当前位置: 仪器信息网 > 行业主题 > >

激光自动找平仪

仪器信息网激光自动找平仪专题为您提供2024年最新激光自动找平仪价格报价、厂家品牌的相关信息, 包括激光自动找平仪参数、型号等,不管是国产,还是进口品牌的激光自动找平仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光自动找平仪相关的耗材配件、试剂标物,还有激光自动找平仪相关的最新资讯、资料,以及激光自动找平仪相关的解决方案。

激光自动找平仪相关的论坛

  • 全自动智能型激光粒度分析仪

    Winner2000Z智能激光粒度仪是济南微纳仪器有限公司在享誉全国的热销产品Winner2000激光粒度仪的基础上改进和发展的又一杰出产品。Winner2000Z除秉承Winner2000的所有优点外,更赋予其自动化和智能化的新特点,使测试操作更简单,测试方法更统一,测试结果更稳定。Winner2000Z智能激光粒度仪的问世,使济南微纳的产品再一次走在了全国同类产品的前列。Winner2000Z智能激光粒度仪的主要技术特点:1.测试电路、控制电路、超声器、循环泵、进水阀、排水阀、搅拌器均安置在仪器主机箱体内,集成度高,安装方便。2.采用USB通讯,所有测试操作均可由计算机控制完成。除加入样品外,测试人员始终操作计算机即可,不用对仪器进行任何直接操作,明显减轻了测试者的工作强度,提高了工作效率。3.控制程序人机界面友好,一目了然,使用方便,功能强大,便于操作和学习。4.具有人工和自动两种操作模式:人工模式:可以人工手动控制超声器、循环泵、进水阀、排水阀、搅拌器的工作状态和测试过程,符合传统操作习惯。适用于测试条件不明确或较难分散,测试不太稳定样品的测试。自动模式:可以对超声器、循环泵、进水阀、排水阀及搅拌器的工作状态进行预先设置,计算机根据预先设置好的状态自动完成测试过程。特别适用于测试条件较明确样品的测试,可以保证测试条件的统一,消除由于不同操作者带来的测试误差。5.具有智能校准功能。加入标准样品后,不需人工挪动镜头、样品窗或修改程序及校正参数,计算机利用先进的智能化校正算法,自动消除测量误差,完成仪器的自动校准。6.对测量数据进行智能分析,自动剔除不良结果,并对测试结果自动进行综合处理,免除了人工数据处理的麻烦。7.操作极为简单,在自动模式下工作时,操作者只需完成启动程序、加入样品、保存或打印测试结果几项工作,既简便又轻松。拥有了Winner2000Z智能激光粒度仪,你就拥有了一流的测试手段。Winner2000Z智能激光粒度仪,是你创造一流产品的制高点。

  • 【求助】马尔文激光粒度仪无法自动对光等问题,帮忙阿!

    我单位最近购买了马尔文公司的激光粒度仪,使用中出现以下问题: 在软件中进入手动,无法自动对光,激光强度始终为0,请问是什么原因? 另外,仪器开机时,能否把主机中间的盛水部分拿出来?我就是在开机状态下把它给拿出来了,所以造成无法对光吗?? 很着急,大侠们帮忙阿!谢谢

  • 半导体激光器自动温度控制设备配件故障解决办法

    半导体激光器自动温度控制中配件比较多,不同的配件在运行中如果使用不当的话,就会造成半导体激光器自动温度控制配件故障,如果发生故障,改怎么解决呢?  半导体激光器自动温度控制压缩机结霜,可能是循环水流通或阀未打开,检查水阀,所有管路,保证畅通,加装短路管道。可能是循环水管道配置过小,加大循环水管直径,保证水循环正常。  半导体激光器自动温度控制循环水箱内结冰可能是设定温度过低更正设定值;可能水箱内水无循环水,在冷冻水出口和进口之间短接一条循环水路;可能是温控表失控,更换温控表 高压故障 散热不良,散热器过脏,清洗散热器 能风不好,改善通风条件 散热风机不工作,检查风机马达是否烧坏短路维修或更换电机马达;高压擎损坏,更换高压擎; 制冷不良,冷媒不足或管道漏媒,补充冷媒或检漏后补焊,抽真空再补充冷媒 散热不良,散热器过脏、散热水阀门未打开或打开太小,将散热器清理干净,将阀门全开。  半导体激光器自动温度控制水泵故障可能是半导体激光器自动温度控制水泵电机线圈短,断路,修理电机线圈或更换电机,如果是水泵过载保护器自动跳开,将保护器的电流限数在允许的范围内适当调高半按下复位键。  半导体激光器自动温度控制温按表温度显示数字上下跳动可能是温控表损坏,修理或更换温控表,可能是感温线接触不良,修理或更换感温线,可能是感温线及测温体有污,将测温体擦干净。  半导体激光器自动温度控制压缩机故障可能是压缩机线圈短,断路,更换匹配的压缩机,压缩机过载保护器自动跳开,将保护器的电流限数在允许的范围内适当调高并按下复位键。  半导体激光器自动温度控制的配件要想避免一些故障的话,建议平时多多保养半导体激光器自动温度控制的有关说明,做好保养工作。

  • 【分享】激光平整仪的特征及应用

    激光平整度仪又可称为路面平整度仪、平整度测量仪,是集自动计算、显示、打印全方位多功能于一体的公路平整度检测仪器。激光平整仪采用进口高精度激光传感器、加速度传感器和距离传感器,特别适用于高等级公路、机场跑道的竣工验收。 激光平整仪采用高精度激光传感器、加速度传感器和距离传感器;能够快速实时的检测高速及各等级公路路面的平整度、构造深度等技术特性,为交竣工验收、预防性养护以及路面管理系统提供综合高效的数据支持。激光平整仪具有连续测量、自动运算、显示并打印路面平整度标准差的功能,在测试过程不受仪器装载车动态性能的影响,可以在较大车速范围内变换测试车速而不影响测试结果。 激光平整仪可通过激光技术和画像处理技术,采用非接触式测绘方式应用于弯曲、倾斜、旋转、排水等的特殊路面;激光平整仪广泛应用于用于公路、城市道路、广场、机场跑道等路面的施工检查竣工验收和道路的氧护,同时也可以为教学、设计及科研单位提供可靠的路面分析资料。

