当前位置: 仪器信息网 > 行业主题 > >

加热式火焰离器

仪器信息网加热式火焰离器专题为您提供2024年最新加热式火焰离器价格报价、厂家品牌的相关信息, 包括加热式火焰离器参数、型号等,不管是国产,还是进口品牌的加热式火焰离器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合加热式火焰离器相关的耗材配件、试剂标物,还有加热式火焰离器相关的最新资讯、资料,以及加热式火焰离器相关的解决方案。

加热式火焰离器相关的论坛

  • 火焰加热石英管 氢化物原子吸收

    如题,使用 火焰加热石英管 氢化物[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]进行分析的朋友多吗?欢迎大家跟帖讨论。

  • 实验室和生物安全柜的火焰安全

    实验室和生物安全柜的火焰安全用火焰消毒是古典的微生物学方法,由于会产生气溶胶,并使柜内气流紊乱,尽量不要使用。在不得不使用火焰消毒法时,建议使用电子式火焰灭菌器。下面就实验室中常用到的火焰加热或灼烧灭菌装置安全使用进行详细介绍。 一、酒精灯酒精灯是目前实验室常用的低中温加热及灼烧灭菌工具。正确安全使用酒精灯,应注意以下几点:1、正常情况下,酒精灯是酒精的气体在燃烧,故灯蕊通常不会消耗太快,若是发现灯蕊消耗太快就要调整灯蕊裸露在外的长度,使它缩短;因燃烧时热焰会往上升,灯蕊过长时,在顶端的棉线因受到位于其下方的棉线蒸发出的蒸气燃烧的火焰高温的影响而被点燃;另外酒精灯的灯蕊过长时燃烧的火焰会产生黄火的状况,易在被灼烧物的外壁沉积黑色的碳灰,且焰温也会降低。2、熄灭灯焰时要将盖子由火焰的侧面盖上,以免由上方盖上时被灼伤,同时也可避免在盖内累积太多的热量。盖子盖上后要尽量密合,以防止灯内的酒精在灯头处尚有余温的情形下挥发太快。酒精灯在长时间不用时也应将灯内的酒精倒出,储存在密闭的玻璃容器中。3、酒精灯不用时切记盖子一定要盖上,只有在欲点火时盖子才应打开。因为任何时候移去盖子酒精就持续挥发,若是酒精灯周围通风不良,挥发的气体会累积在酒精灯的周围,点火时很容易产生气爆现象而遭火焰灼伤。4、酒精灯的玻璃部分有任何的裂痕时都不可继续使用,应立即更换。5、酒精灯不小心打翻时,只需以湿抹布由火的侧方滑上掩盖住泼洒的范围即可灭火。或是以自身为准,由内往外从火的侧方盖下,切莫由正上方往下盖,以免灼伤自己。火焰扑灭后,应立即将门窗打开,尽快使空气中的酒精蒸气吹散,勿在其周围点火。二、本生灯(煤气灯)本生灯是实验室中高温加热与灼烧灭菌工具。因其火焰温度较高,故灯具的材质必须使用耐热金属,其使用可以燃气混合空气进行燃烧。本生灯在使用时要特别注意安全:1、 本生灯所使用的燃料在室温时是气态,应特别注意管线的安全。2、 使用前必须检查所有开关是否在关闭的状态。确定所有的开关都在关闭的状态时,才能打开燃气的总开关。3、 本生灯不可先开气后才点火,应于无漏气情况下,点火后逐渐开气,遇燃气漏气时,须实时检修。使用时,先以火柴或点火枪等点火工具放在本生灯的顶端燃烧口处点火,接着打开本生灯的燃气开关至适当大小送出燃气,此时燃气即被点燃,若在3 到5秒内未见燃气被点燃应立即关闭燃气开关,待十秒后再重复前述点火的动作,若仍未能点燃,可再重复点火程序。4、 通常燃气输送的管线过长时,初次点火较不易被点燃,因为此时燃气可能尚未送达本生灯处。燃气点燃时焰色应为黄红色,此时若火焰过大或过小都应立即调至适宜的程度。若在多次重复点火的动作后仍未能点燃,此时应仔细观察,若未闻到燃气味,代表燃气的供应有问题,应检查燃气开关是否正常或燃气是否用完。若闻到燃气味,则应检查是否空气开关未关闭、点火枪不正常或本生灯的出气口有堵塞的情形。待情况排除并且燃气味排除后才可再次点火。5、 燃气点燃后应接着打开空气开关。空气的送入可使燃烧变得较完全,此时火焰会渐呈蓝色。本生灯在使用时要注意火焰的调整,当空气量不够时,火焰会呈黄色,有时甚至会产生黑烟,此种黄色火焰不仅温度较低,而且因燃烧不完全,黄色焰区中的细小碳粒会附着在被加热物外壁上,要改善此现象只要增加空气的进入量,即可将火焰的焰色调到淡蓝色完全燃烧的状态,此时火焰温度在约焰高二分之一到三分之二的高度处温度最高,当空气的输入量适宜时,火焰的颜色会呈现完全的蓝色,而且燃烧的温度也会增高。6、 燃气不用时应立即关火。关闭燃气时宜先关闭空气开关再将燃气关上。7、 本生灯有火时,应随时都有人在旁边,不可任由本生灯燃烧而无人看管。实验结束时应先将总开关关上,再将管线内的燃气以本生灯点火烧光,以保证安全。8、 使用本生灯时,若不小心失火,应立即关闭燃气开关,再做其它抢救措施。9、 在使用本生灯时,遇风大或天冷时,不可将门窗紧闭,以免空气不足产生一氧化碳中毒。10、在生物安全操作柜内禁止长时间使用酒精灯和火焰式的本生灯,因为持续燃烧所产生的热效应会干扰生物安全操作柜内的气体层流,且火焰热气会大大缩短HEPA高效滤层的寿命。三、 电子式火焰灭菌器电子式火焰灭菌器在欧、美等发达国家的实验室已被普遍使用,以UniFire自动点火灭菌器为例,其采用功能强大的微处理器控制,并通选微功耗新型元器件使仪器功耗极低,使用可充电电池供电,采用红外感应器或脚踏点火开关,当微处理器收到点火请求,即发出指令打开电磁阀,并在燃烧器顶部发出高压火花点燃经混合后的燃气,随之灭焰检测、超温保护进入检测状态,一旦火焰熄灭,微处理器即刻关闭电磁阀,灭菌器停止工作。电子式火焰灭菌器的面世,令长期以来实验室常规火焰灭菌或灼烧用装置所带来的安全问题基本得以改善。电子式火焰灭菌器非常适于实验室及野外便携点火与火焰灭菌用火,功能方面不但可替代传统的酒精灯、本生灯等,而且有着传统火焰灭菌工具所无法比拟的优点。电子式火焰灭菌器体积小巧,无需外接电源,可接驳使用各种燃气,火焰即用即自动点燃,火焰大小可随意调节,燃烧充分,火焰温度最高可达1300℃,并备有完善的安全保护装置,操作极其方便。电子式火焰灭菌器使用时应注意:1、 保持工作环境通风良好。2、 仪器工作时勿将易燃物品放于附近。3、 燃烧器工作时温度很高,不要触摸燃烧器以免灼伤,用完后也不要马上触摸燃烧器。4、 如仪器工作时有回火现象,可调节空气旋钮,减小空气进入直至回火消除为止。5、 仪器用完后切记关好燃气瓶的开关,并把仪器电源开关拔至Off位。6、 在微生物实验操作中,利用火焰灼烧灭菌接种针及接种环,可能会造成微生物的空气污染。为减少空气污染,建议使用有罩式的脚踏式电子灭菌器。7、 在超净工作台及生物安全操作柜内如有需要使用火焰燃烧器,则建议选择红外及脚踏双点火模式电子火焰灭菌器,以便于实验操作。总之,实验室火焰燃烧器的正确使用是一个实验室安全操作规范的重要组成部分,无论采用传统的酒精灯和本生灯,还是采用脚踏式电子灭菌器,都必须严格按照有关装置的操作规程,才能充分有效地发挥其在常规实验操作中的作用。

