霍尔效应分析仪

仪器信息网霍尔效应分析仪专题为您提供2024年最新霍尔效应分析仪价格报价、厂家品牌的相关信息, 包括霍尔效应分析仪参数、型号等,不管是国产,还是进口品牌的霍尔效应分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合霍尔效应分析仪相关的耗材配件、试剂标物,还有霍尔效应分析仪相关的最新资讯、资料,以及霍尔效应分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

霍尔效应分析仪相关的厂商

  • 400-860-5168转4937
    霍尔斯(HOLVES)是一家创新的生命科学公司。自2010年创立至今,聚焦于合成生物学、生物制药、创新生物医疗等新兴领域,研发和生产了多款新型发酵罐、生物反应器、超滤系统、喷雾干燥机等设备,满足从实验到工业生产等各个需求环节。霍尔斯(HOLVES)致力于打造智能自动化系统,赋能生物研究和产业放大领域发展。 发展历程: 2010年创立霍尔斯(HOLVES)品牌,成立北京霍尔斯生物科技有限公司。2012年与美国NBS合作代理生物反应器,与德国GEA合作代理喷雾干燥机,积极学习国外先进的理念和经验。2016年自主研发的首台喷雾干燥机问世,获得市场一致好评,标志着霍尔斯(HOLVES)正式开启自主品牌道路。2017年投入全新现代化工厂基地,成立安徽霍尔斯工程技术有限公司。2020年推出全新设计的Cla系列发酵罐,Eu系列生物反应器,Su系列不锈钢发酵罐,公司和产品双双步入新征程。2021年重磅推出HPB系列平行生物反应器,助力新一代生物智造平台。
    留言咨询
  • 山东霍尔德电子科技有限公司是cod检测仪、氨氮检测仪、总磷总氮检测仪、生物毒性检测仪、测油仪、BOD检测仪、水质在线监测设备等生产研发销售集于一体的原厂厂家。公司主营业务是研发、生产和销售应用于水质检测、农业生态、食品快检、植物生理、气象环境、智能物联等仪器设备,在多重相关领域构建起完整的产品体系,将光电技术与物联网和云服务结合,为用户提供更加广泛的应用和深度服务,为农业、林业、科研、畜牧、气象、水利、食药、环境等相关领域提供综合解决方案。公司与全国各大高校和科研院所建立了长久的合作关系,引进先进的高科技成果,研发了众多高性价比高科技产品,广泛应用于各个行业,得到了客户的认可和青睐。
    留言咨询
  • 400-809-9576
    联系我们:400-887-8280。Sievers分析仪(原GE分析仪器)是威立雅水务技术与方案下属的一个分部。作为世界领先的总有机碳(TOC)分析仪的制造商之一,我们提供卓越的技术、设计、质量和服务。我们已经获得30多项水质分析技术创新专利——包括Sievers膜电导法和集成在线取样(iOS)系统。Sievers TOC分析仪的动态分析范围从0.03 ppb到50,000 ppm,可为不同行业和应用提供解决方案,广泛应用在医药/生物制药、半导体和微电子、发电、太阳能电池制造、化工、石化、环保、食品和饮料、医学研究等众多领域。除了您可以信赖的仪器外,Sievers的认证服务、标准品和样品瓶以及应用方面的专业知识也是无与伦比的。除总有机碳TOC分析仪外,Sievers分析仪还生产细菌内毒素检测仪和超纯水硼分析仪。sievers.china@veolia.comcn.sieversinstruments.com微信公众号:Sievers分析仪
    留言咨询