  • 从激光发展前景看激光划片机现状

    众所周知,激光的应用领域在人们生活中可谓是无处不在,你知或不知,激光应用就在那里,用它那精湛的激光加工技术丰富着您的生活。 今天我们就来探讨一下这样一个具有历史代表性的产业链,是怎样逆袭曾经的风貌。 目前随着激光技术的发展,已广泛用于单晶硅、多 晶硅、非晶硅太阳能电池的划片以及硅、锗、砷化镓和其他半导体衬底材料的划片与切割。那么说到这里肯定很多人会问,激光加工技术是利用什么原理来完成划片和切割的这样一个步骤的呢? 从科学的角度上来讲,激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为两大类: 一、激光加工系统; 二、激光加工工艺。 激光加工系统主要包括激光器、导光系统、加工机床、控制系统及检测系统这些配件。而激光加工工艺的范围就略广泛一些,主要应用在切割、焊接、表面处理、打孔、打标、划线、微雕等各种加工工艺。 从功能上来讲,激光加工工艺在激光焊接、激光切割、激光笔、激光治疗、激光打孔、激光快速成型、激光涂敷、激光成像上都有很成熟的一个应用。 另外激光在医学上的应用主要分为三类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。激光美容、激光去除面部黑痣、激光治疗近视、激光除皱、都是激光领域是医学行业内伟大的成就。 在军事方面,激光成就了战术激光武器、战略激光武器、激光动力推动器等,此外激光武器的关键技术已取得突破,2013年低能激光武器已经投入使用。 在通信方面,激光通过大气空间传输达到通信目的,激光大气通信的发送设备主要由激光器(光源)、光调制器、光学发射天线(透镜)等组成;接收设备主要由光学接收天线、光检测器等组成。 目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等 发展前景 由此可见激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工,激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光划片机现状 激光划片机又称为陶瓷激光切割机或激光划线机,采用连续泵浦声光调Q的 Nd: YAG 激光器或绿激光作为工作光源,由计算机控制二维工作台,能按输入的图形做各种运动。输出功率大,划片精度高,速度快,可进行曲线及直线图形切割;无污染,噪音低,性能稳定可靠等优点。 目前,常见的硅晶体划片工艺分接触划片和非接角划片(激光划片工艺)两种: 接触划片工艺: 接触划片工艺主要有锯片切割等多种方法,是过去硅晶体、太阳能电池的切割方法,缺点是精度差,废品率高,速度慢。 非接触划片工艺: 非接触划片工艺主要是激光划片,由于是非接触方式,划线细,精度高,速度快,目前是太阳能电池等划片的主要方法。 江苏启澜激光科技有限公司开发研制的晶圆激光划片机具有国际先进水平,主要适用于表面玻璃钝化硅晶圆的划片机切割加工。激光加工技术已广泛应用于制造、表面处理和材料加工领域。晶圆紫外激光划片机,其无接触式加工对晶圆片不产生应力、具有较高的加工效率、极高的加工成品率,可有效的解决困扰晶圆切割划片的难题。同时,图像识别、高精度控制、自动化技术的发展,使得能实现图像自动识别、高精度自动对位、自动切割融为一体的晶圆切割划片机成为可能。国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 调查显示,瑞士、美国和日本主要的激光晶圆切割机生产商每年在中国市场约销售近100台,国外设备售价在40~42万美元左右,为了提高我国激光精密加工装备的国产化水平,降低设备的采购及使用成本,提高行业的生产效率。晶圆紫外激光划片技术代表了当今世界晶圆切割加工技术前沿的发展方向,对国家未来新兴的晶圆制造产业的形成和发展具有引领作用,有利于晶圆制造技术的更新换代,实现跨越发展。

