当前位置: 仪器信息网 > 行业主题 > >

激光距离传感器

仪器信息网激光距离传感器专题为您提供2024年最新激光距离传感器价格报价、厂家品牌的相关信息, 包括激光距离传感器参数、型号等,不管是国产,还是进口品牌的激光距离传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光距离传感器相关的耗材配件、试剂标物,还有激光距离传感器相关的最新资讯、资料,以及激光距离传感器相关的解决方案。

激光距离传感器相关的资讯

  • 我国首个碱金属原子光学传感器专用激光器诞生
    日前,中科院长春光机所在国内首次研制出碱金属原子光学传感技术专用的795nm和894nm 垂直腔面发射激光器(VCSEL)。该器件采用完全自主的结构设计、材料生长和芯片工艺研制而成,芯片体积仅为0.05立方毫米(0.5mmx0.5mmx0.2mm)。器件高稳定单模态激光输出高于0.2毫瓦,工作电流低于1.5毫安,功耗低于3毫瓦,工作温度超过100℃,可作为核心光源用于芯片级原子钟、原子磁力计、原子陀螺仪等碱金属原子传感器。   基于原子光学技术的精密传感需要一些特定的波长(如795nm和894nm等)并且满足窄线宽、低功耗、可直接调制、单模和稳定偏振态的光源来激发碱金属原子。传统灯泵浦光源方案的传感器存在的体积大、功耗高、稳定性差等问题一直是困扰原子光学传感器小型化的主要难题。垂直腔面发射激光器(VCSEL)作为一种新型的半导体激光器,具有窄线宽、低功耗、高调制频率、小体积和容易集成等特征,因此基于VCSEL的相干布居俘获(CPT)方法使得原子光学器件的微型化和低功耗应用成为可能。   目前,国外只有个别实验室和公司具有制作该类原子光学传感器专用VCSEL的能力。中科院长春光机所大功率半导体激光组在十余年研究基础上成功制备出性能符合要求的VCSEL器件,为国内原子传感器的研制提供了必需的核心元器件并掌握了自主知识产权,目前正在与国内相关单位开展合作研究,促进芯片级原子传感器的产品开发。这些产品将应用于航天、国防以及民用领域,例如:精密计时技术、单兵卫星精确定位,长航时远距离惯性导航,高灵敏度水下金属磁场测量等。    795nm VCSEL 芯片(左)和TO46封装器件(右)
  • 蓝菲光学发布激光雷达(LiDAR)长距离灵敏度标准测试目标板新品
    激光雷达(LiDAR)长距离灵敏度标准测试目标板为什么灰色的卡片、织物和纸张会让你处于劣势? 在成像应用中,您选用的灰色目标板必须适用于各种照明环境,并且仍能保持其外观。 最重要的是,它必须具有均匀的光谱响应。 它还必须具有耐热和物理耐久性,紫外光稳定性,热稳定性,无光泽,无偏振和无荧光。 如果您使用的灰色目标板不符合这些要求,则需要Permaflect目标板。 Permaflect目标板可单独购买或购买蓝菲光学的LiDAR测试目标板套件。 大面积的暗、灰、白目标板是激光雷达系统动态范围内精确评估短程和远程灵敏度的理想目标。 蓝菲光学的标准LiDAR测试目标板套件包括三种反射水平:10%,50%和80%,坚固的便携箱,可容纳3块Permaflect目标板以及光谱反射和均匀性测试报告,方便存储和运输。特点:轻量级可定制均匀性好耐久性易于清洗应用:激光雷达(LiDAR)飞行时间(TOF)地面实况成像仪校准传感器/光源补偿灰纸的高级替代品Permaflect不同反射率漫反射板创新点:在成像应用中,您选用的灰色目标板必须适用于各种照明环境,并且仍能保持其外观。 最重要的是,它必须具有均匀的光谱响应。 它还必须具有耐热和物理耐久性,紫外光稳定性,热稳定性,无光泽,无偏振和无荧光。 如果您使用的灰色目标板不符合这些要求,则需要Permaflect目标板。 大面积的暗、灰、白目标板是激光雷达系统动态范围内精确评估短程和远程灵敏度的理想目标。 激光雷达(LiDAR)长距离灵敏度标准测试目标板
  • 空天院高光谱激光雷达团队 揭示新型主动光学传感器高光谱激光雷达辐射效应产生机制
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室牛铮研究员团队,在新型主动光学传感器高光谱激光雷达(hyperspectral LiDAR, HSL)辐射效应产生机制及相应校正算法研究方面取得重要进展。距离效应和入射角效应作为高光谱激光雷达面临的两大几何辐射效应,严重限制了其在定量遥感方面的应用。该团队研究发现,高光谱激光雷达距离效应和入射角效应分析及校正可以独立进行,并提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应,发展了一种改进的Poullain算法用以目标入射角效应分析和校正。上述研究得到了国家自然科学基金重点项目“植被生理生化垂直分布信息遥感辐射传输机理与反演研究”的支持,有关成果发表在遥感领域国际顶级期刊ISPRS Journal of Photogrammetry and Remote Sensing和IEEE Transactions on Geoscience and Remote Sensing上,第一作者为实验室博士研究生白杰。面对高光谱激光雷达主要几何辐射效应即距离效应和入射角效应校正的技术难题,团队自2020年起开展科技攻关,发现距离效应源于系统本身,所有波长拥有统一的距离效应函数,在此基础上提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应 而对于不同种类植被叶片目标,因其表面微观尺度物理结构和内部生化参数不同,因此通常表现出不同的入射角效应,该效应与被测目标种类在高光谱激光雷达条件下二向反射特性密切相关,因此该团队指出关于高光谱激光雷达入射角效应,更准确的表述应为“某一目标高光谱激光雷达入射角效应”,并发展了一种新的改进的Poullain算法,用以目标入射角效应校正。与传统基于各向同性散射假设的朗伯余弦定律和原始Poullain算法相比,该算法考虑了目标粗糙度因子和漫反射系数在不同入射角和波长下的异质性,更加符合自然目标物回波强度的反射特征,不同植被叶片实验显示,相对于标准0度入射角下的回波强度和反射率,校正结果标准差减少了30%~60%。有关算法为后续植被三维生化参数准确反演提供了重要的理论基础和技术支撑。目前,实验室已经完成具备高速采集能力的第二代高光谱激光雷达系统设计与研制工作,正在开展性能测试,预计2023年底投入使用。早在2014年,遥感科学国家重点实验室就设计、研制了具有完全自主知识产权的国际上首台32波段高光谱激光雷达系统。自此,相关团队围绕这一新型传感器持续开展研究,在高光谱激光雷达系统设计研制、数据获取与处理、辐射信息提取、辐射效应校正及植被三维生理生化参数反演等方面取得了丰富的研究成果,为我国抢占高光谱激光雷达设备研制与应用这一领域做出系统性贡献。
  • 高精度激光水气传感器成功应用
    p & nbsp & nbsp & nbsp & nbsp 日前,“高精度激光调制吸收水气传感器应用技术”科技成果在北京通过专家评审,中科院院士姚建铨等评委会专家一致认为,该系统首次在国内无人机高空湿度测量、文物领域高湿环境监测等开展应用,在文物领域的应用填补了国内外空白,达国际先进水平。而市场上存在的传统测量方法在低温、高湿情况下,存在分辨率低、迟滞和误差大等问题。 /p p & nbsp & nbsp & nbsp & nbsp 北京航天易联科技公司总经理李刚说,该传感器将国外传统水气传感器误差从± 5%提升到本传感器的± 1.5% 将传统传感器响应时间从10—30秒提升至100毫秒,实现了传感器技术的跨越 由于采用半导体光源,光源发出的检测气体特定光谱效率高,并使用信号处理算法,检测精度极高,可达1ppm(百万分之一)量级等。 /p p   此技术由北京航天易联科技发展有限公司、中科院半导体研究所、中科院电工研究所联合研发,具有多项核心自主知识产权。经多年研究和大量试验、测试,该传感器有稳定性和防爆性好、寿命长,环境适应性好等优势,可应用于气象环保、文物保护、石油化工等领域的湿气监测。 /p p br/ /p p br/ /p
  • 漫反射涂料/目标板蓝菲光学permaflect-标定无人驾驶激光雷达距离测试性能、无人机机载相机、基于激光扫描技术的食品分类处理设备
    漫反射涂料/目标板蓝菲光学permaflect-标定无人驾驶激光雷达距离测试性能、无人机机载相机、基于激光扫描技术的食品分类处理设备Labsphere(蓝菲光学) 发布的“漫反射涂层Permaflect”,进一步扩展了公司的漫反射材料和涂层产品线。这条产品线包含性能优异的Spectralon材料,Spectraflect涂料和Infragold镀金涂料。在此基础上,蓝菲光学为用户提供了涵盖多个领域的创新性应用解决方案,包括无人驾驶激光雷达校准、发光二极管(LED)、固态(SSL)照明,遥感,成像、消费相机、汽车、国防安全、健康和生物医学光学等。图1 蓝菲光学漫反射涂层Permaflect  蓝菲光学的Permaflect特有近朗伯特性的白色和灰色漫反射涂层,专门针对恶劣的环境、天气及其他可能影响典型漫反射涂层性能的场合而设计,其反射率范围在5%~94%。  蓝菲光学首席技术专家Greg McKee指出:“从医疗仪器使用的一次性基准物到成像传感器的基准目标板,蓝菲光学可定制漫反射涂层的应用是极其丰富的,且其性能也是无可比拟的。”  除了提供Permaflect涂层原材料,蓝菲光学也提供各种尺寸的Permaflect漫反射目标板。在野外各种苛刻的条件下,这些目标板无疑是比白纸或者白布更好的选择。 Permaflect提供了一种传统目标板无法比拟的替代方案,更轻、更均匀、更耐用。”Mckee评论说。漫反射涂层Permaflect推出后受到了客户的广泛赞誉。其被广泛应用于多个领域:(1)Permaflect目标板应用于校准激光雷达距离测量性能Matthew Weed, Luminar 技术研发总监曾讲到:“为部署安全的自动驾驶车辆,Luminar 的客户要求激光雷达系统能够在200多米的距离内对低至10%反射率的目标物实现精确测距。我们通常在200多米的距离上使用蓝非光学的permaflect目标板,来验证我们的产品是否满足客户严苛需求。针对顾客严苛的技术要求条件,蓝菲光学仪器有限公司产品总是不断优化创新,生产出的Permaflect ® 目标板满足激光雷达关键性能因素。图2 Permaflect目标板应用于校准激光雷达距离测量性能图3 无人驾驶激光雷达图4 典型8/H Permaflect漫反射板反射因子 (2)Permaflect产品用于标定其基于激光扫描技术的食品分类处理设备 由于其无可替代的优异性能,在食品加工和工业过程自动化行业的某国际知名企业已大批量订购了Permaflect产品,用于标定其基于激光扫描技术的食品分类处理设备。 图5 食物在线分检图6 基于激光扫描技术的食物分检设备 (3)Permaflect漫反射板应用于无人机机载相机的标定 漫反射涂层Permaflect进入中国市场后,其在恶劣环境下的高品质性能备受国内用户的瞩目。  相对于柯达灰卡,漫反射涂层Permaflect在更宽广的谱段上提供平坦的反射率特性,而且具有良好的刚性和平面度,防潮防水性能优异,面幅选择多(标准品最小0.5m x 0.5m,最大1.2m x 2.4m,其他面幅可定制),又相对较轻,因此适用于各种环境。目前,漫反射涂层Permaflect已经被中科院某研究所用于野外环境下对无人机机载相机的标定。图7 无人机图8 无人机机载相机图9 Permaflect和柯达灰卡的反射光谱对比
  • 四方光电激光扬尘传感器助力打赢蓝天保卫战
