当前位置: 仪器信息网 > 行业主题 > >

霍尔电压传感器

仪器信息网霍尔电压传感器专题为您提供2024年最新霍尔电压传感器价格报价、厂家品牌的相关信息, 包括霍尔电压传感器参数、型号等,不管是国产,还是进口品牌的霍尔电压传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合霍尔电压传感器相关的耗材配件、试剂标物,还有霍尔电压传感器相关的最新资讯、资料,以及霍尔电压传感器相关的解决方案。

霍尔电压传感器相关的资讯

  • 半导体情报,科学家首次在量子霍尔绝缘体中发现奇异的非线性霍尔效应!
    【科学背景】近年来,尽管量子霍尔效应的线性响应特性得到了广泛研究,但高阶非线性响应仍然是一个未被充分探索的领域。特别是在二维材料如石墨烯中,量子霍尔态的非线性响应尚未被深入研究。量子霍尔态不仅具有绝缘体体和导电手性边缘态的特征,而且在不同的量子霍尔态下,可能会表现出复杂的非线性行为,这些行为对于理解边缘态的电子-电子相互作用具有重要意义。为了解决这一问题,为了解决这一问题,复旦大学何攀, 沈健,日本九州大学Hiroki Isobe,新加坡国立大学Gavin Kok Wai Koon,Junxiong Hu,日本理化研究所新兴物质科学中心Naoto Nagaosa等教授合作发现,在石墨烯的显著量子霍尔态下,存在明确的第三阶霍尔平台。这一平台在广泛的温度、磁场和电流范围内保持稳定,并且在不同几何形状和堆叠配置的石墨烯中均可观察到。第三阶霍尔效应的高度对环境条件不敏感,但与器件特性相关。此外,第三阶非线性响应的极性受磁场方向和载流子类型的影响。作者的研究揭示了量子霍尔态的非线性响应是如何依赖于器件特性的,并提出了一个新的视角来理解边缘态的性质。【科学亮点】(1)实验首次观察到石墨烯中量子霍尔态的第三阶霍尔效应,获得了第三阶霍尔效应的清晰平台。该平台在显著的量子霍尔态(\( \nu = \pm 2 \))中展现出,且在广泛的温度、磁场和电流范围内保持稳定。(2)实验通过测量不同几何形状和堆叠配置的石墨烯器件,发现第三阶霍尔效应的平坦值与环境条件无关,但与器件特性相关。具体结果包括:&bull 第三阶霍尔效应的电压平台高度与探针电流的立方成正比,而第三阶纵向电压保持为零。&bull 该效应在磁场变化(至约5T)和温度变化(至约60K)下保持稳健。&bull 第三阶非线性响应的极性依赖于磁场方向及载流子类型(电子或空穴),并且其值在反转磁场方向时会改变符号。&bull 非线性霍尔平台的稳健性提供了关于边缘态的新见解,并可能违背量子霍尔电阻的精确量化。【科学图文】图1:在经典和量子域中,线性霍尔效应和非线性霍尔效应示意图。图2:在量子霍尔态quantum Hall states,QHSs内,三阶非线性霍尔平台的观测结果。图3:在量子霍尔态QHSs内,三阶霍尔效应的立方电流依赖性。图4:磁场和温度,对量子霍尔态QHS三阶非线性响应的影。【科学启迪】本文的研究为量子霍尔效应(QHE)中的非线性响应提供了新的视角,揭示了量子霍尔态(QHSs)中第三阶霍尔效应的显著平台。这一发现不仅扩展了作者对量子霍尔现象的理解,也对探索二维材料中的非线性电输运提供了新的途径。首先,实验首次在单层石墨烯中观察到稳定的第三阶霍尔效应平台,表明在量子霍尔态下,电子之间的相互作用可能导致非线性现象的出现。这种非线性响应在不同环境条件(如磁场和温度)下保持稳定,且在多种几何形状和堆叠配置的石墨烯器件中均能观察到。这表明该效应具有较强的普适性和稳健性。其次,研究发现第三阶霍尔效应的电压平台与探针电流立方成正比,而其幅度对环境条件变化表现出较强的稳健性。这一特性挑战了量子霍尔电阻的精确量化,提示作者在量子霍尔态的研究中需要考虑更高阶的非线性效应。这种非线性响应的发现不仅提供了关于边缘态性质的新见解,还可能揭示出与传统线性量子霍尔效应不同的物理机制。此外,本文的研究结果对未来探索量子霍尔系统的高阶响应具有重要启示。其他填充因子的量子霍尔态中的非线性响应,以及在其他量子霍尔系统中的应用,仍需进一步研究。这一发现为理解电子-电子相互作用、边缘态带曲率等物理现象提供了新的方法,也可能为研究分数量子霍尔效应的非线性响应开辟新的方向。原文详情:He, P., Isobe, H., Koon, G.K.W. et al. Third-order nonlinear Hall effect in a quantum Hall system. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01730-1
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
  • 新品发布|便携式油液颗粒计数器简介【霍尔德】
    霍尔德上市新品啦!2024年01月04日上市了一款便携式油液颗粒计数器【便携式油液颗粒计数器←点击此处可直接转到产品界面,咨询更方便】对润滑油颗粒度的评估,我们通常从两个方面展开:颗粒尺寸分布以及颗粒浓度。通过细致地检测和分析,我们可以深入了解润滑油的清洁度、颗粒污染程度,以及颗粒的细致尺寸和分布情况。通过这样的评估,我们可以精确判断润滑油的有效寿命,洞察设备的健康状况,从而制定出更合适的维护计划。这就好比为设备进行定期体检,提前预警可能存在的问题,预防潜在的故障。而定期监测和控制润滑油颗粒度,无疑是维护设备性能、延长设备寿命的重要手段。这就像是为设备提供了一份全面的保健方案,确保其始终处于最佳状态。便携式油液颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。自动颗粒计数器主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度;3.可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气;4.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;5.管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测;6.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;7.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;8.内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准;9.内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能;10.可设定任意报警级别,实现污染度或洁净度检测;11.内置微水传感器和温度传感器;12.中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷;13.超大存储,可选择存储在仪器内部或外部存储设备中;14.嵌入式设计,高强度外壳,便于携带,适合各类工程机械技术指标:光 源:半导体激光器;检测速度:20-60mL/min;离线检测样品粘度:≤100cSt,粘度高时可选配压力舱;在线检测压力:0.1~0.6Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~500μm;接口:USB接口、电源接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵 敏 度:0.8μm或4μm(c);极限重合误差:40000粒/ml;计数体积:1~999ml;计数准确性:误差<±10%;防护等级:IP67;测试时间间隔:1秒~24小时;检测样品温度:0~80℃;水活性参考值:0~1aw(±0.05aw);水含量:0~360ppm(±10%);工作温度:-20~60℃;供 电: AC 220V±10%、50/60Hz;重量:2.5kg; 体积:275×220×107mm
  • 一篇文章看懂:什么是SENIS集成3轴磁传感器?