  • 【资料】激光测距仪在林业上的应用

    多功能激光测量仪较传统罗盘有精度高、免记录、免绘图、免拉测绳、免砍草、省时省工及电脑处理、绘图等优点,经实地测试及现场操作,均较以往仪器超出甚多,值得推广激光测距仪在林业上的应用 野外数据采集是一个长期困扰测量人员、制图员、GIS数据库管理人员、工程师和研究人员的问题。问题很简单:就是如何高效、准确地收集定位和物理特征数据,用于制图、编目、资源清查和存入数据库。 在某一给定情况下,找出这一问题的结果是令人烦恼的。因为: (1)可能有很多方法和技术可以使用; (2)在绝大多数情况下,没有一种方法能单独提供完整而令人满意的结果。 激光技术的应用,尤其是美国激光技术公司(LTI)研制的激光测距仪自1990年由美国农业部林业局作为野外测量样机并进行评估其未来发展应用以来,日趋完善,并可与数据采集器、GPS连接,而且可配置丰富的各种软件,使林业测量由手操罗盘、绳带、倾斜仪和旧式望远镜推进到单人操作、全站位、全面综合的多用途仪器时代。 资源辽阔的中国,有着丰富的林业资源。随着改革开放带来的大规模生产,林业在国民经济中的重要地位日渐显著,商用木材需求激增。如何规划林业的发展,对林业资源更高精度的测量,以木材销售为重点的更精确的林业资源清查和编目,成为林业部门重要的议题。我们把激光测量技术介绍进来,将有助于推动我国的林业测量技术迈进新时代。 多功能激光测量系统的用途 (一) 距离测量----距离测量为本仪器主要功能,可直接显示水平距离或倾斜距离。 (二) 方位角----可直接显示测量目标的磁方位角,或者相对方位角。 (三) 倾斜角----可以显示倾斜角度(垂直角)或倾斜百分率。 (四) 目标坐标程序----目标程序功能即测量上所谓定址或定桩(放样)的功能,即在已知点上将其坐标(X,Y,Z)输入仪器,对准测量目标量测可以立即显示测定位置的坐标。 (五) 高度测量----利用三角原理(俯、仰角及水平距离)来测量物体高度,包括树木高度、建筑物高度等。 (六) 测量功能----本仪器具有另一项特殊功能程序,可直接进入测量功能,进行测量工作并自动存储方位角、距离、倾斜角等资料,并可输入电脑,经PC软件计算处理。 (七) 导航功能----因具有磁通罗经仪,可以担任导航功能。 多功能激光测量系统在林业上的应用探讨 (一)多功能激光测量仪与GPS结合 引进多功能激光测量仪当初主要与GPS相结合,即GPS在地形受限制地区配合多功能激光测量仪进行测量。 具体应用: 1) 滥垦地取缔与清查 利用激光测量仪与GPS、GIS及其软件相结合,配合便携式电脑来进行环境监控为目前各学术机构最热门的研究工作项目。在林业上则为滥垦地取缔与清查应用,但由于GPS使用时可能会受到地形限制,尚需进一步研究与测试。此外也可结合数码相机,将违规情形拍摄,存档,以供取缔之证据。 2) 租地清查 多功能激光测量仪与GPS结合进行租地清查工作,不但速度快,且精确度亦较高。此外亦可将数字化图档预先输入便携式电脑,携带至现场进行清查对比工作。 3) 区外保安林清查 目前本局区外保安林清查,均采用电子平板仪进行清查及放桩工作。但由于三角点不足,常造成清查工作缓慢。如能利用公分级GPS进行布点,然后利用激光测量仪进行施测,并利用目标坐标程序功能进行放桩工作,应可加速清查工作,并减少事后图籍数据化工作。 (二)林地测量 由于多功能激光测量系统结合激光测距与电磁式数字罗经于一身,其测距、测角精度均较罗盘仪、测绳高出甚多,实为林地测量最佳新仪器。 根据测试多功能激光测量仪应用于林地测量之优点为: 1)操作简易,测量锁定甚快、精度高。仪器可以自动纪录数据,电脑传输,无人为笔误。 2)数字仪表板自动显示,无人为目视判读误差。 3)节省人力及时间。4 )附有处理软件,可做点、线、导线之处理及闭合差、面积等之计算,并可连接印表机或绘图仪,直接绘出测量图形。 数据采集用于林业资源清查,即树高、可作商业性用材的高度,植被绘制,野生特殊树种、优良树种定位,确定区域内树的等级及经济价值,或在进行栽培管理研究时如修枝,决定产生特定高度的地方的树位置,绘制伐木量剖面图,确定资源边界;在收成木材考虑捆堆木材方法时,用于捆堆木材通道的地形测定、绘制,以及用作通用目的的道路和崎岖小道施工前调查是很重要的。使用以往可使用的常规调查、航空摄影和GPS定位都可能遇到各种问题(例如:成本,准确度,障碍物等)。 LTI设计的测量系统适合基本植被资源和木材销售巡查和规划测定,伐木量分布图和道路调查测量等的需要。至1993年6月,美国林业局已购买这些仪器超过150台。在美国农业部林业局在野外规划使用中,该激光测距仪不但功能完备、精确和耐用,而且节省成本,特别是对目标不清楚的地方。从爱达荷北部的灌木地到阿拉斯加东南的大雨林都证明了这一点。

  • 激光拉曼光谱原理简单介绍

    激光拉曼光谱,化学通用分析仪器,由激光光源、样品室、单色仪和光电检测器四部分组成,在地学领域主要用于鉴定矿物和测定流体包裹体的化学成分。其空间分辨率达1微米,并可作原位测定。学科:岩矿分析与鉴定  词目:激光拉曼光谱  英文:laserRamanspectroscopy  介绍:拉曼光谱是激发光子与物质分子发生非弹性碰撞后,频率发生改变的散射光谱,光子频率的改变称为拉曼位移,它是对物质进行定性分析的依据。拉曼光谱是拉曼(C.V.Raman)于1928年发现的。早期的拉曼光谱采用汞弧灯作光源激发样品分子,自20世纪60年代起,采用亮度高、单色性好、定向性高的激光作激发光源,称为激光拉曼光谱。拉曼光谱仪由激光光源、样品室、单色仪和光电检测器四部分组成,在地学领域主要用于鉴定矿物和测定流体包裹体的化学成分,如H2、O2、N2、CO2、CO、H2S、SO2、CH4、C2H6等,其空间分辨率达1微米,并可作原位测定。雷尼绍公司在1992年推出的RM系列激光拉曼光谱仪,在拉曼光谱领域开拓了一个新纪元。因此,于1993年获得查尔斯王子科学发明奖,1995年获得英国女皇技术奖和最佳科学仪器制造商奖。雷尼绍公司是通过了ISO9001质量认证的单位。雷尼绍激光拉曼光谱仪以其配置灵活性,高灵敏度及可靠性,成为用户的首选设备。  2003年,雷尼绍公司推出了配置更加灵活,使用更加简单,自动化程度更高的InVia系列拉曼光谱仪。用户可根据自己的需求选择不同的功能模块,及相应的自动化程度。inVia系列显微激光拉曼光谱仪的最高配置-inViaReflex提供上述包括全自动化的所有功能;其它的inVia系统随时可以逐步升级至inViaReflex。所有的inVia拉曼系统把具有极高的灵敏度作为标准,将配置灵活和高灵敏度集中于同一套拉曼谱仪上。  有多种附件:高精度三维自动平台,逐点扫描成像。大样品附件、高灵敏度光纤探头、变温及高压等附件。  有多种探测器:可选紫外或红外增强CCD,电子冷却,具有最佳分辨本领和最佳图像质量。可选第二探测器,PL测量扩展到1.7微米。  与其它仪器连用:可扩展为最新的拉曼和红外一体化的原位检测Raman/IR系统,与扫描电镜连用的SEM/Raman,与原子力/近场连用的AFM/NSOM/Raman。

