、气压传感器和湿度传感器等,用来测量指定的环境参数为风功率预测提供依据。其中风速风向传感器以机械式和超声波测量为主。机械式风速风向传感器造价低,但是也存在着非常明显的缺陷:风速升高或降低时,由于惯性作用,升速或减速慢;有活动部件,极易磨损,易受沙尘等恶劣天气的损耗,易受冰冻、雨雪干扰,需定期维护; 对于阵风测量精度低;启动风速阈值高;风杯受到的风压力正比于空气密度,空气密度的变化将会影响测量精度; 风速和风向分立式,需要单独拉线,成本增加;本地采集端需要数据采集器进行模拟量到数字量的转换,成本增加而超声波风速风向仪很好地解决了以上的不足,技术成熟,安装方便,同时数字接口输出,可以节省本地数据采集器的成本。 Lufft测风塔解决方案Lufft作为全球专业的气象传感器供应商,其提供的超声波传感器WS200-UMB和气象五参数WS500-UMB很好地满足地测风塔数据的要求。WS200-UMB可以安装在30米、50米、70米和80米测量风速和风向,而WS500-UMB安装在10米高度测量风速、风向、温度、湿度和气压等参数。本文将从组成、传感器、数据采集、供电、防雷和通讯等几个方面阐述。 系统组成根据规范要求,系统配置包括:传感器(4* WS200,1*WS500)、机箱、太阳能板、电池和支架等组成。其中机箱内含有:电源模块、太阳能控制器、数据采集模块、通信模块,防雷模块、开关和接线端子等部件。 Lufft测风塔系统框图 现场安装示意图 传感器参数气象五参数WS500-UMB可以测量风速、风向、温度、湿度、露点温度、空气密度和气压,并配备电子罗盘,修正真风向。同时输出测量质量,判别测量输出数据的有效性。超声风探头配备加热功能,供电允许的情况下,有效抵制结冰积雪。 WS200-UMB WS500-UMB Lufft超声风传感器和气象五参数,性能良好,提供的数据丰富,产品特色总结如下:数字接口输出,无需外接数据采集器进行模数转换,可以直接连接数字通信模块(光端机或DTU),降低成本;除基本数据外,气象五参数还可以输出空气密度和风速风向的标准偏差数据;配备电子罗盘,现场安装施工难度大,人为调正北指向误差大,可用设备自身的修正风向;通过配置传感器参数,可以通过预留的接口连接第三方降水传感器,数字接口统一输出;探头具备加热功能,供电允许的情况下,可以有效防止结冰引起传感器的无法测量的问题,保证数据的完整性;测风质量是Lufft产品特有的技术指标,是传感器自身在测量过程中,单位时间内测量的有效次数与总次数比值的百分比;其体现了测量数据的有效性,尤其是同一地点不同设备输出数据的差别比较大的情况下,判断孰优孰劣的有力依据。 数据采集存储由于Lufft的传感器都是RS485数字接口,可以采用总线模式连接到数据采集模块或通信模块。同时,数据的采集和存储相对比较简单,不需要专门的数据采集器,可以选择带多个RS485口和以太网口的RTU模块(存储功能可以定制)。通信协议可以使用市场主流的Modbus协议。
  • 4款传感器,满足工业气体安全还看MOCON
    众所周知,人类长期接触挥发性有机化合物(VOC)会导致呼吸系统问题、癌症和神经损伤;自然环境如空气、水和土壤等会造成破坏和污染。挥发性有机化合物(VOC) 是由工业和自然过程产生的潜在危险化合物。这些有害气体通常在正常大气条件下会蒸发,但室内环境中的VOC水平要高得多,因为许多制成品(如地毯、油漆和清洁用品等)都可能会排放这些物质。室外来源可能包括垃圾处理场、工业和碳氢化合物排放过量等。光电离检测器(PID) 是检测VOC水平的最简单、最有效的方法。在不靠气相色谱柱的情况下,膜康(MOCON)独立的PID可以使用便携式或固定式对许多挥发性有机化合物进行实时测量。1 易用型检测器VOC-TRAQ® II 基于最新的Baseline® piD-TECH® eVx™ 光电离传感器,VOC-TRAQ® II没有组合部件,采用简单的扩散方法,仍提供了快速的响应时间,既紧凑又实惠。一种灯能量之间有5个不同的检测级别,提供了广泛的检测功能。附带的VOC-TRAQ® II pc软件可以轻松进行校准、设置参数和显示数据图形。 