当前位置: 仪器信息网 > 行业主题 > >

激光玻璃测厚仪

仪器信息网激光玻璃测厚仪专题为您提供2024年最新激光玻璃测厚仪价格报价、厂家品牌的相关信息, 包括激光玻璃测厚仪参数、型号等,不管是国产,还是进口品牌的激光玻璃测厚仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光玻璃测厚仪相关的耗材配件、试剂标物,还有激光玻璃测厚仪相关的最新资讯、资料,以及激光玻璃测厚仪相关的解决方案。

激光玻璃测厚仪相关的方案

  • 飞秒光纤激光器改善超薄玻璃和聚合物的加工
    为了克服激光玻璃和聚合物切割固有的挑战,Fluence的研究人员开发了一种使用超快飞秒光纤激光器的流线型技术。该方法提供了独立于方向的高速切割,具有高质量的边缘和减小的切口宽度,即使是厚玻璃也能达到每秒米的速度,并且不会产生碎屑/烟雾,对环境友好。测试表明,该方法适用于各种材料,包括蓝宝石,以及显示器和消费电子市场上的大多数玻璃应用,如移动设备的盖玻片和可折叠显示器的超薄玻璃(UTG)。对于UTG,结果表明,仅使用250fs脉冲就可以实现低于100nm的表面粗糙度。
  • 纳秒激光处理加工钠钙玻璃
    采用Ekspla公司的纳秒工业YAG激光器,型号Baltic对钠钙玻璃的微加工过程进行了研究。给出了激光加工参数和加工质量之间关系的重要信息。
  • 玻璃瓶测试壁厚及底厚测厚仪的方法
    玻璃瓶输液作为第一代输液产品,由于其生产工艺复杂,加之存在稳定性差、易产生玻璃屑、第二次污染机率高等缺陷,对人体健康形成潜在的隐患,而且玻璃瓶体重大,运输成本高,在运输过程中的碰撞易引起隐形裂伤,造成药物污染,这些缺陷,限制了其只能在本地区销售,再加上玻璃瓶在烧制时对环境污染较大及能源消耗量也很大,大输液瓶在生产的过程中成品瓶壁厚度过厚或过薄或厚度不均,会造成瓶容器的相关物理性能降低,同时,瓶壁瓶底过厚或较薄,生产时机速会很低,成产成本增加。检测输液瓶的壁厚是很有必要的
  • 在ITO玻璃上采用纳秒激光器处理薄金薄膜研制电化学传感器
    采用立陶宛Ekspla公司生产的纳秒短脉冲半导体泵浦的固体激光器-NL220.波长532nm.脉冲宽度35纳秒,重复频率500Hz.处理ITO玻璃上3-30nm厚的镀金薄膜。生成纳米颗粒,具有独特的电化学特性,可以用来制作电化学传感器。
  • 包装玻璃瓶的厚度测试方法
    1、 壁厚测量方法1 )调节BTG-01玻璃瓶壁厚测厚仪测量表头位置,使表头对正壁厚杆的测量头,将横梁固定。 2 )对正时,显示窗应有0.5-2.0mm的示数,按zero清零; 3 )轻拉测量表的拉杆头部,将表头抬起,将试样套在壁厚测量杆上,选好测量位置;4) 轻轻放下测量杆,并轻微调整测量位置,观察显示窗读数,记为壁厚值;
  • 利用折射率(RI)和激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)建立玻璃瓶种源验证(英文原文)
    采用激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)与传统的折射率(RI)测定方法进行了比较,确定了玻璃瓶的来源。单独使用RI方法,是不可能区分某些生产超过18天的玻璃瓶的,除非是同一个制造工厂制造的。此外,单瓶酒中RI的差异可能大到足以使仅使用这种技术的共种源建立无效。经过1个月收集的瓶中微量元素组成的测定证实,在此期间生产的单个瓶中微量金属分布变化极小。因此,从破碎的瓶子中提取的任何玻璃碎片的微量元素组成可以被认为是整个瓶子的元素组成的代表。此外,对56种分析物中大约38种的分布情况进行统计比较后确定,在同一工厂生产的两瓶玻璃瓶之间相隔两小时测量所得量是有区别的。利用这种方法,有可能开发出一种分析协议,以显著提高法医玻璃证据的准确性并确定来源。
  • 【天研】超声波测厚仪有哪些作用
    超声波测厚仪采用超声波测量原理,适用于能使超声波以一恒定速度在其里面传播,并能从其背面得到反射的材料厚度的测量。此仪器可对板材和加工零件做准确测量,另一重要方面是可以对生产设备中管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可应用于石油、化工、冶金、造船、航空、航天等各个领域。
  • 纳秒、飞秒激光剥蚀-高空间分辨率ICP-MS法准确测定硅酸盐玻璃中的多种元素(英文原文)