    一篇文章看懂:什么是SENIS集成3轴磁传感器?为了测量电磁铁和永 jiu磁铁产生的从 10-6 到 102 T 的非均匀磁通密度,通常使用带霍尔探头的特斯拉计。为了同时测量磁通密度的三个正交分量,需要使用三轴霍尔探头。根据目前传统的的技术水平,三轴霍尔探头由三个霍尔板组成,这三个霍尔板分别位于一个小立方体的三个相互正交的面上。单个霍尔板的尺寸及其定位公差严重限制了可实现的空间分辨率和测量磁通密度矢量的角度精度。此外,连接霍尔装置的导线中的电磁感应也限制了这种霍尔探头的有用带宽。此外,平面霍尔效应通常会产生额外的误差。在基于量子阱的霍尔板中,平面霍尔效应很弱,但问题依然存在。 为了解决这个问题,在一个点上检测三个方向的磁性。SENIS开发了一种划时代的“集成3轴磁传感器",使之成为可能。这就是“集成的三轴磁传感器"。 该传感器可以在所有情况下测量精确的3D矢量,例如永磁体的邻近磁场、小线圈产生的磁场和时间变化,这在过去是不可能的。图1. 传统的霍尔片3轴探头(左)和SENIS集成3轴磁传感器(右)3轴磁性探头的配置传统的霍尔片3轴探头SENIS集成3轴磁传感器磁化位置3个位置一个位置(单点)磁感应位置的错位量取决于传感器位置(约0.5mm~10mm)无错位传感器的相对角度误差通常不标注(过大)±0.1°以内温度传感器无安装在传感器芯片中探头形状约1~2种8种类型+定制自由一、 专li技术的SENIS集成3轴磁传感器二、 SENIS集成三轴磁传感器的功能除了磁传感器外,集成的3轴磁传感器还集成了偏置电路和放大器,以提高频率特性和抗噪性,甚至在宽度仅为 0.64 m 的单个芯片上集成了温度传感器,用于因温度变化而进行灵敏度校正。1.敏感区域仅为0.15mm × 0.1mm × 0.15mm2.3个方向相对角度误差在±0.1以内3.频率响应:高达25Khz(-3db)4.温度特性±100ppm/°C三、 SENIS集成三轴磁传感器放大图四.SENIS集成三轴磁传感器详细信息图2. 磁性传感器内部有5个感磁区域。通过取BZ1和BZ2的平均值,虚拟地求出By传感器位置的Bz磁场。同样地,通过取Bx1和Bx2平均值来求出By传感器位置的Bx磁场,可在同一点上收集Bx、By、Bz。五.搭配SENIS集成三轴磁传感器的霍尔探头类型:六.搭配SENIS集成三轴磁传感器的高斯计/特斯拉计汇总类型: SENIS数字特斯拉计/高斯计基于SENIS® 的模拟磁场传感器电子设备,其顶部添加了数字模块,具有显示器,通信端口,数字数据校正等。SENTIS提供不同类型的特斯拉计,具有不同的磁性分辨率,精度,f带宽,噪声水平和功能和处理选项(手持式,台式,机架式)3MH3特斯拉计,适用于工业和实验室应用,具有良好的精度,分辨率和f带宽3MH6台式特斯拉计,用于实验室应用,具有非常高的分辨率和精度以及良好的f带宽3MTS 手持式特斯拉计,探头支架坚固,精度高1 轴、2 轴或 3 轴 Nanoteslameter 3NTA1,用于极低磁场SENIS® 已通过ISO 9001和ISO 22301(业务连续性管理)认证。我们的校准实验室已通过ISO17025:2017认证。上海昊量光电作为SENIS公司在中国大陆地区主要的代理商,为您提供专业的选型以及技术服务。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 中国科学家首次发现量子反常霍尔效应 影响重大
    图一,量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应      图二,理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导      图三,在Cr掺杂的(Bi,Sb)2Te3拓扑绝缘体磁性薄膜中测量到的霍尔电阻   中新社北京3月15日电 (记者 马海燕)北京时间3月15日凌晨,《科学》杂志在线发文,宣布中国科学家领衔的团队首次在实验上发现量子反常霍尔效应。这一发现或将对信息技术进步产生重大影响。   这一发现由清华大学教授、中国科学院院士薛其坤领衔,清华大学、中国科学院物理所和斯坦福大学的研究人员联合组成的团队历时4年完成。在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化,这一发现是相关领域的重大突破,也是世界基础研究领域的一项重要科学发现。   由于人们有可能利用量子霍尔效应发展新一代低能耗晶体管和电子学器件,这将克服电脑的发热和能量耗散问题,从而有可能推动信息技术的进步。然而,普通量子霍尔效应的产生需要用到非常强的磁场,因此应用起来将非常昂贵和困难。但量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。   美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。1980年,德国科学家冯克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。   相关链接   “量子反常霍尔效应”研究获突破   中国科学网   由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关,最近成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成。   量子霍尔效应是整个凝聚态物理领域最重要、最基本的量子效应之一。它是一种典型的宏观量子效应,是微观电子世界的量子行为在宏观尺度上的一个完美体现。1980年,德国科学家冯克利青(Klaus von Klitzing)发现了“整数量子霍尔效应”,于1985年获得诺贝尔物理学奖。1982年,美籍华裔物理学家崔琦(Daniel CheeTsui)、美国物理学家施特默(Horst L. Stormer)等发现“分数量子霍尔效应”,不久由美国物理学家劳弗林(Rober B. Laughlin)给出理论解释,三人共同获得1998年诺贝尔物理学奖。在量子霍尔效应家族里,至此仍未被发现的效应是“量子反常霍尔效应”——不需要外加磁场的量子霍尔效应。   “量子反常霍尔效应”是多年来该领域的一个非常困难的重大挑战,它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应 同时它的实现也更加困难,需要精准的材料设计、制备与调控。1988年,美国物理学家霍尔丹(F. Duncan M. Haldane)提出可能存在不需要外磁场的量子霍尔效应,但是多年来一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。2010年,中科院物理所方忠、戴希带领的团队与张首晟教授等合作,从理论与材料设计上取得了突破,他们提出Cr或Fe磁性离子掺杂的Bi2Te3、Bi2Se3、Sb2Te3族拓扑绝缘体中存在着特殊的V.Vleck铁磁交换机制,能形成稳定的铁磁绝缘体,是实现量子反常霍尔效应的最佳体系[Science,329, 61(2010)]。他们的计算表明,这种磁性拓扑绝缘体多层膜在一定的厚度和磁交换强度下,即处在“量子反常霍尔效应”态。该理论与材料设计的突破引起了国际上的广泛兴趣,许多世界顶级实验室都争相投入到这场竞争中来,沿着这个思路寻找量子反常霍尔效应。   在磁性掺杂的拓扑绝缘体材料中实现“量子反常霍尔效应”,对材料生长和输运测量都提出了极高的要求:材料必须具有铁磁长程有序 铁磁交换作用必须足够强以引起能带反转,从而导致拓扑非平庸的带结构 同时体内的载流子浓度必须尽可能地低。最近,中科院物理所何珂、吕力、马旭村、王立莉、方忠、戴希等组成的团队和清华大学物理系薛其坤、张首晟、王亚愚、陈曦、贾金锋等组成的团队合作攻关,在这场国际竞争中显示了雄厚的实力。他们克服了薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,利用分子束外延方法生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功地观测到了“量子反常霍尔效应”。该结果于2013年3月14日在Science上在线发表,清华大学和中科院物理所为共同第一作者单位。   该成果的获得是我国科学家长期积累、协同创新、集体攻关的一个成功典范。前期,团队成员已在拓扑绝缘体研究中取得过一系列的进展,研究成果曾入选2010年中国科学十大进展和中国高校十大科技进展,团队成员还获得了2011年“求是杰出科学家奖”、“求是杰出科技成就集体奖”和“中国科学院杰出科技成就奖”,以及2012年“全球华人物理学会亚洲成就奖”、“陈嘉庚科学奖”等荣誉。该工作得到了中国科学院、科技部、国家自然科学基金委员会和教育部等部门的资助。(中科院物理研究所 作者:薛其坤等)
  • 光致发光和可穿戴传感器研究获进展