  • 知名厂商全自动激光粒度仪大比拼之蓝方观点:英国马尔文Mastersizer 2000激光粒度仪

    同为行业巨头,两家仪器厂商的激光粒度仪都宣称能给用户提供精确的粒度分析测量结果,但是否真的象他们宣传的那样呢?他们在售后和其他方面能让用户满意吗?欢迎使用过这两款仪器的用户交流使用中的问题,同时欢迎技术工程师介绍两款仪器的技术参数,提出使用的注意事项等问题,解答用户的疑问。仪器PK的目的是为了提高大家的讨论水平,促进厂家对提高仪器性能,请勿攻击或灌水。

  • 德研发快速检测水质的激光器

    据新华社柏林10月23日电 德国科研人员利用激光技术,推出了一种饮用水快速检测法,仅需几分钟就可得出检验结果。 德国弗劳恩霍夫应用固体物理研究所日前发表研究公报称,一种特殊的红外线激光器可以对自来水厂的饮用水样本进行自动分析。这种激光器的体积仅为鞋盒大小,其工作原理是,每种化合物分子都有特定的吸收光谱,用红外线激光照射水样本并分析其吸收光谱就可以确认化合物的种类。 这套红外线激光器已在德国黑森林地区的金齐希河自来水厂进行试用。在六周的时间里,这套仪器每隔三分钟就会对饮用水样品进行自动检测,共进行了约2.1万次检测,结果非常精确。 除对饮用水进行日常检验分析外,这套仪器还能快速检验出水中的危险物质,这将有助于政府部门对水污染事件作出快速反应。

  • 自行车运动发展中的管材激光切割机应用

    从古至今,考虑到自行车的驱动方式和使用环境,自行车的主体车架都是用金属管材做成的,金属管材做自行车骨架一是重量相对较轻,二是在相对较轻的条件下能满足强度要求。自行车选用的管材材质多数是铝合金、钛合金、铬钼钢、碳纤维等,而随着时代的变化,提升管材与结构设计能力并创新加工技术,便成为自行车行业创新发展永恒不变的旋律。  [url=http://www.helaser.com.cn/product/list-9-cn.html]管材激光切割机[/url]是最近几年开始流行起来的切割工艺,与传统的切割工艺相比,激光切割机加工出来的管材切割断面更加光滑,切割下来的管材可以直接用于焊接,减少了自行车行业的加工工序。比起传统管材加工需要裁剪、冲裁、折弯这几道工艺流程,传统管材加工工艺消耗大量的模具。激光切割管材不仅工序少、效率高、切割出来的工件质量也会更好。目前,我国的自行车行业随着全民健身大潮快速增长,还拥有很大的市场开发空间。  华俄激光在这里为大家介绍一下管材激光切割机的优势:  1、精度高  管材激光切割机采用同一套夹具系统,由编程软件完成加工设计,并且一次完成多步加工,精度高、切割断面光滑无毛刺。  2、效率高  管材激光切割机可在一分钟内切割数米管材,百倍于传统的手动方式,这就意味着激光加工具有高效性。  3、灵活性  管材激光切割机可以灵活加工各种形状,这给设计工作者可以进行复杂的设计,而这在传统加工手段下是不可想象的。  4、批量加工  标准的管材长度是6米,采用传统的加工方式需要非常笨重的装夹,而管材激光切割机可以非常简单的完成数米长的管材装夹定位激光切管机可以批量完成管材的自动分料、自动校正、自动检测、自动上料、自动下料,有效减少了人力成本。  正是因为激光切割机的独有灵活加工方式,自行车的车架也可以打造成其他的样式,独特的制造工艺让整辆自行车焕发出别样的光彩,是小批量自行车生产加工的最佳方式。(027-81732282)

  • 激光扫描模组

    条码扫描模组在外国已经使用很久了,现在已经发展到中国内部。这种技术的发明带来了更多的工作改革潮流。促进了自动化的步伐,大大简化人类工作流程,减少更多的脑力负担。扫描模组属于二次开发产品,兼备识别条码并加以扫描和解码的功能,然后还可以植入更多的应用行业的功能程序。外形构造小巧,高度集成材料,可以置入手机、平板电脑,打印机和一些医疗设备等各行各业的机械设备中。一般情况,条码扫描模组分为二大类,第一个就是激光扫描模组,第二个就是红光扫描模组。 现在对激光扫描模组进行分析下,激光扫描模组是通过辐射出一个激光光源点,然后按照激光发射的原理打成激光光线照遭条码上,在经过解码转化成为数字信号,加而给电脑读取信息。但是相对于红光扫描模组来说就比价精确点了。在强烈的阳光下,一般情况都是用激光扫描模组,因为红光不是红外线,就是单单的红色的光。阳光中可以算什么光线都有,会对红光扫描模组发射出来的LED灯光造成很大的影响,导致扫描的结果不准确。 如果在结构上来说呢,红光扫描模组要比激光扫描模组好一点而且价格实惠。激光扫描模组里面的结构是靠点胶固定的机械装置,因此就有很大的结构固定,易碎行,抗硬性就不是很好了。红光扫描模组里面就没有一些所谓的机械装置固定,所以耐用性比价好,但是总体来说,激光扫描模组的用途是比较多的,红光的就有很多局限性。看个人的用处所在. 本文出自 www.yuanjingda.com 转载请注明出处!