特点及优势:紧凑型设计广泛的检测功能附带pc软件可编程报警级别和采样频率简单的设置和校准存储多达36,000个样品读数2带流动腔的VOC光电离检测器 VOC-TRAQ® II与流通式外壳结合在一起变成Baseline® VOC-TRAQ® II流动腔,进出口流道可用于远程样品输送,当与加压源或泵一起使用时,该装置可实现受控样品输送。VOC-TRAQ® II流动腔借助带有windows操作系统软件的pc能够远程监测和记录总挥发性有机化合物的存在。装置的高灵敏度归功于piD-TECH® eVx™ 光电离检测器。 膜康(MOCON)光电离检测器应用:环境监测:洁净室AMC、空气质量监测、无组织排放监测有毒气体监测:室内空气质量、检漏、OEM PID传感器工业过程分析和控制:饮料气体监测、工业气体混合控制、工艺气体分析、特种和工业气体监测、地面测井分析膜康(MOCON)的VOC-TRAQ® 总挥发性有机化合物(TVOC) 检测器是一种极具性价比的解决方案,使用基于windows的pc主动监测非爆炸性气体泄漏,通过存储多达36,000个样本读数随时间记录数据。VOC-TRAQ® 使用piD-TECH® eVx™ 光电离传感器来监测用户所需范围内的汽化气体。3OEM的首选piD-TECH® eVx™ 膜康(MOCON)屡获殊荣的专利piD-TECH® eVx™ 插入式传感器具有全面的光电离检测功能,其设计与大多数品牌的电化学传感器机械结构相似。其出色的特性使piD-TECH® 系列传感器成为想要在手持、移动或固定式设备中集成voc检测功能的oem制造商的理想选择。piD-TECH® eVx™ 的检测能力和最小检测量(MDQ)分为五个范围,对oem市场来说它具有更高的性价比和灵活性,同时兼具了市场上无法比拟的先进技术。 特点及优势:提供OEM集成支持可靠的长寿命灯泡:6000 小时易于清洁和现场维修,无需工具本质安全:UL、CAN/CSA、ATEX、IECEx认证内部输入电压调节,提高信号稳定性双重过滤,防止气溶胶和颗粒物的侵害4灵敏型传感器piD-POD piD-POD结构紧凑,由一个圆柱形外壳组成,可组装piD-TECH® eVx™ 光电离传感器和进/出样口。它适用于高达300 cc/min的进气流量,并配备了一个带配套适配器的PC接头。piD-POD采用膜康(MOCON)piD-TECH® eVx™ 传感器系列(单独出售),允许用户为应用选择所需的灵敏度和灯能量。光电离检测器(PID)不会破坏样品,因此piD-POD对于原始设备制造商来说是一种在其仪器设计中集成TVOC测量的直接手段。 特点及优势:用于piD-TECH® 传感器低死角密封设计集成到气体监测仪器中提供光电离检测的灵敏度几十年来,AMETEK MOCON一直是气体检测设备监测水平远低于OSHA行动限值的领先供应商。这得益于稳定、快速的检测结果可以让工作人员有足够的时间对日益增加的健康风险做出反应。
  • PM2.5的测试方法及PM2.5传感器的工作原理
    细颗粒物又称细粒、细颗粒、PM2.5。细颗粒物指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物。它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重。虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。与较粗的大气颗粒物相比,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。目前测量PM2.5的方法主要有以下5种:一种:红外法和浊度法红外由于光线强度不够,只能用浊度法测量。所谓浊度法,就是一边发射光线,另一边接收,空气越浑浊光线损失掉的能量就越大,由此来判定目前的空气浊度。实际上这种方法是不能够准确测量PM2.5的,甚至光线的发射、接收部分一旦被静电吸附的粉尘覆盖,就会直接导致测量不准确。这种方法做出来的传感器只能定性测量(可以测出相对多少),不能定量测量(因为数值会飘)。更何况这种方法也区分不出颗粒物的粒径来,所以凡是用这种传感器的性能都相对要差一些。第二种:激光法和粒子计数法就是激光散射,而不是直接测量浊度,这一类的传感器共同的特点就是离不开风扇(或者用泵吸),因为这种方法空气如果不流动是测量不到空气中的悬浮颗粒物的,而且通过数学模型可以大致推算出经过传感器气体的粒子大小,空气流量等,经过复杂的数学算法,最终得到比较真实的PM2.5数值,这一类传感器是激光散射,对静电吸附的灰尘免疫,当然如果用灰尘把传感器堵死了,自然也不可能测到。