    人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了关注。遗憾的是,这类交互设备多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是巨大的挑战。中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室研究员李清文与项目研究员张其冲等,提出了高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。科研人员利用这一策略,仅使用水作为溶剂便制备了盐壳金属卤化物固体(具有高效和狭窄的绿色排放,PLQY为87.3%)。其中,KBr盐提供了一个富溴的环境来钝化钙钛矿的表面缺陷,且作为基质来提高其稳定性。该绿色环保的制备策略可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。研究显示,运用简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙地引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,而且提升了产物光和热稳定性。得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并可以通过喷墨打印技术打印相关的图案。作为概念验证,研究还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。该研究为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关研究成果以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题,发表在Nano Energy上。研究工作得到中科院和江苏省青年基金项目的支持。该研究由苏州纳米所、华东理工大学、新加坡南洋理工大学、上海交通大学的科研人员合作完成。图1.固态盐壳金属卤化物的制备图2.固态金属卤化物的稳定性及其柔性应用图3.固态金属卤化物在传感领域的应用
  • 缩小10倍!最小的二氧化碳传感器
    在“TECHNO 2012”上,日本旭化成株式会社(Asahi Kasei)展出了采用红外线传感器的超小型二氧化碳CO2传感器模块试制型产品。该试制品的最大特点是,尺寸还不到现有最小产品的1/10。该模块被封装在外形尺寸为15.0mm×7.0mm×4.5mm的超小型封装中,体积仅为0.47cc。 由于采用了旭化成电子制造的高速响应、高灵敏度红外线传感器元件“IR1011”,产品的尺寸能够得到缩小。IR1011的尺寸只有2.7mm×1.9mm×0.4mm,气体传感器采用该元件后,可较原产品大幅缩小模块尺寸。此外,由于IR1011的灵敏度出色,因此可缩小气体浓度计指示灯与传感器之间的距离,这也为小型化做出了贡献。另外,传感器试制品的耗电量只有3mW(电源电压为3.0V,测量周期为8秒时),也比现有产品大幅降低,使得该产品能够用于便携式设备。 图为展出的CO2传感器模块试制品,能够将测量到的CO2浓度数据直接显示在PC上。此次试制的传感器模块的主要性能参数如下。工作电源电压为2.7V~5.5V,工作温度范围为0~50℃。测量范围为300~5000ppm,测量周期为1~28秒。配备有有I2C总线数字接口。 图为连接电脑进行CO2浓度测量演示。显示的2190ppm是相当糟糕的空气了。 旭化成电子计划利用新产品小型化、低耗电的特点,将其用于便携式CO2监测计、空调CO2浓度监测以及在移动终端中嵌入CO2传感器等用途。
  • 湾有引力,向光而行!第二届中国传感器与应用技术大会成功召开
    仪器信息网讯 2023年11月11日,第二届传感器与应用技术大会在深圳光明区云谷国际会议中心成功召开。本届大会由由深圳市光明区和中国传感器与物联网产业联盟联合主办,吸引了国内外领先传感器企业参与,并组织了多场先进传感器技术和应用会议,聚焦储能、工业、医疗等应用方向。会议现场下午,第二届传感器与应用技术大会主论坛在三楼国际会议厅成功举办。大会伊始,深圳市光明区委副书记、区长邱浩航和中国传感器与物联网产业联盟常务副理事长郭源生分别致辞。深圳市光明区委副书记、区长邱浩航 致辞中国传感器与物联网产业联盟常务副理事长郭源生 致辞致辞结束后,大会进入智能传感器应用场景推介环节,来自智能传感器产业链企业的四位专家分别分享了报告。报告人:比亚迪规划院智能化感知研究首席专家、感知实验室主任 高文报告题目:智能传感器在智能汽车中的应用及技术趋势20世纪60年代初,陆续出现各类传感,燃油车测量压力、油量、温度等第一代结构型传感器为主,第二阶段以霍尔效应、光电转换等为机理的固体型传感器,电车以三电传感器为主;第三阶段,以信息处理、人工智能技术实现量程自动转换、具有分析判别功能的智能传感器。汽车传感器大致分为车身感知传感器、环境感知传感器。随着AI技术和超算芯片发展,智能汽车对环境感知传感器需求增多,而大部分环境感知传感器都是具备信息采集与数据处理的智能传感器。智驾场景与智能座舱场景环境复杂度,信息处理难度高,这让智能传感器成为智能驾驶与智能座舱最重要!针对于此,高文分析了ToF摄像头、4D毫米波雷达、激光雷达等传感器产品及在智能汽车中的应用场景。高文认为,智能驾驶场景复杂度提升,BEV、端到端感知融合框架成为智能汽车新范式;小体积、低成本、完善的产品配套开发是未来智能传感器发展趋势;软硬件一体化布局、垂直整合、硬件预埋OTA升级、测试标准统一将成为产业布局新方向。报告人:迈瑞医疗智能制造技术总监 张含思报告题目:智能传感器在医疗仪器产品上的应用介绍据介绍,迈瑞在中国超过30个省市自治区设有分公司,在境外拥有超过50家子公司,产品远销190个国家及地区,全球雇员超17000人,研发人员占比23%,来自于30多个国家和地区,负责海外业务的外籍员工占82%,2022年集团营业收入约303.7亿元。报告中,张含思介绍了传感器在迈瑞医疗产品上的应用、迈瑞适配不同业务的多形态供应链体系、迈瑞智造、传感器在仪器自动化生产上的应用、传感器在公共系统管理上的应用等内容。报告人:深圳和而泰智能控制有限公司董事长、总裁 刘建伟报告题目:控制器与传感器控制器(Controller)是系统的核心组成部分,是系统的“心脏”和“大脑”,通过信号的接入、信号的处理变换、复杂的电路硬件和算法软件,实施对执行机构的驱动与控制,使系统按照预定目标完成工作。传感器是控制器的前置信号源:控制器是传感器的“家”,是传感器的“归宿”;传感器通常通过控制器完成最终使命。刘建伟认为,工业时代,按工业视角与产业链思维,和而泰等控制器企业,左手是传感器企业合作伙伴,右手是各类整机企业合作伙伴,为传感器企业与整机企业之间架起桥梁。数智时代,按生态视角与大服务思维 (第三代企业使命) ,和而泰等控制器企业携手传感器企业,完成数据定义、数据生产等底层使命;数联天下等计算平台企业携手算力等技术公司,完成智慧融合、能力集成,进而实现精准服务、个性服务、“全能服务”。新的时代,没有独立的器件,没有独立的产品,没有独立的企业,没有独立的行业。全社会使命归一,全要素聚合归一,全生态价值归一:服务,为用户创造价值。报告人:深圳市杉川机器人有限公司副总经理 宫海涛报告题目:杉川机器人-激光传感器在服务机器人中的应用据介绍,杉川机器人 (3irobotix)成立于2016年,是领先的移动机器人核心技术与服务提供商,集研发、生产、销售于一体的高新技术企业,提供性能强大、体验优越的移动机器人技术、产品及解决方案。报告中,宫海涛介绍了整机、传感器、核心部件等产品及典型客户应用情况,并表示,从随机碰撞到惯性导航、再到全局规划、激光导航,技术上的不断创新更迭,使得扫地机市场规模迅速增长,据欧睿国际数据统计,2011-2022 年全球扫地机器人市场规模 CAGR 达 18.97%。截至2022年,全能站产品基本完成迭代,未来行业均价增速放缓,成熟产品打开渗透率,行业规模有望稳定提升,在创新型技术或产品体验颠覆性优化出现前,预估未来四年CAGR约在11.2%,行业规模在未来3-4年,有望突破百亿。应用场景推介结束后,大会举行了智能传感器采购订单签约仪式、企业签约仪式和首批智能传感器政策奖补资金发放仪式。智能传感器采购订单签约仪式企业签约仪式首批智能传感器政策奖补资金发放仪式本次大会,延续了“湾有引力向光而行”的主题,多方位展现光明区的创新动力、经济活力、投资潜力,促成了10个智能传感器采购订单。签约仪式上,光明区政府还与德国UST公司、厦门三优光电、中科水研等18个重点企业项目签约,并向8个智能传感器应用推广项目发放了80-300万不等的政策奖补资金。签约仪式和政策奖补资金发放仪式结束后,大会进入主旨演讲环节。报告人:TE Connectivity传感器事业部亚太区销售与市场总经理 BW Tan报告题目:智能传感技术助力共建万物互联生态传感器是万物互联的起点,2022年全球传感器市场规模约1792.40 亿美元,新能源汽车、医疗电子、工业机器人等为传感器市场创造了新的增长机会。中国传感器市场规模约占 21.87%,政府支持实体经济发展以及物联网应用场景的拓展,将进一步推动中国传感器市场增长。BW Tan在报告中介绍了,TE产品及方案在工业状态监测、协作机器人和机器人、微创设备、呼吸管理及改善设备、电动马达和电动动力总成等关键应用,并表示,TE是全面的端到端解决方案提供商,TE传感器与中国客户共同成长。