    尽管LA-ICP-MS有大量的成功应用,但是元素分离仍然是地球科学应用中的主要局限,这种局限在高空间分辨率分析中尤其突出。本研究采用193nm ArF准分子纳秒(ns)激光器和257nm飞秒(fs)激光剥蚀电感耦合等离子体质谱法,研究了硅酸盐玻璃NIST SRM 610和GSE-1G的元素分离和质量载荷效应。与在ns-LA-ICP-MS中观测到的相反,在fs-LA-ICP-MS中,16-24μ m的小粒子的分离效率低于40-60μ m的大粒子分离效率。在193nm准分子激光LA-ICP-MS中观察,硅酸盐玻璃材料NIST SRM 610和GSE-1G中的Li、Na、Si、K、V、Cr、Mn、Fe、Co、Ni、Cu、Rb、Cs和U的分离行为存在显著差异,利用257nm fs-LA-ICP-MS在高空间分辨率下消除了这些差异。此外,与ns-LA-ICP-MS相比,fs-LA-ICP-MS的质量负载效应和与基体相关的质量负载效应也有所降低。除Sb、Pb、Bi外,元素分离与所选的激光通量无关,与ns-或fs-LA-ICP-MS无关。在本研究中,选择24μ m光斑来测试LA-ICP-MS在高空间分辨率下的分析能力。我们使用fs-LA-ICP-MS对MPI-DING、USGS、NIST玻璃样片中的大部分元素的测试数据与参考值具有一致性,误差小于10%。对于ns激光剥蚀分析,其准确性高度依赖于使用的校准策略(传统的外部校准方法或100%氧化物归一化方法)和选择的外部参考物质(NIST SRM 610或GSE-1G)。与193nm准分子LA-ICP-MS相比,fs-LA-ICP-MS中较少的激光诱导元素分离和基体效应使其更适合于高空间分辨率硅酸盐材料的分析。
  • 天研分享-超声波测厚仪产品参数详解
    超声波测厚仪是一种用于测量物体厚度的设备,它利用超声波技术进行非接触测量。这些仪器通常用于工程、制造、材料测试和其他领域,具有以下主要特点:  非破坏性测量:超声波测厚仪可以在不破坏被测物体的情况下进行厚度测量。这使得它们非常适合用于检测金属、塑料、陶瓷等材料的腐蚀、磨损或损伤。
  • 采用飞秒激光消融MC-ICP-MS对NIST、USGS、MPI-DING和CGSG玻璃基准材料中的铅同位素比值进行了精确、准确的原位测定(英文原文)
    采用266 nm飞秒激光烧蚀(fLA)系统连接多集电极ICP-MS (MC-ICP-MS),通过严格控制分析程序,获得了具有良好精度和准确性的铅同位素比值数据。266nm飞秒激光烧蚀诱导的质量分馏率约比193nm准分子激光烧蚀(eLA)诱导的质量分馏率低28%。摘要采用调优Tl比的Tl归一化指数律校正方法,获得了具有较好精度和准确度的Pb同位素数据。NIST SRM 610、612、614玻璃参考材料的Pb同位素比值 USGS bhvog - 2g、BCR-2G、GSD-1G、bir1 g 采用fa - mc - icp - ms法测定MPI-DING GOR132-G、KL2-G、T1-G、StHs60/80-G、ATHO-G、ML3B-G。在2s测量不确定度范围内,测得的铅同位素比值与参考值或公布值吻合较好。利用飞秒激光消融MC-ICP-MS分析获得了GSE- 1G、GSC-1G、GSA-1G、CGSG-1、CGSG-2、CGSG-4、CGSG-5玻璃基准材料的高精度铅同位素资料技术。
  • 钠钙玻璃管制口服液体瓶壁厚底厚测试方案
    济南赛成研发的新款“CHY—G电子壁厚测厚仪”,核心元器件进口国外知名品牌,不仅可满足国家新版GMP标准,在技术的开发中同样有了质的飞跃。首先,测量中旋转角度位移可实时显示,能够保证测量的准确回位,这在之前的老款壁厚测厚仪中是无法实现的。此外,软件由电脑测控,可满足曲线图显示、数据保存、EXCEL统计,打印A4试验报告等功能,帮助用户更为直观、清晰地对测试结果进行分析,现广范应用于科研单位、食品、药品等行业各种瓶容器生产企业。
  • 【天研】穿透超声波测厚仪主要功能及技术参数
    穿透超声波测厚仪采用超声波测量原理,适用于能使超声波以一恒定速度在其里面传播,并能从其背面得到反射的材料厚度的测量。此仪器可对板材和加工零件做准确测量,另一重要方面是可以对生产设备中管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可应用于石油、化工、冶金、造船、航空、航天等各个领域。
  • 怎样解决薄膜测厚仪的准确性?
