当前位置: 仪器信息网 > 行业主题 > >

检测光栅传感器

仪器信息网检测光栅传感器专题为您提供2024年最新检测光栅传感器价格报价、厂家品牌的相关信息, 包括检测光栅传感器参数、型号等,不管是国产,还是进口品牌的检测光栅传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合检测光栅传感器相关的耗材配件、试剂标物,还有检测光栅传感器相关的最新资讯、资料,以及检测光栅传感器相关的解决方案。

检测光栅传感器相关的资讯

  • 俄开发新型生物传感器:大客流环境即时监测感染性病毒
    近期,俄罗斯科学家开发出了一种新的激光技术,用于制造新颖的光学生物传感器,这种传感器能够在几秒钟内识别感染性疾病。该装置通过红外光来显示有害的细菌和病毒,可以在大型的交通枢纽,如机场等需要不断监测大量的客流的环境下得到广泛应用。  这项研究发表在《激光物理快报》杂志上。该传感器是由一个规则微穿孔化的银纳米薄膜沉积在由天然矿物萤石支撑的透明基板上制作而成。生物材料样本,如刮下的鼻粘膜的样品被放置在薄膜上。然后,这一薄膜曝光在一个普通实验室中的红外光谱仪的红外光中。通过获取通过样品的光谱,研究人员可以推断出特定的细菌或病毒的存在。  为了证明新型生物传感平台可以立即检测病原微生物,科学家们使用了一种常见的细菌进行实验,金黄色葡萄球菌。  这种快速分析可能被广泛应用于大型交通枢纽,如机场这种需要不断对流通乘客进行健康监测的环境下。目前,这种还是通过热成像摄像机跟踪体温来实现。一个发烧的乘客可能是一个潜在的感染源。在这种情况下,一个清晰的分析是必要的,要辨别出来该人是否实际上是生病了,还是什么别的原因。利用现有的方法调查生物材料,如聚合酶链式反应方法要需要几天。与之相反的是,这种新技术可以立即提供出检测的结果。  这项研究由机械与光学大学、国家核研究大学、列别捷夫物理研究所、莫斯科物理技术研究所的科学家主导进行,并与莫斯科传染病临床医院展开了密切合作。  这种新的生物传感器的另一个优点是它的灵敏度。“光学生物传感器,使用我们的技术可以检测单个细菌,”Sergey Kudryashov说,他是机械与光学大学激光技术与仪器学院和列别捷夫物理研究所气体激光器实验室的领导研究员。“在一些公共机构,如幼儿园、学校内传染病的早期诊断,特别对于高校的季节性流行病有很好的帮助。对于在传染病医院的医生来说,这种技术可以是一个宝贵的资产,可用于早期和更快的诊断。”  该生物传感器的灵敏度归功于银质薄膜的光栅状结构。当红外线通过传感器时,它会定期地分布在表面上。随着光照强度变高微孔会转变成热点。生物材料中含有的微生物会在热点中有效地填充孔和吸附,这增加了他们的检测的概率。  数以百万计的微观孔利用激光进行切割,这是通过衍射光学元件进行空间复用成微束,使研究人员能够使传感器的生产自动化和更迅速。  “到现在为止,这样的传感器只能通过高倍率放大的电子显微镜才能看到,所以实际的实验室分析是不可能的。我们的方法可以允许这种微孔结构覆盖更大的面积,扩展到一平方厘米面积,用以制作出应用在实际实验应用传感的原型,以方便生物材料更好的适配,”Sergey Kudryashov说。  对于光学生物传感的反洗方法并不是新创的,而只是实施过程中效果不佳。这是由于一个事实,早期的技术并不能制造真正的原型,即可用在实验室环境中进行测试和临床中实践。  这在把这项新技术用于医疗实践之前,提出了另一个科学家必须进行解决重大的挑战,细菌(红外光谱库)的参考数据库的建立,即被用来与从红外光谱仪形成的数据进行比较。  红外光谱仪的读数总是要与这种光谱数据库进行比较,即某些官能团分子的红外活性指纹的目录库。例如,在研究中使用的金黄色葡萄球菌,有它自己的指纹,来自胡萝卜素的类胡萝卜素片段,而胡萝卜素即是负责其颜色的一种物质。  科学家们希望在未来,由于较低的生产成本和快速的制造工艺,以及更常见的基板材料的使用,新的光学生物传感器平台将得到广泛的实际应用。此外,根据研究人员的说明,一旦光谱库被校准,传感器将能够识别不仅是致病微生物的类型,且会包括它们的近似类型。
  • 俄罗斯科研人员用纳米圆盘制成的柔性光学传感器可以监测结构中的变形
    俄罗斯克拉斯诺亚尔斯克科学中心和西伯利亚联邦大学的科研人员从理论上研究纳米圆盘二维光栅光学特性,并提出可监测结构形变的光学传感器模型。该研究成果发表在《纳米材料》杂志上。该设备的工作原理基于在变形过程中结构谐振波长的变化。研究人员发现,光栅在两个相互垂直的方向被压缩和拉伸时的光学反应不同。被压缩时,共振波长没有变化,但被拉伸时,可以观察到产生移动。这种器件的灵敏度由结构变形系数相对于谐振波长的差异决定。该设备应用范围决定了其必须具有高弹性。因此,研究人员建议将纳米颗粒置于凝胶基质中或植于柔性基材上,例如聚二甲基硅氧烷薄膜上。利用这些高弹性材料,使传感器看起来像软物质或活体组织。它能使传感器像 “活体植物”一样,根据光栅的变化和相应的光谱偏移,监测结构变形。这种结构利用其光栅变形进行监测,而纳米粒子本身没有发生改变,从而保证其高灵敏度。采用此种方法,极大减少了设备技术难度,并降低了成本。
  • 复旦开发光增强化学晶体管传感器,实现中性小分子的高灵敏检测
    小分子作为分子量小于 1000 道尔顿的化合物,在生命活动中发挥着重要的作用。对小分子进行检测和分析,无论是在生物医学领域,还是在疾病的早期诊断中,都是非常必要的。目前,市场上已出现不少小分子检测方法,包括光谱学、电化学等技术,但它们也同时存在着各种缺点,比如操作复杂、通量小、设备昂贵等。与上述传统的检测技术相比,场效应晶体管(field-effect transistors,FET)这种传感器平台则具有诸多优点,如灵敏度高、响应速度快、即时检测等。在该平台中,石墨烯作为导电通道,当其与小分子相互作用时,和电荷转移相关的化学掺杂效应会改变它的电势,导致石墨烯 FET 通道的电导发生实时变化。其中,必须说明的是,小分子的电荷量或分析物的氧化还原性,对化学门控调制起着决定性作用。也就是说,这种晶体管传感器,更适用于检测那些带电量较多的分子,而无法很好地检测那些电荷很少、且氧化还原性能较弱的小分子。复旦大学魏大程研究员带领的课题组,以新型场效应晶体管材料的研发为研究重点(课题组主页:www.weigroupfudan.com)。近期,该课题组发现了一种光化学门控效应,可以通过引入额外的光门控调制,来提高小分子的检测灵敏度。基于此,他们在石墨烯 FET 通道上,生长了具有良好光敏性的共价有机框架材料,能够吸收大量的光能量,并产生丰富的光电子,进而放大对化学信号的电流响应。图丨团队合照(来源:魏大程)接着,该团队采用光门控和化学门控协同的策略,开发了一款光增强化学晶体管传感器,实现对不同小分子,包括中性分子在内的高灵敏检测。利用该器件,他们成功检测到由细胞产生的、浓度低于 10−19M 的二羰基代谢物甲基乙二醛(methylglyoxal,MGO),至少比现有的技术低 5 个数量级。需要说明的是,MGO 是糖尿病、心血管病等疾病的重要参与分子,此前传统的小分子检测方法,很少能够实现对浓度低于 10−9M 的 MGO 的检测。在检测 MGO 的基础上,该器件还可以通过在共价有机框架材料上设计活性位点的方式,实现对其他具有不同电荷性质的小分子的检测。