  • 【分享】三维显微激光拉曼光谱仪

    【分享】三维显微激光拉曼光谱仪

    三维显微激光拉曼光谱仪三维显微激光拉曼光谱仪装置Nanofinder30  Nanofinder30 三维显微激光拉曼光谱仪装置是日本首创,世界最初的分析装置。它能在亚微米到纳米范围内,测定物质化学状态的三维图像。它由共焦激光显微镜,压电陶瓷平台(或电动扫描器)和光谱仪组成。并能自选追加原子力显微镜和近场表面增强拉曼测定的功能。 最新测量数据[ 变形Si的应力测定]PDF刊登 用二维的平面分析来评价变形Si。空间分辨率130nm, 变形率0.01%(0.1cm偏移)。 半导体/电子材料(异状物,应力,化学组成,物理结构)薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造结晶体(单壁碳纳米管,纳米晶体)光波导回路,玻璃,光学结晶等的折射率变化生物学(DNA, 蛋白质, 细胞 组织等) 以亚微米级分辨率和三维图像,能分析物质的化学结合状态空间分辨率200nm(三维共焦点模式),50nm(二维TERS模式)能同时测定光谱图像(拉曼/萤光/光致荧光PL),共焦显微镜图像,扫描探针显微镜图像(AFM/STM)和近场表面增强拉曼图像(SERS)能高速度,高灵敏度地测定样品(灵敏度:与原来之比10倍以上)不需要测定前样品处理,在空气中能进行非破坏测定全自动马达传动系统的作用,测定简单 共焦显微镜模式不能识别结晶缺陷,然而光致荧光(PL)模式却能清楚地测到结晶缺陷 共焦激光显微镜模式的形状测定 光谱窗 560 nm 用光致荧光(PL)模式测到的结晶缺陷的光谱图像(560nm的三维映像) 用AFM和共焦显微拉曼法同时测定CNT,能判定它的特性 (金属,半导体)和纯度。 同时测定单壁碳纳米管(CNT)的原子力显微镜(AFM) 形貌图像和拉曼光谱图像的例子 :拉曼光谱: 激光488nm,功率1.5mW,曝光时间2 sec,物镜100×Oil, NA=1.35, 积分时间100 sec (AFM和拉曼图像测定时) AFM形貌图像(右上)表示了单壁碳纳米管混合物的各种形状结构。图像中用数字1到8来表示其不同形状。数字1-6测得了拉曼光谱(上图所示),判定为半导体CNT。但7-8测不到拉曼光谱,所以不是半导体CNT,而可能是金属CNT(可用He-Ne激光633nm验证)。最上面表示了RBM(173cm-1), G-band(1593cm-1)及D-band(1351cm-1)的拉曼光谱图像 综合激光器和光谱分析系统的长处,坚固耐用的复合设计,卓越的仪器安定性,是纳米技术测定装置中的杰出产品。 ※日本纳米技术2004大奖“评价和测量部门”得奖. ※日本第16届中小企业优秀技术和新产品奖 “优良奖”得奖. 光学器件配置图Nanofinder30 [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122565_1634361_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122566_1634361_3.jpg[/img][~122567~][~122568~]

  • 激光测氧仪

    哪位大神用过激光测氧仪?谁知道里面的激光器一般选用哪种激光器啊?是不是DFB半导体?功率一般是什么级别的?

  • 【分享】如何判断激光粒度分析仪的优劣

    判断激光粒度分析仪的优劣,主要看其以下几个方面:  1、粒度测量范围粒度范围宽,适合的应用广。不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射如何检测。  最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。  2、激光光源一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低;另外,气体光源波长短,稳定性优于固体光源。检测器因为激光衍射光环半径越大,光强越弱,极易造成小粒子信噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。检测器的发展经历了圆形,半圆形和扇形几个阶段。  3、是否使用完全的米氏理论  因为米氏光散理论非常复杂,数据处理量大,所以有些厂家忽略颗粒本身折光和吸收等光学性质,采用近似的米氏理论,造成适用范围受限制,漏检几率增大等问题。  4、准确性和重复性指标  越高越好。采用NIST标准粒子检测。  5、稳定性  仪器稳定性包括光路的稳定性和分散系统的稳定性和周围环境的影响。一般来讲选用气体激光器,使用光学平台,有助于光路的稳定。内部发热部件(如50瓦的钨灯)将影响光路周围环境。  稳定性指标在厂家仪器说明中没有,用户只能凭对于仪器结构的判断和参观或询问其他长时间使用过的用户来判断。  6、扫描速度  扫描速度快可提高数据准确性,重复性和稳定性。  不同厂家的仪器扫描速度不同,从1次/秒到1000次/秒。一般来讲,循环扫描测试次数越多,平均结果的准确性越好,故速度越高越好;喷射式干法和喷雾更要求速度越高越好;自由降落式干法虽然速度不快,但由于粒子只通过样品区一次,速度也是快一些好。  用户每天需要处理的样品量,也是考虑速度的因素。  可自动对中,无需要换镜头,可自动校正。  7、使用和维护的简便性  关于这一点,在购买之前往往被忽视,而实际上直接决定了仪器使用效率和寿命。了解的方法是对仪器结构的了解和其他已有用户的反映。  拆卸、清洗是否方便:粒度仪分为主机和分散器两部分。而样品流动池总是需要定期清洗的,清洗间隔视样品性质而定。将主机和分散器合二为一的仪器往往将样品池深置于仪器内部,取出和拆卸均很繁琐,且极易碰坏光路系统。  8、是否符合国际标准标准  ISO13320标准是对激光粒度分析仪的基本要求。但并不是所有制造商都按照该标准执行。在测量亚微米粒子分布过程中,采用非激光衍射方法是不符合标准的。

