[font=仿宋_GB2312] 根据《中华人民共和国计量法》有关规定,现批准[/font][font=仿宋_GB2312]《[/font][font=仿宋_GB2312]双活塞式压力真空计检定规程[/font][font=仿宋_GB2312]》等[/font][font='Times New Roman']20[/font][font=仿宋_GB2312]项国家计量技术规范[/font][font=仿宋_GB2312]发布实施。[/font][font=仿宋_GB2312]特此公告[/font][align=left][font=仿宋] 市场监管总局[/font][/align][align=left] 2022[font=仿宋_GB2312]年[/font][font=Times New Roman]5[/font][font=仿宋_GB2312]月[/font][font=Times New Roman]19[/font][font=仿宋_GB2312]日[/font][/align][align=right][font=仿宋_GB2312] [/font][/align][align=left][font='Times New Roman'] 《双活塞式压力真空计检定规程》等[font=Times New Roman]20[/font][font=方正小标宋_GBK]项[/font][/font][/align][align=left][font='Times New Roman'] 国家计量技术规范[/font][/align][align=center][font=方正小标宋_GBK] [/font][/align][table][tr][td][align=center][font=黑体]序号[/font][/align][/td][td][align=center][font=黑体]编号[/font][/align][/td][td][align=center][font=黑体]名称[/font][/align][/td][td][align=center][font=黑体]批准日期[/font][/align][/td][td][align=center][font=黑体]实施日期[/font][/align][/td][td][align=center][font=黑体]备注[/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]1[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJG159[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]双活塞式压力[/font][/align][align=center][font=仿宋_GB2312]真空计检定规程[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]代替[/font][/align][align=center][font=仿宋_GB2312]JJG159-[/font][/align][align=center][font=仿宋_GB2312]2008[/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]2[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJG176[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]声校准器[/font][/align][align=center][font=仿宋_GB2312]检定规程[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]代替[/font][/align][align=center][font=仿宋_GB2312]JJG176-[/font][/align][align=center][font=仿宋_GB2312]2005[/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]3[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJG741[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]标准钢卷尺[/font][/align][align=center][font=仿宋_GB2312]检定规程[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]代替[/font][/align][align=center][font=仿宋_GB2312]JJG741-[/font][/align][align=center][font=仿宋_GB2312]2005[/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]4[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJG1184[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]机动车鸣笛[/font][/align][align=center][font=仿宋_GB2312]监测系统[/font][/align][align=center][font=仿宋_GB2312]检定规程[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]5[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJG1185[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]瓦级标准[/font][/align][align=center][font=仿宋_GB2312]超声功率源[/font][/align][align=center][font=仿宋_GB2312]检定规程[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]6[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1062[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]电离真空计[/font][/align][align=center][font=仿宋_GB2312]校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]代替[/font][/align][align=center][font=仿宋_GB2312]JJF1062-[/font][/align][align=center][font=仿宋_GB2312]1999[/font][/align][align=center][font=仿宋_GB2312]JJG462-[/font][/align][align=center][font=仿宋_GB2312]2004[/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]7[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1261.9[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]家用燃气快速热水器和燃气采暖热水炉能源效率计量检测规则[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]代替[/font][/align][align=center][font=仿宋_GB2312]JJF1261.9-[/font][/align][align=center][font=仿宋_GB2312]2013[/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]8[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1342[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]标准物质研制(生产)机构[/font][/align][align=center][font=仿宋_GB2312]通用要求[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]代替[/font][/align][align=center][font=仿宋_GB2312]JJF1342-[/font][/align][align=center][font=仿宋_GB2312]2012[/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]9[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1343[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]标准物质的定值及均匀性、[/font][/align][align=center][font=仿宋_GB2312]稳定性评估[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]代替[/font][/align][align=center][font=仿宋_GB2312]JJF1343-[/font][/align][align=center][font=仿宋_GB2312]2012[/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]10[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1960[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]标准物质计量比对计量技术规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=left][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]11[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1961[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]纯度标准物质定值计量技术规范[/font][/align][align=center][font=仿宋_GB2312]高纯金属纯度[/font][/align][align=center][font=仿宋_GB2312]标准物质[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]12[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1962[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]磁悬浮转子[/font][/align][align=center][font=仿宋_GB2312]真空计校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]13[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1963[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]陶瓷砖釉面抗[/font][/align][align=center][font=仿宋_GB2312]龟裂蒸压釜压力[/font][/align][align=center][font=仿宋_GB2312]参数校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]14[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1964[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]卤素检漏仪[/font][/align][align=center][font=仿宋_GB2312]校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]15[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1965[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]锡膏厚度测量仪[/font][/align][align=center][font=仿宋_GB2312]校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]16[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1966[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]雷达散射截面法材料反射率测试系统校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]17[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1967[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]激光衍射法反射光栅校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]18[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1968[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]煤中氟[font=Times New Roman]/[/font][font=仿宋_GB2312]氯测定仪校准规范[/font][/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]19[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1969[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]冲击弹性波检测仪校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][tr][td][align=center][font=仿宋_GB2312]20[/font][/align][/td][td][align=center][font=仿宋_GB2312]JJF1970[/font][/align][align=center][font=仿宋_GB2312]-2022[/font][/align][/td][td][align=center][font=仿宋_GB2312]测试声源[/font][/align][align=center][font=仿宋_GB2312]校准规范[/font][/align][/td][td][align=center][font=仿宋_GB2312]202[/font][font=仿宋_GB2312]2[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]04[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312]2022-[/font][font=仿宋_GB2312]10[/font][font=仿宋_GB2312]-[/font][font=仿宋_GB2312]29[/font][/align][/td][td][align=center][font=仿宋_GB2312] [/font][/align][/td][/tr][/table]
薄膜真空计是迄今为止唯一得到公认的可作为低真空测量(0.01--100Pa)工作副标准的一种真空仪器,也是我国唯一具有法定计量校准检定规程的一种真空度计量器具(校准参照规程:Q/WHJ46-1998标准型电容薄膜真空计校准规程)电容薄膜真空计是一种绝压、全压测量的真空计,原理是把加于电容薄膜上的压力变化产生膜片间距离的变化,即产生了电容的变化,再通过鉴频器把电容变化转换成为电流或电压的变化,组成为输出信号,所以,它的测量是直接反映了真空压力的变化值,而且只与压力有关,与气体成分无关,即:薄膜真空计是一种直接测量式的、全压型的真空计。而我们的真空设备的真空度测量控制常用的真空计往往是电阻计、热偶计等等间接测量的真空计,是一种热传导型的真空测量方法,简单一点来说,就是通过测量感受气体温度的方法来间接测量气体压强(真空度),是一种类似于大家很熟悉热电阻、热电偶的测量方法,。由于测量原理上的先天不足,这类真空计的测量精度、测量稳定度是很不好的。其测量误差一般比薄膜真空计大1~2个以上数量级(误差大于30%,行业标准是50%),尤其是在低真空段,误差更大,另外,使用过电阻计、热偶计的度知道,这些仪表测量前还需要零点、满度校正,怎么能够用于在线测量控制呢?另外,遇到氢气等小质量的气体就无法测量了,如果要测,也查表换算,到底真空度是多少?猜吧。不过,它确实也有它的优点的:制造容易、价格低廉,在许多的要求较低真空设备上还普遍使用着,……用过电阻计的都领教过它的烦心。许多人抱怨花了3、4千元买到进口的真空传感器也误差大、毛病多?就是因为老外的这个价位的产品还是老的热传导测量机理的真空传感器。所以选择真空计、真空传感器、首先要看看什么原理、什么类型的,而不是数字、智能,测量机理陈旧,再怎么数字、怎么智能,也于事无补的。未完待续
以(0.04~0.6)活塞式压力计为标准值,测出来的数字压力计的值为41.75KPa, 81.11KPa, 121.00KPa, 160.80KPa, 200.60KPa,240.50KPa,280.50KPa,320.52KPa,360.35KPa,400.44KPa,,请问为什么数值会越来越小,两套设备都是合格的!