    p   根据“两会”期间公布的2020年政府工作报告,今年要实现单位国内生产总值能耗和主要污染物排放量继续下降 深化重点地区大气污染治理攻坚 要打好蓝天、碧水、净土保卫战,实现污染防治攻坚战阶段性目标。 br/ /p p   2020年是打赢蓝天保卫战、“十三五”规划的全面收官之年,我国大气污染治理进入攻坚“深水期”,剩下的都是难啃的“硬骨头”。作为一直以来的重点和难点,扬尘污染治理已然成为大气污染防治目标完成与否的关键点之一。 /p p   扬尘治理,需对症下药 而把脉问诊,监测为先。高性能的扬尘传感器对实现扬尘全面监测、精准治理、降低成本等多方面的重要性不言而喻。 /p p    span style=" color: rgb(0, 176, 240) " strong 扬尘传感器的需求及应用现状 /strong /span /p p   行业发展初期,扬尘监测设备多基于β射线吸收法,然而受仪器体积较大、成本高昂等因素掣肘,量大面广的需求无法得到真正满足。 /p p   基于光散射原理的粉尘传感器,在民用室内检测应用中,经历了从采用LED光源和扩散式采样,用于粉尘浓度变化的趋势检测,到升级为激光光源和风扇采样,可以精确检测PM2.5数值的创新发展过程。然而针对室外扬尘监测还需要PM10和TSP的精准监测要求,则无法得到满足。 /p p   因此,能够同时准确测量PM2.5/PM10/TSP、体积小、购买和维护成本低成为了扬尘监测设备配套传感器面临的主要挑战。 /p p    span style=" color: rgb(0, 176, 240) " strong 室外扬尘颗粒物监测的技术难点 /strong /span /p p   ① 与β射线原理的设备保持较高的线性相关性 /p p   国站监测设备采用的是β射线原理,其他的扬尘监测站的监测数据必须要与其保持高度一致性,但由于原理上的差异,要做到这一点,传感器需要采用更高性能的器件,有效提升颗粒物识别的能力。 /p p   ② 满足室外-30℃~70℃的工作温度要求 /p p   温度对传感器激光管的影响非常大,然而室外温度范围更宽,夏天在太阳下暴晒,温度可能会到达70℃ 冬天北方严寒地区最低温度可能达到零下30℃。这就要求传感器在此温度下不仅能够正常工作,还要确保检测的准确性。 /p p   ③检测精度不受水雾影响 /p p   由于室外环境经常会遇到凝霜与露水的情况,这些水汽进入到传感器后会严重影响到传感器的测量值,甚至会造成传感器永久损坏。 /p p   ④长期使用,精度不受积灰影响 /p p   扬尘传感器工作在室外,大颗粒的灰尘经过传感器采样风道内会受到重力影响附着在传感器内部,长期使用,会使得灰尘在传感器内部大量堆积,影响到测量准确性。 /p p    span style=" color: rgb(0, 176, 240) " strong 四方光电激光扬尘传感器的技术特点 /strong /span /p p   四方光电基于创新的光散射技术研究,陆续推出红外粉尘传感器、激光粉尘传感器等系列传感器产品,广泛应用于室内、室外及车内检测等领域。 /p p   在此基础上,四方光电针对扬尘传感器的应用场景,以及不同地方标准需求,推动技术革新升级,成功研发扬尘颗粒物传感器PM3003S及 PM3006。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/578caa97-49a6-4d7e-9c5f-e5fc398bc203.jpg" title=" 222_副本.jpg" alt=" 222_副本.jpg" / /p p style=" text-align: center " 图1:PM3006S(左)及 PM3006(右)激光扬尘传感器 /p p    strong 1、 扬尘颗粒物智能识别技术(API技术) /strong /p p   PM3003S,PM3006采用了独特的API(Auto Particle Identification,自动颗粒识别)技术,在多种尘源下进行标定,根据检测到的颗粒物分布进行自动判断,确保PM2.5、PM10和TSP的检测精度。 /p p style=" text-align: center" img style=" width: 580px height: 393px " src=" https://img1.17img.cn/17img/images/202006/uepic/bb9423a3-a58f-4a20-924e-5ae69424f42a.jpg" title=" 11.jpg" width=" 580" height=" 393" border=" 0" vspace=" 0" alt=" 11.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/8ddb10c0-114d-496b-bd0c-6b33eaad613f.jpg" title=" 22.jpg" / /p p    strong 2、 高温、恒功率、线型激光管 /strong /p p   PM3003S、 PM3006激光扬尘传感器采用了工作温度在-30~70℃的恒功率、线型光源,其光功率高达100mW,相比点光源高出20倍以上,原始信号更强,大大提升了颗粒物的识别效率。同时对光源采用了恒功率控制,保证原始信号的稳定输出,确保测量的稳定性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e6860d1a-bc80-4215-b684-13ef739fa43c.jpg" title=" 33_副本.jpg" alt=" 33_副本.jpg" / /p p style=" text-align: center " 图2:室外扬尘传感器与民用粉尘传感器光源差别,左:高功率线型光源,右:低功率点光源 /p p    strong 3、 自带除水雾装置,不受水汽影响。 /strong /p p   四方光电研制的PM3003S、 PM3006激光扬尘传感器前端配套了除湿装置,防止室外环境中细小的水珠进入检测气室,消除水汽对扬尘传感器的精度影响。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0c10a2cf-ddd2-450c-bf4b-330c21a12571.jpg" title=" 44_副本.jpg" alt=" 44_副本.jpg" / /p p    strong 4、 创新结构设计,长效防积灰。 /strong /p p   PM3003S、 PM3006激光扬尘传感器通过流体力学仿真对采样风道进行了长效防积灰结构设计,经过实际验证,可以减少室外环境对传感器检测精确度的影响,降低后期维护成本。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/efa66063-7146-489b-88b2-af426b89892a.jpg" title=" 66.jpg" alt=" 66.jpg" / /p p   我国室外扬尘网格化监测经历了早期的β射线吸收法,到采用民用净化器大量应用的激光粉尘传感器的过程。在使用过程中发现,民用的激光粉尘传感器不仅不能满足-30~70℃室外环境温度的全天候使用要求,同时还必须面对监测场所,特别是建设工地经常喷洒降霾的水雾影响,或者下雨潮湿的气候环境等。这种环境下,水雾经常被判断为严重雾霾造成爆表。同时网格化室外粉尘监控希望得到局部的可以与国家大气环境监测网数据具备的PM2.5/PM10/TSP的多项参数对比, 民用激光传感器由于激光功率小,采样流量小, PM10分辨率很低,无法提供准确的PM10, 通常采用根据PM2.5的数字进行比例计算,造成PM10监测数据失真。四方光电研制的PM3003S、 PM3006激光扬尘传感器通过采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样机构、高湿度环境的水雾去除装置等,低成本地实现了对室外扬尘粉尘与β射线吸收法达到0.9相关系数的高精度测量。 /p p br/ /p
  • 科技部重大专项“激光高温湿度传感器研发”启动
    9月19日,国家科技部重大科学仪器设备开发专项——“面向复杂工况的激光高温湿度传感器研制及产业化”项目启动仪式在北京召开。该项目牵头单位——北京航天易联科技发展有限公司项目负责人在启动仪式上宣布:将用两年时间,突破包括湿度大动态范围自适应测量技术在内的4项关键技术、成功研制工作温度在20℃~350℃的激光高温湿度传感器并最终实现产品化和工业化推广应用。 p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/b65a533d-af10-4879-9e93-fcc6b8f4c5f8.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " 项目启动会现场 /p p   “激光高温湿度传感器研制及产业化”项目的主要任务是研发面向复杂工况条件的激光高温湿度传感器。该类激光湿度传感器基于TDLAS技术(可调谐半导体激光吸收光谱技术的简称)实现湿度的测量。19日上午举行的启动仪式上,该项目专家组负责人、我国著名激光和非线性光学专家、中科院院士姚建铨言简意赅地介绍了TDLAS技术的基本原理:即基于每种气体存在吸收特定波长光的现象,通过特殊波长的激光光源照射气体,气体吸收使之强度变弱,判断变弱程度计算气体浓度。相比于传统测量方式,在高温环境下使用该技术进行湿度测量,具有无交叉干扰、测量范围大、精度高、实时测量等优势,可实现高温湿度实时监测。该传感器一旦研制成功,可提升我国高温湿度监测水平,提高环保排放测算准确性、工业过程节能减排。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/129a5385-e382-4fc9-9137-e4a0196ea234.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " 中科院院士姚建铨担任该项目技术专家组组长 /p p   启动仪式上,来自科技部、航天科技集团、北京经济技术开发区、中国航天空气动力技术研究院的相关领导参加了该活动。科技部高技术研究发展中心的专家介绍了项目研制及产业化相关政策并同时表示,开展该仪器专项研制就是要解决我国环保、工业过程控制等多个领域高温湿度准确测量的难题。“高温环境下湿度测量,其准确性直接影响环保领域计算排放总量或工业生产领域过程控制效率。以环保领域为例,工业锅炉排放的污染物浓度测算需要测量烟气湿度。因此,烟气含湿量测量的准确性直接影响排放总量,影响国家环保指标考核。” 高温湿度测量如此重要,但其技术实现的难度却非常大,正因为如此,该项目于今年8月获批科技部重大科学仪器设备开发专项申请。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/1b8a8bca-d7e5-4b8a-9dae-a47cb33ad7d1.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center " 项目组负责人、北京航天易联科技发展有限公司总经理李刚在汇报项目实施方案 /p p   根据国家重大专项研发的相关要求,此次启动仪式一项重要议题就是由项目牵头单位——北京航天易联科技发展有限公司向技术专家组和用户委员会汇报项目具体实施方案。此前,航天易联已经开展四年 TDLAS技术研发,具备相关基础,并于2016年6月开展高精度TDLAS湿度测量技术的成果评价,技术水平达到国际先进。该公司负责人李刚在汇报中对研究背景、目标、研究内容、技术路线、科研团队及研究基础、预期成果、项目研究周期等做了详尽汇报。据他介绍,项目组将围绕测量环境湿度大、工况干扰因素多(腐蚀气、静电、烟尘、液滴等)、缺乏高温高湿标定技术及恶劣工况下器件可靠性等关键问题,突破湿度大动态范围自适应测量技术、复杂工况多波长测量控制技术及激光器温度电流控制技术,研制工作温度20℃~350℃的激光高温湿度传感器,开展示范应用改进优化,达到烟道气、废气、锅炉汽等高温湿度实时测量的目的,实现最终传感器产品化、产业化。 /p p   来自环境监测、无线电、仪表仪器等相关领域的技术专家组和由电力、环保、航天、石化等行业用户组成的用户委员听取了项目组汇报,审阅论证材料并进行质询,同时针对产品示范应用阶段提出了相关建议。经过项目组答疑,专家组和用户委员会讨论后认为:方案目标准确,内容翔实,技术路线可行,一致同意该方案通过评审,建议尽快组织实施,围绕典型代表性工况开展更具针对性的设计开发、示范应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/e5c3f041-6316-4495-ae98-f28eafd252ed.jpg" title=" 4_副本.jpg" / /p p style=" text-align: center " 与会嘉宾了解TDLAS产品 /p p   据了解,该项目研发是航天易联与中科院半导体研究所、中科院电工研究所、武汉市天虹仪表有限责任公司的强强联合。北京航天易联科技发展有限公司是航天科技集团公司第十一研究院控股公司,具有四年TDLAS技术研发基础,拥有三款具有自主知识产权产品,承担项目传感器研制和产业化工作 中科院半导体研究所在半导体激光器研发领域一直处于我国领先行列,为本项目研制小型化半导体激光器 中科院电工研究所长期从事电力电子控制研究,擅长信号处理、仪器设计,为本项目开发核心算法和测量技术 武汉市天虹仪表有限责任公司在环保仪器设备领域有近二十年的科研开发经验,为本项目现场测试、示范应用推广提供有力支撑。 /p p   在项目实施方案中,研发团队提出:将在两年时间内,将本项目开发的激光高温湿度传感器应用在便携式烟道气参数测量仪、烟气排放连续监测系统和工业过程气湿度分析仪器中,开展5项示范应用,解决我国环保、工业过程控制等多个领域高温湿度准确测量难题。同时,形成自主知识产权,申请发明专利3项,文章1~3篇,标准1项。完成传感器质量体系文件,技术就绪度达到9级,开展产业化推广,项目完成后三年内实现年销售500套,年销售额2500万。 /p
  • 立仪科技获数千万A轮融资,专注研发光谱共焦传感器