  • 紫外线传感器在火焰检测中的应用

    紫外线传感器在火焰检测中的应用

    紫外线火焰探测器是紫外火焰探测器的俗称。紫外火焰探测器是通过探测物质燃烧所产生的紫外线来探测火灾的,除了紫外火焰探测器之外,市场上还有红外火焰探测器,也就是术语是线型光束感烟火灾探测器。紫外火焰探测器适用于火灾发生时易发生明火的场所,对发生火灾时有强烈的火焰辐射或无阴燃阶段的场所均可采用紫外火焰探测器。火焰探测紫外线传感器需要传感器本身耐高温且灵敏度高。[img=,510,250]https://ng1.17img.cn/bbsfiles/images/2018/11/201811261012570717_3051_3332482_3.jpg!w510x250.jpg[/img]紫外管有两种工作状态,一种是炉膛、加热器的熄火保护,管子一直处在放电状态;一种是对火情的报警,管子工作在非放电状态。紫外管着重于气体、液体燃料火焰的探测,如天然气、煤气、石油液化气、汽油、柴油、酒精等类物质,其火焰能见度低、点燃快,有爆炸危险,在燃烧时必须有熄火保护,在火情预报时没有引燃阶段,采用紫外探测比其他形状的探测有明显的优点;能在毫秒级时间内快速反映;可以避免可见光及炉壁红外辐射的干扰,在我国城市逐渐燃料气体化的过程中,锅炉和加热器的程序点火控制中应用越来越广泛。由于紫外辐射是以光速传递的,紫外管又能在毫秒级快速反映,因此它可以用于易燃易爆场所,是人和设备得到保护。监测系统的基本功能是监测燃情并对火焰中断做出反映。显然,进行连续监测是不经济的。但是,必须防止认为的操作失误而造成严重事故。如果火焰熄灭而未被发现,燃料就可能继续流出和积集。如未予注意而重新点火,则可能引起积集的燃料和空气的混合物发生爆炸,造成人或设备的巨大损失。所以虽然对火焰的监测要求远教监测火焰的熄灭与否为多,但仍然需要监测系统以保证安全。对监测的反应时间要求严格,一般在火焰熄灭2-4秒内予以发现并切断燃料供应。现代火焰检测技术需要有较好特性的传感器,其中一些得到不断的完善,使用双金属元件、灯泡、毛细管系统及电热偶用热的变化来判明燃烧情况,这些方法只能在出现冷态时才能做出反应;用光敏元件检测燃烧中的可见光,因周围区域被加热到可见光的程度,使检测反映时间滞后,并且对一些包括照明在内的意外光亮也敏感;红外线检测器虽然可以避免一些意外的可见光干扰,但加热的炉衬会辐射红外线而使反应滞后;在火焰中设置两个电极,利用火焰的导电性来检测,这种装置不能区别火焰导通的电流和由于燃烧引起的积炭和污垢所导通的电流。在紫外区燃烧产物是晦暗的,应该使检测对准火焰的前三分之一。紫外线辐射是燃烧的产物,因此在燃烧的界面上强度最大,在非预混火焰,界面为表面,对预混燃烧的火焰,界面在起端的三分之一处。按比例预混的燃气火焰有很高的紫外辐射;雾化烧油、喷嘴混合烧气、煤粉火焰则表现为中等强度的紫外辐射。电弧富于紫外辐射,所以使用紫外线传感器应当十分注意防止电火花点火器或它的反射造成的误检。紫外线传感器的所有看窗及透镜都应采用石英玻璃等可透过紫外线的材料制成。火焰检测电极由于温度的限制,一般只限于较小的烧气火焰。烧油会在电极上结一层厚的绝缘膜使它与火焰间产生电绝缘。常使电极对引燃火嘴检测,并用紫外线传感器扫描主火嘴的联合检测。检试电极应放置在引燃火嘴和主火嘴的界面上,而不应当放在引燃火嘴的上方或者与它平行,这个位置不能超过额定温度,并且不得与地点接触。在冶金炉内重油燃烧火焰监视中应当注意,燃烧室内温度高于500℃时,会发生燃料和空气混合物的自燃引爆,当燃烧室的容积相当小时,爆炸的危险增加数倍。在目前已知的大多数火焰自动监视方法中,对重油喷嘴和煤气-重油联合烧嘴最适用的方法是无接触法,它使用的紫外传感器工作,很明显多数波长在0.21~0.23微米范围内,在上述范围内火焰的辐射是足够强的,而炉子砌体的辐射最大波长在红外线范围,对传感器完全不起作用。由于此种优越性,避免了火焰熄灭时发出的错误信号。紫外线传感器使用的安全期(寿命),由它的工作条件决定,环境温度低于50℃时,连续使用寿命超过10000小时,希望它装在朝向火焰的工作管冷端,需要时还可以强制供给冷却空气。紫外线传感器的正常工作寿命与工作线路有直接的关系,它的典型线路有高耗和低耗之分,高耗线路由于电流大可以直接带动继电器,具有线路简单、维修方便等优点;但由于今年来集成电路的飞速发展,从设计上采用低耗电路越来越多。低耗电路不但耗电少,而且能有效地避免因放电电流大,消电离时间不够长而引起自激现象。阻容并联的负载使管子放电面积加大而时间缩短,呈脉冲状态。紫外线传感器工作在直流状态必须有足够的熄灭时间(2ms以上),这是因为紫外光敏管的放电不会自行熄灭,而且放电管本身放电熄灭后很多游离的亚稳态原子,使第二次放电容易得多,只有足够长的时间这些亚稳态原子才能显著减少。高速调温燃烧器作为工业窖炉上的新型节能烧嘴正在推广使用,在使用中必须有自动点火和火焰监视。在燃烧中经常有一些杂志向四周喷射,容易将紫外线传感器前面的透紫玻璃遮住,使用中必须注意加强玻璃的吹扫,经过特殊设计的压缩空气防尘罩不仅可以冷却探头,而且可以有效防止粉尘在视窗上的聚焦。紫外火焰探测器是用紫外光触发的,普通的扩散火焰,能产生足够强度易鉴别的紫外辐射光,设计探测器时必须注意光谱范围应在290nm的太阳辐射光以外。现有紫外线传感器是很有效的,它能排除太阳辐射光,还能有效地感应火焰发出的285nm以下的辐射光。其它元件如碳化硅光敏二极管的灵敏度很高,但对非火灾的紫外光分辨能力差。紫外线传感器是为保护特殊场所而发展和应用的,这些地方的危险区距探测器近,而且探测器对火焰的选择性可以被精确到只感应火焰产生的特定波长的紫外辐射光。紫外火焰探测器已成功地应用于抑爆系统,并在低压室水灭火系统中作释放装置用。紫外管在火情报警上也可以配合感烟、感红外、感温探头使用,互相弥补不足,增加预报的可能性,如现代化计算机房、电力系统、石油化工系统等要求高的场所。高灵敏度的紫外管可以检测距7~10米的打火机火焰,故也可作为禁烟场所的警铃使用。在自动控制中紫外探头和紫外光源组成控制系统,避免外界杂散光的干扰,探测器信号经过处理后启动后级控制系统。例如,由于它只响应260nm以下的紫外辐射,能在放映中把电影片的断头,裂纹及时检查出来防止扩大损害。紫外管目前研制中主要是提高灵敏度、可靠性、一致性,降低成本,国外正在进行不同种类的燃烧发出紫外线的最强峰值探测的分类研究。紫外管的缺点是工作电压高,不能区分电弧紫外干扰,使用受到一定的局限。以Cs-Te为光电阴极的真空光电管工作电压低(6V、15V),光谱范围是185~350nm,适合紫外辐射量的检测,其输出电压是连续而且微弱,不合适作开关使用。[b]接下来就由工采网小编给大家推荐三款适用于火焰探测领域的紫外线传感器型号:[img=,394,291]https://ng1.17img.cn/bbsfiles/images/2018/11/201811261013161416_4804_3332482_3.jpg!w394x291.jpg[/img]紫外光电二极管 - SG01D-5LENS(带聚光镜,虚拟面积可以达到11mm2)宽频UVA+UVB+UVC, PTB报道的芯片高稳定性, 用于火焰检测辐射敏感面积 A = 11.0 mm2TO5密封金属外壳和聚光镜, 1绝缘引脚和1接地引脚10μW/cm2峰值辐射约产生350 nA电流[img=,298,298]https://ng1.17img.cn/bbsfiles/images/2018/11/201811261013316112_7896_3332482_3.jpg!w298x298.jpg[/img]紫外光电探测器 - TOCON_ABC1/TOCON-C1(可以监测到pw级紫外线,带放大电路),基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有集中器镜头盖0~5 V电压输出峰值波长是280 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 pW/cm2[img=,391,354]https://ng1.17img.cn/bbsfiles/images/2018/11/201811261013457946_9176_3332482_3.jpg!w391x354.jpg[/img]紫外光电二极管 EOPD-265-0-0.5-CC/EOPD-265-0-0.3-CC,紫外光电二极管EOPD-265-0-0.5-CC在紫外区(205 nm-355nm)内低成本SiC光电二极管具有高的光谱灵敏度,其封装在TO-52外壳内,配有紫外线玻璃窗口片,通过RoHS和WEE认证。[/b]