第三种:Beta射线法Beta射线仪是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。Beta射线法颗粒物监测仪由PM10采样头、PM2.5切割器、样品动态加热系统、采样泵和仪器主机组成。流量为1m3/h的环境空气样品经过PM10采样头和PM2.5切割器后成为符合技术要求的颗粒物样品气体。在样品动态加热系统中,样品气体的相对湿度被调整到35%以下,样品进入仪器主机后颗粒物被收集在可以自动更换的滤膜上。在仪器中滤膜的两侧分别设置了Beta射线源和Beta射线检测器。随着样品采集的进行,在滤膜上收集的颗粒物越来越多,颗粒物质量也随之增加,此时Beta射线检测器检测到的Beta射线强度会相应地减弱。由于Beta射线检测器的输出信号能直接反应颗粒物的质量变化,仪器通过分析Beta射线检测器的颗粒物质量数值,结合相同时段内采集的样品体积,最终得出采样时段的颗粒物浓度。配置有膜动态测量系统后,仪器能准确测量在这个过程中挥发掉的颗粒物,使最终报告数据得到有效补偿,接近于真实值。第四种:微量振荡天平法微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。流量为1m3/h,环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。5、重量法我国目前对大气颗粒物的测定主要采用重量法。其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。由于红外法测量PM2.5的传感器性能较差,且Beta射线法、微量振荡天平法、重量法三种方法的原理应用比较困难且价格较高,所以市面上比较多的是采用激光散射原理来测量PM2.5浓度的PM2.5传感器。 建大仁科空气质量变送器RS-PM-*-2是一款工业级通用颗粒物浓度变送器,采用激光散射测量原理,通过独有的数据双频采集技术进行筛分,得出单位体积内等效粒径的颗粒物粒子个数,并以科学独特的算法计算出单位体积内等效粒径的颗粒物质量浓度,以485 接口通过 ModBus-RTU 协议进行数据输出。可用于室外气象站、扬尘监测、图书馆、档案馆、工业厂房等需要PM2.5或 PM10浓度监测的场所。
  • 日常生活噪声危害大,如何选择合适的噪声传感器监测?
    噪声污染是主要环境污染之一,但噪声污染与空气污染、水污染不同,它属于物理性污染(或称能量污染)。一般情况下噪声污染并不致命,且与声源同时产生同时消失。噪声源分布很广,较难集中管理。由于噪声渗透到人们生产和生活的各个领域,且能够直接感觉到它的污染,不像其他物质污染那样在产生后果时才受到注意,所以噪声诉讼成为城市环境诉讼案件中最多的。 一、噪声的危害1、对人听力的影响强的噪声可以引起耳部的不适,如耳鸣、耳痛、听力损伤。在噪声长期作用下,听觉器官的听觉灵敏度显著降低,称作“听觉疲劳”,经过休息后可以恢复。若听觉疲劳进一步发展便是听力损失,分轻度耳聋、中度耳聋以至完全丧失听觉能力。据测定,超过115dB的噪声将会造成耳聋。2、诱发多种疾病噪声间接的生理效应是诱发一些疾病。噪声会使大脑皮质的兴奋和压抑失去平衡,引起头晕、头疼、脑涨、耳鸣、多梦、失眠、嗜睡、心慌、记忆力减退、注意力不集中等症状,临床上称之为“神经衰弱症” 噪声还会对心血管系统造成损害,它可使交感神经紧张,从而出现心跳加快,心律不齐,心电图波升高或缺血性改变,传导阻滞,血管痉挛,血压变化等 噪声会加速心脏衰老,增加心肌梗塞发病率。3、对视力的影响噪声可造成眼疼、视力减退、眼花等症状 噪声会使人的胃功能紊乱,出现食欲不振、恶心、肌无力、消瘦、体质减弱等症状。4、对动物的影响噪声能对动物的听觉器官、视觉器官、内脏器官及中枢神经系统造成病理性变化。噪声对动物的行为有一定的影响,可使动物失去行为控制能力,出现烦躁不安、失去常态等现象,强噪声会引起动物死亡。鸟类在噪声中会出现羽毛脱落,影响产卵率等。5、对建筑物的影响当噪声超过140dB时,对轻型建筑开始有破坏作用。