并且,对共价有机框架材料的分子结构进行调整,还能满足对其他疾病标志物的检测,比如蛋白质、离子、核酸等。图丨光增强化学晶体管(来源:Journal of the American Chemical Society)据魏大程介绍,该研究开始于 2018 年左右,整个过程持续了两到三年时间。“我们先是发现了一些光增强的电学响应信号现象,但并不清楚其中的机理,后来做了很多对比实验,同时也进行反复的讨论分析,才明白其实际上是光栅效应和化学效应的协同作用导致的。”他说。同时,他也表示:“我们利用光增强技术的好处是,能够对信号放大,使晶体管传感器发展成一个通用平台,既可以检测带电量较高的小分子,也可以检测带电量较低的小分子。”图丨光增强化学晶体管(来源:Journal of the American Chemical Society)2023 年 4 月 25 日,相关论文以《用于小分子超灵敏检测的光增强化学晶体管平台》(Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of Small Molecules)为题在 Journal of the American Chemical Society 上发表[1]。图丨相关论文(来源:Journal of the American Chemical Society)复旦大学硕士研究生王乾坤、艾昭琳为该论文的共同第一作者,复旦大学魏大程研究员为论文的通讯作者。整体来看,该研究拓宽了晶体传感器平台的应用范围,具有快速、易于操作、高灵敏等优点的传感器件,有望在生物医学研究、健康监测和疾病诊断中实现应用。魏大程表示:“我们实验室主要想将晶体管传感器与医疗相结合,开展一些生化检测方面的研究。不过,实现小分子检测只是研究的一部分,这里面还有许多科学问题和技术问题有待解决。比如,我们想实现对癌症的检测。虽然这方面也已经有了很多相关技术,但在进一步提高检测的准确性上还有研究的空间,所以接下来我们也计划朝着这个方向进行探索。”此外,生化传感领域,尤其是晶体管传感技术,目前尚处于实验室阶段,现在,临床上还没有在大规模使用的产品。该团队也正在和相关企业进行交流,希望能够基于所开发的技术,打造一些具有较强实用性的产品,推动产业领域的应用。
  • 科学家研制出黑磷光纤传感器
    p   近日,中国科学院深圳先进技术研究院研究员吕建成、喻学锋与英国班戈大学教授陈险峰等合作,成功研制出首个基于黑磷的光纤化学传感器,实现对重金属离子的超灵敏检测。 br/ /p p   倾斜光纤光栅是一种新型的光纤器件,大角度倾斜光栅结构能够将纤芯光学基模前向耦合到光纤包层,在特定的波长形成一系列离散的谐振峰,光的耦合将随着外界媒质折射率等的变化而变化。因此,倾斜光纤光栅是非常适合作为传感应用的光子器件。黑磷是近年来广受关注的一种具有直接带隙二维半导体材料,具有独特的二维平面结构、超高的比表面积、众多的活性位点,以及从可见到红外广阔的光谱响应范围,在光学检测方面展现出巨大的应用前景。 br/   该研究中,研究团队首次将黑磷和倾斜光纤光栅相结合,揭示了黑磷纳米层独特的光学调制作用,借助于倾斜光栅这种独特的光学结构,构建成新型的超灵敏化学传感器。本研究发展了一种原位层叠的修饰技术,将黑磷纳米片高效地附着在光纤器件表面,不同厚度的黑磷纳米层展现出对光信号独特的调制性。利用这一特性,该黑磷光纤传感器能够在亚ppb浓度水平检测到重金属铅离子,具有超高的灵敏度、超低的检测限,以及广阔的浓度检测范围。黑磷新型光纤传感器的成功研发,将为化学和生物传感提供一个优越的光学检测平台,从而推动黑磷化学生物传感器的应用研究进程。 br/   相关研究成果发表于Sensors and Actuators B: Chemical。该研究得到了国家自然科学基金、欧盟“第七框架计划”等的资助。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/4ba34206-8377-4380-a6fe-692cf085a316.jpg" title=" 1.jpg" style=" width: 600px height: 326px " width=" 600" vspace=" 0" hspace=" 0" height=" 326" border=" 0" / /p p strong 图.a):黑磷倾斜光纤光栅器件及其光学调制示意图,b):重金属离子检测的实验步骤,c):不同重金属离子浓度下TM模式共振的光谱图,d):不同重金属离子浓度下光谱的共振强度图。 /strong /p
  • 全球光纤传感器市场规模年均新增18%
    作为物联网极其重要的组成部分之一,光纤传感器因其优势与应用一直备受瞩目。从全球市场来看,2013年全球光纤传感器市场规模为18.9亿美元。预计2014至2018年,全球光纤传感器市场将以年均18%的增长幅度增长,至2018年市场规模达到43.3亿美元。   从光纤传感技术研究上看,美国对该技术的研究起步最早,且在世界上最为先进。数据显示,2007年,美国光纤传感器市场规模为2.35亿美元,此后以30%的年复合增长速度增长,2014年有望达到16亿美元。   相较于美国,中国的光纤传感行业处于起步阶段。据统计,截至2013年底,中国2000万元规模以上的传感器制造企业有260多家。但行业整体素质参差不齐,小型企业占比近七成,以生产低端产品为主 少部分龙头企业和外资企业占据高端产品市场。   虽然起步晚,中国光纤传感市场需求却呈现出爆发式增长,仅电力领域相关产品的招标就比以往多了近百倍以上。业界人士评估,2013年,光纤传感器在中国市场的规模约有10亿元,且呈逐渐增长的态势。   目前,市场上应用最广的光纤传感器有4种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。   光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器。   光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型。   光纤光栅传感器产品包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。   光纤电流传感器主要应用于电力领域,它能很好地避免一些由于电力过强而引发的事故。   光纤传感器目前可以直接或间接测量近百种物理量以及化学和生物量,被广泛应用于国防、电力、石油、建筑、医学等各个领域。   在国防上,光纤传感器可用于水声探潜(光纤水听器)、光纤制导、姿态控制、航天航空器的结构损伤探测(智能蒙皮)以及战场环境(电磁环境、生化环境等)的探测等。   在电力系统中,高电压、大电流的恶劣电磁环境使得电子类传感器的应用受到限制,而光纤传感器以其特有的抗电磁干扰能力,在电力系统中可用于测量大型电机的转子、定子和高压变压器内部的电流、电压、温利于提高特种微型光缆外护层的固化度,但超过一定范围对提高固化度作用不大。   近年来,这种采用UV涂层作为外护层的特种微型光缆在有线制导武器和水下工程中的应用发展非常迅速,不久的将来可广泛地应用于导弹、重型鱼雷、大潜深潜水器、海底监测网络等领域。