    3D工业视觉传感器供应商立仪科技获得浩澜资本独家投资的数千万人民币的A轮融资,据悉,本轮融资将主要用于市场拓展、新品研发及补充流动资金。立仪科技成立于2014年,是一家专注于精密光学检测的公司,旗下有光谱共焦传感器等产品。公司的点共焦传感器已经量产,且服务多家头部客户;线共焦产品原型机已打样,正研发商业量产版本。主流的3D工业视觉的技术路线包括线激光、光谱共焦、条纹结构光、TOF、双目等技术路线。光谱共焦传感器是目前市场精度最高且能应用于各种特性的表面和复杂形状测量场景的新型传感器,其市场主要被基恩士等国外厂商占据,但国产率较低。光谱共焦传感器的原理是通过使用特殊的透镜及光学系统,拉开不同颜色光的焦点分布范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射波的波长,就可以得到被测物体到透镜的精确距离。光谱共焦目前正处于技术迭代周期。激光技术的研发目前已逐渐见顶,而市场对测量传感器的需求越来越广,市场需求正从人工监测向自动化监测产品发展。与传统的激光相比,光谱共焦技术精度较高,且材料适应性更广,稳定性更高。立仪科技创始人兼CEO刘杰波表示:“我们之前曾做过三维激光扫描研究,过程中意识到激光扫描很难完成一些对高精度扫描有需求的测试任务,便开始向光谱共焦转向。”目前,立仪科技有点共焦位移和线共焦位移两类传感器产品,产品型号超百种。点共焦传感器上,立仪科技在拿到天使轮融资后,于2019年完成点共焦原型产品的量产。至今,公司的点共焦已经迭代到第三代,进入华为、三星、苹果供应链。除在产品设计上有着多项创新外,公司还开发了为国外禁止出口的激光干涉光谱共焦校准仪等专用仪器工装,且工艺经过量产验证,能帮助产品更好生产。在性能上,其传感器可以做到光强提高200%,线性度提高200%,反射干扰降低50%。价格上,产品售价比国外产品低。产品示意图公司2020年开始研发线共焦产品,目前已有原型机,是已能完成三维形状物体的扫描,具有精度高材料适应性好、无盲区、效率高等优点,可广泛应用于半导体、新能源、3C等领域。本轮融资完成后,立仪科技也将集中精力,研发商业化量产版本线共焦产品。未来,公司还将继续研发高光谱+AI传感器和光纤传感器。
  • 无锡中科光电“基于激光光散射谱技术的智能传感器的产业化”项目 入选国家火炬计划
    近期,科技部印发了2014年度国家星火计划、火炬计划、重点新产品计划和软科学研究计划立项清单。无锡中科光电技术有限公司的“基于激光光散射谱技术的智能传感器的产业化”成功入围国家火炬计划创新性产业集群项目。 本项目产品创新采用双波长三通道探测技术,发射20mJ高能量双波长激光,其中355nm激光因波长与细颗粒物直径相仿,散射截面大,回波信号强,特别适合灰霾等细颗粒物的探测;同时,532nm波长是人眼最敏感的波段,这一波长的颗粒物消光与大气能见度息息相关,其测量结果与视觉主观感受基本一致。接收望远镜收集颗粒物和云等对激光的后向散射回波,通过355nm回波信号以及532nm的垂直和平行偏振信号,分析颗粒物消光和退偏振特性,再结合其它信息,反演出颗粒物质量浓度的空间分布和边界输送通量。解决了微脉冲雷达霾层穿透能力差、回波信号弱、反演精度低的缺点,同时提高了对细颗粒物的探测能力,最小可探测粒径达5nm。 注:国家火炬计划项目,是以国内外市场需求为导向,以国家、地方和行业的科技攻关计划、高新技术研究开发计划成果及其他科研成果为依托,以发展高新技术产品、 形成产业为目标,择优评选并组织开发的具有先进水平和广阔的国内外市场及较好经济效益的高科技项目。其重点发展领域是:新材料、生物技术、电子与信息、光 机电一体化、新能源、高效节能与环保。
  • Advacam公司近日签下自由电子激光探测器(AGIDP)倒焊与传感器制造合同
    Advacam公司近日签下自由电子激光探测器(AGIDP)倒焊与传感器制造合同 ADVACA近日签下了AGIDP模块的倒接合同。AGIDP是增益自适应、积分、像素探测器的缩写,是一种为欧洲X射线自由 电子激光设计的X射线成像探测器,该X射线自由电子激光器位于德国汉堡的DESY。我们可以将AGIDP探测器系统理解为超高速的相机,而这一相机的时间分辨率为数百纳米秒。 “AGIPD是一种高速,低噪的积分探测器,并且在每一像素上都拥有自适应增益放大器。当它探测单个光子事件,并调节增益状态使动态范围优于10^4(@12KeV)时,其所产生的等效噪音是小于1keV的。在Burst模式下,该系统可在运行频率高达6.5 MHz的同时储存352张图像的,完全能够适用于帧频为4.5MHz的欧洲X光自由电子激光器。点击了解更多” 制作过程包括倒装焊接技术制成162个2×8多芯片硅模块,以及在25个传感器晶片上加工,大小为10.77 cm x 2.8 cm,厚度为500um的的单片硅传感器。目前使用硅传感器的混合像素探测器的发展趋势是生产更大的模组,而这些传感器已经是Advacam采用基于步进光刻技术所制造的最大的传感器了。在过去的两年里,硅传感器的制造工艺已经得到了完善,并有望获得高质量的图形和高的电产量。最终,该模块将被用于研究待测样品在7至15 keV的散射花样。(图1 对于首批AGIDP2×8硅模块中某一样品进行的辐射测试。可看出凸点键合成品率近乎完美。) 将项目授予Advacam公司,意味着公司将被视为一个值得信赖的像素探测器装配和传感器制造的合作伙伴。类似的倒装焊接技术曾在过去被成功使用过,但Advacam是首个将倒装焊接技术和传感器制造服务结合的公司。该产品是对小型R&D活动的一个成功延续,这一活动是为DESY和工业领域的客户所设计的。AGIDP业务预计将会创造该公司2019年25%至35%的营业额。图二 一批2x8 Si AGIPD模块准备运往DESY
  • 重要通知!天美收回英国爱丁堡公司 气体激光器、气体传感器 两个产品线代理权
    2019年起,天美(中国)科学仪器有限公司将全面收回英国Edinburgh Instruments (爱丁堡仪器有限公司,以下简写为EI)气体激光器和气体传感器的代理权。至此,爱丁堡仪器所有生产线产品都将由天美自己的销售团队负责销售和服务。  自2013年天美集团收购爱丁堡之后,EI已成为天美集团的全资子公司。不过天美的销售团队之前只负责最大业务部门—光谱产品的销售。这次销售渠道整合,将爱丁堡仪器的气体激光器、气体传感器两大产品线收回,相信能够带给用户更好的技术支持和服务。  EI气体激光器主要生产并供应各类红外及远红外气体激光器,其中包括CO激光器、CO2激光器、脉冲TEA-CO2激光器及远红外太赫兹(THz)激光器。其产品具有波长可调,光束质量优良,稳定性高等特点,在科研领域具有广泛应用。  EI在气体传感探测领域,积累具有30余年丰富的生产制造经验,具有高技术的工作团专长于NDIR气体传感器设计生产一系列的NDIR气体分析仪和OEM气体传感器,产品出口到50多个国家。可广泛应用于农业,畜牧业,泄露检测,垃圾填满,水质检测/TOC等众多工业生产领域。 气体传感器 https://www.instrument.com.cn/netshow/SH103008/Product-C0-38314-0-1.htm 气体激光器 https://www.instrument.com.cn/netshow/SH103008/Product-C0-38315-0-1.htm (如需了解更多产品型号及信息,可通过仪器信息网和天美公司官网咨询)关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 北京怀柔仪器和传感器有限公司受邀参加超强激光源助力怀柔高端科研装置发展院士专家圆桌论坛并做特邀报告
    2023年11月10日,北京光学学会与北京工业大学科协、北京工业大学理学部、北京市科学技术协会创新服务中心等单位在中国科技会堂联合主办“超强激光源助力怀柔高端科研装置发展院士专家圆桌论坛。北京怀柔仪器和传感器公司受邀参会。 为具体贯彻北京市科协引导高端智力资源为重点区域及行业高科技企业发展出谋划策的精神,此次论坛邀请北 京光学学会理事长、中科院理化技术研究所研究员许祖彦院士、中国光学光电子行业协会名誉理事长、中国电科集团公司第十一研究所首席专家周寿桓院士、北京科技社团中心副主任李纯鸣、北京市科学技术协会创新服务中心王妮娜部长、北京光学学会常务副理事长、北京工业大学副校长翟天瑞教授、北京大学电子信息工程学院张志刚教授等多位业内知名专家出席并致辞。 此次论坛包括三个特邀报告和一个圆桌对话环节,论坛特邀报告环节由大会执行主席北京交通大学延凤平教授主持。中国工程院许祖彦院士做了《深紫外激光仪器》的报告,系统介绍了深紫外前沿科学装备的发展及在国家重大专项的支持下,我国在紫外科学装备研制领域的成果。中国电子科技集团公司第十一研究所眭晓林研究员代周寿桓院士做了《基于光频调制的动目标指示(MTI)激光雷达》的报告,介绍为了解决动目标指示(MTI)激光雷达出现的盲距和距离模糊问题,对激光测距发射波形、本振波形以及解算方法进行的研究。 北京怀柔仪器和传感器有限公司总工程师刘海锋《激光技术与光学仪器在大科学装置中的应用机遇与挑战》报告,全面介绍了怀柔科学城和怀柔大科学装置布局,超强激光与加速科学、超快激光、激光时空测量、生物医学成像、地球数值模拟等大科学装置对激光技术和光学仪器的需求,及面临的重大机遇和挑战,刘海锋总工程师向全国的专家学者、企业家、在校生发出邀请,欢迎大家莅临怀柔共享怀柔科学城大装置资源和发展机遇,共同建设北京怀柔综合性国家科学中心和北京国际科技创新中心。 圆桌对话环节由北京大学张志刚教授主持。中科院半导体研究所全固态光源实验室主任林学春研究员、中科院物理研究所滕浩研究员、北京工业大学科协秘书长、北京工业大学科学技术发展院闫健卓副院长、北京工业大学怀柔科教融汇基地筹建办公室吴奇副主任、大恒星图(北京)激光技术有限公司杨帅帅总经理、北京光学学会常务副秘书长万玉红教授作为特邀嘉宾发言。各位专家围绕怀柔大科学装置的建设与运营、超强激光技术如何助力怀柔大科学装置发展、怀柔科学园区科研合作、科技创新、科技成果转化模式等问题进行了探讨。在张志刚教授风趣幽默的主持下,大恒星图杨帅帅总经理分享了来怀柔“图”什么的思考,在怀柔科研创业的美好经历和成绩,同时对园区运营单位给予的贴心帮助和专业服务表达衷心感谢。刘海锋总工程师还细心解答了张志刚教授关于怀柔区轨道交通规划、怀柔区人才政策、多模态跨尺度生物医学成像装置进展、太瓦激光器产业化前景等问题,为来怀工作科研、创新创业的人士提供了专业指导,广泛引起了在场专家、企业家来怀柔调研考察的热情。 在京高校、科研院所、怀柔科学城科技企业等各领域专家、嘉宾60余人现场参加此次圆桌论坛,相关领域专家学者逾万人通过蔻享学术线上直播参与本论坛。与会人员论坛期间与报告人展开了积极的讨论、探讨合作意向,受益匪浅。本次院士专家圆桌论坛为与会者提供了一个了解科学前沿、展示研究成果、推进产学研用合作的高水平交流平台,为激光技术助力怀柔科学城发展注入了新鲜的活力。北京怀柔综合性国家科学中心 怀柔科学城是北京加强全国科技创新中心建设主平台“三城一区”之一,规划范围约100.9平方公里,以怀柔区为主,并拓展到密云区的部分地区。战略定位是世界级原始创新承载区,是国家发展改革委、科技部联合批复的北京怀柔综合性国家科学中心的集中承载地,综合性国家科学中心是怀柔科学城的显著特色和明显标志。主要围绕物质科学、信息与智能科学、空间科学、生命科学、地球系统科学五大科学方向,力争实现率先突破。重点推进“五个一批”,即:建成一批国家重大科技基础设施和交叉研究平台;吸引一批科学家、科技领军人才、青年科技人才和创新创业团队;集聚一批高水平的科研院所、高等学校、创新型企业;开展一批基础研究、前沿交叉、战略高技术和颠覆性技术等科技创新活动;产出一批具有世界领先水平的科技成果,提高我国在基础前沿和交叉科学领域的原始创新能力和科技综合实力。北京怀柔仪器和传感器有限公司:北京怀柔仪器和传感器有限公司是怀柔区高端仪器装备和传感器产业研究与产业发展国有平台公司,未来将持续围绕北京怀柔综合性国家科学中心建设,聚焦高端仪器装备和传感器等硬科技领域,以“科创平台+科技服务+基金投资”为核心业务及抓手,提供专业化研究与咨询服务、专业化中试平台服务,应用场景构建服务等,引导高端仪器和传感器产业领域的技术、人才、资本、服务等创新要素聚集,打造产业发展创新生态。
  • 涉及半导体、激光器、传感器等,美商务部对俄罗斯出口实施全面限制
    24日,美国商务部通过其工业和安全局(BIS)对俄罗斯进一步入侵乌克兰做出了回应,实施了一系列全面的严格出口管制,这将严重限制俄罗斯获得维持其侵略性军事能力所需的技术和其他物品。这些控制措施主要针对俄罗斯的国防、航空航天和海事部门,并将切断俄罗斯获得重要技术投入的机会,使其工业基础的关键部门萎缩,并削弱其在世界舞台上施加影响的战略野心。国际清算银行的行动,以及财政部的行动,是拜登-哈里斯政府对俄罗斯侵略迅速而严厉回应的一部分。当天宣布的出口管制措施是商务部出口当局对美国物品(包括技术)以及针对单个国家使用美国设备,软件和蓝图生产的外国物品的最全面应用。国际清算银行针对俄罗斯的出口管制措施对莫斯科国防、航空航天和海运业所依赖的敏感物品实施了拒绝政策。这些物品,其中许多以前在运往俄罗斯时不受控制,包括半导体,计算机,电信,信息安全设备,激光器和传感器。制裁措施还对49个俄罗斯军事最终用户实施了严格的控制,这些最终用户已被添加到BIS的实体清单中。欧盟、日本、澳大利亚、英国、加拿大和新西兰已宣布计划实施实质上类似的限制,并免除对其本国生产的物品的新要求。
  • 打造智能传感产业大平台、大中心、大生态,2021世界传感器大会展会盛况直击!