    薄膜厚度测试仪的出现给很多需要较好测量的企业提供了更好的设备支持,但是测厚仪在使用中难免会出现一些问题会影响到测量结果的准确性,出现这种情况后怎样来处理呢?本篇文章针对这些问题进行做一下介绍。
  • 激光钻孔( CCIT )微泄露无损泄漏测试仪
    为了进行泄漏测试孔系统验证,在玻璃和聚合物样品瓶/安龋中激光打微孔。可以创建一系列孔尺寸,以复制小瓶中的缺陷,以便在校准泄漏检测误备时使用。根据样品瓶/安甑的壁厚,孔的大小可小至1um。除了小瓶之外,箔片和泡置包装也可以进行激光钻孔。
  • 通过控制纳秒 193 nm 激光辐射的激光能量密度选择性剥蚀玻璃基板上的生物组织和单个细胞
    Selective ablation of biological tissue and single cells on a glass substrate by controlling the laser energy density of nanosecond 193 nm laser radiation. J Anal At Spectrom. 2019 34(10):1957–64.通过控制纳秒 193 nm 激光辐射的激光能量密度选择性剥蚀玻璃基板上的生物组织和单个细胞
  • 利用应用光谱的J200 LIBS建立司法鉴定玻璃的信心
    作为痕量证据的玻璃碎片有多种分析方法。玻璃的物理特性,如颜色、厚度、形状或纹理,可以作为第一次筛选进行直观研究。折射率(RI)也被用作将玻璃碎片与已知来源相匹配的技术。然而,单独RI不能区分某些玻璃类型。例如,浮法玻璃和容器玻璃的折射率值非常相似,尽管这两种玻璃具有非常不同的化学成分。此外,平板玻璃制造工艺的巨大改进,使得使用物理性质和RI的检测来区分非常相似的玻璃碎片的有效性降低。在法医学调查工具箱中加入元素分析可以显著提高玻璃鉴定结果的可信度。在玻璃制造过程中会添加不同的微量元素,如改性剂、着色剂、脱色剂或精制剂。因此,以高灵敏度分析玻璃碎片中诸如Li、B、Al、Ca、Mg、K、Sr、Ti、Fe和Zr等元素的能力,是充分利用元素分析进行玻璃鉴别的关键。激光诱导击穿光谱(LIBS)是一种新兴的基于等离子体光发射光谱的快速元素分析技术。与XRF和SEM-EDS相比,LIBS可以提供更高的检测灵敏度和测量更轻的元素。LIBS是一种保持样品完整性的微采样技术。LIBS的检测速度也非常快,单个样品的测量持续时间不超过几秒,这使分析人员能够收集大量的比较数据,以减少类型I(假阳性)和类型II(假阴性)的错误。本应用简报将重点介绍如何利用J200 LIBS有效地分析玻璃样品。
  • 超短激光脉冲与透明介质相互作用
    飞秒激光具有超短脉冲和超高电场强度两个特征。它已广泛应用于物理化学反应的动力学过程分析和热效应可忽略的超精细加工。在这个过程中,飞秒激光显示出与皮秒、纳秒脉冲不同的特性,如热影响区域小、作用效果能够超过光学衍射极限、良好的空间选择性等。这些特性在许多领域有着重要的应用价值,如超精细加工、微光子器件制造、医学精密手术、高密度三维光存储等。本文针对这一领域中的一些问题进行了讨论,特别是对飞秒激光脉冲与透明介质非线性相互作用进行了初步的研究。1分别使用脉冲宽度为ps和fs量级,波长为800nm,重复频率lkHz的激光脉冲,在熔融石英中形成了单发脉冲导致的损伤位点阵列。并对单个损伤位点,使用光学显微镜和图像传感器对其形态进行了观测。分析了激光照射后沿入射光方向将出现分立的损伤结构原因。另外,发现透明介质的材料损伤阈值与聚焦条件有关系,随着数值孔径的增加,阈值能量逐渐减小。