报告人:汉希科特德国微系统应用研究院Hahn-Schickard院长 Yiannos Manoli博士教授报告题目:Bridging the Gap from Research to Production in MEMS汉希科特(Hahn-Schickard)是一家著名的微系统技术研发服务提供商--从最初的想法到中小型系列的生产以及转入大规模生产。哈恩-希卡德扎根于德国西南部的四个地区,但也是一个全球性的企业。Yiannos Manoli从什么是“惯性”传感器开始,详细介绍了MEMS惯性传感器的工作原理、尺寸外观、应用示例及如何实现从想法到产品的制造。此外,Yiannos Manoli还介绍了汉希科特的对外合作项目和合作研究项目。报告人:宁波柯力传感科技股份有限公司董事长 柯建东报告题目:柯力集团生态投资和赋能柯力传感主要研制和生产各类物理量传感器、称重仪表、电子称重系统、工业物联网系统成套设备、公磅一体机,提供不停车检测系统、建筑机械物联网 (含干粉砂浆)、港机及海洋工程装备物联网、起重机械物联网、工业机器人、畜牧业、智能物流、环保设备等工业物联网系统、项目、产品及解决方案,同时提供专业物联网软件定制服务等,建有“称重设备数据中心”、物联网实验中心及26个实验室。柯力传感于2019年8月上市 (股票代码: 603662),采取集团化管控模式,总部设在宁波,下设12个职能部门、10个事业部和投资34家公司。建有两大研发中心,宁波、深圳、郑州三大产业园 (投资中心),及宁波、郑州、安徽七大生产基地,以力学起步融合多物理技术发展多品种传感器,成为国内品种最多、融合最深、场景最优的全球智能制造传感器公司。柯建东在报告中介绍了柯力传感的投资策略、方向、原则,主要为技术上多到融、产业上量转控、生态上林育森,以产业投资+产业园+产业大脑+产业集团化+产业平台为核心,培育传感器森林。报告人:赛莱克斯微系统科技 (深圳) 有限公司CEO 聂铁轮报告题目:深圳8英寸MEMS中试线项目汇报深圳智能传感芯片中试验证开放平台以打造一条国际知名、国内先进的MEMS中试线,重点服务以深圳为中心的粤港澳大湾区客户为目标,对租赁区域进行改造装修,建设8英寸MEMS中试产线。项目拟规划使用面积约为5305㎡;研发中试各类MEMS晶圆,项目产能为3000片晶圆/月。该中试线以虚拟IDM模式,为传感器芯片设计企业提供工艺技术研发开放平台+批产线,以高端光学传感、MEMS传感和生物传感/微流控等为主要方向,助力中国尤其是深圳牵引的大湾区龙头传感器企业解决“卡脖子”问题,保障供应链安全。报告中,聂铁轮介绍了该项目的背景、需求分析及产出方案,选址和要素保障,建设方案,运营方案,影响效果分析等内容。报告人:深圳市重投资本管理有限公司副总经理 刘钊报告题目:深圳市智能传感器基金介绍报告人:华润置地润宏项目公司总经理 孔维国报告题目:明湖智谷大湾区智能传感新型产业社区介绍
  • 霍尼韦尔车载传感器业务将出售给森萨塔
    霍尼韦尔公司10月28日宣布将以1.4亿美元的价格向森萨塔电子技术(Sensata Technologies)公司出售其车载传感器产品业务。   该业务部为全球汽车生产商供应曲轴、变速器、车轮转速传感器等产品。霍尼韦尔称,该业务部年销售额约1.3亿美元,是霍尼韦尔传感与控制部的一部分。   该项交易尚需通过审批。交易预计将在明年年初完成。
  • 传感器行业盛事——2022深圳国际传感器展暨高峰论坛6月于深圳国际会展中心启幕
    传感器行业盛事——2022深圳国际传感器展暨高峰论坛6月于深圳国际会展中心启幕传感器行业盛事深圳国际传感器技术与应用展览会暨高峰论坛(SENSOR EXPO)确定于2022年8月23-25日在全球最大会展中心深圳国际会展中心(宝安新馆)举行展会概况随着5G技术以及人工智能、物联网及其他智慧领域等高新技术产业的迅速崛起和高速发展,人类社会进入了一个万物互联的新时代,传感器作为感知与传导信息的核心组件,也成为了当下炙手可热的焦点。为推动新一代传感器技术在应用领域的创新实践和产业上下游之间的贸易交流,由广东智展展览有限公司牵头,联合国内外多家行业协会、机构、高校及媒体,于2022年8月23-25日在深圳国际会展中心举办2022深圳国际传感器技术与应用展览会暨高峰论坛(以下简称:SENSOR EXPO 2022)。展会重点展示各类传感器产品、原材料及元器件、设计与制造设备、传感系统集成模块、仪器仪表、终端应用等,进行产业链的融合展出,以“专业展览+主题论坛”的形式,为行业呈现一场精彩的传感器盛宴。2021深圳国际传感器展览会已于2021年9月27-29日在深圳会展中心成功举办,组委会广东智展展览有限公司联合深圳市传感器与智能化仪器仪表行业协会打造,展出面积达15,000平方米,汇集众多国内外知名企业,展会吸引了来自比利时、日本、韩国、美国,俄罗斯、德国等多个国家和台湾、香港等地区的专业观众累计15,000余人次参观采购, 60多个采购团。高起点立足大湾区,Sensor Expo2022将成为推动行业交流与技术应用的前沿阵地2020年,大湾区国家级高新技术企业总数突破两万家,位居全国之首。作为大湾区创新驱动的引擎,深圳前瞻布局5G、人工智能、集成电路、智能制造、无人机、生物医药等未来科技领域,并取得卓越成果,直接带动了传感器技术的研究与发展,并孕育了广阔的市场。SENSOR EXPO 2022聚焦传感器设计、制造与应用所涉及的材料、装备与技术,突出产品与技术应用,将成为推动中国传感器行业进行产品与技术展示、深入应用市场的前沿阵地。高规格SENSOR EXPO 2022将在全球最大的展馆举行SENSOR EXPO 2022选择在全球最大的会展中心-深圳国际会展中心(宝安新馆)举行,良好的硬件设施及服务,将为展会的品质提供更好的保证。作为全球超大型的会展中心,深圳国际会展中心地处粤港澳大湾区湾顶,地理位置优越,硬件设施先进,全馆5G覆盖,交通便利、配套完善,集海陆空铁轨五大交通优势。通往会展中心的地铁已正式开通,地铁口分别位于南、北登录大厅,为参展参观的人士带来了极大的便利。展馆同期将有汽车、新能源、智慧出行等多场下游展会举行,共享40多万平方米超大展会带来的蓬勃商机。高水平专业组展机构精心打造,凸显SENSOR EXPO2022专业品质展会主办方——智展展览为国际展览业协会UFI成员单位,荣膺2015年“中国十佳品牌组展商”、2018年“中国展览产业百强展览主办机构”殊荣,在工业类及科技类展会的品质管理和长远培育上经验丰富。主办方将整合传感器行业权威机构、科研院所、活跃媒体、重点企业,共同塑造SENSOR EXPO2022的专业品质。此外,主办方将充分深耕物联网、消费电子、智能汽车、自动化、仪器仪表、国防电子、航空航天、交通运输、农业水利、环境监测等多个应用领域,为供需双方挖掘潜在客户,创造商业机会。高质量SENSOR EXPO 2022聚焦传感器制造与应用,五大专题融合展出SENSOR EXPO 2022展会规划面积达20,000平方米,共分为五大专题展区。通过上下游产业链及关联模块的融合展出,能够全方位展示传感器行业各细分领域的技术与产品,让SENSOR EXPO2022真正成为传感器行业人士必须参加的交流盛宴。各类传感器展区压力传感器、光敏传感器、声音传感器、图像传感器、视觉传感器、温度传感器、称重传感器、重力传感器、生物传感器、无线传感器、变频功率传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、电导传感器、激光传感器、霍尔传感器、加速度传感器、无线温度传感器、位移传感器;超声波测距传感器、雷达传感器、液位传感 器、真空度传感器、电容式物位传感器、锑电极酸度传感器、酸、碱、盐浓度传感器等;陶瓷传感器、薄膜传感器、厚膜传感器、集成传感器等;MEMS传感器、智能传感器等;传感器设计与制造设备、原材料及元器件展区封装与测试设备:传感器集成设备、各类封装设备、机械测试设备、电气测试设备、热力学测试设备、实验室设备等;原材料:半导体材料、金属材料、陶瓷材料、有机材料及其他材料等;元器件及配件:敏感元件、转换元件、连接器、陶瓷部件、 保护膜、光学元件、特种玻璃、变换电路和辅助电源;传感器ASIC、传感器IC接口、混合电路、LCD、密封壳体、 编码器、PCB电路板、精制螺栓、拉头材质、声波部件、温度计保护管、特种胶等配件等;传感器设计:传感器设计企业、科研院所、实验室等;传感器芯片、嵌入式系统及相关集成模块展区传感系统供应商和集成商、嵌入式软件和硬件企业、传感器芯片制造商、各类算法、通讯模块及云计算服务商、传感器AI技术服务商等;仪表仪器展区各类标准计量(量值传递)仪器、科学实验仪器、教学仪器、航空航天仪表、汽车仪表、矿用仪表、工业仪表、测试测量、变送器、流量计等;终端应用展区智慧城市、智慧医疗、物联网、机器人、消费电子(可穿戴、移动智能终端等)、智慧环境、智慧能源、智慧农业、汽车电子、智能家居、智能制造、人工智能、大数据、云计算、航空航天、工业自动化、电力等。