请问如何用一等数字式压力计检定二等活塞式压力计? 请各位大虾给予指点!谢谢
机械式压力表是一种广泛使用的仪表,通常采用活塞式压力计进行校验。活塞式压力计作为一种基础的压力标准器,主要用于企事业单位的计量室实验室,在生产和科学实验中作为压力基准器使用。下面拆解一台量程为0.04MPa~0.6MPa的活塞式压力计。一、外观摆在工作台上的机器:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272204_568168_1807987_3.jpg各部分名称:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272205_568174_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509272204_568170_1807987_3.jpg该机器型号YS-6,测量范围0.04MPa~0.6MPa,精度等级为0.05级(即0.05%,校核仪器精度都很高呵),西安仪表厂2010年8月生产:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272204_568171_1807987_3.jpg二、工作原理绘制仪器结构示意图如下(未画出检测禁油仪表时,接入的油水隔离器):http://ng1.17img.cn/bbsfiles/images/2015/09/201509272204_568172_1807987_3.jpg仪器工作原理:活塞式压力计是根据流体静力学平衡原理和帕斯卡定律设计制造的。液压力由压力发生器产生,转动旋转手柄(摇把),丝杆推动工作活塞挤压工作液,将压力传递给测量活塞。测量时,托盘上放置标准砝码,测量活塞受到的液压作用力与活塞、托盘及标准珐码的质量所产生的压力相平衡时,测量活塞被托起并稳定在一定位置上,此时,标准压力表的读数就是压力读数,因此可以判断出被校压力表的准确性。三、仪器主要零件拆解1、拆油杯油杯用于给液压系统加液压介质——通常是特定的液压油,0.04~25MPa是变压器油、蓖麻油或与煤油的混合油;25MPa以上传压介质采用粘度很小的癸二酸二异辛酯,从而保证压力计有极高的灵敏度。旋下油杯截止阀手轮:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272213_568180_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509272213_568181_1807987_3.jpg底部是针型截止阀:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272213_568182_1807987_3.jpg2、拆油水隔离器在校验氧气表、乙炔表等严禁与油接触的压力表时,必需接入油水隔离器进行隔离(其它类型表可以不接入隔离器,直接接在被测表接口)。用六方扳手拆下隔离器排泄螺钉:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272213_568183_1807987_3.jpg孔内是以前工作时留下的液体,工作完后没有及时排除:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272213_568184_1807987_3.jpg隔离器下部螺纹,与仪器被测表接口相连:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272213_568185_1807987_3.jpg这是取下的油水隔离器:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272213_568186_1807987_3.jpg旋开排泄螺钉,倒出隔离器上部水压室的工作介质水,量不少,水中混有油、发黑,已经变质,如果直接用于禁油仪表测量,是非常危险的事:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272213_568187_1807987_3.jpg将隔离器夹在台钳上,用了很大的力,才将其旋开:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272214_568188_1807987_3.jpg上部的隔膜被压凹没复原;下部是油压室,有一些锈蚀:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272214_568189_1807987_3.jpg用平口改刀撬出隔膜:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272214_568190_1807987_3.jpg取下隔膜,这是上部水压室,内壁已被腐蚀,渣滓不堪入目:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272214_568191_1807987_3.jpg渣滓是内部的防腐层脱落块(可能是某种塑料喷涂层),说明内部防腐工艺没过关:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272214_568192_1807987_3.jpg用清洁剂、钢丝球进行清洗:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272214_568193_1807987_3.jpg清洁后的图片,可以看出,机件是普通钢,镀铜后,再覆涂塑料,但工艺不过关,才短短几年时间,防腐层就完全失效:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272214_568194_1807987_3.jpg这是清洗后的隔离器全部零件:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272215_568195_1807987_3.jpg该油水隔离器是隔膜型,绘制结构示意图如下:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272215_568196_1807987_3.jpg油水隔离器工作原理:首先将下接头接在仪器被测表接口上(此时关闭被测表管道截止阀),松开排泄螺钉和上接头,将清洁水从上接头加入,直到水从排泄孔漫出,然后旋上排泄螺钉和上接头,将被测表安装在上接头,旋紧。启动压力发生器,打开截止阀,管道内的油进入隔离器油压室,将压力通过隔膜传递给水压室的水,然后进入被测表。工作完后,首先将压力发生器摇把退回原位(即给管道系统降压),关闭被测表油压截止阀,取下被测表。工作一段时间后,被测表没有压力显示,检查水压室的水是否减少,补充加入水即可。3、拆卸测量活塞http://ng1.17img.cn/bbsfiles/images/2015/09/201509272215_568198_1807987_3.jpg旋下托盘下面活塞缸的螺纹帽:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272215_568199_1807987_3.jpg取出活塞(杆):http://ng1.17img.cn/bbsfiles/images/2015/09/201509272215_568200_1807987_3.jpg再取下活塞缸:http://ng1.17img.cn/bbsfiles/images/2015/09/201509272215_568201_1807987_3.jpg取下的活塞缸及活塞(杆)。活塞和活塞缸采用高强度,高硬度和低温度线胀系数的合金钢、
真空计的种类很多,常用的真空计就有压缩式真空计、电离真空计、热电偶真空计、电阻真空计等等。真空计的真空测量是真空技术的重要组成部分,因此真空计在科研与生产中的使用很广泛。那么在选择真空计时我们应该考虑哪些因素呢? 1.不同的真空计有不同的测量范围与测量精度,首先要确保真空计的测量范围满足设备的需要,再考虑真空计的测量精度; 2.有些真空计对被测气体有要求,如热阴极电离真空计的阴极易受过量空气及泵油蒸气等污染物的损害,因此需要考虑被测气体是否会对真空计造成损伤; 3.部分真空计会影响被测环境,如压缩式真空计测量时要压缩被测气体,这会使水蒸气凝结。因此要考虑真空计是否会对被测真空环境造成影响; 4.考虑真空计所测压强是全压还是分压,是否已校准,是否与气体种类有关; 5.考虑真空计能否实现连续测量,数值指示及反应时间如何; 6.考虑真空计的稳定性、可靠性、使用寿命。 7.考虑真空计的安装方法、操作性能、保修、管理、市场有无销售、购买的难易程度和规格
现代真空应用技术的发展,涉及的应用范围越来越广泛、真空应用设备对仪器仪表的要求越来越高,特别是对测量精度、稳定性要求、以及自动控制性能要求也越来越高,这直接关系到真空设备的整体性能质量,关系到真空应用技术或应用工艺的应用效果,甚至于成功与否。在精细化工、真空冶炼、真空单晶炉、真空热处理、真空浸渍、真空冷冻干燥、真空绝缘处理、电真空器件、半导体材料生产、高特新材料、新能源设备等等行业中尤其特出。许多新设备、新工艺、新产品的开发之所以老是无法实现预想的技术指标和效果,往往就是因为真空测控仪表选型不当、其实际的测量控制精度无法达到设计要求所造成的。当然,薄膜真空计也不是没有缺点的,首先是价格高,国内一般是4-6千元,量限低的贵些;进口则1.6—2.5万元/只左右;其次,国内老式的薄膜规容易零漂,需要经常校正,要求高的经常校正。主要是技术陈旧,国内材料科学相对落后造成的,温度稳定性不好;还有一个量程跨度小,国内的不超过3个数量级。第三是国产规娇气,容易坏,有油污进去很难清洗,要用丙酮,清洗挽救13往往会报废,小量程的23会坏。所以,我们需要有一种具有国产价格、进口品质的、使用方便、经久耐用薄膜真空计。结合我国国情、学习国际先进的真空测量新技术,我们能够做得到的。分析国外的薄膜真空计与我们旧式国产产品的有什么不同呢?简单说一说,其核心技术一是陶瓷薄膜电容真空压力测量技术、二是现代智能仪表技术。首先是通过大规模厚膜电路(国内有些厂家还是20年前的007运放),将薄膜电容测量机构和传感器调理电路微型化,做在陶瓷基片上,另外,将智能仪表电路微型化,一次仪表和二次仪表合二为一,所以量程宽、精度高、体积小;(其典型代表如莱宝62x、英福康TCBG等等)。未完待续
怎样选择真空计很多试验仪器设备都需要用到真空泵、真空机组,如样品真空干燥、真空蒸馏、真空解压等等实验工作、中式,为了达到最优状态和测试效果,或提供效率、节约能源,就需要对设备的容器中的真空度进行准确的测量和自动控制,现在大家使用的大多数还是老式的电接点真空表、电阻真空计的、热偶计等等,准确度差、不稳定、寿命短、当然也有进口设备,但真空测控仪表、真空计进口的产品非常昂贵,那么我们普通设备需要真空控制时应该如何选择性价比高的真空计呢?以下的几点供大家参考,希望有帮助。第一,从真空测量机理的先进性来考虑,应该选择采用新型传感元件的真空计,如硅集成真空传感器、陶瓷基片厚膜电路真空度传感器、陶瓷电容式薄膜真空规等等;而传统老式的热传导类(热偶计、电阻计、皮拉尼计等等)虽然价格稍低些,但其精度低、稳定性差、寿命短,按照产品标准测量精度误差50%就合格;虽然现在也有数字化、但是毕竟是先天不足。第二,从真空设备的工作真空度来选择真空度测控范围:而不是根据使用真空泵或机组的极限真空度来选择,如,系统采用2x旋片泵,其极限真空度可达0.5Pa,但是,由于抽气效率的原因,往往用在100Pa以上,所以应该选择0.1kPa测量下限即可(下限越低,往往精度要求越高,价格也越高)第三,合理选择测量精度等级和测量分辨率,一般设备选择1.0级、0.5级就可以了,但是如果是作为精密真空度测量和控制、计量标准器等等,就要选择0.1级、高分辨率的仪表;首选陶瓷薄膜规(--PS510--ABCD);对于用来测量管道、容器、散热器、空调冰箱部件密封等等用途的真空计选型,可以选择0.5、0.25级精度、但是分辨率为1Pa的高分辨率的仪表如(208--310ap型),性价比极高;另外,还要根据需要测控的泵阀来选择仪器的测控继电器等等控制功能,最好要选择带有真空智能测控功能的仪表(一个继电器就能控制一个启停或开闭的真空度区间,而不是一个点)。最后不要忘记选择合适的真空接口标准,推荐kf系列卡箍法兰,当然,还有其他测试介质的重要特点:卫生洁净度、防腐蚀、防爆要求,附加功能会增加价格,要求不高,就不一定要用专门的防爆型、防腐蚀型的,要求严格的话,当然不能马虎的。简单说说,供参考了。再次提醒大家:现在是2011年啦!真空仪器仪表已经现代化了,希望大家选择更加新型的、高性价比的真空仪器仪表,
我公司想购买一台低真空计,工作范围在50~100μHg或6.6~13.3Pa。请帮忙提供合适真空计的型号及相关资料。最好是数显的。
http://ng1.17img.cn/bbsfiles/images/2011/10/201110211922_325615_1608408_3.jpg学习和引进国外先进核心技术,,根据我国真空设备配套测控仪表的特点,研制出的陶瓷薄膜真空计,其测量精度和稳定性已经完全可以与进口产品相媲美了。根据国内设备的习惯,控制柜上数字面板表,还是经常使用的,采用专门设计的具有真空测控特点的精密二次仪器仪表,借籍于现代智能仪表技术的科技成果,有利于提供测量的精度、分辨率、稳定性和可靠性,增加智能化的自动控制功能,(可以配接任何一种模拟量、数字量的接口,比进口的薄膜真空计更灵活、更方便)实践证明,陶瓷薄膜真空计使用到真空冷冻干燥机、真空单晶炉、气氛真空炉、真空精馏设备、真空镀膜机等设备,做真空测量和自动控制,带来极大地方便和性能提高,可以快速升级为智能型的真空应用设备。当然,也可以用到实验室、计量室作为相应的真空段的0.1级标准器,陶瓷芯片的优异性能使其年稳定度达到0.1%以上。
公司用麦氏真空计,里面水银有了残渣,想换掉水银,请问水银的加入量一般是多少?有要求吗? 另外想问:数显示的便携真空计多少钱?