2使用不同脉冲宽度的激光照射白宝石晶体,得到不同的损伤形态。白宝石在rlS激光脉冲作用下形成的典型的“米”字形结构,这与白宝石晶体结构相对应。在2.Ips激光脉冲作用下,晶体内部产生的“十”字形损伤。fs激光脉冲聚焦到白宝石内部时,出现“一”字形结构。损伤外型与偏振方向无关,显然不同脉宽的激光照射晶体产生不同的热效应。3近红外飞秒激光在石英玻璃照射后诱导产生色心,分析认为,在近红外飞秒激光强度低于宏观破坏阈值时,纯石英玻璃中SiE’心的形成主要是由于超短脉冲激光引起的焦点区域激光能量沉积和激子自陷引起的,属于玻璃网络的本征结构改变。4采用高温熔融法制备了银掺杂的锂铝硅酸盐微晶玻璃。经近红外飞秒激光照射和热处理后,通过显微镜观察及x射线衍射分析,发现玻璃内部形成以银原子为晶核的工f204,2033Si02多晶结构微晶,晶体细小,呈乳白色,为六方晶系。呈现空间取向分布结构。飞秒激光照射部位玻璃折射率发生明显变化,出现析晶:末照射部位折射率无明显变化,仍为玻璃体。
  • 台式LIBS分析仪 对玻璃中的硼元素进行分析
    很多轻元素(原子序数较低的元素)可以很容易通过激光诱导击穿光谱(LIBS)技术进行测量,但是却很难通过其它的技术进行测量,硼(B)元素就是其中之一。在以下测试中,使用了美国TSI 台式LIBS分析仪对样品进行分析,这些被用于分析的样品中,玻璃是直接取样于一个美国的矿业公司。为了做对照,实验还进行了硼硅酸盐玻璃(Borosilicate glasses)的重复分析。
  • 激光诱导击穿光谱(LIBS)技术 对液态玻璃进行过程控制时的在线成分分析
    测量速度快、非接触测量在许多情况下,只用一个激光脉冲就可以进行样品分析,所以LIBS系统能够非常快速地对大量样品进行快速分析。
  • 用偏光应力仪检测玻璃安瓿瓶应力值的方法
    玻璃安瓿瓶偏光应力仪又叫偏光应力仪YLY-02适用于各种玻璃器皿、玻璃容器、药用和食品包装用玻璃瓶等玻璃制品内应力值测定,仪器可定性和定量测试玻璃内应力,液晶屏可直接读取结果,设计小巧新颖,是制药企业、玻璃制品厂、质检机构首选测试仪器。
  • 利用光学隔离器消除激光模块早期故障
    拉曼光谱和成像是在研究和工业环境中询问样品的强大方法,适用于从质量控制(QC)到鉴定多晶型物,再到活细胞的无标记成像,以及化学过程监测应用。这是因为拉曼效应产生的光谱解析化学指纹数据类似于傅立叶变换红外(FTIR),但使用的是可见光和近红外波长的光,这些光可以通过玻璃纤维、透镜传输到水性样品中。随着三种技术的融合,准确测量拉曼光谱所需的工具完全改变了,这三种技术使紧凑的自给式光谱仪和显微镜成为可能。这三种技术是紧凑型高功率窄线宽半导体和固态激光器、消除相对强烈(Rayleigh)散射激光的全息和陡边长通滤波器,以及低噪声多元件光电探测器和相机。
  • 便携式涂层测厚仪技术参数详解版
    天研涂层测厚仪(镀层测厚仪)测量范围:0~5000um,是高新技术的结晶,它采用单片机技术,精度高、数字显示、示值稳定、功耗低、操 作简单方便、触摸按键、单探头全量程测量、体积小、重量轻 且具有存储、读出、统计、低电压指示、系统校准,其性能达到当代国际同类仪器的先进水平。
  • 去羟基增强玻璃的近中红外发光