  • 【讨论】使用酒精灯加热时,应注意那些?

    [size=4]酒精灯灯焰分外焰、内焰、焰心三部分,在给物质加热时,应用外焰加热,因为外焰温度最高。[/size][size=4]注意:[/size][size=4]1).在用酒精灯加热可以用试管、烧瓶、烧杯、蒸发皿来给液体加热,在加热固体时可用干燥的试管、蒸发皿等,有些仪器如集气瓶、量筒、漏斗等不允许用酒精灯加热。(烧杯不可直接放在火焰上加热)[/size][size=4]2).如果被加热的玻璃容器外壁有水,应在加热前擦拭干净,然后加热,以免容器炸裂。[/size][size=4]3).加热的时候,不要使玻璃容器的底部跟灯芯接触,也不要离得很远,距离过近或过远都会影响加热效果,烧得很热的玻璃容器,不要立即用冷水冲洗,否则可能破裂,也不要立即放在实验台上,以免烫坏实验台。[/size][size=4]4).给试管里的固体加热,应行进行预热,预热的方法是:在火焰上来回移动试管,对已固定的试管,可移动酒精灯,待试管均匀受热后,再把灯焰固定在放固体的部位加热。[/size][size=4]5).给试管里的液体加热,也要进行预热。同时注意液体体积最好不要超过试管体积1/3,加热时,使试管斜一定角度(45°左右),在加热时要不时地移动试管,为避免试管里的液体沸腾喷出伤人,加热时切不可将试管口朝着自己和有人的方向,试管夹应夹在试管的中上部,手应该持试管夹的长柄部分,以免大拇指将短柄按下,造成试管脱落。[/size][size=4]6) 特别注意在夹持时应该从试管底部往上套,撤除时也应该由试管底部撤出。[/size]

  • 【原创】氩氢火焰低温自动点燃装置用于原子荧光分析中的研究

    以下是学习瑞利公司张锦茂老师于1998年3月发表的“氩氢火焰低温自动点燃装置用于氢化物发生-原子荧光光谱分析中的研究”所做的学习笔记,打出来与大家共同分享,并欢迎大家来继续补充。我将其技术及理论优势归纳成几个要点,便于我们记忆。①火焰噪声降低改善信噪比。石英管预加热温度在室温至约300 ℃时, 火焰近于无色难以分辨,信噪比得到了明显改善;随着石英管预加热温度的增加(300~900 ℃) , 由于加热石英管的影响, 火焰的色调由无色渐变为浅蓝色至桔红色, 火焰噪声显著增加。②灵敏度提高。所有被测元素在较低的预加热温度下(室温~400 ℃) 均有较高的分析灵敏度,且比高温石英管(900 ℃) 氩氢火焰自燃条件下灵敏度提高了2~8 倍。由于一般氢化物的分解温度较低, 当氢化物通过较高温度石英管时在形成氩氢火焰之前可能已被部分热分解, 分解产物进入氩氢火焰不再被原子化,基态原子相应减少,原子化效率相对降低。因此石英管预加热温度越高, 原子化效率就越低, 灵敏度也就降低了。③大大减小了记忆效应。高温石英管(900 ℃) 氩氢火焰自燃的氢化物-原子荧光法中,当测定较高浓度的标准或样品溶液后, 产生的记忆效应是比较严重的。一般均认为是氢化物发生系统受到污染造成。因此经常采用清洗水多次清洗发生器或由空白溶液连续多次测定所产生的气体冲洗发生器系统来消除记忆效应的影响。而采用氩氢火焰低温自动点燃装置后,研究结果表明, 石英管预加热温度是影响记忆效应的主要因素。记忆效应的主要来源可能是氢化物在预加热石英管内热分解, 分解产物在高温石英管中被吸附后再释放所致。试验证明, 当采用低温或不加热石英管条件下, 各元素在线性范围内的测定几乎不受记忆效应的影响。④侧面证明了氢化物原子化机理理解上存在的误区。氢化物原子化机理并不是象以前人们认为的氩气氛中热分解而原子化。因为如果氢化物是“热分解”而原子化, 那么, 石英管预加热温度对荧光信号(灵敏度) 就不应该有影响。随着温度的升高“热分解”加剧, 荧光信号反而降低, 原子化效率也减小, 说明这种“热分解”不利于氢化物的原子化。而“热分解”产物再被导入氩氢火焰时, 也不再进一步原子化, 只有还未分解的氢化物才能在氩氢火焰中原子化。通过改变原子化器的高度还表明,虽然氩氢火焰的温度是上部较高,下部较低, 但是几乎所有的氢化物元素在同一观测高度有最强的荧光信号,而与火焰的温度梯度无关。这说明在氩氢火焰中氢化物的原子化过程与“热分解”无直接关系。所以,氢化物在氩氢火焰中的原子化过程,主要与火焰中的氢自由基的存在和碰撞有关。已有文献报道了H2Se 在氩氢火焰中的原子化不是由于热分解,而是由于火焰反应区中产生的H和OH 自由基与H2Se 分子碰撞的结果。我们的试验结果及结论正好支持和证明了这种原子化机理。下面这点是尚未有明确论据的结论,只是对实验结果的其中一种解释。⑤低温预加热比高温石英管的线性下限明显下降, 但出现线性上限弯曲较早。不同的石英管预加热温度对氢化物元素线性动态范围有较大的影响。由于采用氩氢火焰自动点火装置在低温预加热条件下信噪比有较大改善, 原子化效率得到提高, 以及原子化器的优点是温度可控, 使每一个元素都能在最佳的石英管预加热温度下原子化, 因此所有被测元素的检出限显著降低,相应也降低了线性范围的下限, 一般来讲线性动态范围仍可达2~3 个数量级。产生这种差异的原因是在较低预加热温度时, 由于原子化效率较高使氩氢火焰中基态原子密度较大, 致使产生原子荧光再吸收过程。当然, 预加热温度对其它氢化物元素的线性范围上限是否有如此严重的影响, 有待进一步的试验验证。任何技术都会有一定的缺陷和不足,就像马克思说的“绝对真理是不存在的”。氩氢焰低温点燃技术解决的不仅仅是原子荧光光谱仪的应用,更是纠正了对氢化物原子化机理上认识的误区。再补充一点:火焰温度对原子化过程不起决定性作用。最佳的观测高度与被测元素反应所生成的氢气量有关。因此KBH4的质量浓度及加入量需控制一致。(主要是由氢化物原子化理论决定的)