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 激光粒度分布仪原理及应用范围

    [b][size=10.5pt][font=微软雅黑]激光粒度分布仪[/font][/size][/b][size=10.5pt][font=微软雅黑]是集光、机、电、计算机为一体的高科技产品,它采用进口半导体激光器,寿命长,单色性好;先进的机械设计与加工工艺和微电子集成电路技术。[/font][/size][size=10.5pt][font=微软雅黑]通过测量颗粒群的衍射光谱经计算机处理来分析其颗粒分布的。它可用来测量各种固态颗粒、雾滴、气泡及任何两相悬浮颗粒状物质的粒度分布、测量运动颗粒群的粒径分布。[/font][/size][size=10.5pt][font=微软雅黑]它不受颗粒的物理化学性质的限制。该类仪器因具有超声、搅拌、循环的样品分散系统,所以测量范围广(测量范围可达0.02~2000微米,有的甚至更宽);自动化程度程度高;操作方便;测试速度快;测量结果准确、可靠、重复性好。[/font][/size][size=10.5pt][font=微软雅黑]可广泛用于石油化工、陶瓷、染料、水泥、煤粉、研磨材料、金属粉末、泥沙、矿石、雾滴、乳浊液等粒度的测定。[/font][/size][b][font=微软雅黑]原理:[/font][/b][size=10.5pt][font=微软雅黑]激光粒度分布仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。[/font][/size][size=10.5pt][font=微软雅黑]由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。当光束遇到颗粒阻挡时,一部分光将发生散射现象。[/font][/size][size=10.5pt][font=微软雅黑]散射光的传播方向将与主光荣的传播方向形成一个夹角θ。散射理论和结果证明,散射角θ的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小, [/font][/size][b][size=10.5pt][font=微软雅黑]激光粒度分布仪[/font][/size][/b][size=10.5pt][font=微软雅黑]产生的散射光的θ角就越大。[/font][/size]

  • 【讨论】激光粒度仪谁家的激光器最好?

    我觉得是法国Cilas的,他们用的是半导体激光器。这个公司主要的业务还是激光器这块嘛,在全世界范围来说生产的激光器都是数一数二的。马尔文,贝克曼这些公司都是买了人家的。

  • 聊一聊激光散射

    由于场流分离仪FFF可以分析的样品种类繁多,既有溶解型的高分子材料,又有分散型的纳米-微米材料,因此,很难找到合适的标准物质来做标准曲线,特别是纳米-微米材料的标样,目前基本都是进口的,价格昂贵,限制了其使用,就不如采购动、静态激光散射检测器来的划算了。因此,激光散射仪器,几乎成了FFF的标准配置了。实际使用中,还是动态激光散射粒度仪/粒度检测器DLS应用更加广泛一些,而且,多数进口品牌的DLS仪器都可以估算分子量的,也是有参考意义的数据,因此更合算了。关于激光散射检测器MALS/DLS的原理,此处不再赘述,感兴趣的朋友可以参看我们相关的帖子,以及动、静态激光散射的相关资料、教材课本等。我们主要讨论的是,MALS/DLS在FFF上的应用,特别是与FFF仪器的在线直接联用的配置问题。为了是更广大的用户能够买得起、用得起FFF仪器,德国postnova公司不仅仅在其软件NovaFFF上下了很大功夫,使该软件在不带静态多角激光散射检测器MALS的情况下,就具有dn/dc值的输入与输出功能,从而方便了那些已经有了HPLC/GPC上的RI检测器的用户,使其无需再配置购买专用的、带dn/dc值输入输出功能及软件的RI检测器了,从而可以方便准确地测试和计算绝对分子量了。需要指出的是,虽然绝大多数HPLC仪器上的RI检测器使用的是红外波长的光源,在dn/dc值的测试的时候,是会产生一些误差的——MALS均使用可见光区的波长的光源,但是,针对不同的应用,这一误差也是不同的,大部分情况下,误差是可以接受的、可以容忍的,不是很大,呵呵。对于动态光散射DLS,postnova公司则专门开发了一款设备:PN9020型多功能标准化接口扩展板,用于将马尔文公司、美国布鲁克海文公司(brookheaven)的台式机的、在线的动态激光散射粒度仪/粒度检测器DLS,接入到我们postnova的各型场流仪当中,从而实现台式机的在线直接联用。其电路部分的信号传输路径是:从(手动或自动)进样器传输出来一路电信号给PN9020接口板,再通过这个接口板传输给Malvern的各型DLS台式机,或者是传输给布鲁克海文的在线DLS检测器,从而给其一个启动信号,使其纵坐标开始计时(保留时间)。目前,Malvern的多数激光粒度仪DLS都有了流动模式的软件了,因此使用较为方便;而brookheaven的在线DLS检测器,就更方便了,本身就有软件的,只是需要另开一个软件窗口。PN9020型接口板,极大地拓展了场流仪的应用客户群,使得许多已经有了台式DLS的客户,都可以再采购postnova的FFF仪器,而不必再另购一台在线的DLS了。不仅如此,在FFF上使用知名大厂家的DLS仪器,也保证了分析效果:由于我们主要的竞争对手,实际上是代理德国superon公司的AF4,因此才把他们自己的静态激光散射检测器接入到AF4中,并且采用了在90度角加一个动态发生器之类的机器就算是DLS的配置方案,表面上看似高大上,其实这个90度另加的动态DLS,肯定是远远赶不上Malvern和Brookheaven公司的专门的动态粒度仪/粒度检测器DLS的,这俩厂家的DLS,早就采用了先进的光纤技术了,而光纤技术在动态激光散射领域的应用效果,也即:灵敏度、稳定性,要远远好于竞争对手使用的光电二极管式取光。此外,专用的DLS,也具有更加强大的测试功能、计算功能。最后,Malvern和Brookheaven的DLS,是一台独立的仪器,跟静态光散射MALS无关的,既可以与MALS一起使用,也可以单独使用;反观竞争对手那边,在90度角上加动态,不仅仅性能大打折扣,而且使用也不方便、不灵活,静态MALS不开机,动态DLS使不了啊,呵呵。我们的主要竞争对手,总是“忽悠”客户采购他们的多角激光散射检测器外加90度角的动态,这样的配置,实际上对于许多搞纳米材料表征的用户来说,就是浪费钱了,因为基本用不上静态光散射MALS,但是又不得不买,因为没有静态MALS的主机,90度加动态的也就不可能有了。原本花较少钱就能解决的分析功能,不得不花很多钱来解决。[b]这背后的根本原因,就是竞争对手他们没有类似我们的PN9020型接口板的设备、无法接入别的厂家的或者是他们自己的DLS台式机!所以,归纳总结一下,竞争对手这种配置,不仅仅使得已经有了台式DLS仪器的用户无法发挥已有设备的用途以节省采购费用,还使得那些无需测试分析绝对分子量的用户也不得不购买静态光散射MALS !也就是说,甭管你测不测绝对分子量,只要你测纳米尺寸,你就得买在纳米尺寸测试方面基本用不上的静态光散射MALS,否则动态DLS也使不了。这等于是绑架了用户啊![/b]