    近中红外光广泛应用于光纤通信、医疗、遥感探测、说环境监控等应用领域,高效、稳定、紧凑的近中红外光光源是这些应用得以实施的基础。近中红外发光玻璃是制备近中红外光光源的核心材料,但是玻璃中含有的羟基是近中红外发光的淬灭中心与光吸收损耗的主要原因。怎样降低玻璃中的羟基含量成为提升近中红外发光玻璃的发光效率并降低光吸收损耗的重要方法。利用鼓泡法向玻璃液中通入去羟基试剂是目前降低玻璃中羟基含量的主要方法,但这种方法并不适合于所有基质玻璃材料,如掺铋发光玻璃、硫氧化物玻璃等,所以研究开发新的去羟基方法有利于开发新的近中红外发光材料,并开拓近中红外光的应用领域。
  • 上海凯来:台式LIBS分析仪 对玻璃中的硼元素进行分析
    很多轻元素(原子序数较低的元素)可以很容易通过激光诱导击穿光谱(LIBS)技术进行测量,但是却很难通过其它的技术进行测量,硼(B)元素就是其中之一。硬硼钙石(Colemanite)和硼钠钙石(Ulexite)就是两种一般作为玻璃工业原料的含硼矿物。在以下测试中,使用了美国TSI 台式LIBS分析仪对样品进行分析,这些被用于分析的样品中,硬硼钙石样品来自于一家跨国的玻璃公司,而硼钠钙石样品是直接取样于一个美国的矿业公司。为了做对照,实验还进行了硼硅酸盐玻璃(Borosilicate glasses)的重复分析。
  • 玻璃透光率测试
    反射/透射光谱是材料本身的一项重要光学特性,在现今工业蓬勃发展的背景下,对材料本身特性的质量控制越来越严格。光纤光谱仪由于采用光纤光路,解决了光路在仪器集成中的限制,并且由于Avantes的光纤光谱以具有体积小,稳定性高,支持软件二次开发,配件丰富等特点,已经成功的广泛应用于玻璃行业的测试。
  • 纸张测厚仪使用方法
    纸张测厚仪适用于各种单层或多层纸及纸板的测定。ISO534 纸和纸板——单层厚度的测定以及纸板紧度的计算方法ISO438 纸——层积厚度和紧度的测定GB/T 451.3 纸和纸板厚度的测定法GB/T 1938 松软纸厚度的测定法
  • X射线荧光光谱仪测定浮法玻璃渗锡量
    将熔窑中流出的玻璃液引流到锡槽中,理想的情况是玻璃经平面成型抛光,从而制得高质量低成本的浮法玻璃。然而在生产过程中锡离子也进入玻璃下表面即玻璃渗锡,成为浮法玻璃的固有缺陷。渗锡后玻璃的光散射及渗锡层和玻璃块体的折射率差异增大,且玻璃透光率也降低。经热处理后的玻璃表面2价锡被氧化成4价锡从而引起区域体积变化,形成玻璃缺陷。所以渗锡量是浮法玻璃渗锡过程的一个重要控制参数,通过波长色散X射线荧光光谱仪(WDXRF)建立校准曲线可以测定不同规格类型的浮法工艺玻璃,X射线荧光光谱法可以直接测定玻璃表面的锡层并得到对应的强度信息,进而算出较为通俗的厚度计量单位(ug/cm2),适用于玻璃表面的锡层厚度分析,从而达到快速控制生产的目的。
  • 3D打印纳米级光学级玻璃的无烧结低温路线
    3D打印纳米级光学级玻璃的创新无烧结低温路线通过引入多面体低聚倍半硅氧烷(POSS)树脂,结合双光子聚合(TPP)技术和飞秒激光加工,实现了在650°C低温下直接形成高质量熔融二氧化硅。该技术突破了传统高温烧结的限制,解决了石英玻璃在微纳米尺度上的加工难题,为微系统技术的发展提供了新思路。实验证明,该技术能够制造高精度、复杂的三维纳米结构,满足纳米光子器件对精度和表面质量的高要求。
  • 瓶测厚仪测试方法
    瓶壁厚度测试仪是PET饮料瓶、罐头瓶、玻璃瓶、铝罐等包装容器理想测量仪器;适用于纹路复杂的包装容器壁厚、底厚的精确测量。具有方便、耐用、精度高、价格低廉等优势。广泛应用于玻璃瓶、塑料瓶/桶生产企业及药品、保健品、化妆品、饮料、食用油、酒类生产企业。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制