  • 【求助】氢化物发生器到底要不要加热测量?

    用瀚时的有电热丝加热..用北京有色研究所的LH-2A说明书上说测量时点燃空气-乙炔火焰,T型石英管能用这火焰加热吗?不会爆吗?搞不明白哦.....AAS厂家帮我们买的这台氢化物发生器,咨询的时候他说氢化物是无火焰操作不用点火,但是我做了几个砷标样上机测,一点吸光度都没有,后来把原来的旧的瀚时的电热丝套在T型石英管上,测硒又有吸光度?奇怪了哦你们做氢化物的时候加热了吗?点火了吗?还是没有加热设备,直接测氢化物蒸气?

  • 谈谈火焰监测器

    谈谈火焰监测器

    在原子吸收火焰分析方式中,大家比较关心的一个隐患就是火焰“回火”故障。当因某种原因造成助燃气流量突然中断供给或者减弱时,原本燃烧正常的火焰就会突然缩回到燃烧室(雾化室),产生很可怕的爆破声,甚至有可能将燃烧头或者雾化器炸开。这绝不是危言耸听,而是我亲身经历过的场景,那是在70年代在使用PE340型原吸火焰测试时,燃烧器发生回火爆炸,造成喷雾器前盖从燃烧室脱离,并从两个操作仪器的女孩子的面颊之间飞出,前些酿成人身伤害。为了杜绝这种“回火”隐患,目前许多仪器厂家均在仪器上设计有一种防回火的装置,这个装置的名称就是“火焰监测器”。这种装置的工作示意图见图-1所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_01_1602290_3.jpg图-1 火焰检测器工作示意图从图-1可以看出,这个装置的其实就是一个闭环的光→电控制电路。其工作原理如下:当燃烧头的火焰被点燃后就会产生一定波长的辐射光,而这个辐射光就会被火焰传感器(亦称为检测器)立刻检测到;通过识别控制器的鉴别放大作用,去控制通往燃烧头的乙炔气供给的电磁阀,使电磁阀保持导通供气。如果火焰突然熄灭或者缩回到燃烧室里时,火焰检测器就会检测不到火焰辐射信号于是识别控制器就会立刻控制乙炔电磁阀关闭,从而阻断了燃气的继续供给,保障了仪器和操作者的人身安全。这种防回火装置看起来并不复杂,但是最主要的一个技术指标就是要反应迅速;为此对于火焰传感器的灵敏度的要求的就比较高。在有些仪器上,这个传感器使用的是硅光电池。但是硅光电池的反应速度有时跟不上火焰熄灭的监测速度,也就是电路上所说的“滞后”现象。于是目前比较先进的仪器均使用了更为反应灵敏的紫外监测器,也称之为UV监测管。这种检测器见图-2 所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_02_1602290_3.jpg图-2 UV监测管目前配套的紫外火焰监测器已经有市售的产品售出了,网上可以卖到;例如浜松(HAMAMATSU)公司生产的C3704火焰监测器套件就是例子。这种套件外形见图-3所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_03_1602290_3.jpg图-3 火焰UV监测器外观http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_04_1602290_3.jpg图-4 火焰UV监测器电路板日立系列原子吸收仪器里面均都安装了这款火焰检测器配套装置。下面就是这款火焰监测器安装在仪器里面的实际位置图例:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_05_1602290_3.jpg图-5 日立180-80型原吸的火焰传感器的位置http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_06_1602290_3.jpg图-6 日立Z-2000型原吸的火焰传感器的位置后 记:据统计,仪器安装上了这款防回火的监测器后,从未发生过回火现象。可见火焰监测器在仪器里的“防患于未然”的作用是多麽重要啊!

  • 乙炔气瓶柜离火焰原子吸收仪器的管路距离约12-15米长,有问题吗?

    请教:乙炔气瓶柜离火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器的管路距离约12-15米长,有问题吗?会不会因管路太长而容易产生气体泄漏的安全问题??气瓶室和[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器房中间还隔了一个房间,搞得管路距离有点远了,又没有做集中供气

  • 【转帖】常用加热仪器及加热方法

    酒精灯 酒精灯一般是玻璃制的。由灯帽、灯芯、灯壶三部分组成。其灯焰温度通常可达400-500℃ ,外焰最高,内焰次之,焰心最低。酒精灯用于温度不需太高的实验,点燃时,切勿用点燃的酒精灯直接点火;添加酒精时,必须将火焰熄灭,且加入的量不能超过灯容量的三分之二;熄灭酒精灯时必须用灯罩罩熄,切勿用嘴去吹。电炉 电炉是一种用电热丝将电能转化为热能的装置。其温度高低可通过调节电阻来控制。使用时,容器和电炉之间要隔石棉网,以使受热均匀。电热恒温水浴锅 电热恒温水浴锅有两孔、四孔、六孔等不同规格。其构造分内外两层。内层用铝板制成,外壳用薄板制成,表面烤漆覆盖:槽底安装铜管.内装电炉丝用瓷接线柱联通双股导线至控制器;控制器表面有电源开关、调温旋钮和指示灯:水浴锅左下侧有放水阀门,后上侧可插温度计,外形如图2-5。水浴锅恒温范围为37 一l00℃,电源电压为220 伏.用作蒸发和恒温加热。使用时,切记水位一定不得低于电热管,否则将立即烧坏电热管。注意防潮.且随时检查水浴锅是否有渗漏现象。使用方法见各仪器说明书。

  • 【原创】火焰原子吸收气路不通一例

    最近,做了一次火焰法测铁,出现了气路不通的故障,分享给大家。仪器型号为北京瑞利的WFX130A。开机后打开空气压缩机,先关闭总的进气阀,待压力上升后,开启总进气阀,结果空气压缩机压力迅速下降,燃烧头处没有任何声音。试验几次,均为同样现象。再次检测所有的气路连接情况,一切正常。突然发现仪器的原子化器仍在石墨炉处(该型号为火焰、石墨炉一体化机型),怀疑可能是这个原因。于是调整原子化器至火焰法,再次开启空压机,正常,开启乙炔,正常,运行一段时间后,一切正常。原因:原子化器选择不正确而引起仪器自动保护装置开启导致气路不畅。见笑了,大家不要犯我这样的错误。