高体验同期举办多场行业峰会及交流活动更好的商业体验,呈现更好的展出效果由中国电子元件行业协会敏感元器件与传感器分会、中国仪器仪表学会传感器分会指导,广东智展展览有限公司联合湖南省传感器产业促进会、广州市半导体协会、深圳市半导体行业协会、深圳市物联网智能技术应用协会、珠海市物联网行业协会、浙江省半导体行业协会、深圳市集成电路产业协会、《仪表技术与传感器》等国内行业权威组织、专家学者、重点企业,在展会同期重点打造主题论坛——2022深圳国际传感器技术与应用高峰论坛,围绕传感器研发领域“卡脖子”技术、未来发展趋势、应用场景等进行技术分享和观点交流。同时举办MEMS及智能传感器技术研讨会,境外采购商洽谈会,传感器新产品、新技术推广会,工程师沙龙活动,一对一供需对接会等30多场多层次的商业活动,进一步提升观展体验和参展效果。同时,SENSOR EXPO同期还有第20届深圳国际小电机及电机工业、磁性材料展览会,2022深圳国际线圈工业、电子变压器及绕线设备展览会,2022深圳国际粉末冶金、硬质合金及先进陶瓷展览会等相关工业类展会举行。参展费用标准展位光地(36㎡起租)外资企业RMB14800/12㎡RMB1200/㎡USD2600/12㎡注:双开口展位在原展位费基础上加收10%费用。展位配置说明每个标准展位提供如下基本设施:三面围板(转角位2面或1面)、一桌两椅、地毯满铺、两支射灯、220V电源插座,中英文公司楣板制作。(注:租用光地展位不含以上设施。)组委会联络处电话:020-29193588,020-29193589手机:18520254916(微信同号)传真:020-29193591E- mail:ex36035@126.com 官网网址:http://www.sensor-expo.com.cn/ 微信公众号:sensorexpoandsummit
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • imec集成薄膜固定光电二极管以实现卓越的短波红外成像传感器
    2023年8月14日在比利时鲁汶,imec作为纳米电子学和数字技术领域的全球研发和创新中心宣布成功集成了固定光电二极管结构到薄膜图像传感器中。通过添加固定光电栅和传输栅,薄膜成像器超过一微米波长的吸收质量终于可以被利用,以一种成本效益的方式解锁感知可见光之外光线的潜力。检测可见光范围之外的波长,例如红外光,具有明显的优势。应用包括自动驾驶汽车上的摄像头,以“看穿"烟雾或雾霭,以及用于通过面部识别解锁智能手机的摄像头。虽然可见光可以通过基于硅的成像器检测,但需要其他半导体材料来检测更长的波长,比如短波红外线(SWIR)。使用III-V材料可以克服这一检测局限。然而,制造这些吸收体的成本非常高,限制了它们的使用。相比之下,使用薄膜吸收体(如量子点)的传感器最近出现为一个有前景的替代方案。它们具有良好的吸收特性和与传统CMOS读出电路集成的潜力。尽管如此,这种红外线传感器的噪声性能较差,导致图像质量较差。早在20世纪80年代,固定光电二极管(PPD)结构就在硅CMOS图像传感器中引入。该结构引入了一个额外的晶体管栅极和一个特殊的光检测器结构,通过该结构, charges可以在积分开始前全部排空(允许在没有kTC噪声或前一帧影响的情况下复位)。因此,由于噪声更小、功耗性能更好,PPD主导了基于硅的图像传感器的消费者市场。 在硅成像之外,至今还不可能集成此结构,因为难以混合两种不同的半导体系统。现在,imec在薄膜图像传感器的读出电路中成功集成了PPD结构。 一种SWIR量子点光电检波器与一种氧化铟镓锌(IGZO)薄膜晶体管单片集成成PPD像素。 随后,该阵列被进一步处理在CMOS读出电路上以形成一个完整的薄膜SWIR图像传感器。 imec的“薄膜固定光电二极管"项目负责人Nikolas Papadopoulos 表示:“配备4T像素的原型传感器表现出显着低的读出噪声6.1e-,相比之下,传统的3T传感器超过100e-,证明了其良好的噪声性能。" 因此,红外图像的拍摄噪声、失真或干扰更小,准确性和细节更高。imec像素创新项目经理Pawel Malinowski补充说:“在imec,我们正在红外线和成像器的交汇处处于地位,这要归功于我们在薄膜光电二极管、IGZO、图像传感器和薄膜晶体管方面的综合专业知识。通过实现这一里程碑,我们克服了当前像素架构的局限性,并展示了一种将性能最佳的量子点SWIR像素与经济实用的制造方法相结合的方法。下一步包括优化这项技术在各种类型的薄膜光电二极管中的应用,以及扩大其在硅成像之外的传感器中的应用。我们期待通过与行业伙伴的合作进一步推进这些创新。“研究结果发表在2023年8月《自然电子学》杂志"具有固定光电二极管结构的薄膜图像传感器"。初步结果在2023年国际图像传感器研讨会上呈现。原文: J. Lee et al. Thin-film image sensors with a pinned photodiode structure, Nature Electronics 2023.摘要使用硅互补金属氧化物半导体技术制造的图像传感器广泛应用于各种电子设备,通常依赖固定光电二极管结构。 基于薄膜的光电二极管可以具有比硅器件更高的吸收系数和更宽的波长范围。 但是,它们在图像传感器中的使用受到高kTC噪声、暗电流和图像滞后等因素的限制。 在这里,我们展示了具有固定光电二极管结构的基于薄膜的图像传感器可以具有与硅固定光电二极管像素相当的噪声性能。 我们将一种可见近红外有机光电二极管或短波红外量子点光电二极管与薄膜晶体管和硅读出电路集成在一起。 薄膜固定光电二极管结构表现出低kTC噪声、抑制暗电流、高满量容和高电子电压转换增益,并保留了薄膜材料的优点。 基于有机吸收体的图像传感器在940 nm处的量子效率为54%,读出噪声为6.1e–。
  • QD中国样机实验室引进M91快速霍尔测量仪,极低迁移率材料测量速度提升100倍!
    近期,QD中国样机实验室全新引进Lake Shore公司推出的M91快速霍尔测试仪,该快速霍尔测量系统可以与完全无液氦综合物性测量系统-PPMS® DynaCool&trade 无缝连接。全新的M91快速霍尔测量方案采用革新的一体式设计,相比传统的霍尔效应测量解决方案,显著提高了测量的灵敏度、测量速度以及使用便利性。M91将所有必要的测量信号源和锁相等信号处理功能集于一体,在测量低载流子迁移率样品时相比其他测量手段有显著优势。左):完全无液氦综合物性测量系统-PPMS® DynaCool&trade ,右):M91快速霍尔测试仪QD中国样机实验室M91快速霍尔测试仪集成于完全无液氦综合物性测量系统 M91快速霍尔测试仪能够检测样品电极接触状况并确保测量始终处于最佳样品条件下进行。尤其在测量低载流子迁移率材料时,M91可以更快、更准确地完成相关测量。得益于仪器特有的FastHall技术,消除了在测量过程中翻转磁场的必要性,测量速度可达传统方法的100倍,几秒钟内即可精确测量流动性极低的材料,使得该选件在PPMS上的测量效率大幅提升, 即便是在范德堡测量法(vdP)几何接线的测量过程中,也可以更快地分析低载流子迁移率材料样品。M91快速霍尔测试仪可以直观判定样品接触电极质量FastHall可以覆盖更低的载流子迁移率测量范围 产品特点:✔ 采用FastHall技术,在测量过程中无需进行磁场翻转✔ 全自动检查样品引线接触质量,提供完整的霍尔分析✔ 计算范德堡接线样品以及Hall Bar样品相关参数✔ FastHall测量技术在采用范德堡接线时可将载流子迁移率测量极限缩小到0.001 cm2/(Vs)✔ 可在显示屏直观显示检测过程,并具有触摸操作功能实时执行相关测量指令标准电阻套件——M91可以通过DynaCool杜瓦LEMO接口连接进行测量PPMS与M91的集成示例 标准测量模式下 PPMS DynaCool 采用自带样品托进行测量PPMS样品托电极接线方案该联用方案支持范德堡vdPauw 4引线连接以及Hall Bar 6引线连接模式,样品引线通过样品托底部针脚与PPMS样品腔连接并通过杜瓦侧面Lemo接口连接到M91测量单元上。该方案可以快速适配PPMS DynaCool系统并具有标准电阻测量范围(最大10 MΩ),使用常见的PPMS电学测量样品托即可完成相关测试。左):M91通过多功能杆顶部的接口直接连接;右):M91高阻模式PPMS多功能样品杆左) 高精度电学输运样品杆样品台 右) 样品杆顶部接口左):样品板;右):样品板插座此外,针对有高阻小信号测量需求的客户,QD中国样机实验室也匹配了LakeShore提供的高阻测量方案。该方案通过专用的多功能样品杆将样品板电极引线通过同轴电缆从样品腔顶部引出,从而获得更好的信噪比和更大的电阻测量范围(最大200 GΩ)。M91组件自带的MeasureLINK软件与PPMS MultiVu深度集成,可以与MultiVu工作在同一台主机上亦或是同一局域网下的任意一台主机上对系统进行控制。2K温度下使用PPMS 0-9T扫场的砷化镓二维电子气薄膜,采用范德堡测量法横向及纵向电输运测量结果准确反应了材料的整数量子霍尔效应 传统的直流场霍尔效应测量适用于具有较高迁移率的简单材料,但伴随着载流子迁移率的降低,测量难度增加,精度降低。在光伏、热电和有机物等前景广阔的新型半导体材料中,测量难度就增加了不少。 交流锁相技术结合先进锁相放大器和更长测量窗口,可以提取更小的霍尔电压信号,目前常用于探索低迁移率材料。然而,延长测量间隔会增加热漂移效应带来的误差,并且需要更长的时间来获得结果,有时甚至需要数小时。FastHall 技术有效解决了这些问题,甚至可以在几秒钟内精确测量极低迁移率的材料,极大的拓宽了材料研究测试的范围。为了便于广大客户全面了解和亲身体验M91快速霍尔测试仪,QD中国样机实验室引进了该设备样机,现已安装于公司样机实验室并调试完毕。即日起,我们欢迎对该设备感兴趣的老师和同学来访,我们在QD中国样机实验室恭候大家的到来。相关产品1、M91快速霍尔测试仪https://www.instrument.com.cn/netshow/SH100980/C554347.htm2、完全无液氦综合物性测量系统-DynaCoolhttps://www.instrument.com.cn/netshow/SH100980/C18553.htm