如何判断真空计的好坏?
[align=left][font=宋体]北京莱森泰克科技有限公司是从事自动化仪器仪表销售、提供量身定制的系统解决方案和系统集成软硬件开发的高技术公司,竭诚为各界用户提供高品质的解决方案和完善的技术服务。[/font][/align][align=left][font=宋体]莱森公司经营的产品主要有:精密压力检验与控制仪器,数字压力计,活塞式压力计,智能气体配比仪,温湿度仪表,露点仪,温度检验仪,多功能检验仪,以及为各行业量身定制的系统集成软、硬件等。[/font][/align][b]LPTG7600-5[font=宋体]活塞校验系统[/font]1. [font=宋体]系统要求:[/font][/b]1) [font=宋体]压力范围:按高精度活塞现有量程范围(或按需求)[/font]2) [font=宋体]精度总体不确定度:[/font]0.002%3) [font=宋体]被检设备:精度[/font]0.01%[font=宋体]、[/font]0.02%[font=宋体]的压力控制器或传感器等具备数字通讯协议。[/font]4) [font=宋体]检测数量:[/font]5[font=宋体]路[/font]/[font=宋体]次(或按需求定做)[/font][b]2. [font=宋体]系统概述:[/font][/b][font=宋体]LPTG7600-5[/font][font=宋体]高精度压力校准系统由高精度活塞、压力校验仪、显示器、真空泵、工控机、智能气路控制器、220V供电、高中低压控制台和被检设备所组成。以纯净干燥氮气或空气为工作介质,以莱森公司控制软件为核心,通过计算机进行自动控制压力校验仪设定所需的压力,通过指令自动传输到高精度活塞,被检设备均为测量状态,产生标准压力值后自动采集被检设备数据,并自动记录、存储校准数据,根据指令打印原始记录或检定证书。[/font][b]3. [font=宋体]系统功能:[/font][/b]1) [font=宋体]通过控制压力校验仪给出需要的气压,传输至高精度活塞产生标准值。[/font]2) [font=宋体]自动采集[/font]1-5[font=宋体]路(或按需定制)被检设备(高精度压力控制器、传感器)的输出值,并对其输出精度和稳定性进行实时监测。[/font]3) [font=宋体]检测过程中可同时自动记录、处理、存储被检设备测试数据。[/font]4) [font=宋体]具有良好、简洁的人机操作中文界面。[/font]5) [font=宋体]试验台整体为可移动式(气瓶、高精度活塞、打印机除外),所有设备均固定安装在试验台上,外形美观,实现各组成部件的系统集成,实现电路和气路的内部连接。[/font]6) [font=宋体]在高压进气及高压输出接口增加高压过滤及除湿功能,保证系统安全运行。[/font][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206221512151287_876_5627570_3.jpg!w600x600.jpg[/img][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206221512151287_876_5627570_3.jpg!w600x600.jpg[/img]
[color=#ff0000]摘要:针对便携式真空计校准装置以实现真空计的现场校准,基于静态比对法校准技术,本文提出了一种采用微型数字针阀和上下游双向气体流量调控模式的技术方案,结合双通道高精度的真空度PID控制器,可在真空度精密控制的前提下解决现场校准和便携性问题。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]真空计作为一种真空度传感器在众多领域应用普遍,并需要进行定期校准。而真空计校准装置是包含了真空标准器、真空泵、真空阀门及连接管路在内的一整套测量系统,一般体积较大,不便移动,多在实验室内固定使用。现有的真空计校准方式大多是将现场使用的真空计拆下送检。为满足现场校准的需求,需要解决以下几方面的问题:(1)减小相关部件的尺寸,使真空计校准装置便于携带。(2)采用数控和电动阀门,提高气体流量调节的精密度。(3)改进真空度控制方式,提高真空度控制精度和稳定性。为实现真空计 现场校准和校准装置的便携性,基于静态比对法校准技术,本文将提出采用微型数字针阀和上下游双向气体流量调控模式的技术方案,结合高精度的真空度PID控制器,可在真空度精密控制的前提下解决现场校准和便携性问题,真空度的波动可控制在±1%以内。[size=18px][color=#ff0000]二、便携式真空计校准装置技术方案[/color][/size]便携式真空计校准装置的整个结构如图1所示,这里示出的是0.1~760Torr真空度范围内的校准装置典型结构示意图。方案具体内容如下:[align=center][img=真空计校准,600,596]https://ng1.17img.cn/bbsfiles/images/2022/05/202205261606551375_610_3384_3.png!w690x686.jpg[/img][/align][align=center]图1 便携式真空计校准装置结构示意图[/align](1)采用静态比对法,将被校准真空计与参考标准真空计比对。参考标准真空计采用两个电容薄膜真空计以覆盖整个真空度校准范围,参考标准真空计也同时作为真空度控制传感器。(2)真空度控制器采用二通道高精度真空度控制器,控制器的A/D为24位,D/A为16为,可对应电容薄膜真空计的高精度信号输出和满足真空度控制精度要求。控制器的两个通道分别对应于两个真空计的输入信号、两路数字针阀的进气和抽气流量的精密调节。在真空度控制过程中两路传感器信号可根据需要自动切换,以实现全量程范围内的可编程自动控制。控制器带PID自整定功能和标准的MODBUS通讯协议。(3)采用两个数字针阀分别调节进气和抽气流量,控制器采用双向模式分别对两个针阀进行调节。在粗真空范围内主调节进气针阀,在高真空范围内主调节进气针阀,全量程范围内的真空度恒定控制时,真空度波动率可控制在±1%以内。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]
5975C真空计micro Ion E报错,怎么办?3年多的机器经常连续开机,重启能搞定吗还是要换了?这东西贵吗
真空系统上的活塞用的真空油脂很难擦,尤其是活塞口出,那位大虾有好办法
PENNING是最常用的高真空计,可以安装在靠近分子泵的地方,或者直接安装在发射枪部位,最差的位置是装在样本室外部,最最臭的位置是样本室正相对SE检测器的方向,为什么这么说呢?