  • 【分享】石墨炉原子吸收光谱仪与火焰原子吸收光度计的异同

    石墨炉原子吸收光谱仪与火焰原子吸收光谱仪都属于原子吸收光谱仪,由光源、原子化系统、分光系统和检测系统组成。  主要区别在:  1、原子化器不同  火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。  石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。  原子化程序分为干燥、灰化、原子化、高温净化  原子化效率高:在可调的高温下试样利用率达100%  灵敏度高:其检测限达10-6~10-14  试样用量少:适合难熔元素的测定  2、操作条件的选择  火焰燃烧器操作条件的选择(试液提升量、火焰类型、燃烧器的高度)  石墨炉最佳操作条件的选择(惰性气体最佳原子化温度)  3、精确度  火焰原子吸收光谱法可测到10-9g/ml数量级  石墨炉原子吸收法可测到10-13g/ml数量级  4、火焰原子吸收除了其优异的性能之外更添加了在线稀释装置和可切换的真实单,双光路光学系统。  石墨炉原子吸收采用横向加热石墨管, 加热速度可高达3800K/秒, 可设置多达30个加热步骤以适合各种应用。

  • 【讨论】火焰两边起翘是怎么回事?

    【讨论】火焰两边起翘是怎么回事?

    [em09511]最近我在做火焰时,火焰的两端火焰总是动不动就往上跑,昨天我测K时,刚点燃火焰几十秒内,火焰还是好好地,但马上就出现了这个现象。这时的流量:乙炔为2.4,空气为8.0。我调节了空气的流量为6.0时,火焰侧恢复正常。而之前仪器设定的,而且我一直都用的空气是8.0.为什么现在出现了这个现象?请大家帮忙解释一下。上图:[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912170859_190449_1600679_3.jpg[/img]以上是一起火焰正常时的图片[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912170859_190451_1600679_3.jpg[/img]以上是火焰出问题时的火焰

  • DFPD火焰光度检测器的市场

    目前DFPD火焰光度检测器的市场大不大,主要测量痕量硫化物的,灵敏度比单火焰的FPD稍微低一些。灵敏度最高的还是PFPD,脉冲式火焰光度检测器,不清楚DFPD的市场行情,群里有大神对这个市场了解的吗?请指点一二,多谢。

  • 【讨论】有用过 德国耶拿Zeenit 700型顶级火焰-石墨炉

    最近在购买仪器,我做过PE、日立的原吸,有人做过耶拿的这台仪器吗?请介绍下怎么样?pe800虽属于最好的,但技术研发基本停止了。耶拿使用的是原来PE在德国生产线和研发人员,使用连续光源、固体进样。所以想了解下它的优缺点。谢谢仪器简介:德国耶拿分析仪器股份公司(Analytik Jena AG) 近年不断推出一系列新型号的原子吸收光谱仪和诸多创新的特殊应用技术。 Analytik Jena AG 公司位于世界光学精密仪器制造中心 ―― 德国耶拿市, 1846年卡尔蔡司在这里创办。 1960年卡尔蔡司公司(Carl Zeiss Jena GmbH) 开始设计和制造原子吸收光谱仪, 在Analytik Jena 全面接管其分析仪器业务后于1998年推出全自动微机控制原子吸收光谱仪AAS vario 6, 2002 年推出AAS novAA 400(原为Vario 6) 该仪器首先实现自动固体样品分析, 结合横向加热石墨炉技术、快速火焰/石墨炉原子化器切换技术,从而开辟了原子吸收光谱技术崭新的发展方向。同年,Analytik Jena收购了原PE公司在德国的原子吸收制造基地,包括全套的生产线和研发队伍。 2000年,推出AAS Zeenit 600/650型石墨炉原子吸收光谱仪,除了继续保持横向加热石墨炉这个传统优势之外,该仪器实现了液体/固体石墨炉原子吸收光谱分析,结合3磁场交变塞曼效应背景扣除技术,可变磁场强度为0.1...1特斯拉, 最高的交变塞曼调谐频率达300Hz, 使其成为世界上最先进的石墨炉原子吸收光谱仪。 2004年,推出了Zeenit 700型顶级火焰-石墨炉联用原子吸收光谱仪,该仪器是目前所有同类产品中配置最高,技术最先进的型号,包括了“横向加热石墨炉技术”、“三磁场塞曼和氘空心阴极灯双扣背景”、“固体进样技术”、“Zeiss光学技术”等耶拿所有顶尖技术。 同年,AJ公司还推出了连续光源原子吸收光谱仪contrAA,不用更换空心阴极灯、不用预热,这是原子吸收光谱历史上划时代的革命!这也意味着AJ公司站在了全球原子光谱最新技术的前沿!技术参数:1. 光度计 :高光通量的单光束/双光束自动切换技术 2. 单色器 :Czemy Turner单色器,1800条刻线/mm;波长范围: 190-900nm 3. 光栅面积:54x54mm 4. 灯 座:全自动6灯座,自动准直 5. 背景校正:电子调谐氘空心阴极灯和三磁场塞曼效应双扣背景 6. 磁场强度:0.1-1.0T 可调,可在2-磁场塞曼和3-磁场塞曼模式间切换 7. 石墨炉:横向加热石墨炉,室温-3000 C控温,加热速度最高3000C/秒 8. 石墨炉自动进样器:智能稀释,最大625倍; 可自动清除交叉残留 9. 外形尺寸:1200x480x600 mm主要特点:1.火焰-石墨炉一体化,紧凑设计,不用机械切换原子化器 2.横向加热石墨炉技术 3.三磁场塞曼和氘空心阴极灯双扣背景 4.三磁场:直接扩展线性范围一个数量级,防止塞曼翻转 5.单/双光束自动切换 6.固体进样技术,直接测量固体或半固体样品 7.智能化稀释:扩展动态范围两个数量级 8.自动除残:自动清除上一高浓度样品的残留 9.氢化物-石墨炉技术联用等扩展技术仪器简介:连续光源原子吸收光谱仪是原子光谱上划时代的革命性产品。2004年,德国耶拿公司投入了十几年时间研制出的全球第一台商品化仪器问世,这意味着德国耶拿已经走在原子光谱技术的最前沿;2006年,德国耶拿公司又推出了高分辨火焰/石墨炉一体连续光源原子吸收光谱仪,利用一个高能量氙灯,即可测量元素周期表中67个金属元素,同时还可能获得更多的光谱信息,为研究原子光谱的基理提供了分析仪器的保证。并保留了顶级原子吸收光谱仪ZEEnit700的技术优势。技术参数:1. 世界第一台高分辨连续光源火焰/石墨炉原子吸收光谱仪 2. 连续光源:高聚焦短弧氙灯 3. 光学系统:高分辨率的中阶梯光栅光谱仪,达到2pm的光学分辨率,波长范围189-900nm 4. 检测器:紫外高灵敏度的CCD线阵检测器 5. 快速多元素分析,优于普通扫描ICP的分析速度 6.独特的同时背景校正,测定时间真实,无灵敏度损失,完全校正结构背景主要特点:1. 不用空心阴极灯 2. 测量速度达到或超过ICP或ICP-MS水平 3. 检出限优于普通原子吸收 4. 同时进行背景校正,无需氘灯或塞曼 5. 原子化器和普通原子吸收一样,所有测量方法均适用。 6. 仪器维护和消耗成本低于普通火焰AAS 7. 横向加热石墨炉,可直接固体进样分析 8. 氢化物发生器可与火焰联用,也可与石墨炉联用 9. 开机后立即测定 10.光学分辨率高达0.002nm