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。   基本工作原理及应用领域   光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。   光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:   1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。   2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。   在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。   光纤传感器助力物联网发展市场容量将近万亿   自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。   我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。   传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。   光纤传感技术在物联网中的应用   通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。   目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • 研究开发出基于FBG传感原理的触觉传感器应用于微创手术组织触诊
    近日,中国科学院深圳先进技术研究院医工所微创中心研究员王磊团队在基于布拉格光栅光纤传感原理在微创手术的应用——活体组织触诊的研究中实现了活体组织的精准力信息反馈和肿块信息的定位检测功能。相关研究成果以Development of a Fiber Bragg Grating-based Force Sensor for Minimally Invasive Surgery ―Case Study of Ex-vivo Tissue Palpation为题,发表在IEEE Transactions on Instrumentation and Measurement上。  随着医疗技术的快速发展,微创手术(MIS)逐渐成为现实。但是,传统手术中发现的一些问题仍与MIS有关。例如,在进行微创外科手术期间,医护人员会暴露在手术室中发现的放射线和整形外科危害中。引入机器人辅助微创手术的技术成为了比传统微创手术更好的替代方案;然而,机器人辅助手术过程中伴随着外科医生的触觉丧失。外科医生通过操作机器人来进行微创手术,手术期间医生无法直接接触人体组织并且分析人体器官,因此无法保证所进行的手术的可靠性。在传统手术过程中,医生通过触觉去感知器官的异常情况,进而判断器官中是否存在肿瘤和肿块。但随着医疗机器人的普及,这种可获得的触觉信息尚未有效集成到机器人辅助的微创手术中,因此要求机器需要具有更高精确度和灵敏度的触觉信息反馈。深圳先进院科研人员在此基础上提出一种用于微创手术组织触诊中的高灵敏度布拉格光栅光纤(FBG)传感方案,与以往的电容式传感方案不同,光纤传感器与手术期间的磁共振(MR)系统和成像系统兼容。   为此,研究设计了用于微创手术的一维远端力传感器。其中,传感器结构中嵌有双光栅元件可用于解耦传感器在使用过程中受到的应变和温度交叉影响,实现更精准的力觉检测。研究中,科研人员基于双光栅元件结构设计出发,推导出相应的柔性结构理论模型。通过fmincon函数对柔性件进行了基于物理模型的优化设计,确定了结构的关键参数。采用有限元法对柔性件的静态和动态特性进行分析,在理论基础上验证了该柔性件的可行性。为了进一步提高传感器性能,并基于前馈神经网络对数据进行标定,该网络模型可精准预测力与波长偏移量的关系。研究还进行了温度补偿实验,验证了双光栅元件能够有效的进行温度解耦方案。实验结果表明,FBG传感器能够在1N范围内感知力值,平均相对误差小于满量程的2%;温度补偿后的误差0.8 mN。科研人员进一步对猪肝器官进行组织触诊实验,验证所提传感器设计在微创手术中的有效性和适用性。   研究实现了组织触诊中器官肿块信息的精准力反馈和定位检测,并提出了新型的温度解耦方案和传感器标定方法,为微创手术中手术机器人的触觉信息检测提供了有效技术路线,有望推动手术机器人在介入式医疗中的手术路径导航和机器控制中的应用。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。   论文链接
  • 西安光机所等在表面功能化光纤传感器研究中获进展
    近日,中国科学院西安光学精密机械研究所与西北大学合作,在表面功能化光纤传感器研究方面取得重要进展。研究基于通信单模光纤开发出一种免标记、高灵敏度、高选择性的法布里-泊罗(Fabry-Perot)型干涉探针。该探针具有测试便捷、成本低、温度稳定性高等特点,在生物大分子光谱检测方面具备广泛应用前景。   胆固醇是细胞膜、脂蛋白、神经细胞和脑细胞中的重要脂质大分子,其浓度与心脏病、高血压、动脉硬化、中风等疾病密切相关。因此,胆固醇水平检测备受关注。与目前常用的电化学法、酶分析、液相色谱、质谱等检测方法相比,光纤光谱检测方法具有体积小、抗电磁干扰、成本极低、免标记等突出特点,在生物化学检测领域备受关注。   传统的光纤光谱检测器件(如长周期光栅、倾斜光栅、表面刻蚀布拉格光栅等)受到制备仪器要求严格、温度及形变交叉敏感等困扰,在实用性上有较大局限。   该团队从光纤干涉理论及光与物质的相互作用理论出发,采用单模光纤和光纤插芯制备光纤光谱检测器件,通过范德瓦耳斯力在光纤插芯端面依次贴覆环氧树脂-氧化石墨烯(GO)-β环状糊精多层功能膜,基于最外层β环状糊精的疏水型空心分子结构与胆固醇的靶向性吸附结合原理,实现对胆固醇分子的高灵敏度光谱浓度检测,并在尿素、葡萄糖、抗坏血酸、人体血红蛋白等生化分析领域常见干扰物作用下可以呈现出强选择性,具备可重复制备和可重复检测特性,检出限达到3.5M, 灵敏度为3.92 nm/mM。该成果为表面功能化光纤器件在生化光谱分析领域的应用提供了新的思路和手段。   此外,研究通过X射线光电子能谱(XPS)探究EDC/NHS活化GO羧基对分子间键合相互作用影响以及β环状糊精和胆固醇分子的成键作用特性,对检测机制进行了验证分析。   相关研究成果发表在Analytica Chimica ACTA上。西安光机所为第一完成单位及通讯单位。图1.(a)为实验装置,(b)(c)为干涉结构。图2.(a)胆固醇检测光谱;(b)参杂/未参杂样本检测波长的Langmuir拟合;(c)选择性;(d)器件制备重复性测试。图3.XPS结果。(a) EDC/NHS未活化/活化羧基传感器的XPS光谱;(b)活化羧基传感器的N 1s光谱;(c)(d)分别为经过/未经过EDC/NHS活化羧基传感器的C1s光谱,(e)(f)分别为其O1s光谱EDC/NHS处理的传感器 (g)EDC/NHS活性羧基示意图。
  • 曾令文:核酸生物传感器在重金属离子检测中的应用