霍尔效应分析仪相关的仪器

  • 除颤效应分析仪V1 Zeus 400-860-5168转4226
    除颤效应分析仪V1 Zeus优势zui大程度保障操作人员安全• 两键操作充电/放电• 配置高压激活安全开关• 电缆盖安全设计• 自动电容器充电截止功能除颤效应分析仪V1 Zeus产品特点• 测试电压可以无级增加到5 kV• LCD显示屏幕• 带有香蕉插头或夹钳的10个患者电缆可直接连接• 集成10 Hz正弦波发生器,其输出电压可在2.0 Vpp至20 Vpp范围内可调• 示波器和测试夹连接允许动态测试被测设备不同部分的能量限制• 极性选择器开关用于反转测试电压的极性,简化具有相反极性的标准化重复测试功能除颤效应分析仪Zeus V1是一款除颤模拟器,用于测量医疗设备(例如心电信号记录设备等)及其附件(例如患者电缆,真空系统,电极等)对于除颤的防护。无论是在医疗技术公司的研发部门,还是在如TüV,Dekra和其他测试机构的型式试验中,Zeus V1都被作为测试设备,以证明医疗设备及其配件对于除颤的防护符合标准要求。Zeus V1可以根据IEC 60601-1,IEC 60601-2-25,IEC 60601-2-26,IEC 60601-2-27等进行除颤防护验证测试。Zeus V1集成有10 Hz正弦波发生器,具被输出电压可调功能,范围为2 Vpp至20 Vpp(相当于在被检设备的显示单元上产生0.5 mVpp至5 mVpp的信号)。标准IEC 60601-1, IEC 60601-2-25, IEC 60601-2-26, IEC 60601-2-27
    留言咨询
  • 除颤效应分析仪V2 Zeus 400-860-5168转4226
    除颤效应分析仪V2 Zeus优势zui大程度保障操作人员安全• 两键操作充电/放电• 配置高压激活安全开关• 电缆盖安全设计• 自动电容器充电截止功能除颤效应分析仪V2 Zeus产品特点• 测试电压可以无级增加到5 kV• LCD显示屏幕• 带有香蕉插头或夹钳的10个患者电缆可直接连接• 集成10 Hz正弦波发生器,其输出电压可在2.0 Vpp至20 Vpp范围内可调• 示波器和测试夹连接允许动态测试被测设备不同部分的能量限制• 极性选择器开关用于反转测试电压的极性,简化具有相反极性的标准化重复测试功能Zeus V2 (25/400)是世界上di一款为医疗技术系统进行除颤过程中的能耗降低测试而专门设计的测试设备,旨在满足客户日益增长的按照国际标准进行产品测试的需求。 无论是在医疗技术公司的开发部门,还是在TüV,Dekra和其他测试机构的型式实验中:Zeus V2(25/400)都作为测试仪器,以检测医疗设备在除颤过程中的能量降低是否符合标准要求(例如,IEC 60601-1,IEC 60601-2-25,IEC 60601-2-27等标准)。标准IEC 60601-1,IEC 60601-2-25,IEC 60601-2-27
    留言咨询
  • 除颤效应分析仪Zeus V1 400-860-5168转4226
    功能除颤效应分析仪Zeus V1是一款除颤模拟器,用于测量医疗设备(例如心电信号记录设备等)及其附件(例如患者电缆,真空系统,电极等)对于除颤的防护。无论是在医疗技术公司的研发部门,还是在如TüV,Dekra和其他测试机构的型式试验中,Zeus V1都被作为测试设备,以证明医疗设备及其配件对于除颤的防护符合标准要求。Zeus V1可以根据IEC 60601-1,IEC 60601-2-25,IEC 60601-2-26,IEC 60601-2-27等进行除颤防护验证测试。Zeus V1集成有10 Hz正弦波发生器,具被输出电压可调功能,范围为2 Vpp至20 Vpp(相当于在被检设备的显示单元上产生0.5 mVpp至5 mVpp的信号)。除颤效应分析仪Zeus V1优势保障操作人员安全• 两键操作充电/放电• 配置高压激活安全开关• 电缆盖安全设计• 自动电容器充电截止功能产品特点• 测试电压可以无级增加到5 kV• LCD显示屏幕• 带有香蕉插头或夹钳的10个患者电缆可直接连接• 集成10 Hz正弦波发生器,其输出电压可在2.0 Vpp至20 Vpp范围内可调• 示波器和测试夹连接允许动态测试被测设备不同部分的能量限制• 极性选择器开关用于反转测试电压的极性,简化具有相反极性的标准化重复测试标准IEC 60601-1,IEC 60601-2-25,IEC 60601-2-26,IEC 60601-2-27
    留言咨询