  • 火焰原子吸收原子化器

    将试样中的被测元素转化为基态原子的过程称为原子化过程,能完成这个转化的装置称原子化器,目前,使用较普遍的原子化器有两类,一类是火焰原子化器,由石墨炉作原子化器的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析法称为石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法(GFAAS)。 待测元素的原子化是整个[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析中最困难和最关键的环节,原子化效率的高低直接影响到测定的灵敏度,原子化效率的稳定性则直接决定了测定的精密度,原子化过程是一个复杂的过程,在后面的章节中作详细介绍。 火焰原子化器实际上就是一个喷雾燃烧器,作为一个性能良好的原子化装置要求其调节方便,单位时间内吸入的试液尽可能多地产生微细雾粒,并能雾珠尽可能地到达火焰进行原子化等到特点。同时,还要燃烧稳定,火焰发射的噪声要小。按照火焰的燃气和助燃气的混合方式和进样方式不同,火焰原子化器又可分为全消耗型原子化器和预混合型原子化器,前者产生的火焰称紊流火焰,后者为层流火焰。 1﹑全消耗型原子化器 这种原子化器结构如下图所示,由于助燃气的高速流过原子化器,在原子化器的出口形成一负压区,使得试液由吸液毛细管抽入火焰中,试液的雾化过程直接在燃烧器口进行,试液被全部喷入火焰,在火焰高温下完成干燥、分解、原子化的全过程。 全消耗原子化器的原了化效率很低,高速运动的雾珠直径较大,大多数雾珠在火焰中还未达到原子化时就飞出火焰,使火焰中基态原子数目减少。此外,由于火焰要将大量溶剂蒸发,火焰温度因而下降,也使原子化效率降低,使用全消耗原子化器,喷雾和燃烧条件不能分别控制,火焰浮喷雾的干扰很大,大颗粒粒子在火焰中产生严重的散射干扰,火焰燃烧不稳定,噪声大,所以,现在的仪器已不使用这种原子化器。 全消耗原子化器的重要优点是使用安全,由于其燃气与助燃气是在燃烧器的外部混合燃烧,所以在工作中允许二种气体以任何比例混合,而不会发生危险。

  • 双火焰FPD检测器的问题讨论

    双火焰FPD检测器的问题讨论

    [img=,390,338]https://ng1.17img.cn/bbsfiles/images/2018/10/201810221440302740_1715_3364942_3.png!w390x338.jpg[/img]请问论坛里有了解双火焰FPD检测器的大神吗?遇到一个,我在测试时发现一个很奇怪的现象,点火后只有里面的小火焰是着的,通过喷嘴能看到里面的氢火焰燃烧(淡蓝色火焰),但是空气2喷嘴处没有火焰,这是什么情况啊,只有里面的小火焰导致燃烧产生的信号很小!请知道的大神指点一下!谢谢了!

  • 【分享】安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识

    【分享】安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识

    安捷伦技术贴示:火焰离子化检测器 (FID)—检测器知识 N. Reuter*, I. van der Meer, E. de Witte, L. Flipse, Technical Helpdesk Europe, Middelburg, The Netherlands 前言火焰离子化检测器是气相色谱的标准检测器,几乎可以检测所有的有机组分。所得到色谱图的峰面积与样品中该组分的含量成正比。FID的灵敏度极高,具有9个数量级的宽动态范围,它唯一的缺点是需要破坏样品组分。示意图http://ng1.17img.cn/bbsfiles/images/2010/12/201012231940_269431_1615838_3.jpg图1: FID示意图说明FID包含一个氢气/空气火焰和一个集电片,从GC色谱柱出来的流出物通过火焰,有机物分子在火焰中电离产生离子,这些离子被收集到极化的集电极上,产生电信号。集电极带负电荷,火焰喷口带正电荷。

  • 点式光谱仪测火焰光谱难题

    本人目前正在进行油料燃烧火焰光谱的测量,采用的点式光谱仪,但测量结果不能令人满意,在紫外光区,没有明显的特征峰值,请问可能是那里存在问题?会不会是火焰温度太低?环境光的干扰?亦或者是火焰闪烁的影响?求大神解释啊新人,积分少,别嫌弃

  • 【原创大赛】认识一下火焰监测器

    【原创大赛】认识一下火焰监测器

    在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]火焰分析方式中,大家比较关心的一个隐患就是火焰“回火”故障。 当因某种原因造成助燃气(空气)流量突然中断供给或者减弱时,原本燃烧正常的火焰就会突然缩回到燃烧室(雾化室),产生很可怕的爆破声,甚至有可能将燃烧头或者雾化器炸开。这绝不是危言耸听,而是我亲身经历过的场景,那是70年代在使用PE340型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]做火焰测试时,燃烧器突然发生回火爆炸(当时该仪器没有防回火装置),造成将喷雾器前盖从燃烧室炸开,并从两个操作仪器的女孩子的头部中间飞过,险些酿成人身伤害。 为了杜绝这种“回火”隐患,目前许多仪器厂家均在仪器上设计有一种防回火的装置,这个装置的名称就是“火焰监测器”。这种装置的工作示意图见图-1所示:[img=,492,390]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051322243255_2206_1602290_3.jpg!w492x390.jpg[/img] 图-1 火焰检测器工作示意图 从图-1可以看出,这个装置的其实就是一个闭环的光/电控制电路。其工作原理如下:当燃烧头的火焰被点燃后就会产生一定波长的辐射光,而这个辐射光就会被火焰传感器(亦称为检测器)立刻检测到;通过识别控制器的鉴别放大作用,去控制通往燃烧头的乙炔气供给的电磁阀,使电磁阀保持导通供气。如果火焰突然熄灭或者缩回到燃烧室里时,火焰检测器就会检测不到火焰辐射信号,于是识别控制器就会立刻控制乙炔电磁阀关闭,从而阻断了燃气的继续供给,保障了仪器和操作者的人身安全。 这种防回火装置看起来并不复杂,但是最主要的一个技术指标就是反应速度;为此对于火焰传感器的灵敏度的要求的就比较高。在有些老旧或简易的仪器上,这个传感器使用的是硅光电池,见图-2所示:[img=,258,210]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051325140275_3931_1602290_3.jpg!w258x210.jpg[/img] 图-2 硅光电池 硅光电池的优点是价格低廉,但是其缺点是反应速度有时跟不上火焰熄灭的速度,也就是电路上所说的“滞后”现象。于是目前比较先进的仪器均使用了反应更为灵敏的紫外传感器,也称之为UV监测管。这种监测管的外观见图-3 所示:[img=,690,516]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051326118775_83_1602290_3.jpg!w690x516.jpg[/img] 图-3 R2868型UV监测管 目前结合这种监测管的紫外火焰监测器套件已经有市售的产品售出了,例如浜松(HAMAMATSU)公司生产的C3704火焰监测器套件就是例子。这种套件外形见图-4所示:[img=,690,516]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051327035949_6343_1602290_3.jpg!w690x516.jpg[/img] 图-4 C3704型火焰UV监测器外观 类似这种火焰检测器的最大特点就是检测灵敏度高、反应速度快,究其原因就是因为该设备有着完整的放大体系;UV管的工作原理类似光电倍增管,因为放大倍数高,自然灵敏度也就随之提高了。该监测器的电路见图-5所示:[img=,690,457]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051327496115_3570_1602290_3.jpg!w690x457.jpg[/img] 图- 5 C3704火焰监测器电路图 目前日立系列[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器里面均安装了这款火焰检测器配套装置。图-6就是这款火焰监测器安装在仪器里面的实际图例:[img=,690,520]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051328464989_1061_1602290_3.jpg!w690x520.jpg[/img] 图-6日立Z-2000型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]的火焰传感器的安装位置 使用类似监测器的仪器有时会遇到燃烧头点火成功后却保持不住,火焰很快就熄灭了,尤其是在潮湿的南方地区或潮湿的季节经常发生。为此,下面做一个原因的分析和解决的方法介绍:(1)[b]原 因:[/b]空气中的水分附着在UV管的光窗上了,造成了火焰中的紫外光信号强度受阻,致使UV管无法正常工作,产生没有看到火焰被点燃的“假象”从而关闭了乙炔控制阀,火焰自然就维持不住了。[b]解决办法[/b]:①取出UV管用乙醇清洁受光窗。但是对于用户而言,这种措施有些难度。②用吹头发用的风筒对着UV管的检测孔吹干(见图-7所示)。但是要注意吹风机的温度要设在低档,并且边吹边晃动,时间不能过长。这种措施只是权宜之计,关键是要彻底解决室内潮湿环境问题,例如加装除湿机。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051329512019_5029_1602290_3.jpg!w690x517.jpg[/img] 图-7 用吹风机烘干UV管 (2)[b]原 因:[/b]空气中的湿气尤其是沿海地区含盐分的湿气附着在火焰监测器的控制电路板上的高压发生器单元,使之电路板的绝缘电阻下降,造成供给UV管的正高压电压跌落,从而使UV管不能正常导通,总是呈现出报警状态。高压发生器的电路图和实体图见图-8所示:[img=,690,325]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051330494681_1991_1602290_3.jpg!w690x325.jpg[/img] 图-8 高压发生器电路图以及实体图[b]解决办法:[/b]取下电路板,用无水乙醇棉签擦拭电路板高压发生器部位(图-8 电路板红框中的)后,再用吹风机吹干。[b]后 记:[/b]经过我多年的维修经验,该火焰监测器质量很可靠,电路上几乎没有出现过故障。只是仪器在使用了十年以后有的UV监测管的灵敏度可能故有所下降,但是该监测管在网上可以购买到,价格在100元左右。