    仪器信息网讯 2015年6月17日,&ldquo 第四届中国食品与农产品质量安全检测技术国际论坛暨展览会&rdquo 在北京国家会议中心开幕。此次会议特别设置了&ldquo 食品与农产品中重金属元素和其他有害物质检测&rdquo 、&ldquo 食品与农产品安全微生物检测&rdquo 、&ldquo 饮用水安全检测&rdquo 等九个专题。大会第二天,来自中国科学院广州生物医药与健康研究院曾令文研究员在&ldquo 食品与农产品中重金属元素和其他有害物质检测&rdquo 专题中做了题为&ldquo 核酸生物传感器在重金属离子检测中的应用&rdquo 的报告。 专题现场 中国科学院广州生物医药与健康研究院 曾令文研究员   在报告中,曾令文首先介绍了重金属污染的危害、污染源和污染特点。他说,随着工农业生产的迅速发展,食品污染问题越来越严重,重金属是最主要的污染物质之一,会通过食物链的富集最终残留在人体内,对人体的组织器官构成了严重威胁。重金属污染源主要有工业污染、农业污染、生活污染和环境事故污染等。具有不可逆转性、生物积累性、难以降解、生物催化以后毒性会转变等特点。   同时曾令文提到,与其他国家相比,我国重金属污染相对比较严重。大气、土壤、水体都存在重金属污染的现象,污染一旦产生,面积会不断扩大。   其次,曾令文在报告中详细介绍了目前重金属的检测方法。据他介绍,传统重金属检测方法主要有光谱法、电化学法和基于显色螯合剂的方法等。光谱法主要包括原子吸收光谱法、原子发射光谱法、原子荧光光谱法和分光光度法等方法。光谱法和电化学法需要借助相关的仪器进行检测,具有灵敏度高、特异性好等优点。但是样品处理繁琐、检测成本和技术要求较高,不利于基层单位使用。而基于显色螯合剂的方法具有简便快速、成本低等优点,但是灵敏度不足、其他离子会干扰检测的特异性。   为了解决传统方法在检测重金属污染中面临的问题,在曾令文的带领下,课题组研制了两种新型生物传感器,基于核酸酶(DNAzyme)的传感器和基于荧光铜纳米颗粒的荧光传感器,并进行了大量实验验证方法的可行性和灵敏度。据他介绍,两种方法具有以下优点:简单、快速、检测成本较低 降低对仪器的依赖,肉眼即可观察结果 适合在基层实验室或野外使用等。   在介绍基于核酸酶(DNAzyme)的传感器在重金属检测中的应用时,曾令文说,该方法在检测重金属离子时主要有两种方法,试纸条法和荧光法。   试纸条法中主要制备了Pb2+和Cu2+特异性的DNAzyme检测试纸条,并进行相关实验进行检验。对于Pb2+来说,该方法检测限可以达到10pM,线性范围为10pM-100nM,特异性非常好,不受其他离子干扰,用湖水做回收率分析实验,结果可达88%-106%。对于Cu2+来说,该方法检测限可以达到10nM,特异性分析实验中,铜离子为0.3&mu M,其他离子为3&mu M。   荧光法中,主要制备了铜离子检测的荧光传感器和基于比色法检测铜离子的传感器,铜离子检测的荧光传感器的灵敏度可达12.8pM,线性范围是20pM-1&mu M,特异性分析实验中,铜离子为1&mu M,其他离子为10&mu M。基于比色法检测铜离子的传感器,灵敏度可达240nM,线性范围是0.4&mu M-100&mu M,特异性分析实验中,铜离子为10&mu M,其他离子为100&mu M。   在介绍基于荧光铜纳米颗粒的荧光传感器在重金属检测中的应用时,曾令文谈道,用该方法检测铅离子,灵敏度为5nM,线性范围为5-100nM,选择性分析实验中,铅离子为0.3&mu M,其他各离子为3&mu M。   最后,曾令文总结了基于核酸酶(DNAzyme)的传感器和基于荧光铜纳米颗粒的荧光传感器在进行重金属检测中的优点,并展望了两种方法在未来重金属检测中的应用前景。   编辑:张葳
  • 新型生物传感器可提高检测灵敏度
    近日,中科院上海应用物理研究所、苏州纳米技术与纳米仿生研究所、复旦大学中山医院、上海计量测试技术研究院合作开发了一种基于DNA纳米结构修饰界面的电化学生物传感器,用于microRNA肿瘤靶标的超灵敏检测,相关工作已于日前发表于Nature杂志社新出版的综合性期刊Scientific Reports。   微小RNA(microRNA)是一种内源性的非编码单链RNA,在细胞的一系列生理发育过程中起着重要的调控作用。研究者发现microRNA的异常表达与很多肿瘤的发生发展直接相关,特别是发现它可以稳定地在血清中存在,是一类非常有前景的肿瘤标记物。   与传统的PCR等均相检测方法相比,基于表面反应的电化学生物传感器对疾病相关的microRNAs检测具有更加廉价、更容易实现现场检测的优点。然而,电化学生物传感器的灵敏度常常受到界面传质过程和拥挤效应的限制。   为了解决这些问题,中科院上海应用物理研究所研究员樊春海及其团队之前已发展了利用三维DNA纳米结构修饰金电极表面的新方法,可以显著增强表面分子的结合能力和提高检测灵敏度。   在樊春海指导下,闻艳丽等科研人员将这种DNA纳米结构修饰表面用于microRNA的传感检测。研究表明,这种新型的生物传感器可以检测到aM(10-18 mol/L)水平(1000个分子)的microRNAs,具有良好的单碱基区分能力,且能与前体RNA很好地区分。利用这种新型生物传感器灵敏度高、重复性好、无须标记和无须PCR扩增的优点,研究者对于一系列食管鳞状细胞癌病人样本中的microRNAs表达水平进行了分析,并实现了对癌组织和癌旁组织的良好区分。
  • 监测仪器设备+传感器 实现大气精准监测
    过去,动辄上百万一台的环境监测仪器设备,对地方政府来说是笔不小数目。随着我国环境监测工作推进全面布点、网格化管理,价格昂贵的监测设备已经不能满足监测工作的需要,如何才能让监测设备成本降下来?  已经有企业进行了商业模式的探索。记者了解到,先河环保运用大型监测仪器和传感器共同对一个区域进行环境监测,最后将监测数据汇总并进行分析,为地方政府制定治理方案,提供精准的数据支持。河北先河环保科技股份有限公司副总裁范朝表示,过去企业以卖设备为主,现在要为政府提供解决方案。  据了解,在河北石家庄市井陉矿区几十平方公里的范围内过去只有一个环境监测站点。矿区内有洗煤厂、钢铁厂、焦化厂等众多排污大户,还有大量来往运输的柴油车。先河环保运用小型传感器进行网格化布点,在环境监测工作中运用“互联网+”为提升环境污染精准治理做了大量工作。  先河环保常务副总裁陈荣强告诉记者,“经过20多天的监测,发现有些企业是颗粒物的重要来源和贡献者,必须对其治理。比如钢铁厂、焦化厂脱硫脱硝要进一步提高治理效率 过境的柴油车必须加大管控。”  他同时表示,一台传感器价格在七八万元左右,相比空气自动监测站要便宜很多。通过全面布点、全面联网,达到为区域环境“问诊”的效果。  另据了解,先河环保目前以同一模式在河南郑州布点,马上将在河北保定、廊坊进行试点。  记者了解到,物联网层级的第一层是感知层,第二层是传输和数据处理,第三层是数据平台。传感器必须不停地和监测仪器进行校准,否则数据会失真得很厉害。而这正是环保企业与传感器生产企业或互联网企业相比的优势所在。  “业内把传感器这种失真叫做‘飘’,要保证数据准确,就需要设置传感器的记忆曲线。一般每隔两三个月,传感器的监测数据对比大型监测仪器会发生一定偏离,这就需要把记忆曲线‘拉’回来,现在通过云数据库就可以做到这一点。矿区用一台大型监测仪器带动几十个传感器,一旦传感器数据不准确,就会对其进行修正。”陈荣强说。