    2021年11月1-3日,由中国科学技术协会、河南省人民政府主办,中国仪器仪表学会、郑州市人民政府、河南省科学技术协会、河南省工业和信息化厅、河南省发展和改革委员会、河南省科学技术厅、中共河南省委外事工作委员会办公室承办的2021世界传感器大会-展览会在河南省郑州国际会展中心隆重举办!本次展览会近10000平展出面积,近200家国内外企业积极参展,展览会将以传感器研发创新为核心,以传感器系统集成与应用为切入点,涉及传感器应用、标准发展和相关元器件,产业链上下游的关联企业同台展示传感器产业生态圈。松下作为中国工业自动化生产的行业领军者,通过精研传感器科技、精化传感器生产进一步占领传感器产业发展高地,现场展示CMOS型微型激光位移传感器HG-C、接触式数字位移传感器HG-S、超高速・高精度激光位移传感器 HL-C2等最新成品和技术。西门子作为世界500强,这次参展的产品主要有压力、温度、流量,分析表等。在行业中应用广泛,比如石化、冶金、电力、水行业等。易福门展示的产品有位置类的:电感式接近开关,光电开关,激光测距传感器;过程类的:液位、压力、流量、温度传感器;以及R360移动控制器,安全光幕,安全继电器、振动传感器等新产品。万可现场展示了丰富的自动化控制技术产品、工业接口模块及采用笼式弹簧连接技术的轨装式接线端子等创新产品,可满足物流行业智能化发展对设备的自动化及电气连接提出的更高要求。作为电子测试测量行业的佼佼者,福禄克公司的6个事业部联合参展,将携众多重量级产品亮相此次展会。届时用户将有机会近距离的了解到福禄克高端产品,同时现场将会有专家为用户答疑解惑。作为大会东道主的汉威科技集团,本部坐落于河南郑州。本届大会上,汉威携各类优质高效的传感器及其检测方案、物联网解决方案及其行业垂直应用等在2021世界传感器大会 1003 展位上精彩亮相,吸引了众多嘉宾驻足。产品介绍,应用交流,使得这抹蓝色成为现场最具人气的展台。目前高通除了展示汉字库信息处理芯片以外,有6000多家应用案例,在这个应用案例的过程当中,接触到各行各业,高通并做了很多终端的产品和部件,如今物联网已经遍布全世界,而且物联网的应用会越来越广。现场直播逛展环节世界传感器大会已经连续成功举办三届,依托“一会、一赛、一展”等系列活动,吸引了一大批权威的院士专家和知名的企业关注郑州,聚集了智能传感器产业发展的郑州共识,促进了人才成果、项目研发机构、技术标准等创新资源的聚集共享,大会已经成为国内外传感器产业创新发展的知名盛会。
  • 大连理工大学陈珂:高精度光纤光声气体传感器及装置
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。大连理工大学 陈珂副教授本次会议中大连理工大学陈珂副教授介绍了其课题组在光纤光声气体传感技术及应用方面开展的一系列工作(点击回看》》》),得到与会老师的关注和认可。会后,我们也再次邀请陈珂副教授分享大连理工大学光纤光声传感研究团队的系列成果。1、成果简介大连理工大学光纤光声传感研究团队开展了光纤声波/振动传感技术和光声光谱微量气体检测技术的应用基础研究工作。在光纤传感技术研究方面,首次提出并设计了超高灵敏度光纤悬臂梁声波传感器,信噪比相比于传统电学麦克风提高了1-2个数量级;研制出超高速振动/声波传感解调仪器,采用光谱解调法实现了200 kHz的解调速度,将解调算法集成到FPGA中,大幅度提升了解调的稳定性。在光声光谱技术研究方面,将光纤声波传感器用于光声信号探测,提出了干涉型光纤声波锁相探测方法,设计了新型的光纤悬臂梁增强型光声光谱仪器,实现了对多种微量气体的超高灵敏度检测。研究了基于光纤光声传感的变压器油中溶解气体原位检测技术,研究了气体绝缘设备中六氟化硫分解产物的光纤光声检测技术,并在多个变电站开展了示范应用。根据变压器油中溶解气分析和煤矿瓦斯突出应用需求设计了多套激光光声光谱多组分气体分析仪器,掌握了目前世界上唯一的高瓦斯背景中多组分微量气体光学检测技术。成果1:光纤振动/声波传感器及解调仪器设计的光纤振动/声波传感器采用MEMS悬臂梁结构,具有灵敏度高、稳定性好的特点。研制了基于光谱解调的超高速光纤法布里-珀罗(F-P)传感解调仪,在FPGA中集成光谱采集、光谱相位解调等功能,显著提升了解调速度和稳定性。成果2:光声光谱变压器油中溶解气体分析仪针对高电压油浸式变压器油中溶解气体分析需求,研制了多套激光光声光谱气体分析仪。其中对油中溶解乙炔气体的检测极限达到0.05μL/L。,同时课题组还开发了光声光谱油中溶解气体原位检测仪,可以直接将光声传感器安装于变压器取油口。 成果3:光纤光声传感解调仪器本团队创新性地将光纤F-P声波传感器用于微弱光声信号探测,研制了多套光纤光声传感解调仪器。在FPGA中集成了相位解调算法、数字锁相、激光调制等功能。对乙炔气体的检测极限可达到ppt量级。 成果4:光声光谱煤矿自然发火监测仪研制的光声光谱煤矿自然发火监测仪,可对多种特征气体进行同时测量。检测指标如下:乙炔:0.5ppm;乙烯:1ppm;一氧化碳:1ppm;乙烷:5ppm;甲烷:0.1%;二氧化碳:0.1%成果5:高精度光声光谱环境气体分析仪开发的二氧化氮和二氧化硫气体分析仪,可对环境中痕量气体进行实时监测。二氧化氮气和二氧化硫气体的检测限分别达到1ppb和10ppb。下图中实验数据是开发的二氧化氮气体分析仪与环境监控站的对比结果。成果6:多通道同步FPGA数字锁相放大器针对光谱探测中微弱光信号检测需求,开发了多通道同步FPGA数字锁相放大器。采用定制的线阵探测器对光谱进行同步快速读取,光功率检测极限达到10fW量级,动态范围达到120dB。2、产业化探索本团队开发的光谱检测、光纤传感类检测仪器具有较高的技术成熟度。在电力、石化等行业具有较好的应用前景。3、课题组未来研究计划光声光谱与光纤传感技术结合后,具有本质安全、抗电磁干扰、灵敏度高、可远距离探测以及多点测量等优势。本课题组将重点研究光纤光声传感技术中的基础科学问题以及工程应用关键技术。欢迎电力、石化、煤矿和环境监测等相关科研院所和公司联系我们。联系人:陈珂(大连理工大学)Email:chenke@dlut.edu.cn课题组介绍陈珂,大连理工大学光电工程与仪器科学学院副教授,博士生导师,大连市青年科技之星,光纤光声传感团队负责人,主要从事光纤传感、激光光谱和微弱信号检测等方面的研究工作。担任中国光学工程学会光谱技术及应用专委会委员,中国电气工程学会测试技术及仪表专委会状态监测学组委员,国家自然科学基金通讯评审专家。工作近8年来,共主持科研项目32项,其中,国家自然科学基金面上项目等国家级项目2项,省部级项目2项,大连市高层次人才创新支持计划项目1项,企业合作项目20余项;在Analytical Chemistry、Optics Letters等期刊上发表SCI/EI论文93篇,其中第一/通讯作者论文63篇;已申请和授权发明专利43项,其中第一发明人专利21项。
  • 应用案例 | 基于环形阵列永磁体的法拉第旋转光谱NO2传感器
    近日,来自中国科学院安徽光学精密机械研究所、中国科学院沈阳应用生态研究所、中国科学技术大学、法国蓝海岸大学法国滨海大学的联合研究团队发表了一种基于法拉第旋转光谱的、采用环形阵列永磁体NO2传感器。Recently, the joint research team from Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Institute of Applied Ecology, Chinese Academy of Sciences, University of Science and Technology of China, and Université du Littoral Cô te d’Opale published a NO2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets.法拉第旋转光谱(FRS)通过检测沉浸在外部纵向磁场中的气体介质所引起的线偏振光偏振状态的变化,从而实现对顺磁分子的高选择性和高灵敏度检测。该光谱检测方法对水汽、CO2等抗磁性分子具有天然的免疫力,这使得其表现出高度的样品特异性。同时,由于采用了一对相互接近正交的偏振器极大抑制了激光噪声,因此法拉第旋转光谱具有非常高的检测灵敏度。Farraday Rotational Spectroscopy (FRS) achieves highly selective and sensitive detection of paramagnetic molecules by detecting the changes in polarization state of linearly polarized light induced by the gas medium immersed in an external longitudinal magnetic field. This spectroscopic detection method exhibits inherent immunity to diamagnetic molecules such as water vapor and CO2, which results in a high degree of sample specificity. Additionally, the implementation of a pair of closely spaced orthogonal polarizers effectively suppresses laser noise, thus providing FRS with a very high detection sensitivity.通常情况下,使用螺线管提供纵向磁场来产生磁光效应。然而,这种方法存在功耗过大和易受电磁干扰的缺点。研究团队提出了一种基于钕铁硼永磁体环形阵列和Herriott多次通过吸收池相结合的新型FRS方法。根据磁场的空间分布特性,使用14个相同的钕铁硼永磁体环以非等距形式组合,产生纵向磁场。在长度为380毫米的范围内,平均磁场强度为346高斯。宁波海尔欣光电科技有限公司为该项目提供了前置放大制冷一体型碲镉汞红外探测器(HPPD-B-08-10-150 K),项目团队使用量子级联激光器以40毫瓦的光功率,针对最佳的441 ← 440 Q支氮氧化物跃迁(1613.25 cm–1,6.2 μm)。与Herriott多次通过吸收池耦合,积分时间为70秒,实现了0.4 ppb的最低检测限。实验结果也表明,低功耗FRS二氧化氮传感器有望发展成为一个稳健的现场可部署的环境监测系统。Usually, a solenoid coil is used to provide a longitudinal magnetic field to produce the magneto-optical effect. However, such a method has the disadvantages of excessive power consumption and susceptibility to electromagnetic interference. The research team proposed a novel FRS approach based on a combination of a neodymium iron boron permanent magnet ring arrayand a Herriott multipass absorption cell is proposed. A longitudinal magnetic field was generated by using 14 identical neodymium iron boron permanent magnet rings combined in a non-equidistant form according to their magnetic field’s spatial distribution characteristics. The average magnetic field strength within a length of 380 mm was 346 gauss. HealthyPhoton Co.,Ltd provided an integrated TE-cooled mercury cadmium telluride (MCT) infrared detector with front-end amplification(HPPD-B-08-10-150 K) for this project. A quantum cascade laser was used to target the optimum 441 ← 440 Q-branch nitrogen dioxide transition at 1613.25 cm–1 (6.2 μm) with an optical power of 40 mW. Coupling to a Herriott multipass absorption cell, a minimum detection limit of 0.4 ppb was achieved with an integration time of 70 s. The low-power FRS nitrogen dioxide sensor proposed in this work is expected to be developed into a robust field-deployable environment monitoring system.静态磁场法拉第旋转光谱传感装置Static magnetic field Faraday rotation spectral sensing device海尔欣前置放大制冷一体型碲镉汞红外探测器(HPPD-B-08-10-150 K)Integrated preamplifier and cryocooler type mercury cadmium telluride (MCT) infrared detector环形阵列永磁体及其纵向磁场分布特征Circular array permanent magnets and their longitudinal magnetic field distribution characteristics(a) 对于等距离的NdFeB永磁环阵列,模拟得到了中央纵向磁场的分布情况。(b) 对于非等距离的NdFeB永磁环阵列,模拟得到了中央纵向磁场的分布情况(黑线),并进行了实测(红线)。(c) 示意图显示了Herriott腔和非等距离的NdFeB永磁环阵列的配置。(a) Simulated distribution of the central longitudinalmagnetic field for an equidistant NdFeB permanent magnet ring array (b) simulated (black line) and measured (red line) distributions of the central longitudinal magnetic field for a non-equidistant NdFeB permanent magnet ring array (c) schematic configuration of the Herriott cell and the non-equidistant NdFeB permanent magnet ring array.法拉第旋转光谱信号及其信噪比与检偏器偏转角度的变化关系The Relationship between FRS signal and its SNR and the Deflection Angle of the Polarizer(a) 法拉第旋转光谱信号幅度(b) SNR作为分析器角度α的函数(a) FRS signal amplitude and (b) SNR as a function of the analyzer angle α.Reference:Yuan Cao, Kun Liu, Ruifeng Wang, Xiaoming Gao, Ronghua Kang, Yunting Fang, Weidong Chen,NO2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets, Anal. Chem. 2023, 95, 2, 1680–1685https://doi.org/10.1021/acs.analchem.2c04821Copyright © 2023 American Chemical Society
  • 聚焦I四方光电激光光谱技术的十年布局,助推高端气体分析仪器国产化提速