  • 【求助】火焰法做铬的回收率,回收率在150%左右,求教。

    ,最近用火焰做铬的回收率,回收率很高,达150%,做了好几次都在这个水平左右。 仪器:岛津AAS6300;进样条件采用仪器默认条件。样品:奶粉;前处理步骤:称0.5g样品于瓷坩埚,低温炭化后加铬标液,再于电热板上加热,再转移至马弗炉于500摄氏度灰化1小时,用稀硝酸溶解,加热,定容,进样。容器空白和未加标样品中均未检出铬。求各位指教。

  • 原吸火焰测定,酸介质问题!

    我以前用火焰原吸测铜和铅 都是同样的溶样 提取时候是用1:1的盐酸五毫升提取,但是我看了国标 测定铅是用硝酸提取、要是都用盐酸提取有问题吗?我具体的熔矿方案是:称0.5克样于聚四氟乙烯坩埚中,加十五毫升浓盐酸,加热微沸20分钟,取下稍冷,加入五毫升浓硝酸,蒸干,加入五毫升一比一盐酸,少许水冲洗杯壁,加热提取,冷却定容于50毫升容量瓶中,静置,澄清后上火焰原吸,请问这样用盐酸提取的试液能直接测铅么?

  • 火焰法测铝的一个可行性猜想

    大家都知道瑞利曾经有个专利是使用纯氧来提升燃气温度,使火焰法可以测铝,并且被很多用户采用。但是大家都知道笑气和纯氧都是具有一定危险性的,有些单位并不是很喜欢使用,纯氧是尤其危险的东西,能不用最好不用。那么使用空气-乙炔能不能实现铝等高温元素的直接测试呢?我检索了一下:[font='微软雅黑','sans-serif'][color=#ff6666]根据专利信息几伏的弱电场已经足够为元素增敏[/color]([color=#0070C0]增敏除了温度也可能是电场改变了火焰的形态,使观测区增大,相对原子增多,有资料和图片佐证[/color]),那么在乙炔空气火焰环境下,使用[/font]KHz[font='微软雅黑','sans-serif']高频电场对火焰进行能级强化,对“铝原子”能级激发至原子化(石墨炉标[/font]2700[font='微软雅黑','sans-serif']度)是不是可能的。[/font][font='微软雅黑','sans-serif']高频[/font]KHz[font='微软雅黑','sans-serif']电场对微波和电感耦合的[/font]MHz[font='微软雅黑','sans-serif'],[/font]GHz[font='微软雅黑','sans-serif']频率电场来说设备简单的多,淘宝各种功率电路模块都可以购买。[/font]KHz[font='微软雅黑','sans-serif']的电场加热效率,达到的能级都远远不如更高频率的仪器用电场。[/font][font='微软雅黑','sans-serif']那么高频电场与空气乙炔火焰猜想,能不能达到希望的效果?[/font][font='微软雅黑','sans-serif']一、现成的[/font][font='微软雅黑','sans-serif']高频电磁感应模块[/font][font='微软雅黑','sans-serif']二、需要定制感应线圈[/font][font='微软雅黑','sans-serif']三、需要制作陶瓷燃烧头[/font][font='微软雅黑','sans-serif']四、避免火焰接触感应铜管,要设计使用隔离[/font][font='微软雅黑','sans-serif']材料能使用电磁感应加热的条件是:材料具有导电性,而不是材料具有磁性。所以,各种金属和其他导体,包括铁、铝、铜、石墨等都能用电磁感应加热。[/font][font=微软雅黑, sans-serif]铝和铜不会因电磁感应加热主要是因为他们的加热效果不明显。铁等铁磁性物质的电磁感应加热效率能高达[/font][font='Tahoma','sans-serif']90%[/font][font=微软雅黑, sans-serif],而铝的加热效率为[/font][font='Tahoma','sans-serif']50%[/font][font=微软雅黑, sans-serif]或更低,因此感觉不够明显。[/font][font=微软雅黑, sans-serif][font=微软雅黑, sans-serif][color=#ff6666]那么使用高频感应线圈给火焰施加电场,能不能达到足够能级使“铝原子”激活。这是不是一个有意义的实验呢?大家可以给出意见。[/color][/font][/font][font=微软雅黑, sans-serif][b][font=微软雅黑, sans-serif]检索高频-电场-火焰,电场会对火焰燃速和形态产生影响[/font][/b][font=微软雅黑, sans-serif]高频电场加热利用高频电场的能量对电介质类材料进行的电加热。电介质类材料在高频电场作用下,其分子和原子中正负电荷产生高频率的交替位移,分子和原子的热运动加剧,从而使材料得到加热。[/font][url=http://www.cqvip.com/QK/97609X/201605/669133356.html][font='微软雅黑','sans-serif'][color=#0066CC]低频和高频交流电场对球形膨胀火焰的影响[/color][/font][/url][font='微软雅黑','sans-serif']为比较不同频率的低频和高频交流电场在辅助燃烧方面的作用[/font],[font='微软雅黑','sans-serif']在定容燃烧弹中对交流电场作用下的甲烷[/font]/[font='微软雅黑','sans-serif']空气预混贫燃火焰的燃烧特性进行了研究[/font],[font='微软雅黑','sans-serif']分析了不同频率的低频和高频交流电场对火焰传播速度和燃烧压力的影响[/font].[font='微软雅黑','sans-serif']结果表明[/font]:[font='微软雅黑','sans-serif']交流电场作用下[/font],[font='微软雅黑','sans-serif']火焰在水平方向被拉伸[/font],[font='微软雅黑','sans-serif']且拉伸幅度随着频率的不同而有所差异[/font].[font='微软雅黑','sans-serif']低频交流电场作用下[/font],[font='微软雅黑','sans-serif']平均火焰传播速度和燃烧压力均随着频率的减小而增大[/font],[font='微软雅黑','sans-serif']而对于高频交流电场[/font],[font='微软雅黑','sans-serif']其规律则相反[/font].[font='微软雅黑','sans-serif']与未加载电压相比[/font],[font='微软雅黑','sans-serif']当过量空气系数α[/font]=1.6,[font='微软雅黑','sans-serif']加载电压有效值[/font]U=5kV,[font='微软雅黑','sans-serif']频率[/font]f=40Hz,60Hz,80Hz,100Hz,10kHz,15kHz,20kHz,25kHz[font='微软雅黑','sans-serif']时[/font],[font='微软雅黑','sans-serif']平均火焰传播速度分别提高[/font]72.41%,55.17%,48.28%,39.66%,62.07%,70.69%,81.03%,87.93%,[font='微软雅黑','sans-serif']相对燃烧压力增大率的最大值分别为[/font]0.65,0.58,0.48,0.28,0.29,0.51,0.67,0.86.