霍尔效应分析仪相关的资讯

  • 半导体情报,科学家首次在量子霍尔绝缘体中发现奇异的非线性霍尔效应!
    【科学背景】近年来,尽管量子霍尔效应的线性响应特性得到了广泛研究,但高阶非线性响应仍然是一个未被充分探索的领域。特别是在二维材料如石墨烯中,量子霍尔态的非线性响应尚未被深入研究。量子霍尔态不仅具有绝缘体体和导电手性边缘态的特征,而且在不同的量子霍尔态下,可能会表现出复杂的非线性行为,这些行为对于理解边缘态的电子-电子相互作用具有重要意义。为了解决这一问题,为了解决这一问题,复旦大学何攀, 沈健,日本九州大学Hiroki Isobe,新加坡国立大学Gavin Kok Wai Koon,Junxiong Hu,日本理化研究所新兴物质科学中心Naoto Nagaosa等教授合作发现,在石墨烯的显著量子霍尔态下,存在明确的第三阶霍尔平台。这一平台在广泛的温度、磁场和电流范围内保持稳定,并且在不同几何形状和堆叠配置的石墨烯中均可观察到。第三阶霍尔效应的高度对环境条件不敏感,但与器件特性相关。此外,第三阶非线性响应的极性受磁场方向和载流子类型的影响。作者的研究揭示了量子霍尔态的非线性响应是如何依赖于器件特性的,并提出了一个新的视角来理解边缘态的性质。【科学亮点】(1)实验首次观察到石墨烯中量子霍尔态的第三阶霍尔效应,获得了第三阶霍尔效应的清晰平台。该平台在显著的量子霍尔态(\( \nu = \pm 2 \))中展现出,且在广泛的温度、磁场和电流范围内保持稳定。(2)实验通过测量不同几何形状和堆叠配置的石墨烯器件,发现第三阶霍尔效应的平坦值与环境条件无关,但与器件特性相关。具体结果包括:&bull 第三阶霍尔效应的电压平台高度与探针电流的立方成正比,而第三阶纵向电压保持为零。&bull 该效应在磁场变化(至约5T)和温度变化(至约60K)下保持稳健。&bull 第三阶非线性响应的极性依赖于磁场方向及载流子类型(电子或空穴),并且其值在反转磁场方向时会改变符号。&bull 非线性霍尔平台的稳健性提供了关于边缘态的新见解,并可能违背量子霍尔电阻的精确量化。【科学图文】图1:在经典和量子域中,线性霍尔效应和非线性霍尔效应示意图。图2:在量子霍尔态quantum Hall states,QHSs内,三阶非线性霍尔平台的观测结果。图3:在量子霍尔态QHSs内,三阶霍尔效应的立方电流依赖性。图4:磁场和温度,对量子霍尔态QHS三阶非线性响应的影。【科学启迪】本文的研究为量子霍尔效应(QHE)中的非线性响应提供了新的视角,揭示了量子霍尔态(QHSs)中第三阶霍尔效应的显著平台。这一发现不仅扩展了作者对量子霍尔现象的理解,也对探索二维材料中的非线性电输运提供了新的途径。首先,实验首次在单层石墨烯中观察到稳定的第三阶霍尔效应平台,表明在量子霍尔态下,电子之间的相互作用可能导致非线性现象的出现。这种非线性响应在不同环境条件(如磁场和温度)下保持稳定,且在多种几何形状和堆叠配置的石墨烯器件中均能观察到。这表明该效应具有较强的普适性和稳健性。其次,研究发现第三阶霍尔效应的电压平台与探针电流立方成正比,而其幅度对环境条件变化表现出较强的稳健性。这一特性挑战了量子霍尔电阻的精确量化,提示作者在量子霍尔态的研究中需要考虑更高阶的非线性效应。这种非线性响应的发现不仅提供了关于边缘态性质的新见解,还可能揭示出与传统线性量子霍尔效应不同的物理机制。此外,本文的研究结果对未来探索量子霍尔系统的高阶响应具有重要启示。其他填充因子的量子霍尔态中的非线性响应,以及在其他量子霍尔系统中的应用,仍需进一步研究。这一发现为理解电子-电子相互作用、边缘态带曲率等物理现象提供了新的方法,也可能为研究分数量子霍尔效应的非线性响应开辟新的方向。原文详情:He, P., Isobe, H., Koon, G.K.W. et al. Third-order nonlinear Hall effect in a quantum Hall system. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01730-1
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w