    在第一台激光器诞生60多年后的今天, 随着激光光源、探测技术、实验装置和数据处理等各方面技术的飞跃发展, 激光光谱技术作为微观感知领域的核心技术, 已经成为物理、化学、生物、环境以及天文学等领域中研究光与物质相互作用的重要手段, 从实验室基础研究到各领域应用第一线都扮演着无可替代的角色。拉曼光谱技术早有布局,突破工业过程气体分析技术瓶颈在工业过程气体监测领域,傅里叶红外(FITR)、质谱(MS)、气相色谱(GC)等原理的气体分析仪各有优点。傅里叶红外技术一个气室很难适合不同的量程,也无法分析H2、02、N2甚至不同的碳氢化合物;质谱分析技术对于同质量的气体分子识别度很低;气相色谱分析需要载气,对于不同类型气体需要切换不同的分离柱。而得益于激光技术的普及以及各种高精度光谱分析模块的出现,激光拉曼光谱气体分析技术发展迅速。该产品主要定位于石油天然气、页岩气、石化、大型煤化工等工业过程高端市场。四方光电副总经理、高级工程师石平静向记者介绍:随着我国对大型能源装备国产化要求的提高,针对高端气体分析仪器领域进口替代需求,为加快解决激光拉曼光谱气体分析仪在不同行业的应用问题,公司早在2012年就开始着手激光拉曼光谱气体分析仪的研究,并作为牵头单位实施国家重大科学仪器设备开发专项“激光拉曼光谱气体分析仪器的研发与应用”项目。通过开发专项的研发,四方光电形成了包括光路及光谱分析、拉曼信号增强、拉曼分析测控软件、智能算法等技术,解决了激光器功率、温度、压力等外部因素的波动对测量精度的影响问题,共获授10项发明专利。通过拉曼信号增强的技术突破及自主研制宽光谱范围的拉曼光谱分析模块,四方光电激光拉曼光谱气体分析仪可以满足天然气多组分快速同步分析。分析时间由原先行业的100秒至几十分钟缩短为10秒,提高了10倍以上;可快速测量CH4、C2H6、C2H4、C2H2、C3H8、C3H6、C4+、CO、CO2、H2、O2、N2、H2S、H2O、CH3OH、CH3-NO、NO等十余种气体,用一台激光拉曼光谱气体分析仪,配套采用不同应用场景的行业应用软件,就可以解决天然气页岩气成分、煤气化、高炉转炉焦炉、石油炼化等工业流程多组分气体在线监测的行业难点。图1:四方光电激光拉曼光谱气体分析仪(左:实验室台式分析仪 右:在线防爆型分析系统)深耕TDLAS技术,筑就气体分析产业高地近红外和中红外光谱区域新激光器的可用性又推动了气体测量传感器的发展,这些传感器现在广泛应用于工业过程。基于可调谐二极管激光吸收光谱 (TDLAS) 分子,如 O2、CH4、H2O、CO、CO2、NH3、HCI和HF,可以在连续、实时操作中以高选择性和灵敏度进行原位检测。使用波长调制光谱 (WMS) 等灵敏的检测技术,通常可以在1秒的积分时间内进行低 ppb和ppm浓度测量。检测限值可以通过使用抽取式采样和长的多通道池来提高。当前TDLAS 已成为工业过程中用于困难测量任务的公认技术,因为它与高温、高压、粉尘水平和腐蚀性介质兼容,可以确定气体浓度、温度、速度和压力。石平静表示,基于四方光电气体传感技术平台,打造高端气体分析科学仪器是公司重要的长期战略。公司深耕激光TDLAS技术研究多年,旨在提升基于激光光谱测量技术的专业能力,进一步聚焦实验室和过程分析领域,实现业务可持续性发展,为工业客户提供从产品研发和工艺流程设计,到生产制造和质量控制的全方位专业支持。基于对TDLAS技术及激光器的自主研发,公司推出了GasTDL-3100高性能原位激光过程气体分析仪,采用对射式设计,响应时间快速,在原位式测量中以秒计算,可在线及时反应被测气体O2、CO、CO2或者CH4浓度,避免了采样式测量带来的时间延迟;在高温、高粉尘、高水分、高腐蚀性、高流速等恶劣测量环境下具有良好的适应性;气体浓度不易失真,测量精度高。可以广泛用于冶金、石化、水泥、电力、环保等行业。图2:四方光电TDLAS原位激光过程气体分析仪依托激光核心技术积累,发力环境气体监测正当时在环境监测烟气排放领域,基于TDLAS可调谐半导体激光吸收光谱技术,公司开发了GasTDL-3000激光氨逃逸气体分析仪,适用于在线监测脱硝工艺出口NH3的浓度,采用高温伴热抽取技术,可以有效降低气体冷凝损耗,实时准确地反应逃逸氨的变化,为环保监测提供可靠数据支持。图3:四方光电TDLAS激光氨逃逸气体分析仪“近年来,TDLAS激光气体检测技术以其高效、方便和卓越的通用性也正成为目前解决煤矿瓦斯、燃气报警等环境问题的研究热点”,石平静还告诉记者,在工业领域和日常生活中甲烷一直被广泛应用 ,是典型的易燃易爆气体,及时精准检测,对工矿安全运行、人身安全及环境保护有着十分重要的作用。TDLAS全光学设计、灵敏度高、电绝缘性好、不受电磁干扰、易于微机连接、能实现远距离传输,在易燃易爆物集散地、高温等极端环境中具有不可比拟的独特优势,是目前最有前景的一种甲烷监测传感技术。目前国内外市场上的甲烷传感器种类繁多,TDLAS调谐激光式方法相比于催化燃烧和氧化物半导体三种方法,是一种比较高端的甲烷测量方法,具有精度高、范围大、响应速度快、抗干扰、稳定性好,环境适应性高。近日,四方光电研发推出的一款激光甲烷气体传感器,按管廊标准要求进行设计,可应用于地下管廊(网)、地下井室石油化工、燃气生产运输等有甲烷气体的环境。图4:四方光电TDLAS激光甲烷传感器十年厚积,以激光光谱技术夯实高端医疗呼吸机用氧气传感器领导力地位四方光电坚持“1+3”发展战略,医疗健康气体传感器领域成果转化能力进一步提高,目前有制氧机超声波氧气传感器(取代传统的氧化锆氧气传感器)、激光氧气传感器(取代电化学和顺磁氧气传感器)、超声波肺功能检查仪等。氧气传感器是呼吸机、麻醉机的重要关键部件,开发高性能的医用氧气传感器,打破国外主流呼吸机企业和国外传感器供应商的技术垄断非常必要,是实现高端医疗呼吸机、麻醉机真正国产化的必要条件。呼吸机用氧气传感器国内目前主要采取电化学与顺磁测量氧气浓度,前者使用寿命短,通常使用一年就需要更换,且用一段时间会有偏差,需要不定期校准;后者价格昂贵,对气体压力比较敏感,需要进行压力补偿。针对目前呼吸机用氧气传感器存在的缺陷和技术难点,四方光电基于TDLAS可调谐激光光谱技术原理,就激光器选型与封装技术、氧气传感器控温及驱动电路设计、快速响应微小型气室设计以及信号解调及算法处理等多个方面进行研究,研制出具有较高精度、高稳定性、快速响应的激光氧气传感器,该产品替代同类进口产品,加快补齐我国高端医疗装备的短板,实现自主可控。 图5:四方光电快速激光氧气传感器写在结尾四方光电长期专注于气体传感器以及高端气体分析仪器的研发和产业化,依托省级技术中心、湖北省气体仪器仪表工程中心两个技术平台,四方光电积极融入国家技术创新体系,先后获得国家科技部创新基金重点项目、国家重大科学仪器专项、工信部物联网发展专项、湖北省重大技术创新项目、武汉市重大科技成果转化项目等多个项目的支持,逐步建立了包括红外、紫外、热导、激光拉曼、TDLAS、超声波、电化学、MEMS金属氧化物半导体等原理的气体传感器技术平台,这个平台为四方光电的高端气体分析仪器国产化提供了强有力的动力。最新发展的激光拉曼光谱、可调谐半导体激光吸收光谱TDLAS 等气体分析技术,配合公司常年发展积累的红外、热导、顺磁等原理的气体分析仪器技术,四方光电已经形成我国自有自主知识产权的高、中端完整的气体分析仪器应用解决方案,将大力推动钢铁冶金、煤化工、石油炼化、天然气等国家战略产业以及医疗健康等领域高端装备的国产化。
  • 千亿传感器市场引角逐
    今年以来,全球几大消费电子巨头纷纷发力抢占以智能眼镜及智能手表为代表的可穿戴设备市场。而在本轮可穿戴设备的追逐热潮中,传感器已然成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。据美国《华尔街日报》的报道显示,苹果即将发布的iWatch智能手表就将整合至少10种传感器,这无疑将对传感器市场的大热进一步起到推波助澜的作用。此外,前瞻产业研究院在此前发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》中,曾预测2013-2017年中国传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。分析人士表示,苹果等巨头的示范效应叠加传感器市场规模超千亿,都将推动国内传感器市场加速发展,相关概念大概率将获得资金青睐。   iWatch将成传感器大热催化剂   据外媒报道,最近Sensoplex公司的首席执行官Hamid Farzaneh在采访中对iWatch中可能出现的传感器进行了推测。作为一家新型可穿戴产品设计和供应传感器模块公司,Sensoplex在此领域非常具有发言权。   据悉,Farzaneh专门对这10种传感器进行了分类,有五种可能性比较大,而另外五种则是较有可能。其认为,几乎肯定会被整合进iWatch的传感器,包括加速度传感器、陀螺仪、磁力计、晴雨表/气压传感器及环境温度传感器。   Farzaneh指出,加速度传感器似乎已经成为智能手机的标配,而iWatch将使用加速度传感器测量身体运动,并且可以记录用户步数以及睡眠习惯。而陀螺仪是一款不可缺少的组件,可以侦测转动。陀螺仪获得的数据可以与锻炼逻辑算法相互协作 而且陀螺仪还能让iWatch&ldquo 感知&rdquo 用户,比如举起手腕准备看表时,屏幕自动亮起。气压传感器则不仅仅可以向用户提供更准确的天气数据,还可感知海拔高度的变化,对于跑步爱好者和登山爱好者来说,海拔高度数据非常重要。   针对比较有可能被整合进iWatch的传感器,Farzaneh认为,包括心率监控仪、血氧传感器、皮肤电导传感器、皮肤温度传感器以及GPS。   除此之外,据《华尔街日报》报道称,台湾厂商广大电脑将成为iWatch的主要生产商。而LG将为苹果智能手表独家提供显示屏,这种屏幕拥有2.5英寸,为长方形设计,且呈拱形,支持触摸以及无线充电功能等特点。   iPhone 6或搭载气压计及   传感器装置   据科技博客9to5mac报道,当前业界关于苹果下一代iPhone的传闻正沸沸扬扬,似乎iPhone 6将采用更大的屏幕设计、重新启用金属面板等,已是板上钉钉的事情。近期又有知情人士爆料,iPhone 6可能将搭载运动气压计和大气传感器装置。   据介绍,在通常情况下,气压计是用来测量位置高度的一个装置,这一传感器已经普遍存在于常见的Android设备上,比如三星的Galaxy Nexus手机。对于徒步旅行者、登山者、骑行和一些希望能够获取自己当前位置精确高度的发烧友来说,气压计传感器装置很实用。当然,通过一些气压数据,气压计同时可以预测气温和天气状况。   业内人士表示,&ldquo iPhone 6可能将搭载运动气压计&rdquo 的传闻并非空穴来风,在苹果最新的软件开发工具包Xcode 6和iOS 8操作系统的代码上,可以找到相关信息。其中的CoreMotion APIs上,赫然显示有高度测量功能。   此外,在当前的苹果应用商店内,已有几款可以跟踪高度的应用存在,这些应用基于现有的GPS芯片和运动跟踪芯片。不过,据相关开发人员称,Xcode 6 和iOS 8中的高度测量基于新的技术框架,需要有新的苹果硬件支持。   上述开发人员称,iOS 8操作系统对新的测量高度的硬件支持,意味着苹果将在未来发布的iOS设备中嵌入这一新功能,这些设备不仅包括今年秋季推出的iPhone 6,还有可能覆盖新的ipad,甚至iWatch。   此外,开发人员在iOS 8上还找到了环境压力跟踪参数,根据这些参数,除了根据气压可以确定高度外,还可以分析周边降水或天气阴晴状况。开发人员称,未来iOS设备的这种天气预测功能。   5000亿市场引角逐   应该说,传感器已经成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。以谷歌眼镜为例,其内置了多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速等传感器的应用,这让谷歌眼镜实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可以完成拍照。虽然谷歌没有透露具体的技术细节,但是业界专家都认为,这主要是因为谷歌眼镜内置了红外传感器和距离传感器,在两者的有机结合下,用户眼睛活动被识别,从而最终实现对应用的操作。   而在可穿戴设备智能化升级的过程中,MEMS传感器是传感器发展的必然趋势。MEMS被称为微机电系统,主要包括传感器和执行器两类,广泛应用于包括智能手机、平板电脑和可穿戴设备等在内的消费电子领域。分析人士表示,各类传感器功能性的全融合将成为传感器的研发方向,未来可穿戴产品终端前景的发展将取决于传感器等产业链上游技术的提升,其中,MEMS创新应用将是可穿戴设备发展的源泉。   另外,早在去年,前瞻产业研究院发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》就曾预测,2013-2017年传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。   具体而言,传感器制造行业研究小组认为,传感器制造行业的下游主要应用领域包括工业检测、汽车、医疗、环境保护、航空航天等。鉴于传感器制造行业下游市场给力,我国传感器制造行业的前景值得期待。其一,传感器在机械行业将会有广阔的应用前景。未来机械行业将会广泛全面地应用信息技术,加快产品更新换代,提高产品技术含量,缩短与国际先进水平的差距,在机械产品中融入传感器、单片机、微处理器、PLC、NC、数字通信接口以及激光等现代信息技术和高新技术,提高产品的机电一体化、数字化、智能化和网络化的程度,使产品的技术含量、知识含量、附加值得以提高。其二,随着传感器技术作为物联网的核心技术,家电物联网的发展必定会带动相关传感器技术的大规模应用,传感器在家电领域的发展前景也十分广阔。其三,在疾病的早期诊断、早期治疗、远距离诊断及人工器官的研制等广泛范围内发挥作用的大趋势之下,传感器在这些方面将会得到越来越多的应用。
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • PM2.5的测试方法及PM2.5传感器的工作原理
    细颗粒物又称细粒、细颗粒、PM2.5。细颗粒物指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物。它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重。虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。与较粗的大气颗粒物相比,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。目前测量PM2.5的方法主要有以下5种:一种:红外法和浊度法红外由于光线强度不够,只能用浊度法测量。所谓浊度法,就是一边发射光线,另一边接收,空气越浑浊光线损失掉的能量就越大,由此来判定目前的空气浊度。实际上这种方法是不能够准确测量PM2.5的,甚至光线的发射、接收部分一旦被静电吸附的粉尘覆盖,就会直接导致测量不准确。这种方法做出来的传感器只能定性测量(可以测出相对多少),不能定量测量(因为数值会飘)。更何况这种方法也区分不出颗粒物的粒径来,所以凡是用这种传感器的性能都相对要差一些。第二种:激光法和粒子计数法就是激光散射,而不是直接测量浊度,这一类的传感器共同的特点就是离不开风扇(或者用泵吸),因为这种方法空气如果不流动是测量不到空气中的悬浮颗粒物的,而且通过数学模型可以大致推算出经过传感器气体的粒子大小,空气流量等,经过复杂的数学算法,最终得到比较真实的PM2.5数值,这一类传感器是激光散射,对静电吸附的灰尘免疫,当然如果用灰尘把传感器堵死了,自然也不可能测到。第三种:Beta射线法Beta射线仪是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。Beta射线法颗粒物监测仪由PM10采样头、PM2.5切割器、样品动态加热系统、采样泵和仪器主机组成。流量为1m3/h的环境空气样品经过PM10采样头和PM2.5切割器后成为符合技术要求的颗粒物样品气体。在样品动态加热系统中,样品气体的相对湿度被调整到35%以下,样品进入仪器主机后颗粒物被收集在可以自动更换的滤膜上。在仪器中滤膜的两侧分别设置了Beta射线源和Beta射线检测器。随着样品采集的进行,在滤膜上收集的颗粒物越来越多,颗粒物质量也随之增加,此时Beta射线检测器检测到的Beta射线强度会相应地减弱。由于Beta射线检测器的输出信号能直接反应颗粒物的质量变化,仪器通过分析Beta射线检测器的颗粒物质量数值,结合相同时段内采集的样品体积,最终得出采样时段的颗粒物浓度。配置有膜动态测量系统后,仪器能准确测量在这个过程中挥发掉的颗粒物,使最终报告数据得到有效补偿,接近于真实值。第四种:微量振荡天平法微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。流量为1m3/h,环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。5、重量法我国目前对大气颗粒物的测定主要采用重量法。其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。由于红外法测量PM2.5的传感器性能较差,且Beta射线法、微量振荡天平法、重量法三种方法的原理应用比较困难且价格较高,所以市面上比较多的是采用激光散射原理来测量PM2.5浓度的PM2.5传感器。 建大仁科空气质量变送器RS-PM-*-2是一款工业级通用颗粒物浓度变送器,采用激光散射测量原理,通过独有的数据双频采集技术进行筛分,得出单位体积内等效粒径的颗粒物粒子个数,并以科学独特的算法计算出单位体积内等效粒径的颗粒物质量浓度,以485 接口通过 ModBus-RTU 协议进行数据输出。可用于室外气象站、扬尘监测、图书馆、档案馆、工业厂房等需要PM2.5或 PM10浓度监测的场所。
  • 拉曼光谱无创血糖检测距离实用还有多远?