  • 新型传感器推动农残快速检测技术
    6月29日,由中科院合肥物质科学研究院承担的中国—新加坡国际合作项目“荧光标记的人工抗体微纳传感器对农药残留的快速检测”在合肥顺利通过验收。验收专家组经过质询和讨论后认为,通过开展国际合作与交流,该项目取得多项创新性和系统性的研究成果。通过以磁性纳米粒子为基质,合成出高效的人工抗体新材料,实现了复杂样品中农药成分的快速分离富集 并且成功研制出可视化检测的试纸和微纳芯片,其检测限达到0.1ppb,优于欧美标准,为食品安全及农产品贸易提供了理论和技术支持。特别是农残传感器的研究具有原创性,达到国际领先水平。   通过项目实施,该院在J. Am. Chem. Soc.等国际期刊上发表SCI论文17篇 申请国家发明专利3件(其中已获授权1件) 培养了4名博士、6名硕士。合作双方建立了稳定的合作关系,新方负责人韩明勇被中科院聘为特聘研究员。   验收专家一致认为认为,该项目通过开展国际合作与交流,该项目取得多项创新性和系统性的研究成果。通过以磁性纳米粒子为基质,合成出高效的人工抗体新材料,实现了复杂样品中农药成分的快速分离富集 并且成功研制出可视化检测的试纸和微纳芯片,其检测限达到0.1ppb,优于欧美标准,为食品安全及农产品贸易提供了理论和技术支持。特别是农残传感器的研究具有原创性,达到国际领先水平。专家组还建议有关部门对该项目继续给予支持,加速项目创新成果的产业化进程。   智能所相关工作人员表示,项目通过验收,表明在实验室阶段是没有问题的,接下来的关键在于,课题组成员想要实现芯片的产业化,“最终的目的是希望这个芯片能够比较低廉,安装在类似手电筒那样的便携设备上就能用。”据悉,该研究课题还在另一个方向上寻找检测农残的“秘密武器”,那就是试纸。目前,这种“试纸”并未产业化,需要多次的临床试验和进一步地优化,来保证它的稳定性。工作人员表示,不管是测农残的芯片,还是试纸,科研人员都在进行进一步的研究,最终希望这些实验室科研成果能够走进普通百姓家,让消费者方便地使用。
  • 香港理工大学研发光纤光栅监测技术试用于全国高铁
    香港理工大学最近与西南交通大学及大连交通大学合作,将理大研发可用于监测铁路及大型基建结构的“光纤光栅监测技术”试用于全国高铁,以期进一步提升高铁的可靠性和有效监测它的结构健康与安全。   身兼光通讯讲座教授的香港理工大学副校长卫炳江表示,理大与两所内地高校的研究人员已在全国高铁的多个路段安装了光纤光栅监测系统。该系统中数百个先进的光纤光栅传感器将为工程人员提供如震动、加速率及温度变化等大量重要资讯以监测列车、轨道与结构元件的状况,从而进一步提升高铁的结构健康与安全程度。   卫炳江说,光纤科技的发展日新月异,并已扩展至广阔的应用层面,如传感系统、生命科技、测量及结构工程,而铁路工业是其中一个重要应用的领域。   据介绍,这一新系统能对轨道及通过的列车作全天候在线监测,它不但能对轨道状况的各种变化作实时监测,亦同时能采集行驶中高铁列车的车速、车轴计数、轴重平衡及振荡等多种重要数据,以作记录及详细分析。
  • 天门市筹建省级微型电量传感器检测机构
    记者从天门市质监局了解到,经湖北省质监局批准,天门市开始筹建湖北省微型电量传感器计量检定中心,这是全省唯一的省级微型电量传感器检测机构,也是天门市首个省级高科技检测机构,计划在天门市建立首个国家级计量基准。   此项目由该市质量技术监督局与市电工仪器仪表研究所共同组织筹建。据市质监局有关负责人介绍,微型电流传感器是应用在电子式电能表、继电保护装置,电子测量仪器上的一种电子元器件,使用范围广泛,随着国家实施“西电东送”、“智能电网”等重点工程的进展,在国内年需求量达10亿只以上,天门市也有数家企业从事此项产品的生产。微型电流传感器在出厂后和使用中必须进行校准,而目前国内还没有相关的国家标准量值,该市质监局邀请中国计量院、国家电网武汉高压试验研究院、国家电工仪器仪表质量监督检验中心、华中科技大学等单位的专家、教授,开展技术攻关,旨在填补我国微型电流传感器量值溯源的空白,目前已完成关键技术的研发。天门市筹建省级微型电量传感器计量检定中心后,可凭借技术上的领先优势,建成国内唯一的微型电量传感器检测机构,抢占微量电量传感器这一产品的至高点,打造天门高科技“城市名片”,进一步提升天门对外影响力,促进天门经济产业结构调整升级,壮大微型电量传感器产业集群,优化天门招商引资工作环境和平台。
  • 新型酵母生物传感器有望高效检测病原真菌
    “生物传感器的广泛开发与应用,主要归功于生物元件对于其敏感的分析物具有很强的特异性,不会识别其他分析物。利用生物传感器,可以快速、实时获得有关分析物准确可靠的信息。”袁吉锋说。合成生物学的发展推动了细胞生物传感器的开发。这种生物传感器以活细胞为生物元件,基于活细胞受体检测细胞内外的微环境状况和生理参数的变化,并通过两者之间的相互作用产生细胞信号转导,进一步激活不同的信号输出模块,从而产生不同的信号。袁吉锋介绍,从本质上讲,其他类型的生物传感器使用的是从生物中提取出的生物元件。而基于活细胞的细胞生物传感器是一种独特的生物传感器,它可以通过模拟细胞正常的生理生化变化来检测信号。目前,这种生物传感器已成为医疗诊断、环境分析、食品质量控制、化学制药工业和药物检测领域的新兴工具。“用于构建细胞生物传感器的生物元件包括细菌细胞、真菌细胞以及哺乳动物细胞。我们这次所构建的工程化酵母生物传感器,正是基于酿酒酵母细胞所构建的真菌细胞传感器。”袁吉锋说,酿酒酵母细胞用于生物传感器的构建,在细胞性能上具有优势。作为一种真核生物,酿酒酵母细胞与哺乳动物细胞的大多数细胞特征和分子机制一致,特别是与感知和响应环境刺激密切相关的GPCR信号通路具有极高的相似性;酿酒酵母是酵母物种中第一个基因组已完全测序的真核生物,并且遗传修饰工具非常完备;酿酒酵母的培养条件简易、培养成本低、生长速度快、温度耐受范围宽,可以通过冷冻或脱水等方式进行储存和运输,具有生物安全性。可进一步设计改造成检测试纸基于工程化酵母细胞构建生物传感器多年来一直是研究热点。袁吉锋团队此次通过人工转录因子,将GPCR信号通路与高效基因转录模块——半乳糖调控模块进行耦合,在酵母生物传感器中引入了一个额外的正反馈回路,以此来增强酵母生物传感器的灵敏度和信号输出强度。袁吉锋解释说:“我们相当于设计了一种正反馈放大器,让酿酒酵母细胞中GPCR在识别到白色念珠菌的信息素信号之后,不仅能通过人工转录因子激活下游信号报告模块的表达,同时还能驱动半乳糖调控模块自身的转录因子Gal4表达。两个转录因子协同作用,就能持续激活和放大报告基因的输出信号。”数据显示,相比于初始传感器的性能,改造后的酵母生物传感器的检测限提升了4000倍,激活浓度提升了9700倍,信号输出强度提升了近3倍,尤其是信号输出的持续时间得到了明显提升。初始传感器在检测使用2小时后就出现荧光信号的衰退,而改造后的传感器在使用12小时后仍可产生明显的荧光信号。“此次构建的酵母生物传感器,可以设计成一种简单、低成本的检测试纸,用于检测医疗样本或环境样本中的病原真菌。”袁吉锋介绍,只需将试纸浸入待检测液体样本中,即可实现对该样本快速灵敏和可视化的检测。
  • 分场活动 | 精彩纷呈!MEMS与智能传感器技术专场在郑顺利召开!