霍尔效应分析仪相关的方案

霍尔效应分析仪相关的资料

霍尔效应分析仪相关的论坛

  • 薄膜综合物性分析仪(导热,赛贝克,电阻率,霍尔,迁移率

    薄膜综合物性分析仪(导热,赛贝克,电阻率,霍尔,迁移率

    薄膜综合物性分析仪(导热系数,电导率,电阻率,赛贝克系数,霍尔系数,迁移率 载流子浓度 发射率)同步测量苏需要的热物性参数,消除样品的几何尺寸,样品物质组分和热分布不均的影响,结果非常具有可靠性。可测量30nm-30μm的涂层与薄膜样品,样品面积约25mm²采用芯片式设计,样品于传感器紧密接触,构成一个缩小的热带发导热测量模型,可配置锁相放大器,以适应3ω法对样品的in-plance和cross-plance导热进行测量。可以适应不同材质样品。无论是金属,陶瓷,半导体等无机薄膜还是有机薄膜,都可以用TFA测量模块化设计, 根据需求,添加测量模块。1:瞬态导热测量磨坏:锁相放大器 配置3ω测量单元,可测平面,交叉面导热系数,比热等2: 霍尔效应测量模块: 配置磁场单元,可测霍尔电压,迁移率,载流子浓度。3 低温附件模块:-150°-400°C 样品两侧均安装LN2管道, 有利于样品两侧温度控制。导热系数:稳态热带法,3ω法。电阻于霍尔系数:范德堡法赛贝克:静态直流法http://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581948_3060548_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581949_3060548_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581950_3060548_3.png

  • “量子反常霍尔效应”离诺贝尔物理奖有多近?

    我国科学家首次发现“量子反常霍尔效应”这一科研成果离诺贝尔物理奖有多近2013年04月11日 来源: 中国科技网 作者: 林莉君 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244421_change_wtt3427_b.jpg量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244437_change_wtt3428_b.jpg理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导 “这个研究成果是从中国实验室里,第一次发表出来了诺贝尔物理奖级别的论文,这不仅是清华大学、中科院的喜事,也是整个国家发展中喜事。”4月10日,诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授高度评价了我国科学家的重大发现——量子反常霍尔效应。 由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于3月14日在线发表这一研究成果。由于此前和量子霍尔效应有关的科研成果已经3获诺贝尔奖,学术界很多人士对这项“可能是量子霍尔效应家族最后一个重要成员”的研究给予了极高的关注和期望。那么什么是量子反常霍尔效应?对它的研究为什么引起世界各国科学家的兴趣?它的发现有什么重大意义? 重要性 突破摩尔定律瓶颈 加速推动信息技术革命进程 在认识量子反常霍尔效应之前,让我们先来了解一下量子霍尔效应。量子霍尔效应,于1980年被德国科学家发现,是整个凝聚态物理领域中重要、最基本的量子效应之一。它的应用前景非常广泛。 薛其坤院士举了个简单的例子:我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前”地前进。“这就好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在‘各行其道、互不干扰’的高速路上前进。”薛其坤打了个形象的比喻。 然而,量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”薛其坤说,而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。 自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2006年, 美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等有多个世界一流的研究组沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。 