  • 德国lambrecht风速仪/lambrecht风速传感器现货促销
    德国lambrecht风速仪/lambrecht风速传感器现货促销德国Lambrecht(兰博瑞)公司是有150多年历史的老字号气象产品生产厂家,能提供地面气象站系统以及组成地面气象系统的各种分立元件、风速传感器、风向传感器、雨量计、大气压力计、气象系统、温湿度计、辐射等德国Lambrecht风向传感器主要特点是:稳定性能好、精度高、寿命长。该公司产品在世界各地气象、工业、环保尤其是在海洋、船舶和军队得到广泛的应用德国Lambrecht风向传感器测量范围: 0.3...75 m/s精确度: ± 0.3 m/s =10 m/s ± 1% FS ...50 m/s分辨率: 0.1 m/s起始风速: 0.3 m/s输出: 0/4...20 mA = 0...75 m/s- 外壳采用经阳极处理的防海水腐蚀的铝材- 含12 m 可插接导线, 含有内部加热装置,高端传感器德国Lambrecht风速传感器技术参数测量范围: 0...360°分辨率: 2,5°输出: 0/4...20 mA = 0...360° 3 x 0 … 10 VDC (electrical wave)起始风速: 0.7 m/s供电电压: 24 VDC (10...30 VDC)风速传感器 (14575)测量范围: 0.7...35 m/s分辨率: 0.1 m/s输出: 0/4...20 mA = 0...35 m/s0…700 Hz = 0...35 m/s- 外壳采用防海水腐蚀的铝材,插接连接- 认证的传感器, 含有内部加热装置德国Lambrecht风向传感器、风向传感器、进口风向传感器、风向仪、风速风向仪、风向标、Lambrecht风向传感器供应德国lambrecht风速仪/lambrecht风速传感器中国总代理 单位名称:南京铭奥仪器设备有限公司 联系人:张先生联系电话:025-87163873 18913964277 网站:www.mingaoyq.com
  • 通用生物传感器实现一“芯”多用,可同时检测8个数量级浓度差异的生物粒子
    研究人员开发了新的信号处理技术,与光流体生物传感器芯片一起使用,以检测浓度变化8个数量级的纳米珠混合物。图片来源:霍尔格施密特/加州大学圣克鲁斯分校美国加州大学圣克鲁斯分校团队在用于检测或分析物质的芯片传感设备方面取得重大进展,为研制高灵敏度的便携式集成光流体传感设备奠定了基础。这些设备即使涉及浓度变化很大且完全不同类型的生物粒子时,仍然可同时进行多类型的医学测试。该研究成果发表在最新一期《光学》杂志上。研究人员将新的信号处理技术应用于基于光流体芯片的生物传感器,能对8个数量级浓度的纳米珠混合物进行无缝荧光检测,将传感器可工作浓度范围扩大了1万倍以上。团队表示,新设备足够灵敏,不但可检测单个生物分子,还能在非常宽的浓度范围内工作,以同时测量和区分多种粒子类型。这一多类型分析测试平台,原理基于光流体芯片,通过用激光束照射粒子,然后用光敏探测器测量粒子的响应来检测粒子。还使得该平台具有执行各种类型分析所需的灵敏度,可检测包括核酸、蛋白质、病毒、细菌和癌症生物标志物等粒子。在这项新工作中,研究人员还开发了一种信号处理方法,得以同时检测高浓度和低浓度的粒子。他们结合不同的信号调制频率:高频激光调制以区分低浓度的单个粒子,低频激光调制以在高浓度下同时检测来自许多粒子的大信号。团队还应用到最近开发的一种极速算法,以实时识别和高精度区分。这种信号分析方法,本质是用不同浓度和各种荧光颜色的纳米珠溶液泵送光流体的生物传感器芯片。目前,其能正确识别浓度差异在混合物中超过1万倍的纳米珠。未来,其将用于分析来自人工神经元细胞组织类器官的分子产物,为人们带来神经源性疾病和儿科癌症等领域的新见解。
  • SO2传感器:大气污染物中二氧化硫检测
    近年来,大气污染治理取得了显著成效,这得益于我们不断进步的环境空气监测技术。大气污染物是指由于人类活动或自然过程排入大气并对人和环境产生有害影响的物质。大气污染物按其存在形态可概括为两大类:气溶胶状态污染物和气体状态污染物。气溶胶状态污染物是指在大气污染中,那些沉降速度可以忽略的小固体粒子、液体粒子或它们在气体介质中的悬浮体系。根据气溶胶的来源和物理性质,可分为粉尘(1~200μm)、烟(0.01~1μm)、飞灰、黑烟、雾等。气体状态污染物则是以分子状态存在的污染物。气态污染物的种类很多,总体上可以分为几大类:以SO2为主含硫化合物;以氧化氮和二氧化氮为主的含氮化合物;碳氧化物;有机化合物及卤素化合物等。其中二氧化硫,一种带有毒性的气体,当它逃逸到空气中,就会与水分子结合,形成酸雨,这些酸雨对环境造成了严重的破坏。它不仅会腐蚀建筑物的表面,还会对植物和动物造成严重的伤害。因此,对二氧化硫的检测和控制变得很重要。那么,二氧化硫的检测标准是什么呢?让我们一起了解一下。二氧化硫的检测标准主要分为两类:环境空气质量标准和工业排放标准。在环境空气质量标准方面,不同国家和地区对二氧化硫的浓度限制各有不同。在中国,环境空气质量标准规定二氧化硫的日均值不得超过60微克/立方米,年均值不得超过20微克/立方米。而在美国和欧盟,相应的浓度限制分别为75微克/立方米、140微克/立方米、30微克/立方米和350微克/立方米、125微克/立方米、20微克/立方米。这些标准的设立是为了保障人们的身体健康和环境的可持续发展。另一方面,工业排放标准则是为了限制工业生产过程中二氧化硫等有害物质的排放。中国的工业排放标准规定火力发电厂、钢铁厂、石油化工厂等大气污染物排放的二氧化硫的浓度不得超过35毫克/立方米,总量不得超过0.5克/千瓦时。而美国和欧盟的标准分别为200毫克/立方米、0.8克/千瓦时和400毫克/立方米、1.2克/千瓦时。这些标准的实施是为了降低二氧化硫等有害物质对环境和人类健康的影响。对于二氧化硫检测,推荐英国Alphasense SO2传感器SO2-B4,可以检测5ppb的SO2气体,非常适合环境空气质量监测系统和仪器。同时提供独特传感器板 (ISB) Alphasense B4 4电极气体传感器 -ISB,该独特传感器板子(ISB) 用于 Alphasense B4 系列四电极气体传感器。该稳压器提供双通道电压输出。而ISB可以测量氧化(CO, H2S, SO2, 和 NO) 和还原(O3和 NO2)气体。ISB被配置四个版本于特定的传感器:NO, NO2, O3 和 CO/ H2S/ SO2。通过了解这些二氧化硫的检测标准,我们可以更好地理解其对我们生活和环境的影响。同时,也希望这些信息能够帮助大家更加深入地了解二氧化硫的危害以及检测和控制的重要性。
  • 重磅推出丨霍尔斯HPB Mini平行生物反应器
    一款智能高效的实验室平行生物反应器霍尔斯(HOLVES)于今年9月初推出的最新系列平行生物反应器,本周正式进入定制阶段,作为一家创新的生命科学公司,研发和生产出多款实验室科研设备,霍尔斯(HOLVES)团队表示此次新品,将为您的科研工作带来跨越式的进步。用于微生物发酵的平行高通量研究HPB Mini系列产品是一款科研型实验室平行生物反应器,是实验室实现高通量筛选的一款科研利器。非常适合条件摸索和工艺优化,提高了生物培养实验的准备效率,配置更灵活、操作更容易,运行成本低。可以广泛运用于实验室细菌发酵、细胞培养和酶生化反应。产品优势:模块化BBM搭建设计:得益于新总线技术层面的应用,产品可实现积木模块化BBM搭建设计,主控制器可控制搭建的所有BBM模块,无需更换控制器和硬件。目前可以实现BBM模块:补料泵模块、自动进气模块、尾气模块等专业模块搭建,系统可根据需求定制独家方案。 自由扩充反应堆数量: 以2组为一个单位,最多可以扩充至64组,搭配霍尔斯(HOLVES)先进的平行控制软件,可多平台同时监控数据、操控设备。 智能自动化管理: 设备融合霍尔斯(HOLVES)多项独家专利技术,实际应用在功能管理系统中,包括H-Mix®搅拌系统、Feed-Sup®补料系统、Smart-SC®智能顺控、Meta-Tri®审计追踪等在内,让设备真正实现智能自动化管理。 值得信赖的品质: 秉承霍尔斯(HOLVES)一贯的验收把关,精选国内外知名品牌部件,只为用户打造合适的系列方案。如果您对HPB Mini平行生物反应器感兴趣,可以点击此处查看咨询,也可直接联系我们!