    11月1日,MEMS与智能传感器技术专场活动在郑州国际会展中心成功召开。本次论坛邀请了众多权威学者,他们针对智能传感器行业发展存在的突出问题及薄弱环节,还有我国MEMS与智能传感器技术的核心竞争力进行了深度探讨。会议现场照片本次会议由中国科学技术协会、河南省人民政府作为主办单位,中国仪器仪表学会、河南省工业和信息化厅、智能传感器创新联盟、智能微系统教育部重点实验室、北京未来芯片技术高精尖创新中心、清华大学微米纳米技术研究中心承办,郑州市工业和信息化局、郑州高新技术产业开发区管理委员会、汉威科技集团股份有限公司协办。清华大学精仪系副系主任、研究员张高飞主持加拿大工程院院士、加拿大西安大略大学机械工程、材料工程及生物医学工程专业教授杨军通过视频致辞河南省工业和信息化厅总经济师毛郑建致辞中科院上海微系统所;研究员,重点实验室副主任李铁中科院上海微系统所研究员,重点实验室副主任李铁作了《仿生生物微纳传感器》主题报告。他首先介绍了仿生生物微纳传感器的研究背景,并且以蜘蛛为例,讲述了狭缝传感器的研发经过,指出仿生感知技术进入微纳、分子尺度阶段,并且涉及到了仿生学、材料学、传感器、微电子、计算机、人工智能、无线通信等学科技术领域。报告中主要介绍了仿生嗅觉传感器的硅纳米线材料,还分享了嗅觉生物敏感材料的选择方法、仿生光探测器机理及检测原理、石墨烯探测器的检测方法,报告内容环环相扣,全面清晰。国防科技大学,智能科学学院教授肖定邦国防科技大学,智能科学学院教授肖定邦先生作了《高性能微机电陀螺研究进展》主题报告。由于疫情原因,肖教授本人无法到场,但是他的线上分享也可谓是精彩绝伦,他先讲述了国外高性能微机电陀螺的研究进展情况,接下来就是核心内容蜂巢式微机电陀螺研究内容,报告中分享了蜂巢式MEMS敏感结构的优势、微半球谐振陀螺研究的结构创新设计和加工工艺创新,最后肖教授展示了微机电陀螺技术的发展趋势图,说明了微机电陀螺技术可能向环形、半环形发展的方向。清华大学副教授赵晓光清华大学副教授赵晓光先生作了《基于超材料的微机电传感器》主题报告。他先对超材料微机电的背景进行介绍,介绍中说到了超材料的单元结构设计及应用,他指出超材料对电磁场进场和光的调控,在医学成像中的应用有实际意义,并且指出量子学的进展也启发了超材料发展的进展。报告中还分享了超材料mems传感器的工作原理,介绍了基于超材料的太赫兹探测器、基于双层超表面的mem太赫兹调控器、单元结构独立可调的超材料、基于连续区束缚态的超高Q值、基于非线性超材料的非线性隔离器、智慧型超材料、可变性超材料,在报告最后,他还说到,超材料是一个比较新的概念、超材料模糊了材料与器械的边界,mems与超材料的结合支撑微系统及传感器相关领域的创新发展。东南大学教授,实验室常务副主任周再发东南大学教授,实验室常务副主任周再发先生作了《面向MEMS制造的薄膜材料和工艺参数在线测试技术》主题报告。他的报告主要从电学、热学、力学三个方面介绍了薄膜材料和工艺参数的测试内容,并且介绍了薄膜材料和工艺参数在线测试的两种方法,报告结尾详细阐述了二氧化硅薄膜介电伸缩系统测试方法及压力传感器设计的应用,这些内容对实际生产及应用都有很重要,而现场针对周教授的讲解也提出问题,周教授的回答给出了满意的答复。重庆大学教授温泉重庆大学温泉教授作了《微型集成扫描光栅微镜发展与应用》主题报告。报告首先讲述的是微光学器件的发展历史及应用,简单介绍了三种类型的光学器件,重点介绍了集成扫描光栅微镜系统,通过国外案例介绍集成扫描光栅微镜系统发展过程中存在的问题以及集成扫描光栅微镜系统的阶段性进展与成果,温教授介绍到微型集成扫描光栅微镜具有体积小、低耗能、低成本的优势,报告最后介绍了潜在应用,主要分享了高光谱成像的应用,温教授还总结说到微型集成扫描光栅微镜是现代光谱分析检测设备新形势核心公共部件。汉威科技集团传感器研究院副院长刘建钢汉威科技集团传感器研究院副院长刘建钢先生作了《传感器列阵及智能传感器发展与应用》主题报告。他指出传感器的发展速度已经远高于世界发展速度,详细分析了当下传感器的行业现状,介绍了传感器的分类方式及发展方向,指出智能最为热点。报告中展示了汉威集团的智能气体传感器成果、智能光学传感器成果及环境温湿度成果,最后,刘副院长对汉威集团公司简介、发展历程进行了简短的介绍。此次会议的成功召开,首先有利于突破相关产业发展的技术瓶颈和体制约束,其次有利于提升我国MEMS与智能传感器产业技术的核心竞争力,还有利于促进企业、高等院校和科研院所在战略层面有效结合,进而促进学术界与企业界的深度合作,最后有利于推进基础研究的成果转化,建立并完善我国传感器领域的创新体系。这次会议让更多的企业家和研究人员在今后的道路上坚定了信心,认清了方向。
  • “传感器”仍是卡脖子问题!海洋监测当如何破题?