薛其坤团队经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。 “量子反常霍尔效应可在未来解决摩尔定律瓶颈问题,它发现或将带来下一次信息技术革命,我国科学家为国家争夺了这场信息革命中的战略制高点。”拓扑绝缘体领域的开创者之一、清华大学“千人计划”张首晟教授说。 创新性 让实验材料同时具备“速度、高度和灵巧度” 从美国物理学家霍尔丹于1988年提出可能存在不需要外磁场的量子霍尔效应,到我国科学家为这一预言画上完美句号,中间经过了20多年。课题组成员、中科院物理所副研究员何珂告诉记者:“量子反常霍尔效应实现非常困难,需要精准的材料设计、制备与调控。尽管多年来各国科学家提出几种不同的实现途径,但所需的材料和结构非常难以制备,因此在实验上进展缓慢。” “这就如同要求一个运动员同时具有刘翔的速度、姚明的高度和郭晶晶的灵巧度。在实际的材料中实现以上任何一点都具有相当大的难度,而要同时满足这三点对实验物理学家来讲是一个巨大的挑战。”课题组成员、清华大学王亚愚教授这样描述实验对材料要求的苛刻程度。 实验中,材料必须具有铁磁性从而存在反常霍尔效应;材料的能带结构必须具有拓扑特性从而具有导电的一维边缘态,即一维导电通道;材料的体内必须为绝缘态从而对导电没有任何贡献,只有一维边缘态参与导电。 2010年,课题组完成了对1纳米到6纳米(头发丝粗细的万分之一)厚度薄膜的生长和输运测量,得到了系统的结果,从而使得准二维超薄膜的生长测量成为可能。 2011年,课题组实现了对拓扑绝缘体能带结构的精密调控,使得其体材料成为真正的绝缘体,去除了其对输运性质的影响。 2012年初,课题组在准二维、体绝缘的拓扑绝缘体中实现了自发长程铁磁性,并利用外加栅极电压对其电子结构进行原位精密调控。 2012年10月,课题组终于发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2—25800欧姆——世界难题得以攻克。 课题组克服薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,最终为这一物理现象的实现画上了完美的句号。 “下一步我们主要的努力方向是全面测量材料在极低温下的电子结构和输运性质,寻找更好的材料体系,在更高的温度下实现这一效应。那时,也许我们能对其应用前景作更好的判断。”王亚愚告诉记者。 外界评说 这是凝聚态物理界一项里程碑式的工作 “实验成果出来以后,量子霍尔效应的发现者给我发了一封邮件。他写道:我深信拓扑绝缘体和量子反常霍尔效应是科学王冠上的明星。”张首晟向记者展示了这封邮件。 《科学》杂志的一位审稿人说:“这项工作毫无疑问地证实了与普通量子霍尔效应不同来源的单通道边缘态的存在。我认为这是凝聚态物理学一项非常重要的成就。”另一位审稿人说:“这篇文章结束了多年来对无朗道能级的量子霍尔效应的探寻。这是一篇里程碑式的文章。” 延伸阅读 霍尔效应与反常霍尔效应 霍尔效应是美国物理学家霍尔于1879年发现的一个物理效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。产生的横向电压被称为霍尔电压,霍尔电压与施加的电流之比则被称为霍尔电阻。由于洛伦兹力的大小与磁场成正比,所以霍尔电阻也与磁场成线性变化关系。 1880年,霍尔在研究磁性金属的霍尔效应时发现,即使不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应的相关研究已3次获得诺贝尔奖 量子霍尔效应在凝聚态物理的研究中占据着极其重要的地位。它就像一个富矿,一代又一代科学家为之着迷和献身,他们的成就也多次获得诺贝尔物理奖。 1985年,诺贝尔物理奖颁给了德国科学家冯·克利青,他于1980年发现了整数量子霍尔效应。 1998年,诺贝尔物理奖颁给了美国科学家:美籍华人物理学家崔琦以及施特默、劳弗林。前两人于1982年发现了分数量子霍尔效应,而后者则对这一效应进一步给出了理论解释。 2010年,诺贝尔物理奖颁给了英国科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。他们俩在2005年发现了石墨烯中的半整数量子霍尔效应。 此外,量子化自旋霍尔效应于2007年被发现,2010年获得欧洲物理奖,2012年获得美国物理学会巴克利奖。(记者 林莉君 李大庆) 《科技日报》(2013-04-11