活塞空压机故障分析 空气压缩机进气阀片破裂或不严时,有什么影响?进气阀片破裂或不严时,将延长空气压缩机泵风时间,使总风缸风压上升慢。因为空气压缩机压风作用是由活塞在气缸内作上下住复运动来完成的,当活塞下行时,活塞上部形成低压,进气阀片打开,空气被吸进气缸;当活塞上行时,进气阀片在弹簧的张力作用下关闭,这时空气在气缸内受到压缩而压力增高,将排气阀片压开而进入冷却器或总风缸内(低压缸进入冷却器;高压缸进入总风缸)。苦进气阀片破裂不严时,空气在压缩过程中,一部分又由进气阀片逆流出去,使得空气压缩机泵风慢,时间长。 其现象是:如低压缸进气阀片破裂或不严,空气滤尘器出现倒风;如高压缸进气阀片破裂或不严,低压安全阀发生喷气。 空气压缩机排气阀片破裂或不严时,有什么影响? 排气阀片是防止压缩后的空气不致回流。当排气阀片破裂或不严时,原已排出的压力空气在活塞下行的过程中又被吸回气缸内,因而减少了新的进气量,使空气压缩机泵风慢。
请教各位高手,岛津2010plus[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url],每次开机抽真空时,都会显示离子真空计不能正常控制,离子源灯丝即将关闭,重启一次或几次又好了,求助:这是什么原因?需要怎么解决?长时间如此会对仪器损害么?万分感谢
我们实验室的等离子体设备上配了一个电阻真空计,最近等离子体厂家的人告诉我真空计应该重新校准了,可是我又联系不到真空计生产厂家,那我自己如何校准真空计呢?
[align=center][img=多点拟合功能的PID控制器在真空计线性化处理中的应用,550,416]https://ng1.17img.cn/bbsfiles/images/2023/09/202309141551304705_7372_3221506_3.jpg!w690x522.jpg[/img][/align][size=16px][color=#990000][b]摘要:针对高真空度用皮拉尼计和电离规信号的非线性和线性两种输出规格,为改进高真空度的测量和控制精度,本文提出了线性化处理的解决方案。解决方案的关键是采用多功能超高精度的真空压力控制器,具体内容一是采用控制器自带的最小二乘法多点拟合功能来进行高真空区间的非线性处理,二是采用控制器的数值转换功能对真空度对数线性输出进行相应测试量程转换。此解决方案还可以推广应用于其他具有非线性输出性质的传感器中。[/b][/color][/size][align=center][color=#990000][b]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/b][/color][/align][size=16px][color=#990000][b][/b][/color][/size][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 在真空度测量过程中,一般会根据不同真空度范围选择相匹配的真空度传感器。常用的三类真空度传感器是电容真空计、皮拉尼真空计和电离规,这些传感器会对应所测量的真空度输出相应的电压信号,其中电容真空计的真空电压关系曲线为线性,而皮拉尼计和电离规的真空电压关系曲线基本都是底数为10的幂函数,具有强烈的非线性特征,如图1所示。[/size][align=center][size=16px][color=#990000][b][img=皮拉尼计和电离规的真空度测量与输出电压信号典型关系曲线,660,342]https://ng1.17img.cn/bbsfiles/images/2023/09/202309141555049140_6935_3221506_3.jpg!w690x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 皮拉尼计和电离规的真空度测量与输出电压信号典型关系曲线[/b][/color][/size][/align][size=16px] 皮拉尼计和电离规往往会用在高真空和超高真空范围内的测量,由此这种非线性会给高真空和超高真空范围内的测量带来以下一系列的问题:[/size][size=16px] (1)大多数真空测量仪表基本上都采用的是线性电路,以采集真空计输出信号并进行线性转换后进行显示和输出。这种对非线性信号仅进行简单线性转换的方式,势必会给真空度测量带来巨大误差,这也是皮拉尼计和电离规在高真空度范围内测量精度不高的主要原因。[/size][size=16px] (2)如图1所示,这种非线性特征是以10为底数的幂函数,因此可以通过对数处理将其进行线性化处理。有些国外厂家的真空计也确实具有这种功能,使得真空度的对数与输出电压值呈线性关系。这种线性化处理的最大优点是可以大幅度提高真空计的测量精度,特别是对超高真空度范围内的精度提高更加显著。但这种线性化处理仅是针对真空度到模拟输出信号,如果要对这输出信号进行还原或准确显示真空度,还需后续的处理电路或采集仪表进行反向处理。[/size][size=16px] (3)除了上述在真空度测量中存在的如何准确显示的问题之外,更大的问题是在真空度控制中的应用。在真空度控制中,真空计往往是连接到PID控制器的传感器,无论真空计自身是否采用了线性化处理技术,但都要求线性控制形式的PID控制器具有线性化处理功能,而现状是很少有PID控制器具有这种线性化处理的高级功能,这也是制约高真空度范围内控制精度不高的主要原因。[/size][size=16px] (4)皮拉尼计和电离规的另一个显著特点是具有气体的选择性,对于不同气体环境下的真空度测量其非线性公式中的常数并不相同,需要根据气体类型进行选择。这种气体选择性特征更加大了真空计输出信号的线性化处理难度和复杂程度,很难采用一种通用电路和仪表来满足大多数不同气体氛围下的真空度测量和控制。[/size][size=16px] 为了解决上述皮拉尼计和电离规的信号非线性和气体选择性特性给高真空度测量和控制带来的问题,本文提出了相应的解决方案,关键是采用具有线性化处理等高级功能的PID控制器。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 针对现有的各种皮拉尼计和电离规的真空度电压输出信号,包括非线性信号和已经处理后的线性信号,解决方案的核心是采用如图2所示的具有众多高级功能的超高精度真空压力控制器。[/size][align=center][size=16px][color=#990000][b][img=VPC-2021系列超高精度PID控制器,500,264]https://ng1.17img.cn/bbsfiles/images/2023/09/202309141555336153_2091_3221506_3.jpg!w690x365.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 VPC-2021系列超高精度真空压力控制器[/b][/color][/size][/align][size=16px] 此控制器在具有超高精度24位AD模数转换和16位DA数模转换的同时,还充分发挥了微处理器的速度和数据处理能力,在现有各种温度传感器线性化处理的基础上,增加了八点拟合线性化处理功能和数值变换功能,通过相应的面板按键操作或所配软件的设置,可对皮拉尼计和电离规输出信号进行有效处理,可显著改善高真空度范围内的测量和控制精度。[/size][size=16px][color=#990000][b]2.1 真空计非线性信号的多点拟合处理[/b][/color][/size][size=16px] 对于皮拉尼计和电离规,在0.00001Pa~0.1Pa(甚至更宽泛)的高真空度范围内,随着压力的增大所输出的电压信号基本是缓慢上升的平滑曲线形式,如图1所示。由此,在此高真空范围内,这也是皮拉尼计和电离规的主要测量应用范围,真空度与电压信号的关系曲线完全可以用多项式曲线来准确描述,本解决方案就是采用此特性来进行多点拟合处理,通过拟合处理实现真空度的高精度测量以及后续的准确控制。[/size][size=16px] VPC2021系列多功能超高精度PID控制器具有特殊的8点曲线拟合功能,PID控制器8点线性化处理功能是通过8组数据组成线性化表,将输入值经过最小二乘法拟合计算产生输出值和显示值。如图3所示,在使用此功能时,所选的输入值(X轴,代表真空计输出的电压或电流值)必须是递增形式,而对应的测量值或显示值则可以是递增或递减关系。自定义传感器非线性输入支持以下三种输入类型和对应量程:[/size][align=center][size=16px][color=#990000][b][img=PID控制器8点线性化处理功能示意图,500,306]https://ng1.17img.cn/bbsfiles/images/2023/09/202309141555590193_5542_3221506_3.jpg!w690x423.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 八点线性化处理功能示意图[/b][/color][/size][/align][size=16px] (1)20mV、100mV;(LSB:0.01mV)。[/size][size=16px] (2)0-10mA、0-20mA、4-20mA;(LSB:0.001mA)。[/size][size=16px] (3)0-1V、0-2V、0-5V、1-5V、0-10V、2-10V;(LSB:1mV)。[/size][size=16px] 通过这种多点拟合处理,使得真空度测量和控制具有了以下特点:[/size][size=16px] (1)可提高真空度的测量和控制精度。[/size][size=16px] (2)测量值和控制值可直观的进行准确显示,显示的真空度即为真实的真空度值。[/size][size=16px] (3)可适用于所有皮拉尼计和电离规非线性信号的处理和应用,但局限性是仅适用于变化舒缓的高真空度区间。[/size][size=16px][color=#990000][b]2.2 真空计线性信号输出的数值变换处理[/b][/color][/size][size=16px] 个别厂家和型号的真空计其输出信号已经进行了线性化处理,输出信号与真空度的对数呈线性关系。如图1所示,此时对应于纵坐标的电压输出值,横坐标的真空度变化范围是-10~+5;也可以是对应于横坐标的电压输出值,纵坐标的真空度变化范围是-10~+5。[/size][size=16px] 对于不同的皮拉尼计和电离规,这个线性的电压值与真空度对数值范围并不相同,在具体应用中都需要对其数值范围进行修正以形成一一对应关系。采用VPC2021系列真空压力控制器可以很容易的进行这种数值变换处理并形成准确的线性对应关系,这种处理具有以下特点:[/size][size=16px] (1)建立的输出电压和对数真空度的线性关系,可进一步提高真空度控制的准确性,这是因为经过对数处理后放大了真空度测量灵敏度。[/size][size=16px] (2)局限性是这种线性化处理后的显示值并不直观,所显示的真空度为对数真空度。在具体显示和控制时,真空度控制的设定值输入要求也必须是对数真空度,如果要显示真实真空度,还需上位机进行转换。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过本解决方案可以很好的对信号输出非线性特征明显的皮拉尼计和电离规进行线性化处理,可明显提高高真空度范围的测量控制精度,同时本解决方案可推广应用到其它非线性传感器的线性化处理中。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/size][/align]
热偶-电离真空计能否测氢气真空度?是否有危险?另外想在真空下做DSC分析,不知能做否?哪里有做的?多谢指点