  • 振动试验基础:加速度传感器介绍
    如果说振动控制仪是振动试验系统的大脑,那么加速度传感器就是人体的感官部分。本文主要介绍电荷型加速度传感器的原理和使用方法。※振动领域常用传感器加速度:压电型(电荷输出型或电压输出型IEPE)、动电型等。速度:激光测定器等。位移:LVDT(Linear Variable Differential Transformer)、Laser等。频率响应特性:加速度传感器 速度传感器 位移传感器(原因:相位关系),所以振动试验机系统多采用加速度传感器。※电荷输出型加速度传感器构造:原理:Q(电荷量) = C(电容) × V(电压)压力(F=mA)作用,压敏材料上产生电荷,对应电荷,输出电压变化。常见电荷型加速度传感器:※加速度传感器质量要求必须保证测定物质量的1/10以下。※加速度传感器频率使用范围避开传感器的共振点,使用直线形区域。在低频区域(1-5Hz)尤其要注意,由于频率响应特性的缘故,测得的加速度会有一定的偏差,对反馈控制有较大影响。也许这就是振动台厂家的设备产品目录中设备频率使用范围都是从5Hz开始标注的缘故吧。另外还要注意环境对传感器灵敏度的影响,比如,温度、湿度、电磁干扰等,别篇叙述。※加速度传感器的固定要求①用手测 ②磁铁(2点吸附) ③磁铁(平面吸附) ④垫片胶水粘贴 ⑤胶水粘贴 ⑥螺丝固定上图中,可以看出采用螺丝固定是最好的,但是由于实际情况,一般振动试验,能提供螺丝固定的螺孔基本上没有,所以通常采用胶水(502胶水等)粘贴或垫片(绝缘地线)胶水粘贴传感器。※加速度传感器的使用方法※加速度传感器的重要参数灵敏度、最大测定加速度、电容等。例:加速度传感器型号:2353B、灵敏度:0.209pC/(m/s²)传感器电容: 890pF,加速度500m/s²振动时,输出的电压是多少?(传感器低噪声电缆的电容已忽略。)Q=0.209×500=104.5[pC]V=Q/C=104.5/890=0.11742[V]= 11.742[mV]※前置功放(电荷放大器)将加速度传感器的电荷输出电压(mV级别)转换,通过增幅放大到±V级的电压信号,输出给振动控制仪。电压输出型(IEPE or ICP)加速度传感器也经常应用,稳定可靠,直接电压输出。内部含有微电子电路,受温度和湿度的影响比较大,一般使用上限在+125℃左右,建议在常温下采用。在三综合试验中,尤其需要特别注意试验条件的温度。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • Nano Energy:基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776
  • 电化学VOCs气体传感器等两项行业标准编制完成 为首次发布!
    p   近日,工业和信息化部发布公告称,根据行业标准制修订计划,相关标准化技术组织已完成《钢制化工容器设计基础规范》等10项化工行业标准、《合成纤维厂供暖通风与空气调节设计规范》等10项石化行业标准、《有色金属矿山井巷工程质量检验评定标准》1项有色行业标准、《霍尔元件 通用技术条件》等62项机械行业标准、《纺织品 定量化学分析 牛皮纤维与某些其他纤维的混合物》等37项纺织行业标准、《工业用温轮胶》等17项轻工行业标准、《增雨防雹炮弹生产安全技术条件》1项民爆行业标准的制修订工作。 /p p   在以上138项行业标准批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2020年8月20日。 /p p   我们注意到,在138项行业标准中,有《JB/T 13999—2020 电化学VOCs气体传感器》和《JB/T 14000—2020 光学粉尘传感器》两项标准。 /p p   《JB/T 13999—2020 电化学VOCs气体传感器》规定了电化学VOCs气体传感器的术语和定义、分类、要求、试验方法、检验规则、标志、包装、运输和贮存。标准中传感器按所测气体类型给出了醛类传感器系列、醇类传感器系列、苯系物传感器系列、其他VOCs传感器系列(以环氧乙烷最为常用)的技术参数。 /p p   《JB/T 14000—2020 光学粉尘传感器》规定了光学粉尘传感器的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 /p p   两项标准的起草单位相同,包括:郑州炜盛电子科技有限公司、沈阳仪表科学研究院有限公司、汉威科技集团股份有限公司、国家仪器仪表元器件质量监督检验中心、传感器国家工程研究中心。 /p p   两项标准均为首次发布。 /p p   详情如下: /p p    a href=" https://www.instrument.com.cn/download/shtml/954054.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《JB/T 13999—2020 电化学VOCs气体传感器》; /span /a /p p span style=" color: rgb(0, 112, 192) "    /span a href=" https://www.instrument.com.cn/download/shtml/954056.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《JB/T 14000—2020 光学粉尘传感器》。 /span /a /p
  • 全球光纤传感器市场规模年均新增18%
    作为物联网极其重要的组成部分之一,光纤传感器因其优势与应用一直备受瞩目。从全球市场来看,2013年全球光纤传感器市场规模为18.9亿美元。预计2014至2018年,全球光纤传感器市场将以年均18%的增长幅度增长,至2018年市场规模达到43.3亿美元。   从光纤传感技术研究上看,美国对该技术的研究起步最早,且在世界上最为先进。数据显示,2007年,美国光纤传感器市场规模为2.35亿美元,此后以30%的年复合增长速度增长,2014年有望达到16亿美元。   相较于美国,中国的光纤传感行业处于起步阶段。据统计,截至2013年底,中国2000万元规模以上的传感器制造企业有260多家。但行业整体素质参差不齐,小型企业占比近七成,以生产低端产品为主 少部分龙头企业和外资企业占据高端产品市场。   虽然起步晚,中国光纤传感市场需求却呈现出爆发式增长,仅电力领域相关产品的招标就比以往多了近百倍以上。业界人士评估,2013年,光纤传感器在中国市场的规模约有10亿元,且呈逐渐增长的态势。   目前,市场上应用最广的光纤传感器有4种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。   光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器。   光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型。   光纤光栅传感器产品包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。   光纤电流传感器主要应用于电力领域,它能很好地避免一些由于电力过强而引发的事故。   光纤传感器目前可以直接或间接测量近百种物理量以及化学和生物量,被广泛应用于国防、电力、石油、建筑、医学等各个领域。   在国防上,光纤传感器可用于水声探潜(光纤水听器)、光纤制导、姿态控制、航天航空器的结构损伤探测(智能蒙皮)以及战场环境(电磁环境、生化环境等)的探测等。   在电力系统中,高电压、大电流的恶劣电磁环境使得电子类传感器的应用受到限制,而光纤传感器以其特有的抗电磁干扰能力,在电力系统中可用于测量大型电机的转子、定子和高压变压器内部的电流、电压、温利于提高特种微型光缆外护层的固化度,但超过一定范围对提高固化度作用不大。   近年来,这种采用UV涂层作为外护层的特种微型光缆在有线制导武器和水下工程中的应用发展非常迅速,不久的将来可广泛地应用于导弹、重型鱼雷、大潜深潜水器、海底监测网络等领域。
  • 赛智科技推出140997系列Micron传感器
    赛智科技(杭州)有限公司依托浙江大学先进学科、专注于分析测试领域的科技型企业,是国内领先的液相色谱仪及部件、耗材制造商,专业的HPLC应用方案服务提供商,也是我国最大的色谱软件供应商和服务商。 2012年,赛智科技取得美国micron instruments公司Micron传感器系列的代理权,成为该公司在中国的独家总代理商。  赛智科技的代理产品:Micron Model MP40是一个由防腐蚀钛(6AL4V)制成可安装的微型,低成本,可冲洗的一般型压力/温度传感器。钛密封头保证了MPT40系列绝对密封性质,并且正好位于传感器应变计隔膜后方,惰性环境使得传感器的稳定性和可靠性大大提高,也适用于高震动的情况。该产品广泛应用于测试和测量设备,能源控制,生产设备和控制,液位,实验室仪器及设备,校准设备应用领域。 2014年新年伊始,赛智科技根据特定用户需求,再次推出订制版140997系列传感器。Micron传感器细节图:中国官方代理申明: 以下为订制版140997系列数据:性能参数:平衡(零点) 0±3.00 mV全方位灵敏度 20.0 ±2.0 mV/V静误差带 ±0.50 %FS热平衡浮动 ± 0.02 %FS/°F热敏感性 ± 0.02 %FS/°F温度范围 0° TO 180°F补偿温度范围 30° TO 130°F加速度 100 g' s, any axis输入电压 5.0 V DC or AC最大电压 30 V for short periods输入电阻 1400 ± 400?输出电阻 850 ± 200?最小绝缘电阻 50 M? @ 50 VDC设计图: 赛智科技(杭州)有限公司 全国服务热线:400 001 2010 公司总机:0571-28021919技术服务热线:0571-28021930官方网站:www.surwit.com