    近日,多家媒体就三星及苹果公司正在研发的可检测血糖的智能穿戴设备进行报道,据悉,这两家公司最新款的智能手表可能将借助光学传感器,采用拉曼光谱法进行人体血糖无损检测。消息一出,引来多方关注和议论,为此我们采访了多年从事光学无损检测相关研究的清华大学物理系联合培养博士后王成铭,请其为我们答疑解惑。王成铭博士  王成铭,物理学博士,现任北京鉴知技术有限公司光学工程师,毕业于清华大学物理系低维量子物理国家重点实验室,清华大学物理系联合培养博士后。多年从事光学相干层析成像(OCT)临床应用方向,有丰富的临床医学合作经验,就光谱方法在血糖检测中的应用做过深入研究。  仪器信息网:采用拉曼光谱法检测血糖是否可行?  王博士:方法原理是可行的,使用激发光照射皮肤后收集得到的拉曼光谱(经皮测量)可以反映出皮肤组织中的许多化学物质,例如真皮内的胶原蛋白,真皮下脂肪中的三油酸甘油酯,表皮角质层的胶质蛋白,皮肤血管中的血红蛋白,以及分布于组织液和血液中的葡萄糖等。在血糖无创检测的诸多光学方法之中,拉曼光谱法因其能检测葡萄糖的特征谱,是未来最有希望实现高精度测量血糖浓度的方法之一。拉曼经皮测量无创血糖检测示意图  Pandey, Rishikesh, et al. "Noninvasive monitoring of blood glucose with raman spectroscopy." Accounts of chemical research 50.2 (2017): 264-272. 葡萄糖分子位于皮肤真皮层中的组织液与血液中,葡萄糖的浓度可从其产生的拉曼光谱信号推断。  仪器信息网:请介绍目前拉曼光谱法检测血糖的最新研究进展?  王博士:麻省理工学院(MIT)在使用拉曼光谱测量无创血糖已研究了20多年,他们系统研究了皮肤拉曼光谱的成分、经皮血糖探测的定量化分析和矫正算法、动物血糖测量临床实验等等。去年三星和MIT研究人员在SCIENCE ADVANCES杂志上发表了最新的无创血糖检测的研究,通过对猪的活体葡萄糖钳制实验,从猪耳的拉曼信号图中直接观测到了葡萄糖的拉曼特征峰及其随血糖浓度的变化,这终结了长久以来关于拉曼光谱测量得到的是否是真实的葡萄糖浓度信号的争论,也为这项技术的应用带来一大突破。  除MIT外,还有一些公司曾经或正在尝试将拉曼血糖检测技术产品化,包括C8 Medisensors,Diramed, LLC和RSP Systems等。C8 Medisensors公司曾推出的可穿戴拉曼无创血糖检测设备  仪器信息网:拉曼光谱法检测血糖在实际应用中还有哪些问题亟待解决?  王博士:虽然利用葡萄糖的多个拉曼特征峰与皮肤组织中的其他物质信号峰的差异可做定量分析,但这一研究距离实际应用仍有一定的距离,主要有以下几个难题:  ①葡萄糖浓度低信号弱,并且有可能被其他物质的拉曼信号掩盖和干扰,如真皮层的胶原蛋白和真皮皮下脂肪的三油酸甘油酯,二者合计贡献了超过90%的皮肤拉曼光谱信号。  ②经皮测量还需要解决皮肤的荧光信号干扰,激发光功率的皮肤安全剂量限制以及皮肤表皮层黑色素对激发光和拉曼光的吸收效应等等问题,此外,不同种族之间肤色的差异,加大了这项技术的应用难度。  ③为解决以上两点问题,必然需要使用极高灵敏度的探测器,以及较长的积分时间,这给仪器尺寸及使用便利度带来挑战。  仪器信息网:据悉,目前已经有一些厂家在进行基于拉曼光谱原理的血糖仪器的研发,您认为可行性如何?有什么新的进展?  王博士:最近,有报道称三星和苹果将在其智能可穿戴设备上集成拉曼无创血糖检测技术。三星近几年和MIT研究组合作,从发表的公开学术文章看,已经进入临床实验阶段。曾有报道称苹果公司招募过C8 Medisensors公司的前员工,以此猜测苹果很有可能在继续发展可穿戴拉曼技术的路线,但具体进展不得而知。  虽然基于拉曼技术的无创血糖监测仪器在原理上是可行的,并且在过去十多年内虽然有很多拉曼血糖检测的学术文章报道,检测精度在不断提高,但尚未有成功的获得医疗器械资格的仪器出现,说明相关产品研发的难度确实较大。  仪器信息网:您对可检测血糖的智能手表这项技术的未来发展如何看待?  王博士:如上一个问题所讲,这个技术本身存在一定的技术难度,并且在可穿戴设备上集成低功耗的小型化拉曼光谱仪在工程上的难度也较大,但随着深度学习技术的飞速发展和大数据的不断积累,未来基于卷积神经网络的算法可能会替代当前拉曼葡萄糖浓度直接量化算法或者回归量化算法,使得智能穿戴设备的高精度无创血糖测量成为可能。  附:王成铭博士讲座回顾:《光学无创技术在临床检测中面临的挑战与未来》  在临床医学实践中,医疗影像(MRI、超声、CT)和病理切片对疾病的诊断起着至关重要的作用,而基于光与生物组织的散射、吸收、相干、偏振效应的光学无创方法,很有希望成为沟通影像学和病理学之间的重要桥梁。本次会议报告对光学无创方法进行概述,着重探讨其在实际临床应用中面临的困难和挑战,从发展的角度探讨技术的未来发展趋势和临床应用前景。
  • 尤政院士:为什么高端传感器是一项至关重要的“卡脖子”技术?
    从茫茫星空,到浩瀚海洋,再到广袤大地,作为信息获取的源头,传感器是物理世界与数字世界连接的桥梁,已经成为信息化社会最为重要的基石之一。传感器主要功能是将各种物理量、化学量或生物特征等待感知量转换为可检测与数字化的电信号,是我们感知世界的首要工具。传感器在科学研究、工业生产、国防安全、医疗健康等现代社会的方方面面扮演着至关重要的角色,发挥着不可或缺的关键作用。当前,传感器已经从早期由敏感元件与处理电路构成的分立式装置,演变成集信息获取、处理、传输、供电等功能于一身的智能传感微系统,也就是我们常说的高端传感器,其数字化、微型化、智能化的特色十分突出。然而,也正是由于高端传感器的高精尖属性,它又成为我们目前面临的一项核心“卡脖子”技术。高端传感器是一项至关重要的“卡脖子”技术那么,为什么高端传感器是一项至关重要的“卡脖子”技术?高端传感器究竟能带给我们什么?我国距离传感器强国还有多远?首先,传感器的特点十分鲜明:一是传感器涉及很多新原理、新材料、新器件,所以它和很多基础科学、基础技术的创新关联十分密切。而且传感器又是直接应用于整机设备,或服务于终端用户,与各行各业、各个领域的关联同样紧密,如集成电路(IC)装备中的许多高端传感器就被列为关键核心技术。二是传感器往往汇集了物理、化学、电子、机械、设计、制造、测试等各个学科领域的前沿尖端技术,学科交叉融合的特点十分明显;同时传感器产业的投入也非常大,高端传感器的敏感结构基本都是采用MEMS(微机电系统)制造技术,高端传感器的技术、资金双密集特点尤为突出。三是由于传感器的应用十分广泛,使得传感器的技术门类十分庞杂,相应的产品、产业分布非常广,比如仅仅一个压力传感器在水利水电、交通运输、工业生产、自动控制、航空航天、电力电子、石油、化工、勘探等众多行业就有上千种方案,且每一种解决方案都有其特殊要求。其次,传感器在工业技术体系中的定位是“基础零部件和元器件”,因为传感器是信息获取的源头,是物理世界与数字世界的接口,其重要意义体现在:它是“工业基石”,是各类现代工业赖以生存和发展的基础;它又是“性能关键”,直接决定重大装备和整机产品的性能和质量。正是由于传感器的基础性与关键性,又造成了瓶颈问题与依赖性:即高度依赖外国技术或产品,对我国产业造成严重影响,甚至威胁到国家安全和战略利益。高端传感器这样一个对我国关键产业、经济发展与国防安全至关重要,但又存在重大技术瓶颈或依赖进口的技术,已经成为“卡脖子”技术,亟待攻克。高端传感器究竟能带给我们什么在科技前沿创新中,传感器是“先行官”。纵观科技发展史,历次世界科学中心的形成都得益于核心传感器技术突破以及以此为基础的重要科学仪器的诞生。有统计表明,在诺贝尔奖的获奖名单中,72%的物理学奖、81%的化学奖、95%的生理学或医学奖都是借助于尖端传感器与仪器完成的,且已有38项、60余人次由于发明了新原理的科学仪器而直接获奖。而科学仪器对事物进行检测表征,获得科学数据的关键就是高端传感器:比如X射线衍射仪、X射线断层扫描仪、超分辨率荧光显微镜、电子显微镜等仪器中的光电探测器、电子探测器、温度传感器,质谱仪、扫描隧道显微镜中的位移传感器、力传感器等等。而现代科学仪器中,高端传感器是决定性的,直接代表了分析、检测和表征的水平。在国民经济主战场,传感器是“倍增器”。传感器的应用领域非常广泛,几乎渗透到社会生产生活的各个层面。例如:在仅有通讯功能的传统手机,集成了大量传感器:图像传感器、陀螺仪、加速度计、距离传感器、环境光传感器、磁强计、电容传感器、温度传感器、湿度传感器、气压传感器……,使得传统手机摇身一变成了智能终端,手机的功能、性能都增强了很多,特别是与人的互动能力大大提升,手机行业的发展不仅得到“倍增”,而且进入了全新的时代。当然,传感器行业本身也具有不容低估的市场规模。根据德国Statista数据分析公司数据,2022年全球传感器市场规模为2512.9亿美元(约1.79万亿人民币)。其中我国传感器市场规模为3096.9亿元人民币,2019—2022年均复合增长率为12.26%。尽管我国传感器市场增速相对稳定,但全球龙头企业如爱默生、西门子、博世、意法半导体、霍尼韦尔等跨国公司占据约60%的国内传感器市场份额,尤其在高端传感器市场,我国约80%的传感器依赖进口。特别需要说明的是,传感器除了自身的万亿级市场之外,有研究表明,传感器带动的上下游产业链所创造的产值大约是传感器行业产值的6倍左右。传感器在国家战略工程中是“胜负手”传感器的性能、质量,直接决定重大装备和战略产品的性能、质量。高铁现在已经成为我国的一张名片,传感器就发挥了不可或缺的作用,高端传感器在高铁上有六大应用场景:一是列车监测与维护,二是轨道健康监测,三是列车安全防护,四是乘客信息交互,五是能源管理,六是环境综合监测。以和谐号380AL高铁列车为例,一辆列车里的传感器数量超过1000个,平均每40个零部件里就有一个传感器,它们承担着状态监视、故障报警、车载设备控制等功能,被认为是轨道交通运营安全的保障性技术和装备持续升级的关键性技术。未来,传感器与人工智能等新兴技术将实现深度融合,中国高铁将更智能、更安全。在医疗健康中,传感器是“金刚钻”。现代医疗离不开各种检测,各类医疗仪器就是通过各类传感器获取与病人病理相关的各种医疗数据,来为医生诊疗提供依据。例如用于测量血管内外径、血流速度、血压、心内压、体温等多种生理参数各类位移、速度、振动(加速度)、力、流量、压强和温度传感器;用于检测血液中的离子(如K+、Na+、Ca2+ 等)和气体(如O2、CO2)的浓度的化学传感器;利用选择性识别来测定生化物质的酶传感器、微生物传感器、免疫传感器、组织传感器和DNA传感器等;通过测量细胞或组织的微弱电信号的变化来监测生理状态的心电(EKG)、脑电(EEG)、肌电(EMG)等生物电传感器,这些传感器在诊断心脏疾病和肌肉功能状态中非常重要。传感器是医疗领域中不可或缺的技术,它们对疾病的预防、诊断和治疗起着至关重要的作用。在国防安全中,传感器是“战斗力”。现代战争从某种程度上来讲,打的就是传感器。在最近的乌克兰危机中,有统计表明80%的毁伤效果是由占全部弹药总量20%的精确制导弹药,也就是导弹、制导炸弹等造成的。这些高精度的惯性、无线电、激光、光电、红外、卫星等精确制导技术中,惯性测量单元(IMU)、激光传感器、红外传感器、毫米波传感器、光电传感器、雷达等各类高端传感器发挥了决定性的关键作用。除此之外,隐身战机、航母舰队、卫星星座等武器装备,更加需要由各类高端传感器组成的信息感知网络提供数据,进行态势感知、目标打击、体系作战等各项行动。装备有各类高端传感器的无人系统已经开始在现代战场崭露头角,未来战场的无人机、无人车、机器人系统等武器装备将更加趋于常态化,这些“机器战士”的千里眼、顺风耳则完全要依靠高端传感器。而且,随着传感器等先进技术的快速发展和进一步赋能,各种新概念武器装备也将涌现出来,传感器技术在国防安全事业中将发挥更大作用。我国距离传感器强国还有多远传感器这么重要,市场规模也很大,我国一定要发展高端传感器。但是,我国高端传感器的发展现状不容乐观。我国的高端传感器,尤其是中高端传感器的MEMS芯片还大量依赖进口,被“卡脖子”之外,我国高端传感器行业创新生态、设计工具与研发平台、先进材料与核心器件、高端芯片与工艺设备、系统集成与转化应用等方面,还存在差距。我国要成为传感器强国,需要在如下几个方面持续发力。第一是要关注“产教融合”,也就是人才培养与产业发展深度关联融合。前面讲过传感器是一个多学科交叉、技术密集,且与应用紧密关联的领域,高端人才与技术创新的重要性不言而喻。创新人才培养和原创技术开发相结合的产教融合,是发展传感器,成为传感器强国的首要条件。第二是要强化协同创新,前面还讲了传感器行业是投资密集,产品应用广但产业分散的行业,因此,政府、企业、高校、科研院所、用户、金融机构等各个创新要素必须统筹规划、合理布局、协同创新。通过公共研发平台建设与共性技术开发与共享机制,来实现传感器全行业的高效运行,持续、健康、快速发展。第三是加大示范应用,可以围绕国家的重大工程任务、国家亟须的重要战略装备以及有代表性的社会经济生活需求,有组织地开展创新,体现新型举国体制的优势,通过传感器赋能,形成新质生产力,推动产业集聚,形成传感器产业的生态链。
  • 柯力传感领投点联传感天使轮 开拓精密测量传感器市场