[size=14px][color=#cc0000] 摘要:本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了上海依阳公司为解决这一关键技术所采用的真空压力下游控制模式及其装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 问题的提出[/b][/color][size=14px] 各种纤维材料做为纤维复合材料的增强体在军用与民用工业领域中发挥着巨大作用,例如碳纤维、陶瓷纤维和玻璃纤维等,而高温热处理是提高这些纤维材料性能的有效手段,通过高温可去除杂质原子,提高主要元素含量,可以得到性能更加优良的纤维材料,因此纤维材料高温热处理的关键是方法与设备。[/size][size=14px] 低温等离子体技术做为一种高温热处理的新型工艺方法,气体在加热或强电磁场作用下电离产生的等离子体可在室温条件下快速达到2000℃以上的高温条件。目前已有研究人员利用高温热等离子体、直流电弧等离子体、射频等离子体等技术对纤维材料进行高温热处理。低温等离子体具有工作气压宽,电子温度高,纯净无污染等优势,且在利用微波等离子体对纤维材料进行高温处理时,可利用某些纤维材料对电磁波吸收以及辐射作用,通过产生的微波等离子体、电磁波以及等离子体产生的光能等多种加热方式,将大量能量作用于纤维材料上,实现快速且有效的高温热处理。同时,通过调节反应条件,可将多种反应处理一次性完成,大大降低生产成本。[/size][size=14px] 中国科学院合肥物质科学研究院等离子体物理研究所对微波等离子体高温热处理工艺进行了大量研究,并取得了突破性进展,在对纤维材料的高温热处理过程中,热处理温度可以在十几秒的时间内从室温快速升高到2000℃以上,研究成果申报了国家发明专利CN110062516A“一种微波等离子体高温热处理丝状材料的装置”,整个热处理装置的原理如图1-1所示。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202228157595_5464_3384_3.png!w690x416.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图1-1 微波等离子体高温热处理丝状材料的装置原理图[/color][/size][/align][size=14px] 等离子体所研制的这套热处理装置,可通过调节微波功率、真空压力等参数来灵活调节温度区间,可在低气压的情况下获得较高温度,但同时也要求这些参数具有灵活的可调节性和控制稳定性,如为了实现达到设定温度以及温度的稳定性,就需要对热处理装置中的真空压力进行精确控制,这是实现等离子工艺平稳运行的关键技术之一。[/size][size=14px] 为了解决这一关键技术,上海依阳实业有限公司采用新开发的下游真空压力控制装置,为合肥等离子体所的高温热处理装置较好的解决了这一技术难题。[/size][size=14px][b][color=#cc0000]2. 真空压力下游控制模式[/color][/b][/size][size=14px] 针对合肥等离子体所的高温热处理装置,真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][color=#cc0000][size=14px][img=,690,334]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202229013851_5860_3384_3.png!w690x334.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 下游控制模式示意图[/color][/align][size=14px] 具体到图1-1所示的微波等离子体高温热处理丝状材料的装置,采用了频率为2.45GHz的微波源,包括微波源系统和上、下转换波导,上转换波导连接真空泵,下转换波导连接微波源系统和样品腔,上、下转换波导间设有同轴双层等离子体反应腔管,双层等离子体反应腔管包括有同轴设置的外层铜管和内层石英玻璃管,内层石英玻璃管内为等离子体放电腔,外层铜管与内层石英玻璃管之间为冷却腔,外层铜管的两端设有分别设有冷媒进口和出口以形成循环冷却。真空泵、样品腔分别与等离子体放电腔连通,样品腔设有进气管,工作气体及待处理丝状材料由样品腔进气管进入等离子体放电腔。微波源系统采用磁控管微波源,磁控管微波源包括有微波电源、磁控管、三销钉及短路活塞,微波由微波电源发出经磁控管产生,磁控管与下转换波导之间设置有矩形波导,矩形波导安装有三销钉,下转换波导另一端连接有短路活塞,通过调节三销钉和短路活塞,得到匹配状态和传输良好的微波。[/size][size=14px] 丝状材料由样品腔进入内层石英层玻璃管,从两端固定拉直,安装完毕后真空泵抽真空并由进气管向等离子体放电腔通入工作气体。微波源系统产生的微波能量经三销钉和短路活塞调节,通过下转换波导由TE10模转为TEM模传输进入等离子体放电腔,在放电腔管内表面形成表面波,激发工作气体产生高密度微波等离子体作用于待处理丝状材料,同时等离子体发出的光以及部分泄露的微波也被待处理丝状材料吸收,实现多种手段同时加热。双层等离子体反应腔管外围环绕设有磁场组件,外加磁场可调节微波在等离子体中的传播模式,同时可以使得丝状材料更好的重结晶,提高处理后的丝状材料质量。[/size][size=14px] 装置可以通过调节微波功率、工作气压调节温度,变化范围为1000℃至5000℃间,同时得到不同长度的微波等离子体。为了进行工作气压的调节,在真空泵和上转换波导的真空管路之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=14px][b][color=#cc0000]3. 下游控制模式的特点[/color][/b][/size][size=14px] 如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px] 下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px] 在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px] 下游模式具有以下特点:[/size][size=14px] (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作;[/size][size=14px] (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px] (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=14px][b][color=#cc0000]4. 下游控制用真空压力控制装置及其控制效果[/color][/b][/size][size=14px] 下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度控制器。[/size][size=14px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px] 数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px] (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px] (2)适用范围(Pa):快卸法兰(KF)2×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]/活套法兰6×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]。[/size][size=14px] (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px] (4)阀门漏率(Pa.L/S):≤1.3×10[sup]?-6[/sup]。[/size][size=14px] (5)适用温度:2℃~90℃。[/size][size=14px] (6)阀体材质:不锈钢304或316L。[/size][size=14px] (7)密封件材质:增强聚四氟乙烯。[/size][size=14px] (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px] (9)电源供电:DC 9~24V。[/size][size=14px] (10)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202231249739_6263_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=14px][color=#cc0000]4.2. 真空压力控制器[/color][/size][size=14px] 真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力控制器,如图4-2所示,其技术指标如下:[/size][size=14px] (1)控制周期:50ms/100ms。[/size][size=14px] (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px] (3)采样速率:20Hz/10Hz。[/size][size=14px] (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px] (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px] (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px] (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px] (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232157970_4559_3384_3.jpg!w500x500.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/size][/align][size=14px][b][color=#cc0000]5. 控制效果[/color][/b][/size][size=14px] 安装了真空压力控制装置后的微波等离子体高温热处理系统如图5-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232573625_5179_3384_3.png!w690x395.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 微波等离子体高温热处理系统[/color][/align][size=14px] 在热处理过程中,先开启真空泵和控制阀对样品腔抽真空,并通惰性气体对样品腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在2000℃以上,在整个过程中样品腔内的真空压力始终控制在设定值上。整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234216839_5929_3384_3.png!w690x419.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px] 为了更好的观察热处理过程中真空压力的变化情况,将图5-2中的温度突变处放大显示,如图5-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,427]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234347767_4036_3384_3.png!w690x427.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px] 从图5-3所示结果可以看出,在300Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=14px] 另外,在激发等离子体后样品表面温度在几秒钟内快速上升到2000℃以上,温度快速上升使得腔体内的气体也随之产生快速膨胀而带来内部气压的升高,但控制器反应极快,并控制调节阀的开度快速增大,这反而造成控制越有超调,使得腔体内的气压反而略有下降,但在十几秒种的时间内很快又恒定在了300Torr。