    2020年,传感器国家工程研究中心等四个行业核心机构,联合发布权威报告《中国传感器发展蓝皮书》,提到中国高端传感器的应用市场几乎被国外垄断,尤其是高端传感器市场,90%以上仍需要靠进口。值得一提的是,其中一类传感器领域的国产占比竟为0%,换句话说,该类传感器领域要 100%靠进口——它就是“海洋传感器”,主要为CTD传感器。由于海洋观测监测平台都要集成和应用温盐深(CTD)传感器,这一难题极大限制了我国海洋监测技术的发展。卡脖子“背后”的国内现状据悉,国内海洋 CTD测量技术始于 20世纪 70年代, 国家海洋技术中心先后研制了千米和 3000 m 自容式 CTD 自记仪, 并成功参与了我国首次南大洋考察。随着国家对海洋监测的重视程度升级,“九五”时期,海洋监测技术被正式列入国家科技部“863”计划。随后,以国家海洋技术中心、山东省科学院海洋仪器研究所、中科院声学所等国内知名科研机构为首的联盟,先后研发了各种新型 CTD 传感器,部分技术指标于国内领先并接近国际先进水平。尽管如此,由于自主研发的产品与国际仍存在一定差距,且存在生产周期长、成本高, 产品一致性、可靠性差等系列问题, 无法满足市场快速发展,大量的海洋传感器应用仍依赖进口。院士支招,关键在于“对症下药”2023年5月,《中国工程科学》刊登了文章《我国海洋监测仪器装备发展分析及展望》,第一作者为王军成院士,文章中展望了我国海洋传感器的研发重点,以下为原文引用内容,对于海洋监测卡脖子难题的“破解”具有指导意义:一是构建与国际评价体系接轨的我国海洋传感器检定校准测试体系,形成统一的海洋监测仪器测试环境。开展海洋传感器校准测试的基础理论方法研究,发展海洋传感器新传递量值标准器、量值溯源传递体系。建立海洋传感器标定、校准实验条件并达到国际一流水平,革新海洋传感器标定与校准体系并提高检定校准及评价水平。二是借鉴国际海洋传感器评价方面的先进技术及标准,构建系统完备、运行高效的我国海洋标准化评价体系。建设计量校准检测技术支撑平台,形成海洋标准计量质量“三位一体”工作模式,体现严谨公正,达到国际领先水平。实施“海洋标准 化+”工程,推动标准融入海洋领域各细分方向,改善标准制定、修订的速度与质量。三是开展海洋监测仪器检测评价、标准化、质量控制方面的国际合作。建设全球海洋传感器计量检测技术交流合作平台,逐步扩大我国海洋传感器评价体系的国际影响力,推动海洋标准、海洋监测仪器计量校准结果的国际互认。基于此,为助力我国海洋生态环境的持续改善,仪器信息网将于7月18日举办“近岸海域环境监测技术进展”网络研讨会,届时将邀请海洋领域内的权威专家出席,分享海洋监测技术进展,旨在为我国海洋监测技术发展贡献绵薄之力。7月18日,国家海洋环境监测中心、国家海洋技术中心、连云港生态环境监测中心、中科院青岛海洋所、天津科技大学、中国水产科学研究院单位专家,不同维度解析近岸海域监测技术进展。免费参会链接:https://www.instrument.com.cn/webinar/meetings/ocean2023/ (仅部分报告有回放,限时免费报名,优先看直播)
  • 浅析电化学型气体传感器的工作原理和检测方法
    p   要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 /p p strong 1.电化学型气体传感器的结构 /strong /p p   电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 /p p   电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。 /p p strong 2.电传感器工作原理 /strong /p p   电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。 /p p strong 表1 各种电化学式气体传感器的比较 /strong /p table cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 种类 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 现象 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 传感器材料 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 特点 /span /strong /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 恒电位电解式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 气体扩散电极,电解质水溶液 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 通过改变气体电极,电解质水溶液,电极电位等可测量CO、H sub 2 /sub S、HO sub 2 /sub 、SO sub 2 /sub 、HCl等 /span /p /td /tr tr td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子电极式 /span /strong /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电极电位变化 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子选择电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量NH sub 3 /sub 、HCN、H sub 2 /sub S、SO sub 2 /sub 、CO sub 2 /sub 等气体 /span /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电量式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量Cl sub 2 /sub 、NH sub 3 /sub 、H sub 2 /sub S等 /span /p /td /tr tr td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质式 /span /strong /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 测定电解质浓度差产生的电势 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 适合低浓度测量,需要基准气体,耗电,可测量CO sub 2 /sub sub 、 /sub NO sub 2 /sub 、H sub 2 /sub S等 /span /p /td /tr /tbody /table p 表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。 /p p 2.1 恒电位电解式气体传感器 /p p   恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示: /p p     I=(nfADC)/ σ /p p   式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。 /p p   在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。 /p p   自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、N sub x /sub O sub Y /sub (氮氧化物)、H sub 2 /sub S检测仪器等产品。这些气体传感器灵敏度是不同的,一般是H sub 2 /sub S& gt NO& gt NO sub b /sub & gt Sq& gt CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。 /p p   以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如H sub 2 /sub S、NO、NO sub b /sub 、Sq、HCl、Cl sub 2 /sub 、PH sub 3 /sub 等,还能检测血液中的氧浓度。 /p p 2.2离子电极式气体传感器 /p p   离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。 /p p   现以检测NH sub 3 /sub 传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NH sub 4 /sub sup + /sup ,同时水也微弱离解,生成氢离子H sup + /sup ,而NH4 sup + /sup 与H sup + /sup 保持平衡。将传感器侵入NH sub 3 /sub 中,NH sub 3 /sub 将通过隔膜向内部渗透,NH sub 3 /sub 增加,而H sup + /sup 减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NH sub 3 /sub 浓度。除NH sub 3 /sub 外,这种传感器海能检测HCN(氰化氢)、H sub 2 /sub S、Sq、C0 sub 2 /sub 等气体。 /p p   离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。 /p p 2.3电量式气体传感器 /p p   电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。 /p p   现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成H sup + /sup ,在两铂电极间加上适当电压,电流开始流动,后因H sup + /sup 反应产生了H sub 2 /sub ,电极间发生极化,发生反应,其结果,电极部分的H sub 2 /sub 被极化解除,从而产生电流。该电流与H sub 2 /sub 浓度成正比,所以检测该电流就能检测Cl sub 2 /sub 浓度。除Cl sub 2 /sub 外,这种方式的传感器还可以检测NH sub 2 /sub 、H sub 2 /sub S等气体。 /p p strong 3.传感器的检测 /strong /p p   电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NO sub 2 /sub 、O sub 2 /sub 、SO sub 2 /sub 等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。 /p p   综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。 /p
  • 小小传感器 助力城市环境监测
    生态环境治理精细化是新时代生态文明建设的新要求、新考验,道路作为城市的血管,密集处往往是人口聚居地、各类污染排放聚集区。近年来我国科技工作者开展大气传感器的相关研发,为城市大气污染监测与溯源提供更精细的技术工具和数据支撑,助力提升大气污染防治精细化水平。在济南,技术人员将传感器“藏”在出租车中,实现对道路PM2.5、PM10等空气污染物浓度的实时移动监测,传感器定位精度小于20米,每3秒上传一组数据。300辆装有传感器的出租车每天合计行程超过 6.9万公里,数据超过360万组,平均每天可覆盖95%以上的主城区机动车道路,依托传感器的有力支撑,完美弥补了定点大气网格化监测的不足,能以最快速度掌握城市环境的具体情况。环境污染较为严重的区域还包括施工场地。土石方填挖、建筑材料装卸、建筑拆除及建筑垃圾消纳等施工工序中均会产生扬尘,想要实现城市治理精准化、精细化,借助物联网、传感器等数字化技术进行实时监测尤为关键。传感器接入扬尘监测云平台,则能够对施工场地的黄土覆盖、监控设施与扬尘监测设备PM2.5和PM10数值等方面进行监控,有利于及时落实防控措施情况,并对施工项目的扬尘治理工作进行有序推进,足以可见小小传感器可以针对施工场地起到日常监督管理的作用。资料图片:工作人员操作的智能无人监测船在对河道进行水质快速监测分析在水质监测方面,想要及时发现水生态环境问题,从而实现视觉感知、数据采集、图像分析、信息处理等数字化服务,监测平台可采取给摄像头增加滤光镜和布设水下传感器的方式,这项技术利用水质监测、视频监控等不同类型来源的水质数据进行算法模型分析,从而快速锁定污染源,将可能出现的水质污染情况、位置等数据及时传送到监管部门。相信在未来,数据准确、参数齐全的新型传感器会陆续登上舞台,通过多参数、全方位和更加精确的数据支撑进行环境监测,提升我们对城市污染的科学认识,助力城市生态环境一路向好。
  • 土壤墒情参数监测传感器有哪些?怎么用?