如,当超声速飞机在低空掠过时,在飞机头部和尾部会产生压力和密度突变,经地面反射后形成N形冲击波,传到地面时听起来像爆炸声,这种特殊的噪声叫做轰声。在轰声的作用下,建筑物会受到不同程度的破坏,如出现门窗损伤、玻璃破碎、墙壁开裂、抹灰震落、烟囱倒塌等现象。由于轰声衰减较慢,因此传播较远,影响范围较广。此外,在建筑物附近使用空气锤、打桩或爆破,也会导致建筑物的损伤。二、噪声传感器的选择技巧1、灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。2、频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。3、线性范围传感器的线性范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。4、稳定性传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。5、精度精度是噪声传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。
  • 灵敏度升十倍 廉价石墨烯传感器问世
    美研制出廉价石墨烯海绵传感器 灵敏度是现有最好设备的10倍   据美国《大众科学》网站近日报道,美国伦斯勒理工学院的科学家最新研制出了一款纤巧、便宜且能重复使用的新式传感器,其由石墨烯泡沫制成,性能远超现在市面上的商用气体传感器,而且,在不远的未来,科学家们能在此基础上研制出更优异的炸弹探测器和环境传感器。   新传感器摒弃了阻止传感器应用和发展的诸多限制。最近几年,在操作纳米结构并用其制造性能卓越的探测器以精确追踪空气中的化学物质方面,科学家们已经取得了重大的进步,然而,他们研制出的各式各样的传感器,尽管从理论上而言很好,但却并不实用。   目前传感器的设计都非常复杂,常常依赖单个纳米结构,而且,科学家们需要对这样的结构进行仔细操作以及更加精确的分析。另外,制造出的传感器往往不能重复使用,且必须在特定的温度或压力下才能工作,因此,科学家们一直没有制造出一款可靠、便宜且可以重复使用的手持传感设备。   现在,伦斯勒理工学院的科学家们使用石墨烯泡沫研制出了这种邮票大小的新型传感器。他们将石墨烯,即单层碳原子,种植在泡沫镍结构上,随后移除泡沫镍,留下一个类似泡沫的石墨烯结构,其具有独特的电性,能够用于执行传感任务。   当将其暴露于空气中时,空气中的粒子会被吸收到泡沫表面,而且每个这样的粒子会用不同的方式影响石墨烯泡沫,对其电阻进行微小的改动。让电流通过其中并且测量电阻的变化,就能知道泡沫上依附的是什么粒子。科学家们让大约100毫安的电流通过该泡沫,结果发现,这种石墨烯泡沫能够导致粒子解吸,也就是说,粒子自动从传感器上剥落下来,清除这些粒子,传感器就可以重复使用了。   科学家们对传感器进行了微调,让其来探测氨水(自制爆炸物硝酸氨的关键成分),该石墨烯泡沫传感器在5分钟到10分钟内就设法探测到了这种富有攻击性的粒子,而且效率是现有市面上最好探测器的10倍。科学家们接着用其来探测有毒气体二氧化氮(爆炸物分解的时候也会释放出这种气体),结果表明,其效率也是目前商用传感器的10倍。   石墨烯泡沫非常容易处理且操作简单,而且在室温下也能很好地工作,这都是科学家们非常心仪的特质,该石墨烯泡沫传感器可让科学家们更快制造出更便宜实用的手持传感设备来对大气进行探测。
  • 光学生物传感器应用于上海世博会安全保障
    中科院上海光学精密机械研究所信息光学与光电技术实验室研制的光学生物传感器继成功应用于2008年北京奥运会等重大活动的安全保卫之后,近日又在上海世博会出入境检验检疫、环境空气有害物监测等方面得到应用,为世博安全运营提供了科技保障。   光学生物传感器是通过检测生物分子之间微观特异性反应所产生的光学信号来检测微量目标被检物的一种光学仪器,具有灵敏、特异、稳定及适合于现场快速检测等优点。上海光机所信息光学与光电技术实验室黄惠杰研究员课题组与军事医学科学院、中国检验检疫科学研究院等单位长期合作,研发的上转换发光生物传感器与定量金标免疫分析仪等先进的光学生物传感技术现已成功应用在生物安全、食品安全、临床诊断等多领域,并获得了用户的广泛好评。
  • VOC快检利器——光离子化气体传感器(PID)!!