    2023年7月,宁波柯力传感科技股份有限公司(“柯力传感”)与深圳点联传感科技有限公司(“点联传感”)正式签署协议,完成天使轮投资。柯力传感是此次点联传感天使轮融资的领投方。   深圳点联传感科技有限公司正式成立于2022年,是由多名清华大学博士领衔的高层次人才硬核团队,精密仪器专业出身,专注传感检测研究15年。   点联传感在精密光学系统、高速硬件电路以及综合检测算法方面有深厚的研究基础,依托底层高速高精度CMOS激光测量传感器技术框架,逐步拓展对射式、反射式以及同轴共聚焦的产品矩阵,实现对工业品形位尺寸的精密检测与定位,提高生产效率与性能。未来,点联传感将在产学研基础上,进一步构建名校传感器成果转化平台,立志解决中国工控及其他领域中高端传感器卡脖子问题。据悉,柯力投资点联传感主要是基于以下三个方面的考虑:   第一、当前国内精密测量传感器的发展仍处于起步阶段,未来是一个确定性的发展机会,是柯力布局传感器行业的重要市场方向。   第二、高精密测量传感器有一定的技术壁垒,需要依赖技术型团队才能打造升级产品,形成品牌。点联传感团队是由多名精密仪器专业出身的博士组成,专业技术能力强。   第三、通过柯力投资与赋能,可以快速提升点联传感的客户拓展能力,整体价值实现1+1>2。   当前,中国制造业正在向高精度、智能化的方向转型升级。高精度工控传感器是制造装备的基础要素,柯力传感对点联传感的投资与赋能,将助力其成为中国制造业转型升级过程中的国内外一流传感器品牌,同时,也将加速柯力从单一物理量传感器向多物理量传感器融合的步伐与进程。
  • Science:STM中用氢分子制作量子传感器 颠覆传统测量技术
    加州大学欧文分校(University of California Irvine)的物理学家近日在扫描隧道显微镜(Scanning Tunnel Microscope)中将氢分子与太赫兹激光(Terahertz Laser)配合使用制作量子传感器,这项技术在测量材料化学特性时呈现出前所未有的时间和空间分辨率。图片来源:加州大学欧文分校Wilson Ho实验室。在扫描隧道显微镜的超高真空中,一个氢分子被固定在银尖和样品之间。太赫兹激光的飞秒脉冲激发分子,使其成为量子传感器。  这种新方法也可用于分析二维材料,在先进的能源系统、电子学和量子计算机中十分有用。  加州大学欧文分校物理、天文和化学系的研究人员描述了科学家如何将两个键合氢原子定位在STM的银尖和一个由平整的铜表面组成的样品之间,该表面上排列着氮化铜的“岛”。这项研究发表在《科学》杂志上。  科学家们能够利用持续数万亿分之一秒的激光脉冲,在低温和极高真空环境下刺激氢分子,并识别其量子态的变化,从而获得样品的原子尺度和延时图像。  这个项目代表了测量技术的进步,并拓展了我们探索科学问题的方法。现有仪器不基于这一量子物理原理,因此依靠探测两能级系统中态相干叠加的量子显微镜要更加灵敏。——Wilson Ho(研究人员之一)和加州大学欧文分校物理学、天文学和化学系教授Donald Bren   根据何的说法,由于氢分子的取向在上下两个位置之间波动,并且在一定程度上水平倾斜,氢分子是两能级系统的一个例子。科学家们可以利用激光脉冲激励系统从基态循环到激发态,从而实现两种状态的叠加。  循环振荡非常短,仅持续几十皮秒,但科学家们通过测量“退相干时间”和循环周期,能够探测到氢分子与其周围环境的相互作用。  氢分子成为量子显微镜的一部分,因为无论显微镜扫描到哪里,氢都在尖端和样品之间。它是一种非常灵敏的探针,可以让我们看到低至0.1埃的变化。在这个分辨率下,我们可以看到样品上电荷分布的变化。  ——Wilson Ho(研究人员之一)和加州大学欧文分校物理学、天文学和化学系教授Donald Bren  STM针尖与样品之间的距离约为6埃或0.6纳米,这几乎是不可能实现的微小距离。  Ho和他们的研究同事建立了一个STM,可以检测该区域的微小电流,并提供光谱数据,证明氢分子和样品成分的存在。根据何教授的说法,这是第一次利用太赫兹诱导的单分子整流电流进行化学精确光谱分析。  根据何教授的说法,利用氢的量子相干性在这种细节层次上分析材料的能力在催化剂的研究和工程中非常有用,因为它们的功能通常取决于单个原子大小的表面缺陷。  只要氢能吸附到材料上,原则上,你就可以用氢作为传感器,通过观察材料的静电场分布来表征材料本身。  ——加州大学欧文分校物理学和天文学研究生王立坤(研究第一作者)  加州大学欧文分校物理学和天文学专业的研究生夏云鹏与何和王一起进行了这项实验,该实验由美国能源部基础能源科学办公室资助。  期刊原文:Wang, L., et al. (2022) Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity. Science. doi.org/10.1126/science.abn9220.
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 四方光电扬尘传感器荣获中国传感器与物联网产业联盟应用创新奖
    p   中国传感器与物联网产业联盟组织的首届“SIA感知领航优秀项目征集”活动评选结果本周出炉,四方光电激光扬尘传感器PM3006,通过采用独特的激光散射测量技术,实现了室外扬尘在线监测、大气网格化监测、室外公共场所等户外极端工况下空气品质中PM2.5、PM10和TSP多参数的同时准确测量,并在国内外多个项目中得以成熟应用,经过专家组的评选,最终荣获“应用创新优秀项目奖”。 /p p   我国室外扬尘及网格化监测领域,早期多采用称重法和β射线吸收法的监测仪,该设备无法实现在线实时监测,投入费用昂贵且后期维护成本高,无法大批量得到应用。而民用净化器中大量应用的激光粉尘传感器,又因为存在无法满足室外-30~70℃全天候的温度环境,及无法满足建设工地等实际使用场景经常喷洒降霾的水雾影响或者下雨潮湿的高湿环境要求而难以得到使用。在户外环境下使用民用空气净化器上的传感器,室外的高温和低温都容易使传感器损坏,水雾也经常被误判为雾霾而造成爆表。同时与国家大气环境监测网提供的PM2.5/PM10/TSP的多项数据对比,民用激光粉尘传感器由于激光功率小、采样流量小,导致PM10计数率很少,因此PM10的分辨率很低,很多厂家只能根据PM2.5的数值按照比例计算出PM10和TSP,这样的监测数据存在严重失真。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/c279e9b9-a525-43ca-82b0-f5bb97aa49c7.jpg" title=" 图1.png" alt=" 图1.png" / /p p   通过对激光散射探测技术(LSD)近10年的技术积累和对应用市场客户真实需求的把握,四方光电研制出了扬尘传感器-PM3006,其采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样装置、高湿度环境的水雾去除装置等,开创新的低成本实现了对室外扬尘的准确测量,PM2.5和PM10的实时监测数值与β射线吸收法监测设备,准确测量的相关性可以达到0.9以上。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/e1766e01-f47b-4bc6-a759-1aa4ccc14219.jpg" title=" 图2..jpg" alt=" 图2..jpg" / /p p   扬尘传感器PM3006得以成功量产并批量应用积累的经验,为进一步满足用户差异化的使用需求,四方光电进一步开发出了可以搭配气泵使用的扬尘传感器PM3003S,及完全不受流量变化而影响测量精度的扬尘传感器PM3006S-P。 br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/4b7c34ab-586e-4207-bf4f-c1c59ad862b1.jpg" title=" 图4 (2).jpg" alt=" 图4 (2).jpg" / /p p   /p p   为了更好的满足客户设计及计量的需求,四方光电在核心传感器的基础上开发出了在线扬尘监测模组,方便客户更容易及更快速的实现监测系统的设计,大大缩短开发周期。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/3d17b26d-18cb-40e4-9c30-8e13cb82cb7b.jpg" title=" 图5.jpg" alt=" 图5.jpg" / /p p   自2003年创立至今,四方光电始终坚持核心技术创新之路,除光散射探测(LSD)之外,公司还掌握了非分光红外(NDIR)、超声波(Ultrasonic)、紫外差分吸收光谱(UV-DOAS)、热导(TCD)、激光拉曼(LRD)等核心气体传感技术,形成了气体传感器、气体分析仪器两大类产业生态,产品广泛应用于国内外的空气质量监测(室内、室外、汽车)、固定和移动污染源监测、工业过程节能减排监测、健康医疗和智慧计量等领域。 /p
  • 滨松参展CIOE 2019,激光加工、激光雷达、光通信等多类应用新品展现
    2019年9月4日-7日,中国国际光博会(CIOE 2019)在深圳成功举行。本次滨松中国在展会中主要以激光加工、激光雷达、光通信、工业计测、气体分析、民用消费、光谱检测、检验医学八个方向为主,进行了产品技术的呈现。久经市场考验的经典产品,以及最新曝光的新品都同台出现,获得了众多参观者的驻足。展会现场激光加工# 激光加工联合实验室展品:激光并行加工模块2019年7月,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”正式成立。目前主要进行着基于空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。激光并行加工模块是联合实验室的一个小小的首秀。内部配置了滨松空间光调制器(LCOS-SLM)。激光入射到SLM上,在软件内预先设置的多焦点全息图,随后激光通过独特设计的光路,最终在相机靶面上产生多光束。在光调制时,该模块使用了带反馈的迭代算法。相机采集的多个光束的能量分布首先经过算法优化,再迭代入GS算法迭代循环中,经过不断迭代循环,最终得到了能量分布均匀的多个光束。这在实际的加工中,是十分必要的。利用这套激光并行加工模块可以进行10*10阵列多光束打孔、多光束并行蚀刻加工、多光束字母打孔等作业。现场亦展示了多个使用该模块进行加工的样品。除了光调制技术以外,联合实验室计划逐渐拓宽研究范围,滨松的更多产品和技术也将参与其中。以行业需求为导向,更好的促进我国智能激光加工行业的发展。加工样品通过便携显微镜可看到样品上的打孔细节# 下一代激光加工模块:JIZAI此次CIOE,首次曝光了滨松下一代激光加工引擎JIZAI的信息。JIZAI是基于滨松隐形切割技术(独有技术,拥有全球专利)以及空间光调制技术开发而出的产品。灵活性极强,可以根据不同的应用选配其中的器件,进行自由定制。模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。JIZAI概念图使用JIZAI进行的玻璃打孔作业激光雷达 # 面阵红外近距离传感器低速及特殊场景下的应用,是激光雷达目前的落地热点之一。智能工厂、智慧物流、智能仓库等场景中,都少不了它的存在。新系列的面阵红外近距离传感器,主要就是面向针对此类应用的激光雷达的。新产品增大了像素尺寸,提高了饱和上限,并在内部设置了补偿电路,增强了抗环境光干扰的能力,更加适合于强背景光环境(如:室外环境)下的近距离测距。同时该器件还具有低成本的特点。目前推出了3种不同像素数量的器件,也可根据具体需求进行定制。# VCSEL固态Flash LiDAR被普遍看做是当前LiDAR发展阶段的下一个台阶。在探测器和激光器的选择上,都将有很大的变化。激光器方面,旋转式中普遍使用的边缘发射激光器(EEL)已经不再完全适用于Flash式的雷达,高功率垂直腔面发射激光器(VCSEL)将成为最理想的选择。随着3D摄像头的热潮,VCSEL成为了近几年的热点话题,在大众熟知的人脸识别、手势识别等应用中都扮演了重要角色。但面向激光雷达的产品,对其各方面性能都有了新的要求,而此次滨松展出的940nm的VCSEL也是特别针对此应用开发的。除了本身光斑形态好的特点外,滨松新展出的VCSEL还具有光功率密度高、光电效率转换高、稳定性好的优点。带封装(金属)的滨松VCSEL产品,特定要求下,裸片产品的提供也可探讨光通信# 面向5G前传和数据通信中心光模块应用CIOE中,滨松呈现了面向中长距5G前传25G/50G光模块,以及100G/200G/400G数据中心互联光模块的全系列探测器方案。包括正照式/背照式、单点/阵列(pitch250/500/750μm)的InGaAs PIN PD,满足不同项目应用的需求。系列产品的特点在于,其采用了独特的设计结构,在保证高灵敏度、低终端电容的同时,也具备极高的可靠性。整个系列产品均可支持非气密封装。工业计测# 应用于编码器的光电探测方案展会中主要展出了目前编码器应用中比较具有代表性的产品,PD阵列、LED光源,以及集成光发射和探测的整体模块产品。实际上滨松探测器覆盖从可见光到近红外几乎全波段,可为LED光源匹配最合适高灵敏度的探测器,实现整个系统的高信噪比。滨松一贯是全线In-house设计和生产,无论是半导体设计及制造工艺,还是封装工艺都拥有丰富的技术储备,可以很好的应对针对编码器应用的各种定制化需求,打磨出最优的产品方案。民用消费# 针对广泛消费类应用的全波段产品“光”是无处不在的,不光是在生产制造、科研学术中,更是在生活的方方面面。滨松则希望通过自身的光电技术,为与我们息息相关的种种生活中的应用,带来更好的可能。让它们变得更加便捷、智能、环保。CIOE中滨松展出了多类光电半导体产品,其中包括可用于屏下,辅助屏幕亮度控制的接近传感器;可装配在便携式设备或独立体温计中,实现无探测位置限制的高精度温度测量,且低成本、环境友好的InAsSb探测器等等。滨松能为民用消费应用提供高一致性、高可靠性的产品。但最为重要的是,以60余年光电技术的沉淀,可以为具体的客户需求提供高定制化的服务,以及产品技术建议。成就更有竞争力的性能,抢占更新市场的先机。目前滨松中国除了北京总部外,在深圳和上海均设有分公司,拥有本土的销售、市场、产品团队,亦可以为中国客户提供更快速有效的服务。在CIOE中我们展现的产品技术和应用仅是冰山一角。实际上,滨松一直希望被看做是一个光子技术的提供者,以和客户更紧密的交流沟通,以及更深入的相互理解,来促成最佳的应用技术诞生。
  • 多方加速布局 传感器超2000亿市场空间待掘!