  • 新技术推动激光焊接市场升温

    激光焊接的市场占有率  与激光切割、加工、微处理以及打标应用相比,市场对激光焊接接受缓慢的原因尚有待探讨。TWI公司是一家专注于焊接研究、顾问并提供培训服务的公司,该公司激光技术与板材加工部项目总监Geert Verhaeghe说:“只有那些能够利用激光束的一个或多个特征(如高精度、热输入低(低畸变)、穿透深、速度快等)的应用,才特别适合使用激光焊接。客户经常就从弧焊加工改为激光加工向我们寻求咨询。我们始终认为,对加工过程应该整体考虑,产品的设计往往需要修改,以充分利用激光器的优点。”  此外,Verhaeghe说:“激光焊接的工业应用在很长一段时间内受到限制,原因在于它对工件放置的要求非常严格。”也就是说,由于激光焊接的光斑更小,因此要求待电焊机出租焊接的工件要极为贴近。“激光焊接用于高精度的齿轮焊接并不困难;但是要将几米长、8mm厚的板材对焊在一起就要困难得多了。目前有许多种补偿技术,包括填料(使用焊料)、双点(使用光学元件对光束进行分束,从而增大焊接覆盖区)以及迂回行进(沿接缝摆动光束)。我最赞同将激光焊接与弧焊相结合,这样能够同时利用两种方法的优点——即激光焊接的高速度以及弧焊的大熔池。”  Verhaeghe认为,没有哪个制造商可以确保激光焊接一定比传统焊接具备经济可行性。“我们经常在客户投资之前为他们做技术-经济比较,” 他说,“这需要考虑可能影响运行成本的各种因素:包括激光器光源、冷却、维护/服务、操作以及耗材等。”他还指出,更加困难的是评估降低畸变以及减少返工 /修理所带来的“间接” 好处,而这些通常是高度可重复的激光焊接加工的最大优势。  当然,市场占有率也和地域有关。市场调研公司Frost & Sullivan的高级研究分析师Archana Chauhan认为:“在激光焊接设备的采用和供应方面,欧洲将继续引领业界前沿。”Miyachi Unitek公司激光产品经理Geoff Shannon认为:“各行各业仍然不同程度地缺乏对激光焊接的认识。欧洲拥有强大的激光市场,而且欧洲可能也拥有比其他地区更多的教育和研究机构致力于或提供激光加工,尤其是激光焊接。”  激光焊接的应用现状  目前,一些公司(如空中客车公司)已经使用激光焊接取代电阻点焊进行飞机机身结构的铆接,另外,奥迪、宝马和大众等汽车制造商,以及几个欧洲造船厂也已经采用了激光焊接技术。Meyer Werft 公司是在游轮与渡轮市场中表现活跃的一家公司,该公司目前使用激光和激光复合焊接技术,焊接钢夹芯板和常规加筋板。游轮及渡轮制造商Aker Yards公司使用激光气体金属弧焊(MAG)复合焊接技术制造平板。Blohm+Voss造船厂使用激光对常规加筋板进行焊接和切割。Odense Steel Shipyard公司也利用激光进行焊接、切割,以及对货运集装箱的钢铁组件进行打标等多种加工。  上述许多应用的一个共同点在于:激光的作用不仅仅在于焊接,还包括切割、打标等。如果激光能在某一特定应用场合实现双重甚至三重功能,那么它的价值定位就急剧升高。例如,汽车制造商戴姆勒使用扫描光学或所谓的“远程焊接”,引导稳定光束沿焊缝行进,或者将单束激光分成多束用于多种用途。戴姆勒公司生产与材料技术部门项目经理Holger Schubert表示,与传统的电阻点焊相比,扫描光学加工几乎可以将生产时间缩短80%。由于小直径激光束可以对汽车零部件进行点焊,不需要使用大的连接法兰,从而使汽车零部件更小更轻。  激光焊接除了在“宏观”或大型工业加工中获得广泛应用外,还在微焊接(小型号精密零件和光电子器件的精密焊接)领域一展身手(见图1)。“微焊接一般对应的是穿透深度小于1mm的焊接,”Miyachi Unitek公司的Shannon介绍说,“医疗市场可能是目前增长最快的领域,其中典型电焊机应用包括医疗仪器、焊缝密封可植入装置、导丝焊等。”  另外,微焊接甚至在珠宝首饰行业也发挥着一定作用。“大多数Nd:YAG激光宝石焊接机的工作能量范围在35~300J之间,光束宽度在0.2~2.0mm范围内可调。”Satow Goldsmiths 公司的Steve Satow说,“我对珠宝商们进行激光加工培训,要想手工稳定地实现焊接,并能准确地保证0.2mm的焊接深度,是需要一定经验的。值得一提的是,激光焊接能为珠宝商节约大量成本。”  非金属材料的激光焊接  虽然对于连接两种金属,激光焊接取代常规焊接技术是显而易见的,但激光焊接的最大优势可能在于连接塑料、聚合物以及其他非金属材料,传统上这些材料是通过加热元件或者超声波加工进行连接的。TWI公司拥有专利、并授权给光电子设备制造商Gentex 公司使用的Clearweld工艺,是激光焊接非金属材料的一个很好的例子。Clearweld工艺采用近红外吸收焊接材料,可以将激光能量转换为热量,实现高质量焊接。Gentex公司介绍说,Clearweld工艺的优点在于高焊接速度、无明显焊斑、热变形小、不同产品间的切换速度快,以及能同时对多层工件进行焊接。 图1. 微焊接应用。图中显示了将0.04英寸宽、0.0015英寸厚的铜丝带互连焊接到焊盘上。激光焊接使用的是功率为2W、波长为532nm的倍频Nd:YAG激光器,其光束直径为0.03英寸,脉宽为1.5毫秒。  除了使用Clearweld工艺焊接洁净塑料,以及加工处理更具挑战性的ABS型塑料外,bielomatik 公司还将光纤激光器应用于某些要求最严格的场合。  在防水服装和室内装饰品应用的纺织品连接方面,也正在探索使用激光焊接。两年来,欧洲共同体(EC)资助的自动激光焊接纺织品(ALTEX)项目,实现了涤纶面料、尼龙里料和透气膜这三层复合材料的连接,以及聚氨酯涂层材料和双面不干胶复合材料的连接。该项目使用的是功率为75W、波长为 940nm的六轴自动激光二极管焊接系统。项目协调员Ian Jones说,激光焊接能够以比手工缝合快4倍的电焊机租赁速度实现高致密性连接,并且抗水渗透和洗涤试验生存指标均超过当前的行业要求。ALTEX项目已于 2007年12月结束,但相关工作仍在欧盟的LEAPFROG项目中继续进行。  激光焊接甚至已经进入纺织行业。ProLas公司生产的TexWeld Duo是一种双激光焊接机,结合了直接、透射焊接和超声波焊接,能够实现服装、集装箱袋和工业用纺织品的连续缝合焊接。