由此可见,这种下游控制模式可以很好的响应外部因素突变造成的真空压力变化情况。[/size][size=14px] 上述控制曲线的纵坐标为真空计输出的与真空度对应的电压值,为了对真空度变化有更直观的了解,按照真空计规定的转换公式,将上述纵坐标的电压值换算为真空度值(如Torr),纵坐标换算后的真空压力变化曲线如图54所示,图中还示出了真空计电压信号与气压的转换公式。[/size][size=14px] 同样,将图5-4纵坐标放大,如图5-5所示,可以直观的观察到温度突变时的真空压力变化情况。从图5-4中的转换公式可以看出,由于存在指数关系,纵坐标转换后的真空压力波动度为6.7%左右。如果采用线性化的薄膜电容式真空计,即真空计的真空压力测量值与电压信号输出值为线性关系,这种现象将不再存在。[/size][align=center][color=#cc0000][size=14px][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236297989_3820_3384_3.png!w690x423.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][align=center][size=14px][img=,690,421]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236397212_4575_3384_3.png!w690x421.jpg[/img][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][size=14px][b][color=#cc0000]6. 总结[/color][/b][/size][size=14px] 综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,同时还充分保证了微波等离子体热处理过程中的温度调节、温度稳定性和均温区长度等工艺参数,为微波等离子体热处理工艺的推广应用提供了技术保障。另外,这也是替代真空控制系统进口产品的一次成功尝试。[/size][size=14px] [/size][size=14px][/size][align=center]=======================================================================[/align][size=14px][/size][size=14px][/size]
[color=#990000]摘要:本文针对微激光束焊接中真空控制系统的压力调节,介绍了相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、排气电动球阀和双通道高精度PID控制器,并采用上游和下游控制模式可实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000] [size=18px]一、背景介绍[/size][/color]微激光束焊接 (LBW) 也称为微焊接,是通过投射出的微小直径激光光束,产生微观焊缝将不同金属熔合在一起。最近有客户提出定制要求,要求在微激光束焊接的系统中,配备用于精确压力调节的真空控制系统。具体要求是焊接腔室内充入惰性气体,焊接腔室内的绝对气压在10Pa至一个大气压(0.1MPa)的真空范围内精确恒定控制,在任意控制点上的气压波动小于±1%。本文将针对上述客户对微激光束焊接中真空控制系统的压力调节技术要求,提出相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、出气电动球阀和双通道高精度PID控制器,并针对不同真空度量程分别采用上游和下游控制模式实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[size=18px][color=#990000]二、解决方案[/color][/size]微激光束焊接 (LBW) 真空控制系统的压力调节解决方案如下图所示。[align=center][img=微激光束焊接中的真空控制系统,400,555]https://ng1.17img.cn/bbsfiles/images/2022/09/202209201618016926_439_3221506_3.png!w590x819.jpg[/img][/align]由于微激光束焊接所要求的气压调节范围(绝对压力)为10Pa~0.1MPa的真空度,并实现全量程任意设定真空度在恒定过程中的波动率小于±1%,而且还要求对焊接过程中所引起的气压波动进行快速调节并恒定能力,故本解决方案采用两个控制回路来覆盖全量程。第一个控制回路负责控制1kPa~101kPa范围的高气压,采用了1000Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第一通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动球阀,使得焊接室内的气压快速达到设定值并保持恒定。第二个控制回路负责控制10Pa~1kPa范围的低气压,采用了10Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第二通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动针阀,使得焊接室内的气压快速达到设定值并保持恒定。为保证控制精度和稳定性,此解决方案中要求电动针阀和球阀需要具有1秒以内的响应速度,并要求双通道PID控制器具有24位AD和16位DA的高精度。此解决方案已成功得到广泛应用。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]
批处理样品,十几个样以后出现离子真空计不能正常控制的问题,质谱停止批处理。这是从一次老化柱子之后开始的,那会因为是旧柱子,就没有断质谱,质谱还是真空状态,老化完以后就开始出现这问题。批处理停止以后重新开始批处理一切正常,真空也没掉,真空度计也是正常的,就是走一段时间样就可能会出错。谁遇到过啊,这个怎么解决。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669765_2851308_3.jpg
[size=14px][b][color=#cc0000]摘要:本文针对实验室用冷冻干燥机的真空度控制,提出了干燥过程中的真空度精密控制解决方案。解决方案主要是采用双真空计(电容真空计和皮拉尼真空计)测量干燥过程中的真空度变化,双通道PID真空度控制器一方面采集电容真空计信号并通过电动针阀对干燥腔室的真空度进行高精度控制,同时采集皮拉尼真空计信号显示和记录整个干燥过程中的真空度变化曲线。此解决方案可完美的实现干燥过程中的真空度精密控制和监测。[/color][/b][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px] 在典型的真空冷冻干燥过程中,为了监控整个过程的真空度变化,一般会采取真空度比较测量方式,即在腔室和冷凝器上分别配置电容真空计和皮拉尼真空计。由此在冷冻干燥过程中,用电容真空计测量和控制腔室真空度,同时使用皮拉尼真空计进行真空度监测。这种方法利用了皮拉尼真空计的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分依赖性,该皮拉尼计的输出变化反映了当过程从一次干燥过渡到二次干燥时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分的变化。这个典型过程中的真空度和温度变化如图1所示。一般是基于电容真空计来控制腔室真空度,这不仅仅是因为它独立于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分而测量绝对压力(绝对真空度)。电容式压力计比皮拉尼压力计更准确、线性和稳定。[/size][size=14px][/size][align=center][size=14px][color=#cc0000][img=真空冷冻干燥过程中的典型真空度和温度变化曲线,600,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231817231440_186_3221506_3.jpg!w690x460.jpg[/img][/color][/size][/align][color=#cc0000][size=14px][/size][/color][align=center]图1 真空冷冻干燥过程中的典型真空度和温度变化[/align][size=14px][/size][align=center]皮拉尼压力表(洋红色),电容压力计(红色)[/align][size=14px][/size][align=center][color=#cc0000]隔板温度用黑线表示,其他线是热电偶测量的单个产品温度[/color][/align][size=14px] 从上述真空冷冻干燥过程中可以看出,冷冻干燥机上需要配备两只真空计,一个是电容真空计,另一个是皮拉尼计。其中电容真空计用来控制腔室真空度,真空度控制范围在几十豪托左右,而皮拉尼计则用来监控整个真空度的变化过程并用来判断干燥过程的变化。为此,我们设计了如图2所示的冷冻干燥机真空度控制系统。[/size][align=center][size=14px][color=#cc0000][img=真空冷冻干燥机真空度控制系统结构示意图,500,428]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231818284971_7024_3221506_3.jpg!w690x592.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图2 真空冷冻干燥机真空度控制系统结构示意图[/color][/align][size=14px] 图2所示的控制系统主要四个部分组成,分别描述如下:[/size][size=14px] (1)真空泵:主要用于抽取真空。在冷冻机干燥过程中,由于真空腔室一般工作在较高真空范围,所以真空泵要求处于全速开启抽取状态而无需调节排气速率。[/size][size=14px] (2)真空计:真空计包含了电容真空计和皮拉尼真空计,其中高精度的真空计为绝对真空传感器,用来作为真空度控制用传感器。精度稍差的皮拉尼真空计由于测试量程较大,用来监视整个过程的真空度变化,并作为第一次和第二次干燥变化的判断。[/size][size=14px] (3)电动针阀:通过步进电机来快速调节针阀的开度,以调节进气流量。[/size][size=14px] (4)双通道PID真空度控制器:此控制器为带有PID参数自整定功能的双通道控制器,其中第一通道与电容真空计和电动针阀组成闭环控制回路用来控制腔室真空度,第二通道与皮拉尼真空计连接作为测试和显示。此双通道PID控制器具有24位AD和16位DA,采用了双浮点计算方法可使得最小输出百分比达到了0.01%的高控制精度,非常适合冷冻干燥过程中的真空度控制。而且此控制器具有标准的MODBUS协议,可与上位机进行通讯实现远程遥控。[/size][size=14px] 总之,本文所述的解决方案非常适合实验室冷冻干燥机的真空度精密控制和干燥过程的监测,强大的双通道PID控制器除了可保证真空度控制精度和自动控制之外,还可以通过随机配备的计算机软件独立进行冷冻干燥机真空度控制过程的参数设置、PID参数自整定、自动运行、真空度设置和测量值的测量、曲线显示和存储。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]
请问同一台真空机仪器,在大气压为760mm汞柱的时可以抽到0.92,而在大气压为680mm时只有0.8左右。这是为什么?