    p style=" text-indent: 2em " 目前,传感器产业已被国内外公认为具有发展前途的高技术产业,它以技术含量高、经济效益好、渗透力强、市场前景广等特点为世人所瞩目。我们国家工业现代化进程和电子信息产业20%以上速度高速增长,带动传感器市场快速上升。 /p p style=" text-indent: 2em " 企查查数据显示,目前我国共有传感器相关企业4.9万家,广东省以超过9700家的企业数量排名首位,江苏、浙江分列二三名。2019年,相关企业新注册超过7600家,同比增长17.22%,今年上半年新增企业数量为2369家。此外,全行业68%的企业注册资本低于500万。 /p p style=" text-indent: 2em " 接近传感器(也称为检测器)是电子设备,用于通过非接触方式检测附近物体的存在。因此,它们可以被用于多个行业,包括机器人技术,制造,半导体等。据工作原理,接近传感器可以分为:电感式接近传感器、电容式接近传感器、磁感应传感器等。 /p p style=" text-indent: 2em " br/ & nbsp & nbsp & nbsp 其实在智能化场景中常用的两种接近传感器是电感式接近传感器和电容式接近传感器。电感式接近传感器只能检测金属目标。这是因为传感器利用电磁场,当金属靶进入电磁场时,金属的电感特性改变了场的特性,从而警告接近传感器存在金属靶,根据金属的感应方式,可以在更大或更短的距离处检测目标。 br/ & nbsp br/   电感式接近传感器也叫涡流式传感器,由三大部分组成:振荡器、开关电路及放大输出电路。电感式接近传感器是核心是振荡器和放大器,用于检测金属材质的物体。但是不同的金属的衰减,标准的检测物体是铁,但是不锈钢、铝合金、铝、铜等等都会有不同的衰减程度。由此可见,这种接近开关所能检测的物体必须是导电体。 br/ & nbsp br/   电容式传感器是以各种类型的电容器作为传感元件,将被测转物理量或机械量换成为电容量变化的一种转换装置,实际上就是一个具有可变参数的电容器。电容式传感器结构简单,易于制造和保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强辐射及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力,高冲击,过载等;能测量超高温和低压差,也能对带磁工作进行测量。 br/ & nbsp br/   由于电容式传感器带电极板间的静电引力很小,所需输入力和输入能量极小,因而可测极低的压力、力和很小的加速度、位移等,可以做得很灵敏,分辨力高,能感应0.01μm甚至更小的位移。 br/ & nbsp br/   据统计数据显示,2019年中国传感器市场规模达2188.8亿元,预计到2021年市场规模将达到2951.8亿元,行业将保持17.6%的快速增长速度。值得注意的是,随着物联网技术的发展,对传统传感技术又提出了新的要求,产品正逐渐向微机电系统(MEMS)技术、无线数据传输技术、红外技术、新材料技术、纳米技术、复合传感器技术、多学科交叉融合的方向发展。 br/ & nbsp br/   传感器作为智能制造的重要设备,电子产品的发展已经进入到数字化时代,传感器的需求越来越广泛。如何在传感器领域实现突破?业内人士纷纷表示,原材料、技术、工艺等方面均存在“突破口”。 br/ & nbsp br/   接下来,国内传感器企业需要从自身出发,加大科技创新投入力度,继续优化技术和工艺细节,实现这些领域与进口产品对比的突破。与此同时,发挥在国内市场应用、服务、渠道、价格、产业生态系统等领域的固有优势,实现整体实力提升,积极推进市场化应用。 br/ & nbsp br/   在政策鼓励、资金扶持、技术进步等多种利好因素的作用下,相信国内传感器产业发展将取得更多成果,并造福于产业升级和社会民生。 br/ br/ /p
  • 纳米级量子传感器实现高清成像
    日本东京大学科学家最近利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。(a)六方氮化硼中的硼空位缺陷。空位充当用于磁场测量的原子大小的量子传感器,对磁场敏感,像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光。通过分析响应微波的光致发光强度的变化,研究人员可测量每个传感器点的磁场。图片来源:东京大学研究团队研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。
  • 或裁员百人,这个芯片大厂为何舍弃激光雷达技术开发?
    近日,Mobileye宣布终止用于自动驾驶和高度自动驾驶系统的下一代调频连续波 (FMCW) 激光雷达的内部开发。激光雷达研发部门将于 2024 年底解散,影响约 100 名员工。Mobileye预计2024 年激光雷达研发部门的运营费用总计约为 6,000 万美元(包括与股权激励费用相关的约 500 万美元)。Mobileye认为,下一代 FMCW 激光雷达的可用性在其“非视觉系统路线图” 的重要性有所下降。此外,公司基于EyeQ6的计算机视觉感知技术取得了实质性进展,内部开发的成像雷达性能进一步明确,而第三方供应商开发的飞行时间(ToF)激光雷达装置的成本降幅超出预期。由于需求环境不确定,Mobileye选择精简业务以应对市场变化。同时,第三方ToF激光雷达的成本节省效果优于预期,这也是Mobileye决定关闭内部FMCW激光雷达研发部门的重要因素之一。Mobileye的成像雷达已达到基于 B 样品的性能规格,预计将于明年按计划投入生产。成像雷达是Mobileye在内部传感器开发项目中的一项战略重点。Mobileye表示,“这是一项核心构建块技术,我们预计它将在成本/性能优化和可扩展性方面为基于 Mobileye 的免目视系统带来竞争优势。”此次终止激光雷达意味着Mobileye在自动驾驶技术战略上的重大调整,这一举措并不影响Mobileye的客户产品计划或产品开发,也不会对2024年的业绩产生重大影响,不过将减少未来激光雷达研发的支出。Mobileye的股价因宣布终止激光雷达的内部研发而下跌2.6%。FMCW激光雷达成本过高激光雷达(LiDAR,Light Detection and Ranging)是一种利用激光束进行探测和测距的光学遥感技术。具体来说,激光雷达由激光发射单元、接收单元、扫描系统和信息处理单元组成。激光雷达技术分为飞行时间(ToF)激光雷达、调频连续波(FMCW)激光雷达、成像雷达。ToF激光雷达通过测量发射激光脉冲与目标回波脉冲之间的时间间隔来计算距离。具体而言,激光器发出一个激光脉冲,当该脉冲遇到物体后反射回来,接收器记录下回波信号到达的时间,从而计算出目标距离。ToF激光雷达系统结构简单、成本较低、响应速度快、探测精度高,适用于中短距离测距。不过也存在距离盲区,不能测量近距离内的物体;空间分辨率受限于脉冲宽度。FMCW激光雷达使用频率调制的连续波信号进行测距和测速。相较于传统的脉冲式激光雷达,FMCW激光雷达具有抗恶劣天气干扰能力强、高度集成化、灵敏度高和信噪比高等优点。此外,FMCW激光雷达在复杂环境中也能实现良好的成像效果。相比ToF,FMCW激光雷达的成本较高。成像雷达通常指的是毫米波或微波成像雷达,它通过发射电磁波并接收反射回来的信号来生成目标的图像。成像雷达能够生成目标区域的二维或三维图像,广泛应用于自动驾驶汽车、气象探测等领域。随着新能源汽车的普及率不断提升,高级辅助驾驶系统(ADAS)和自动驾驶技术的发展,对激光雷达的需求也在增加,应用正在快速增长。如今的激光雷达,价格还是过于昂贵,主要应用在售价20万元的车型上,包括小鹏和蔚来在第二品牌车型上基本都放弃了使用激光雷达,转向纯视觉或轻传感器方案。激光雷达在新能源汽车中的应用不仅限于当前的L2+和L3级别自动驾驶,还将在未来向更高阶的自动驾驶技术迈进。例如,L5级自动驾驶通常需要四至六个激光雷达来确保安全性。成像雷达成Mobileye一项战略重点成像雷达与激光雷达的主要区别在于使用的波长不同。激光雷达使用的是可见光或近红外光,而成像雷达则使用微波或毫米波。在抗干扰能力和穿透能力方面,成像雷达可能优于激光雷达。Mobileye的成像雷达技术在近年来取得了显著进展。Mobileye与Wistron NeWeb Corp.(启碁科技)合作生产其软件定义的成像雷达,预计于2025年内实现量产。去年9月,Mobileye与法雷奥达成合作,共同开发全球领先的成像雷达。Mobileye与法雷奥达认为,作为自动驾驶传感系统的关键部分之一,成像雷达将成为更先进的 ADAS 解决方案和自动驾驶功能的支持性部件。Mobileye成像雷达采用了先进的雷达架构,包括大规模 MIMO(多收多发)天线设计、自主开发的高端射频设计和高保真采样技术,这些技术使得成像雷达能够实现精确的物体探测和更广泛的覆盖范围。据悉,Mobileye的成像雷达采用集成式片上系统设计,最大限度地提高了处理器效率,并采用了领先的雷达数据解析算法,可提供 300 米以致更远距离周围环境的详细四维图像。该雷达具有中距离 140 度视场角和 近距离 170 度视场角,即使在拥挤的城市街道上,也能更准确地探测到其他传感器可能会忽略的 行人、车辆或障碍物。英特尔营收收紧,准备卖了Mobileye?据悉,Mobileye终止激光雷达内部开发的决策是关于公司未来技术投资的一项独立决策,基于对激光雷达的市场经济效益、该产品的项目时间规划以及资金需求等方面的考量。Mobileye研发FMCW激光雷达的计划在2021年前后,原计划在2027年-2028年开始量产FMCW激光雷达。Mobileye的预期在2028年是该产品需求的爆发期,而且会持续爆发。目前为止,尽管也有不少公司同样押注了这条赛道,但这几年来,ToF依旧是目前市场主流的激光雷达测距路线。同时,由于新能源市场行情景气下滑等因素,Mobileye也受到了影响,正朝着连续第三年亏损的方向发展。Mobileye的财报显示,2023年公司的初步业绩整体不佳,客户芯片库存过高导致年度展望不及市场预期,进一步拖累了股价。截至9月5日,Mobileye的股价今年已下跌约71%,市值约为102亿美元。Mobileye也大幅下调了2024年营收和利润预期。Mobileye预计,由于中国市场不稳定,其全年营收将在16亿至16.8亿美元之间,调整后营业利润在1.52亿至2.01亿美元之间。Mobileye成立于1999年,其核心业务包括开发用于自动驾驶和ADAS的视觉传感器、芯片及软件解决方案,其主要产品包括EyeQ系列系统集成芯片。Mobileye于2017年被英特尔收购,当时是英特尔在自动驾驶领域的重要布局。近日,由于英特尔经营业绩下滑,以及在代工业务上的巨额亏损以及市场需求疲软等问题,彭博援引知情人士报道称,英特尔在对其战略进行全面评估的过程中考虑出售Mobileye。去年,英特尔已经出售了Mobileye的部分股份,并从该交易中获得了约15亿美元的资金。如果英特尔试图通过出售更多Mobileye的股份来筹集资金,说明英特尔与Mobileye正度过一个艰难时期。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制