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 荧光RNA传感器研究获进展
    基因编码的荧光传感器可以在单细胞水平追踪代谢物、蛋白质或重金属离子等细胞内靶标的丰度变化和动力学分布,并解析活细胞的生理过程和信号传导通路。7月24日,《核酸研究》(Nucleic Acids Research)在线发表了中国科学院北京生命科学研究院李幸团队撰写的题为Genetically encoded RNA-based sensors with Pepper fluorogenic aptamer的研究论文。该团队开发了一类基因编码的新型荧光RNA传感器。该传感器能够在活细胞中监测代谢物、外源药物、蛋白与金属离子等靶标,展现出高通量、高内涵药物筛选的潜力。 传统的基因编码传感器由荧光蛋白和结合靶标的蛋白模块组成。然而,由于多数靶标缺乏对应的蛋白模块,科学家难以构建基于荧光蛋白的传感器。此外,基于荧光蛋白的传感器还有信噪比低等缺陷,限制了荧光蛋白传感器的应用。 近年来,基于荧光RNA的传感器发展迅速。荧光RNA传感器由荧光RNA与结合靶标的RNA模块组成。二者通过一个短茎连接。该短茎称为传导模块(transducer module),其热力学稳定性由靶标识别适配体调节。靶标与结合靶标的RNA模块结合,诱导RNA构象变化,调控荧光RNA适配体的荧光强度,从而检测靶标信号,解析其在活细胞中的信号通路。然而,这些荧光RNA传感器通常含有RNA G四链体(RG4)结构。RG4结构可被活细胞解旋酶靶向,导致RNA的解旋或降解,故限制了含RG4的荧光RNA传感器在活细胞中的应用。 为此,李幸团队通过系列实验设计,研发了不包括RG4的荧光RNA传感器。研究选择使用了Pepper荧光适配体。Pepper不含RG4结构,避免了被细胞酶降解或解旋。此外,Pepper亮度高、稳定性强,并能够结合不同小分子探针产生不同颜色的荧光。基于此,李幸团队开发了一系列基于Pepper的生物传感器。进一步,实验表明这些传感器不包含RG4结构,并可以高效监测活细胞中的内源小分子代谢物、外源药物、蛋白质和金属离子等多种靶标。该研究发展的基于RNA传感器率先用于检测人体细胞内的金属离子,为探索人体活细胞金属离子提供了新型基因编码工具(图1)。 该团队基于Pepper的生物传感器,探讨了甲基化代谢物S-腺苷甲硫氨酸(S-adenosyl methionine,SAM)代谢通路,测定了靶标药物活性。研究将Pepper与SAM适配体融合,构建出低背景、高响应、高选择性的SAM传感器。进一步,该工作探究了单细胞中SAM合成的代谢来源,解析了SAM合成酶(methionine adenosyltransferase,MATase)的酶活性和基因表达水平。此外,该工作还构建了监测SAM的比率传感器。该传感器精确定量了MATase的酶活性,并准确测定了MATase抑制剂AG-270的半抑制浓度(IC50)。该工作首次发展荧光RNA传感器来准确测定活细胞中的药物IC50,为研发基于RNA的药物筛选平台验证了可行性,并提供了高效的MATase酶药物筛选工具(图2)。 该团队为追踪活细胞内靶标及其信号传导途径提供了高效的生物传感平台,在药物筛选和疾病诊断等领域具有潜在的应用价值。研究工作得到国家自然科学基金等的支持。 图1. 将Pepper改造为高性能荧光RNA传感器,检测细胞内靶标,监测细胞甲基化代谢通路与药物活性图2. 构建基于Pepper的比率传感器,准确测定MATase抑制剂AG-270的半抑制浓度(IC50)
  • 超灵敏二硫化钼湿度传感器研究获进展
    p   现阶段对二硫化钼湿度传感器的研究主要受制于加工过程本身引入的残胶对材料表面的污染,影响了其对水分子的吸附,从而导致灵敏度不高或响应时间过长等问题。因而,如何得到具有高灵敏、快速响应时间的二硫化钼湿度传感器成为制约其应用的最主要因素。 /p p   针对上述问题,日前,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)纳米物理与器件实验室利用一种新的金剥离方法,加工得到具有干净表面的二硫化钼场效应晶体管,从而实现了对水分子的灵敏响应。该项工作由实验室博士赵静在研究员张广宇的指导下完成。 /p p   据悉,这种加工方法主要是利用二硫化钼与金之间的作用力远大于金与衬底间的作用力,从而可以将多余的二硫化钼样品从衬底上完整地剥离下来,同时保证了用于器件的二硫化钼表面的干净。利用这种方法一方面有效避免了加工过程中经过反应离子刻蚀后表面残胶对器件性能的影响,另一方面大大简化了加工过程,得到了具有超洁净表面的二硫化钼场效应晶体管,其光学、电学性能的显著提高也从另一个方面证明了这种加工方法得到的样品具有更好的性能。 /p p   由于利用这种金剥离方法得到的二硫化钼场效应晶体管具有超洁净的表面,因此能够灵敏感知外界湿度变化,大大提高了二硫化钼湿度传感器的灵敏度。除了具有超高灵敏度外,由于二硫化钼表面没有悬挂键,对水分子的吸附是纯粹的物理吸附,因此器件可以很容易地进行脱吸附,有效缩短了响应时间和恢复时间。除此之外,得益于CVD生长的二硫化钼成膜均匀,可以加工得到一系列具有优异性能的二硫化钼湿度传感器阵列,从而对外界不同湿度的空间分布起到定位作用,用来实时监测外界湿度分布的变化。 /p p   这种基于超洁净表面的二硫化钼样品加工得到的湿度传感器具有灵敏度高、响应时间和恢复时间短、使用寿命长、空间分辨率高等特性,可以广泛应用于未来无接触定位系统及二维材料多功能柔性传感器阵列领域。 /p p /p
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。
  • 4款传感器,满足工业气体安全还看MOCON
    众所周知,人类长期接触挥发性有机化合物(VOC)会导致呼吸系统问题、癌症和神经损伤;自然环境如空气、水和土壤等会造成破坏和污染。挥发性有机化合物(VOC) 是由工业和自然过程产生的潜在危险化合物。这些有害气体通常在正常大气条件下会蒸发,但室内环境中的VOC水平要高得多,因为许多制成品(如地毯、油漆和清洁用品等)都可能会排放这些物质。室外来源可能包括垃圾处理场、工业和碳氢化合物排放过量等。光电离检测器(PID) 是检测VOC水平的最简单、最有效的方法。在不靠气相色谱柱的情况下,膜康(MOCON)独立的PID可以使用便携式或固定式对许多挥发性有机化合物进行实时测量。1 易用型检测器VOC-TRAQ® II 基于最新的Baseline® piD-TECH® eVx™ 光电离传感器,VOC-TRAQ® II没有组合部件,采用简单的扩散方法,仍提供了快速的响应时间,既紧凑又实惠。一种灯能量之间有5个不同的检测级别,提供了广泛的检测功能。附带的VOC-TRAQ® II pc软件可以轻松进行校准、设置参数和显示数据图形。 特点及优势:紧凑型设计广泛的检测功能附带pc软件可编程报警级别和采样频率简单的设置和校准存储多达36,000个样品读数2带流动腔的VOC光电离检测器 VOC-TRAQ® II与流通式外壳结合在一起变成Baseline® VOC-TRAQ® II流动腔,进出口流道可用于远程样品输送,当与加压源或泵一起使用时,该装置可实现受控样品输送。VOC-TRAQ® II流动腔借助带有windows操作系统软件的pc能够远程监测和记录总挥发性有机化合物的存在。装置的高灵敏度归功于piD-TECH® eVx™ 光电离检测器。 膜康(MOCON)光电离检测器应用:环境监测:洁净室AMC、空气质量监测、无组织排放监测有毒气体监测:室内空气质量、检漏、OEM PID传感器工业过程分析和控制:饮料气体监测、工业气体混合控制、工艺气体分析、特种和工业气体监测、地面测井分析膜康(MOCON)的VOC-TRAQ® 总挥发性有机化合物(TVOC) 检测器是一种极具性价比的解决方案,使用基于windows的pc主动监测非爆炸性气体泄漏,通过存储多达36,000个样本读数随时间记录数据。VOC-TRAQ® 使用piD-TECH® eVx™ 光电离传感器来监测用户所需范围内的汽化气体。3OEM的首选piD-TECH® eVx™ 膜康(MOCON)屡获殊荣的专利piD-TECH® eVx™ 插入式传感器具有全面的光电离检测功能,其设计与大多数品牌的电化学传感器机械结构相似。其出色的特性使piD-TECH® 系列传感器成为想要在手持、移动或固定式设备中集成voc检测功能的oem制造商的理想选择。piD-TECH® eVx™ 的检测能力和最小检测量(MDQ)分为五个范围,对oem市场来说它具有更高的性价比和灵活性,同时兼具了市场上无法比拟的先进技术。 特点及优势:提供OEM集成支持可靠的长寿命灯泡:6000 小时易于清洁和现场维修,无需工具本质安全:UL、CAN/CSA、ATEX、IECEx认证内部输入电压调节,提高信号稳定性双重过滤,防止气溶胶和颗粒物的侵害4灵敏型传感器piD-POD piD-POD结构紧凑,由一个圆柱形外壳组成,可组装piD-TECH® eVx™ 光电离传感器和进/出样口。它适用于高达300 cc/min的进气流量,并配备了一个带配套适配器的PC接头。piD-POD采用膜康(MOCON)piD-TECH® eVx™ 传感器系列(单独出售),允许用户为应用选择所需的灵敏度和灯能量。光电离检测器(PID)不会破坏样品,因此piD-POD对于原始设备制造商来说是一种在其仪器设计中集成TVOC测量的直接手段。 特点及优势:用于piD-TECH® 传感器低死角密封设计集成到气体监测仪器中提供光电离检测的灵敏度几十年来,AMETEK MOCON一直是气体检测设备监测水平远低于OSHA行动限值的领先供应商。这得益于稳定、快速的检测结果可以让工作人员有足够的时间对日益增加的健康风险做出反应。
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制