内燃机缸套-活塞环摩擦副是一个典型的摩擦学系统,其中含有多种类型的摩擦和磨损,润滑、摩擦、磨损的相互作用十分显著。其摩擦学性能对提高内燃机的可靠性和耐久性,保证内燃机经济、可靠地工作具有决定性的作用。其摩擦学问题的研究一直是人们关注的热点之一。 关键词:内燃机 缸套 活塞环 摩擦学研究 内燃机中缸套-活塞环摩擦副对内燃机工作性能(动力性、经济性以及稳定性等)和使用寿命有着举足轻重的影响。如何控制好这对摩擦副的摩擦学行为是人们魂系梦牵的事情。由于缸套-活塞环摩擦副的工作条件十分苛刻,经常处于高温、高压和高冲击负荷工作状态。为了解决好这对摩擦副的润滑和抗磨问题,国内外许多汽车工程技术人员,长期以来孜孜以求地投入了大量的研究工作,至今仍在探索。1 缸套-活塞环摩擦学理论研究概述 从缸套-活塞环研究的历史上看,早期对缸套-活塞环的摩擦学研究主要是求内燃机的摩擦功耗,自Stanton,T.E.1925年发表第一个摩擦力研究结果以来,人们围绕着缸套-活塞环的摩擦及润滑问题做了许多工作,Rogowki,A.R.指出活塞连杆系统的摩擦功耗可占到整个内燃机机械损失的75%,而缸套-活塞环的摩擦功耗又占活塞连杆系统的75%,Ricardo,H.的研究表明当内燃机以1600r/min转速运转时,活塞连杆系统的损失占机械损失的58%,并指出“对所有内燃机来说,活塞连杆系统的摩擦功耗是机械损耗的最大组成部分,但又是最难准确地定量描述的部分。”最早在点火内燃机上进行摩擦力测量的是美国麻省理工学院的学者们,他们通过研究得出了摩擦力随气体压力升高略有增加的结论。Farobarros,A.T Dyson,A.研究了不同粘度润滑油对摩擦力的影响以及在混合润滑区内减摩添加剂的作用。Wakuri,Y.等人通过对摩擦力的测量和分析,指出贫油对摩擦力有巨大的影响,同时还探讨了环组中活塞环的数目对摩擦力的影响以及缸套-活塞环间油膜厚度随润滑油粘度的变化。Furuhama,s.等人在缸套-活塞环摩擦学特性研究作出了巨大的贡献,他们于70年代末期研制的可动缸测量摩擦力装置,有效地克服了惯性力、气体压力等因素的影响,测得了在整个内燃机工作循环中的摩擦力变化过程,提出了内燃机载荷主要由流体润滑膜承担,而摩擦力主要受混合润滑区域影响的论断,这一点已被后来进一步的理论研究所证实。 Riches,M.F.等人侧重于混合润滑效应,从理论和实验两方面对缸套-活塞环间的摩擦力进行了研究,指出在低速及低粘条件下充分考虑混合润滑作用的重要性。活塞环的摩擦影响着内燃机的效率,而缸套-活塞环的磨损则影响着它们的使用寿命,近年来,对高性能内燃机提出要求之一就是延长不解体检测的运行时间。为此,减少缸套-活塞环的磨损就成了首要的任务。缸套-活塞环的磨损是非常复杂的,它受到许多因素的影响,同时其磨损又包含粘着磨损、磨粒磨损、腐蚀磨损等多种磨损形式。针对这种情况,Nealc,M.J.经过广泛调查,于1970年发表文章阐述了缸套-活塞环一般的磨损机理,提出了一些改善措施,指出了需要加强研究的问题。基于Archard,J.F.磨损定律,Ting,L.L.等人提出了一种分析缸套-活塞环磨损的模型,分别计算了缸套上推力面和次推力面的磨损,得出了缸套磨损曲线。国内的桂长林教授也提出了一种将Archard,J.F.模型用于机械零件磨损设计的算法,并重点分析了缸套-活塞环的磨损问题。该文指出了缸套-活塞环的磨损问题的研究成效不显著的原因,主要是在设计上没有建立起一个可以预测缸套-活塞环耐磨寿命的计算模型和计算方法。Baker,A.J.S.等人探讨了影响活塞环擦伤的动力学因素,提出了一种用无量纲临界功能法分析内燃机活塞环工况的方法,此外还探讨了载荷因素对缸套磨损的影响,并对磨损进行了测量。此外,孔凌嘉较全面地讨论了缸套-活塞环的磨损问题,并第一次把磨损和润滑放在一个模型中加以研究,并考察了它们之间的偶合关系,建立了一个同时考虑边界润滑条件下的磨损与三体磨粒磨损的综合分析模型,对磨粒尺寸、磨粒浓度对磨损的影响做了定量的计算。刘琨以内燃机活塞系统为研究对象,较系统地研究了缸套-活塞环、缸套-活塞裙部的摩擦学特性,为进行高性能的内燃机活塞系统设计提供了理论基础。桂长林等人从缸套的磨合、耐磨性、摩擦功耗和机油消耗诸方面对设计上需要确定的表面形貌进行了探讨,给出一些参数组合。缸套-活塞环间的磨损在上、下止(死)点处最大,尽管在冲程中部是流体润滑,但也是磨损存在,这就为磨损提出了新课题,促进人们进一步的研究。润滑是降低摩擦、减少磨损的重要途径,因此缸套-活塞环的润滑也是长期以来人们所致力研究的领域。Castleman,R.A.假定在冲程中部具有典型的载荷和速度,最先对缸套-活塞环流体润滑进行了计算,证实了表面外凸的活塞环可以与缸套间产生足够厚的油膜。后来人们又发现,在分析和求解油膜厚度时,必须考虑挤压效应,这样才能在整个循环中求解。分析表明,活塞环的曲率半径是影响油膜形成的关键因素。在上、下止点处为了保证挤压效应,则活塞环应有较大的曲率半径,而在冲程中部为了保证动压效应,则希望曲率半径小。因此,设计时应综合考虑。在这个阶段,缸套-活塞环的润滑分析是采用简化了的Reynolds方程]。
[color=#cc0000]摘要:本文详细介绍了真空系统中压力和真空度测量和控制的基本概念已经常用的技术指标,详细介绍了模/数转换精度应压力和真空度测量分辨率的匹配,介绍了采用不同量程电容压力计进行真空度控制的最小建议范围。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#cc0000]1. 问题的提出[/color][/size] 在各种真空工艺和测试系统的真空容器中,容器内部的气体压力或真空度的准确测量控制对于保证产品品质和仪器测量精度至关重要。由此在气压或真空度控制过程中,需要根据容器内的真空度稳定性要求来确定控制方式和真空度采集精度,据此来选择合理的控制仪表,因此需要充分理解与真空度相关的基本概念,并深入了解压力和真空的测量方式以及控制器的特性和局限性。[color=#cc0000][size=18px]2. 真空和压力的度量[/size]2.1. 真空和压力的各种度量单位[/color] 在各种真空和压力测量系统中,需要清晰的了解不同压力指标的含义。 通常用于真空测量的度量单位是托(Torr),等于1mmHg,它表示将汞的沉没柱高度提高1.0mm所需的大气压力,一个标准大气压力等于760Torr。在一些真空系统的真空测量中使用Torr的衍生单位毫托或1/1000Torr。大于1.0毫托的真空度通常用科学计数法表示(例如5.0E-06 Torr),在欧洲和亚洲常用的真空系统中的真空和气象测量通常将条形图分为1/1000,以产生毫巴(mbar)。 在美国常用的压力度量标准是psi或“磅/平方英寸”,使用此度量标准,海平面上的大气压力测量值为14.69psi。为了进行比较,欧洲和亚洲的压力测量将大气压力定义为1.0bar。另一个指标是“水的英寸高度”,该指标通常用于报告美国天气预报中的气压,单位是指由大气压支撑的水下水柱的高度。使用此度量标准,大气压为406.8英寸水柱(在4°C时),有时此度量单位用于工业过程中的真空测量。 压力的国际单位制量度为Pascal(缩写为Pa),以法国数学家和物理学家Blaise Pascal命名,它被定义为单位面积上的力的度量,等于每平方米一牛顿。SI单位的大气压为1.01325E+05 Pa。有些气压测量通常也会以千帕斯卡(kPa)为单位进行报告。表2-1列出了最常见的压力表和真空表。[align=center][color=#cc0000]表2-1 压力和真空的度量[/color][/align][align=center][img=,690,302]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131045122503_3567_3384_3.png!w690x302.jpg[/img][/align][color=#ff0000]2.2. 压力和真空传感器[/color] 压力和真空的测量一般采用传感器,这些传感器所组成的压力表和真空表根据测量原理的不同分为多种形式,这些仪表的主要类型包括: (1)机械规:这类仪表使用某种形式的机械联动装置或膜片装置,无需任何电子器件,仅依靠机械式的移动来指示压力或真空度。因为无需带电运行,所以这类仪表常用于压力和真空系统的安全性指示,即使在系统断电情况下也能大致了解腔体内的情况。 (2)热导规:通常称为皮拉尼、热偶和对流表,其作用原理是气体的导热系数随压力而变化,电热丝是平衡电子电路中的传感元件。由于热丝的热损失率随气体的导热系数而变化,因此也会随着腔体内气体压力和真空度而发生改变,这种变化要求改变电路的电气特性之一(电流、电压或功率)以保持电路平衡。 (3)应变规:这是一类基于应变的压力测量仪表,常用于正压测量。它们采用了一个薄隔膜,其背面装有应变感应电子电路。压力的变化会引起膜片偏转,从而产生应变,该应变被传感器检测到。 (4)电容规:常用于压力/真空测量,它们依赖于隔膜和通电电极之间电容的变化。 (5)柱规:它们使用液体,其在封闭柱中的高度会随压力而变化。 (6)电离规:取决于周围气体分子的电离和相应离子电流的测量。离子电流与腔室内的真空压力直接相关。 表2-2显示了不同类型的压力/真空表的比较,从中可以看出没有一类仪表可以满足每个过程中的所有测量要求。