  • 我科学家首次发现量子反常霍尔效应

    美妙之处或可加速推进信息技术进步的进程 新华社北京3月15日电 (记者李江涛)由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是我国科学家从实验中独立观测到的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。 该成果于北京时间3月15日凌晨在美国《科学》杂志在线发表。 据介绍,美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。而在磁性材料中不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应之所以如此重要,一方面是由于它们体现了二维电子系统在低温强磁场的极端条件下的奇妙量子行为,另一方面这些效应可能在未来电子器件中发挥特殊的作用,可用于制备低能耗的高速电子器件。 例如,如果把量子霍尔效应引入计算机芯片,将会克服电脑的发热和能量耗散问题。然而由于量子霍尔效应的产生需要非常强的磁场,因此至今为止它还没有特别大的实用价值,因为要产生所需的磁场不但价格昂贵,而且其体积庞大(衣柜大小),也不适合于个人电脑和便携式计算机。 据了解,量子反常霍尔效应的美妙之处是不需要任何外加磁场,因此,这项研究成果将会推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术进步的进程。

霍尔效应分析仪相关的耗材

  • Hal-12 霍尔转速传感器
    概述: Hal-12霍尔转速传感器,是一种采用霍尔原理的的转速传感器。它的感应对象为磁钢。当被测体上嵌入磁钢,随着被测物体 转动时,传感器输出与旋转频率相关的脉冲信号,达到测速或位移检测的发讯目的。 由于安装使用方便,通用性好,已被 广泛应用于各种领域。 技术参数: 1.发讯频率:0~10kHz 2.供电电源:12~25V(DC) 3.负载电阻:&ge 1.0k&Omega 4.检测距离:1~4mm (磁钢) 5.磁钢尺寸:8× 5 6.输出信号:矩形波 幅值:近电源电压 7.环境条件:温度:-20° C~80° C 相对湿度:&le 85% 8.安装螺纹:M12× 1 输出线 棕色:接电源+12V;蓝色:接电源地0V;黑色:接信号
  • 北京绿百草科技供应分析美罗培南的TOSOH液相柱TSK GEL G2000SWXL
    北京绿百草科技供应分析美罗培南的TOSOH液相柱TSK GEL G2000SWXL 关键词:美罗培南,TSK GEL G2000SWXL,TOSOH,凝胶过滤,尺寸排阻 北京绿百草科技专业提供分析美罗培南的色谱柱TSK GEL G2000SWXL。美罗培南,或译美洛培南,是一种有非常广泛抗菌性及可供注射的抗生素,用于治疗多种不同的感染,包括脑膜炎及肺炎。它是一种&beta 内酰胺类抗生素,属于碳青霉烯的分类。硅胶基体的TSK GEL G2000SW填料表面通过共价化学键合包含极性二醇基的固定相,吸附低孔径分布均匀,柱效高。北京绿百草可以提供使用TSK GEL G2000SWXL分析美罗培南的的详细操作条件和谱图。需要详细的信息请和绿百草科技联系:010-51659766 登录网站获得更多产品信息:www.greenherbs.com.cn
  • 现货直供东西分析仪器HAF-2锡Sn原子荧光空心阴极灯品质保证 规格齐全
    重要提示:本产品网页标价为随机发布参数,产品具体准确价格请联系客服“东西分析”以其对完美的追求、丰富的产品线而与众不同。新型、开放、国际化的管理,使产品的性能和品质持续提高,确保每位客户获得优质的解决方案和极具个性化的服务。作为改革开放后最早成立的分析仪器科技企业之一,东西分析始终保持着精益求精的专注精神和强烈的社会责任感,积极投身于中国分析仪器这个伟大的事业中,取得了辉煌的业绩。2007 年推出的国内首台自主研发的商品化气质联用仪GC-MS 3100,更是中国分析仪器发展的一个里程碑,吹响了中国分析仪器走向高端科学仪器的进军号。 ●产 品 简 介空心阴极灯,又称元素灯,简称HCL(Hollow Cathode Lamp),是原子吸收光谱仪(AAS)中的关键部件之一。作为分析光源主要用来提供被测元素的锐线光谱,能发射待测元素的特征谱线,在较低工作电流条件下,能辐射强度较大的特征谱线,谱线宽度窄,自吸效应小,灯的辐射立体角小,在使用效果上近似于一个点光源,使灯辐射的特征谱线能量几乎全部从原子化器内通过,并进入单色器分光系统。本公司采用国际领先的阴极制作技术和真空处理工艺,产品具有特定元素的特征辐射谱线强度高而稳定,背景低,光谱纯净度高,噪音低,灵敏度高,稳定性好,牢固可靠,寿命长等特点,拥有一个独特的阴极杯系统使得灯管更快地达到平衡,同时更多地扩充了其内部气体容量,使其每一支空心阴极灯管都能达到最低5000 mA.h (毫安小时)的使用寿命,即使是砷和汞的元素灯。本公司通过采用可视化和光电化检测工艺以确保每一个空心阴极灯的高质量,每个灯都经过了严格的噪音、漂移、波长精度和能量的质量检测。本坊LTL系列空心阴极灯包括LTL-2、LTL-4、LTL-PE4、LTL-PE9、LTL-MF2、LTL-MF4、LTL-HP2、LTL-HP4、LTL-AF、LTL-AF-C等型号,产品覆盖国内外各型号原子吸收光谱仪器、原子荧光仪器用分析光源,无论您在寻找单元素还是多元素灯、无编码还是带编码灯、38mm (1.5")还是50mm (2")灯,我们都能够提供您与仪器原厂商来源的灯具有相同性能或比其高性能的元素灯,型号、规格与原厂完全匹配。北京龙天韬略科技有限公司,源自1978,专业专注,常年现货供应原子荧光光谱仪专用高性能高强度双阴极原子荧光空心阴极灯,厂家直供,现货供应,批发零售,诚征分销北京龙天韬略科技有限公司提供东西分析原子荧光灯,价格优惠,现货供应,欢迎订购
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制