    提起VOC检测,可能环境的小伙伴比较熟悉,今天主要跟大家分享一下光离子化气体传感器(PID)方法检测VOC。1、什么是VOC?VOC是挥发性有机化合物(volatile organic compounds)的英文缩写,是在室温以气态分子的形态排放到空气中的所有有机化合物的总称。VOC 所涵盖的有机物种类繁多而且其组成成分多样,主要有:氯化物、苯类化合物、氟利昂化合物、有机醇、有机酮、有机醚、有机醛、有机酯、有机胺、有机酸以及石油烃化合物等。VOC及所形成的二次污染物不仅本身具有较强毒性对人们的健康带来负面影响,而且VOC作为臭氧和PM2.5的前体也影响着大气质量,是复合型空气污染的主要“贡献者“之一。2、VOC的检测方法检测VOC常见的方法有PID检测、GC-FID及GC-MS检测,其中GC-FID和GC-MS都是用来检测VOC气体总值的,在混合气体环境中不能检测出单独某一种VOC气体。GC-FID与GC-MS也可以测出具体某一种VOC气体成分,但价格昂贵,且体积大。其中PID传感器体积小、价格低廉、工作条件简单、能耗低,更适合作为便携式检测器。表1 VOC检测方法参数GC-MSGC-FIDPID使用方式氦气瓶氮气瓶、氢气瓶、空气瓶便携式重量非常重较重很轻尺寸体积非常大体积较大很小检测范围(ppm)更宽0~500000~10000数据线性全范围线性较好全范围线性较好低浓度线性良好选择性无选择性无选择性低能量灯增加选择性检测气体VOC气体VOC气体VOC气体、某些无机气体样品破坏检测破坏检测无损检测可回收操作使用极为复杂较为复杂简便简洁检测费用极其高高极低检测速度极其慢慢极快3、什么是PID?对于仪器分析的小伙伴,可能对GC-FID(氢火焰离子化检测器)与GC-MS(气质联用仪)使用更清楚,我们今天重点讲一下PID(光离子化检测器)。光离子化气体传感器(简称PID)由紫外光源和气室构成。PID 中激发待测气体离子化的源头就是电离室中的紫外灯,被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。紫外发光原理与日光灯管相同,只是频率高,能量大。图1 PID传感器结构PID工作原理:1、在真空玻璃腔内充入高纯稀有气体例如惰性气体。2、用可透紫外光的窗口将玻璃腔体密封。3、外加电磁场进行激发。4、在外加电磁场的作用下,被电离气体产生电流,进而被检测到。图2 PID传感器工作原理4、PID传感器类型与品牌调研PID传感器可以按照紫外灯能量、寿命及检测气体分类,主要可以分为以下类型。表2 PID传感器类型紫外灯能量(eV)9.6eV10.6eV11.6eV紫外灯寿命6个月12~24个月6个月检测气体种类114250300在VOC快检领域, PID传感器品牌几乎都是进口仪器公司,国产采用PID技术的检测设备仅镁汇科技一家企业。表3 PID传感器品牌品牌典型产品英国阿尔法AlphasensePID-A1英国离子科学Ion Science Ltd.FirstCheck F Ex6000,世界上首台PPB级PID检测器的多组分气体检测仪美国贝斯兰Baseline–MOCONPID-TECH FirstCheck F Ex6000MeiHui镁汇科技PID-GH,专注PID研发可替代进口品牌PID配件5、PID的国产替代通过分析比对,可以看出采用PID技术的检测设备与动辄花费大几十万的GC-FID、GC-MS相比,具有明显的优势,不但便携快捷而且设备成本低。表4 国产配件与进口配件对比类型价格货期特点进口配件国产3~5倍综上所述,目前国内PID气体传感器有了较大发展,对已知气体可以实现快速实时检测,有着广泛的应用前景。转载自公众号:实验室仪器分析
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制