[align=center][color=#cc0000]表2-2 主要类型压力表的性能比较[/color][/align][align=center][color=#cc0000][img=,690,167]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131045550873_8034_3384_3.png!w690x167.jpg[/img][/color][/align][color=#cc0000][/color][align=center][/align][size=18px][color=#cc0000]3. 压力和真空仪表常用技术指标[/color][/size] 与其他物理量测量中存在的现象类似,很多用户对如何评价压力和真空仪表存在模糊的概念,因此这里简要说明压力和真空仪表的常用技术指标。 (1)参考标准:一种非常准确的压力或真空测量仪器,用于校准其他此类仪器。 (2)精确度:压力或真空仪表和用于校准的参考标准之间的绝对测量差。常用是以读数的百分比或满量程的百分比为单位来表达。 (3)线性度:与大多数其他传感器类似,压力和真空仪表(无论是数字还是模拟形式)都以设计为线性化输出作为达到理想状况的标准。线性度是衡量电子设备完成这项任务的程度——通常指定为满量程的百分比。 (4)重复性:衡量压力和真空仪表在多个不同过程运行期间,在相同压力下能达到相同输出的接近程度。一些仪表制造商在技术指标中包括了重复性,但并非全部都如此。如果没有特别注明,用户应要求供应商提高该指标。 (5)分辨率:压力和真空仪表可以实际测量的最小压力和真空度。如果仪表是模拟信号输出的型号,并且需要数字输入,则几乎总是需要高分辨率的模/数转换(至少14位),否则A/D分辨率将决定压力和真空测量的分辨率,而不是压力计和真空计的分辨率。 (6)零位和零位偏移:零位是指将压力计的输出调整为在(a)系统中可获得的最低压力或(b)低于电容式压力计分辨率的压力下读取零时发生的情况。经过一段使用时间后,零位置可能会发生变化,从而改变压力表的位置并在压力计的整体输出中产生偏移,因此必须除去这种偏移以获得可接受的精度。如果系统达到的基本压力低于压力计的分辨率,则可以将压力计的输出调整为最小输出。但是,如果最小系统压力高于压力计的分辨率,则必须使用永久零偏移量来确定正确的系统压力。零偏移或零漂移的存在并不总是表明设备需要重新校准,因为零位置的变化仅很少影响实际的压力计校准。 从表2-2可以看出,电容式压力/真空计的测量准确性最高,因此电容式真空计通常作为其他类型压力计的参考设备(即用来校准其他产品)。如对于无加热功能的的1000Torr电容压力计的准确度指标(包括重复性)约为读数的0.25%,相比之下,相同量程的皮拉尼或热偶压力计的读数精度为5~25%,电容式真空计的准确度是它们的100倍。[size=18px][color=#cc0000]4. 高精度压力和真空度控制的实现[/color][/size] 对于与真空相关的各种系统中,在指定的压力和真空度区间内进行精确测量和控制至关重要。例如,如果过程设定值介于5.0~6.0mTorr之间,并且所需的压力读数精度为0.5mTorr,则所需的测量精度为读数的10%,或者,对于100mTorr的电容压力计,为满量程的0.5%。如果选定的压力计或真空计不能达到这一精度水平,则无法将真空过程控制在所需的过程区间内。 用作闭环压力和真空度控制的压力计或真空计输入信号必须具有足够的分辨率,以辨别过程中非常小的压力变化。同时,回路中的压力和真空度控制器和控制阀也必须具有必要的分辨率,以便有效地利用这些数据来控制压力的微小变化。很多用户往往只重视了压力或真空计的选择和相应的技术指标,而忽视了控制器以及控制阀的分辨率指标,这基本是造成控制精度达不到要求或波动度较大的主要原因。[color=#cc0000]4.1. 压力计和真空计的选择[/color] 选择压力计和真空计的第一个考虑因素是满量程压力和真空度范围。为了获得良好的测量精度,真空计范围应与待测量的预期压力或真空范围相匹配。理想情况下,压力计范围应包含最高预期压力,这将最大化输出信号(模拟)并提高信噪比。如考虑在5mTorr和80mTorr之间操作的真空过程,该过程的最佳压力计(如电容压力计)的满量程范围为100mTorr。如果采用电容压力计,则该传感器在最小预期压力下的模拟输出为满量程的5%,在低压下提供良好的精度和高信噪比,同时保持足够的范围来测量高系统压力。虽然满量程为1Torr的电容压力计也适用于这种应用,但在5mTorr时的模拟输出将减少10倍,信号强度的这种变化将大大降低信噪比,降低读数精度。 许多商品化的压力计将其输出作为模拟信号发送给主机、过程控制器或数据记录设备,输出信号有多种形式,如0~10V直流电、0~5V直流电、0~1V直流电和4~20mA是最常见形式。在大多数格式中,输出与压力成线性关系,使得压力计的输出易于在软件中缩放。[color=#cc0000]4.2. 压力计和真空计信号的输出和采集[/color] 各种测量原理的压力计和真空计,其信号输出一般为模拟量,大多为连续的直流电压信号。为了将这些模拟信号直接以数字信号输出,或在控制过程中用控制器和数据记录仪采集这些模拟信号,都需要根据要求对这些模拟信号有足够高的采集精度,也就是说目标压力信号的模拟/数字(A/D)转换必须具有足够的分辨率,以将信号与压力计的正常背景噪声区分开来。例如,压力计信号的12位模数转换将区分压力计满量程模拟输出0.02%的最小信号。对于1Torr全刻度压力计,这意味着不能检测到小于0.2mTorr的压力或压力变化。在假设压力计和真空计的模拟输出为0~10V直流时,表4-1显示了各种压力计的最小可分辨压力与模数转换精度的关系。[align=center][color=#cc0000]表4-1 常见(A/D)模数分辨率下的最小可分辨压力(满量程测量范围为0~10V直流)[/color][/align][align=center][img=,690,309]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131047065875_9748_3384_3.png!w690x309.jpg[/img][/align] 从上表可以看出,将压力计输出和所需过程测量精度与主机、数据记录器或控制器的分辨率相匹配非常重要。例如,如果过程在满量程范围的1.0%下运行,压力计的满量程输出为10.000V直流信号,主机必须能够可靠地辨别100mV模拟信号。因此,A/D数据采集系统需要至少12位分辨率才能在其大部分测量范围内使用压力计。更高位的分辨率允许在最低压力下提高压力计测量的分辨率。表4-1显示了不同A/D分辨率下的最小可分辨模拟信号。上海依阳实业有限公司的压力和真空度控制器都提供至少16位的模数转换,能够解析低至0.4mV的信号,也可以根据需要提供更高位数的模式转换及相应的控制器。[color=#cc0000]4.3. 压力和真空度的闭环控制[/color] 在微小变化的压力和真空度闭环工作过程中,需要将压力计的量程选择至少要限制少整整十倍。如考虑在5mTorr下使用压力计控制过程的情况,100mTorr满量程压力计是可以使用的最大压力范围。事实上,较低的满量程范围设备将是一个更好的选择,因为它们提供更高的输出信号,更容易检测和解决,这将提高压力控制的精度。表4-2给出了一些常见电容压力计真空范围的最小建议控制压力。[align=center][color=#cc0000]表4-2 满量程压力计范围的最低控制压力[/color][/align][align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131047445188_687_3384_3.png!w690x230.jpg[/img][/align][size=18px][color=#cc0000]5. 结论[/color][/size] 压力计和真空计是许多工艺过程和测试系统应用中压力/真空测量的常用传感器,为了在准确性和精确性方面实现最大性能,必须考虑并正确选择压力计特性。这些包括压力计固有的电子特性,如量程和灵敏度。另外,使用这些压力计信号的任何系统,必须匹配合理的模/数(A/D)测量精度。当然,一般而言,模数精度越高,造价越高,体积越大。[align=center]=======================================================================[/align]
中新社兰州2月15日电 (南如卓玛)兰州空间技术物理研究所研究员李得天及其科研团队的真空计量研究成果,成果已应用于月球探测、航天器空间环境模拟、重离子加速器、同步辐射光源等国家重大工程,使中国真空计量技术达国际先进水平。 李得天近日接受中新社记者采访时称,通过十余年持续研究,该团队成功研制出了载人飞船舱门快速检漏仪等真空计量仪器和装置,解决了航天、核工业等领域对微小气体流量的精确测量难题。 随着中国探索太空的步伐不断加快,迫切需要建立超高/极高真空计量标准,以满足对月球表面、行星际空间、恒星际空间真空环境探测的需求。 李得天介绍说,载人航天工程中,航天员要在太空飞行多天,期间航天员需反复进出舱,操作舱门打开和闭合。航天员在舱里生存,维持其正常生活的气体不能泄漏,因此精准快速检测舱门的密封性至关重要。 李得天说,该团队研制的舱门快速检漏仪,仪器重不足5公斤,自动完成全部检测所需时间小于8分钟,实现了对舱门和对接面的快速、准确检漏,技术达到国际先进水平。 该装置已成功应用于神舟八号、神舟九号、神舟十号载人飞船以及天宫一号目标飞行器,为中国载人航天工程实施提供了重要保障。