  • 激光测距仪应用介绍

    激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。 对于905纳米和1540纳米的激光测距仪,我们就称之为“安全”的。对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为“不安全”的。 激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。

  • 介绍激光测距仪

    激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。

  • 【求助】纳米激光粒度仪的激光问题

    我看到动态光散射纳米粒度测量的原理图,其中在激光发生器后加了起偏器,是否说明要求激光是线偏振的?什么类型的偏振对纳米颗粒的测量有什么影响吗?还有在光电倍增管前会有一组小孔光阑,这里小孔光阑的作用是什么?哪位高人知道的还请不吝指教。

  • 转帖]如何判断和选择激光粒度分析仪?

    判断激光粒度分析仪的优劣,主要看其以下几个方面:1.粒度测量范围:粒度范围宽,适合的应用广。但不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射(0.5µ m)如何检测。2.激光光源:一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低;另外,气体光源波长短,稳定性优于固体光源。3.检测器:因为激光衍射光环半径越大,光强越弱,极易造成小粒子信/噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。MS2000 检测器: 专利非均匀交叉排列三维扇形检测系统, 实际分辨率最高, 无信号盲区. 相当于环形或十字星形排列的175个, 半圆形排列的93个. 使检测角达135度。*通道数: 实际为检测器受光面积数。它有一个理论与实际的最优化值:- 偏少:接受的散射光不充分,准确度差 - 偏多:灵敏度太高, 导致重现性差。MS 2000 每秒采样1000次, 测量时间仅2秒(2000次结果平均), 可使得准确性和重复性最优化。4.是否使用完全的米氏理论:因为米氏光散射理论非常复杂,数据处理量大,所以有些厂家采用近似的米氏理论,造成适用范围受限制,漏检几率增大等问题。5.准确性和重复性指标: 越高越好。6.稳定性:仪器的稳定性包括光路的稳定性和分散系统的稳定性和受周围环境的影响。一般来讲选用气体激光器,使用光学平台,有助于光路的稳定。内部发热部件(如50瓦的钨灯)将影响光路周围环境。7.扫描速度:扫描速度快可提高数据准确性和重复性,稳定性8.可自动对中,无需更换镜头,可自动校正。9.使用和维护的简便性: 10.是否符合国际标准。 ISO 13320 是对激光粒度分析仪的基本要求。但有些厂家基于己方利润的考虑,仍不按照该标准执行。11.分散器:湿法:是否具有超声和搅拌分散功能,超声功率和搅拌速度是否连续可调。干法:是否密闭式测量,样品是否容易分散?如果不是,是否选择了喷射式分散器?这是保证样品能够充分分散后得到真实分析结果的前提。

  • 激光测距仪的应用与使用

    激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高高坦克、飞机、舰艇和火炮精度的重要技术装备。激光测距仪利用红外线测距或激光测距的原理测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c =299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。建筑行业有一种手持式的激光测距仪,用于房屋测量,其工作原理与此相同。激光测距仪使用时需要注意的问题:激光测距仪不能对准人眼直接测量,防止对人体的伤害。同时,振动仪一般激光测距仪不具防水功能,所以需要注意防水。最新的美国里奥波特激光测距仪,由于在美国当地主要适用于户外狩猎爱好者,所以制作之处的优势即是可以防水防雾,配有丛林树木枝叶涂彩。激光器不具备防摔的功能,数字风速仪所以激光测距仪很容易摔坏发光器。    激光测距仪维护:   ① 经常检查仪器外观及时清除表面的灰尘脏污、油脂、霉斑等。   ② 清洁目镜、物镜或激光发射窗时应使用柔软的干布。严禁用硬物刻划,以免损坏光学性能。  ③ 本机为光、机、电一体化高精密仪器,使用中应小心轻放,严禁挤压或从高处跌落,以免损坏仪器。

  • 激光粒度仪

    激光粒度仪粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。激光粒度仪的光学结构·  激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。激光粒度仪的原理·  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。  米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该[font=

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制