[font='微软雅黑','sans-serif']研究表明[/font],[font='微软雅黑','sans-serif']高频交流电场在电场助燃方面比低频交流电场更有优势[/font].[font='微软雅黑','sans-serif'][color=#0070C0]高频高压电场对甲烷预混倒置焰锥火焰的影响与分析[/color][/font][font='微软雅黑','sans-serif']摘要:采用平面火焰燃烧器实现了一种甲烷预混倒置焰锥抬升火焰[/font],[font='微软雅黑','sans-serif']在没有发生放电击穿的条件下着重分析了高频高压电场对火焰的影响[/font].[font='微软雅黑','sans-serif']实验观测发现倒置焰锥火焰的抬升高度受高频高压电场的增强而降低[/font],[font='微软雅黑','sans-serif']并且焰锥夹角随电压的增加而减小[/font].[font='微软雅黑','sans-serif']对照实验现象分析[/font],[font='微软雅黑','sans-serif']结果表明由于高频高压电场带来的离子风效应较小[/font],[font='微软雅黑','sans-serif']高频高压电场对火焰面中电子或离子参与的化学反应碰撞的增强可能是最主要的的原因[/font].[font='微软雅黑','sans-serif'][color=#0070C0]高频交流电场对预混稀燃火焰影响的机理分析[/color][/font][font='微软雅黑','sans-serif']高频交流电场影响火焰燃烧的电化学效应中电子与燃烧产物分子的振动碰撞及其后续的链式反应占据主导[/font] [font='微软雅黑','sans-serif']在不同初始压力下[/font] [font='微软雅黑','sans-serif']平均火焰传播速度增大率随着简化场的增大呈线性增大[/font] [font='微软雅黑','sans-serif']说明利用简化场来衡量高频交流电场电化学效应的强弱是可行的[/font] [font='微软雅黑','sans-serif'][color=#0070C0]点电极的电场对预混甲烷[/color][/font][color=#0070C0]-[/color][font='微软雅黑','sans-serif'][color=#0070C0]空气火焰的影响[/color][/font][font='微软雅黑','sans-serif']摘要:通过改变过量空气系数和加载电压[/font],[font='微软雅黑','sans-serif']研究了点电极产生的正电场对甲烷[/font]-[font='微软雅黑','sans-serif']空气预混火焰形状、传播速率以及燃烧压力的影响[/font].[font='微软雅黑','sans-serif']结果表明[/font]:[font='微软雅黑','sans-serif']在电场作用下[/font],[font='微软雅黑','sans-serif']离子风效应促进火焰的传播[/font],[font='微软雅黑','sans-serif']使火焰沿水平方向被拉伸[/font],[font='微软雅黑','sans-serif']并且火焰传播速率增加[/font].[font='微软雅黑','sans-serif']当外加电压为[/font]12kV[font='微软雅黑','sans-serif']时[/font],[font='微软雅黑','sans-serif']过量空气系数为[/font]0.8[font='微软雅黑','sans-serif']、[/font]1.0[font='微软雅黑','sans-serif']和[/font]1.2[font='微软雅黑','sans-serif']下的火焰传播速率最大值分别增加了[/font]55.7[font='微软雅黑','sans-serif']%、[/font]13.2[font='微软雅黑','sans-serif']%和[/font]46.6[font='微软雅黑','sans-serif']%[/font] [font='微软雅黑','sans-serif']过量空气系数为[/font]1.4[font='微软雅黑','sans-serif']时[/font],[font='微软雅黑','sans-serif']离子风效应和电晕放电的共同作用促使传播速率曲线出现转点[/font],[font='微软雅黑','sans-serif']转点后的传播速率最大值增加达到[/font]128.9[font='微软雅黑','sans-serif']%[/font].[font='微软雅黑','sans-serif']电场作用下[/font],[font='微软雅黑','sans-serif']燃烧压力峰值有所增加[/font],[font='微软雅黑','sans-serif']并且过量空气系数为[/font]1.2[font='微软雅黑','sans-serif']和[/font]1.4[font='微软雅黑','sans-serif']时压力峰值出现时刻最大分别提前了[/font]14.1[font='微软雅黑','sans-serif']%和[/font]16.6[font='微软雅黑','sans-serif']%[/font].[/font]

  • 【分享】锅炉离子式火焰检测器故障排除方法

    电离式火焰监测器主要用于燃气工业燃烧器、锅炉的火焰监测。检测性能可靠,可以排除积炭、布线分布电容的影响,只对火焰敏感,对高温无反应,具有强抗干扰性能。锅炉离子式火焰检测器故障排除方法:1.燃烧器火焰正常,并且检测中心电极能接触到火焰,而监测器判断无火。  A. 关断电源,测量检测端对地的绝缘电阻,如果电阻小于20 MΩ,则是检测电极高温陶瓷绝缘管积炭严重或检测线绝 缘破坏所致,如陶瓷管积炭严重,清理积炭即可,如检测线绝缘不良,需更换检测线。  B. 如果检测线对地电阻大于20 MΩ,可能由于导线吸潮使分布电容增大,请测量检测线对地电容,在电容不大于           0.1μF的情况下,请重新调节模块中央的匹配电位器。如果电容大于0.1μF,最好考虑缩短模块与探头的距离。  2.燃烧器灭火,而监测器显示有火。是由于模块中间的阻抗匹配电位器超调所致,请重新调试。

  • 氢离子火焰测有机物浓度

    [color=#444444]通过加热单一的有机物(例如多环芳烃)得到[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],利用氮气作为载气通过检测设备,想用氢离子火焰检测浓度,假如只测一种有机物的浓度,是不是就不用色谱柱分离呢? 谢谢![/color]

  • 火焰测样时上样时的咕噜声

    今天上机用火焰测铁的时候,到测样后期,听到燃烧头里隐约有咕噜声,换样中间火焰颜色也不变蓝。想想不对,就动了动排水管,发现从上流下一大股水流。后怀疑是排水桶里憋压,就把塞子拧开了。果断重新测了部分样品,发现确实有误。 现在的问题是:为什么会有咕噜声?如果是水堵在燃烧头下不来,是何原因呢?我后来那样的处理措施对吗? 我还问下:火焰测试期间,每次换下一个样前,要不要等到火焰变蓝?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制