    墒,指土壤适宜植物生长发育的湿度。墒情,指土壤湿度的情况。土壤湿度是土壤的干湿程度,即土壤的实际含水量。土壤墒情直接影响着农作物的生长质量和速度。除了土壤墒情,土壤温度、土壤电导率以及土壤氮磷钾、土壤PH值等参数也对作物的生长起着十分重要的作用。土壤温度对作物生育和土壤中微生物活动以及各种养分的转化、土壤水分蒸发和运动都有很大影响。在一定的温度范围内,土温越高,作物的生长发育就越快;土温过低,微生物活动减弱,有机质难于分解,农作物的根系呼吸降低,造成作物养分缺乏,生长变缓。土壤电导率用于描述土壤盐分状况,它包含了反映土壤质量和物理性质的丰富信息。例如:土壤中的盐分、水分、温度、有机质含量和质地结构都不同程度影响着土壤电导率。有效获取土壤的电导率值,对于确定各种田间参数时空分布的差异有重大意义。土壤中微量元素的含量较低或者较高都不利于对植物的生长。比如向土壤中过量施入磷肥时,磷肥中的磷酸根离子与土壤中的钙、镁等阳离子结合形成难溶性磷酸盐,既浪费磷肥,又破坏了土壤团粒结构,致使土壤板结。土壤酸碱度是土壤重要的基本性质之一,是土壤形成过程和熟化陪肥过程的一个指标。植物能够在很宽的范围内正常生长,但不同的植物有着不同的生长pH值。 那如今有哪些可以测量土壤墒情参数传感器,如何使用呢? 1、土壤水分传感器土壤水分传感器是一款高精度、高灵敏度的测量土壤水分的传感器。通过测量土壤的介电常数,可测量土壤水分的体积百分比,符合目前国际标准的土壤水分测量方法,能直接稳定地反映各种土壤的真实水分含量。2、土壤温度水分电导率三合一变送器土壤温度水分电导率三合一变送器是观测和研究盐渍土的发生、演变、改良以及水盐动态的重要工具。通过测量土壤的介电常数,能直接稳定地反映各种土壤的真实水分含量。可测量土壤水分的体积百分比,是符合目前国际标准的土壤水分测量方法。3、土壤PH传感器 土壤PH传感器器,用于测量土壤PH值该变送器精度高,响应快,输出稳定,适用于各种土质。可长期埋入土壤中,耐长期电解,耐腐蚀,抽真空灌封,完全防水。可广泛应用于土壤酸碱度的检测、精细农业、林业、地质勘探、植物培育、水利、环保等领域酸碱度的测量。4. 土壤参数速测仪 土壤参数速测仪可以实时精确检测显示土壤中多种成分,例如:土壤温湿度、土壤电导率以及土壤氮磷钾等成分,通过检测的数据来进行改善土壤,达到监控植物养料供给的目的,让农作物处于较佳的生存环境,从而提高产量。 5、多土层土壤参数监测仪 多土层土壤参数监测仪是一款能够测量多土层土壤参数的传感器。能够针对不同层次的土壤电导率、水分含量以及温度状态进行动态观测,此检测仪可检测3层土壤电导率温湿度状态,可检测5层土壤电导率温湿度状态。6、管式土壤墒情监测仪 管式土壤墒情监测仪是一款以介电常数原理为基础的传感器。能够针对不同层次的土壤水分含量以及温度状态进行动态观测,此检测仪可检测3层土壤温湿度状态,可检测5层土壤温湿度状态,可快速、全面的了解集土壤墒情信息。测量方法:土壤水分传感器、土壤温度水分电导率三合一传感器、土壤PH传感器的测量方法:(1)速测法:选定合适的测量地点,避开石块,确保钢针不会碰到坚硬的物体,按照所需测量深度抛开表层土,保持下面土壤原有的松紧程度,紧握传感器垂直插入土壤,插入时不可左右晃动,一个测点的小范围内建议多次测量求平均值。(2)埋地测量法:垂直挖直径20cm的坑,按照测量需要,在既定的深度将传感器钢针水平插入坑壁,将坑填埋严实,稳定一段时间后,即可进行连续数天,数月乃至更长时间的测量和记录。土壤参数速测仪测量方法:长按“开关键”,在需要测量的地方,将传感器合金探针垂直插入土壤,再按一下“开关键”即可开始测量。如下图所示:多土层土壤参数监测仪测量方式: 垂直挖直径20cm的坑,在既定的深度将传感器钢针水平插入坑壁,将坑填埋严实,稳定一段时间后,即可进行连续数天,数月乃至更长时间的测量和记录。式土壤墒情监测仪测量方法:管式土壤墒情监测仪采用分层设点的观测结构,地面配置一个温度观测点,地下土壤每隔10cm配置一个土壤温湿测点,观测相对应范围内的土壤温湿度。如图所示:
  • 基于抗体和分子印迹构建HAS检测生物传感器
    该研究首次提出了一种聚合物多模波导,其特征在于开创性的匙形几何形状,用于设计表面等离子体共振(SPR)生化传感器。通过在匙形波导上层叠约60nm的金纳米膜来实现等离子体元激发。由于波导的特殊几何结构,确定了两个不同的传感区域:一个位于勺子颈部的平面传感区域和一个位于碗上具有倾斜表面的凹面传感区域。体感度(Sn)与传感器发射/收集光的方式(平行或垂直于波导的主轴)和被询问的感测区域(平面颈部或角碗)相关,表明传感器的性能可以根据所选的测量配置方便地调整。SPR传感器的特性表明,颈部的Sn为750nm/RIU,碗部的Sn为950nm/RIU。为了进一步检查特殊的传感特征并评估应用环境,这两种受体都对人血清白蛋白(HSA)具有特异性:碗区的抗体(高Sn);颈部区域(低Sn)上的分子印迹纳米颗粒(纳米MIP)。实验结果表明,免疫传感器的检测限(LOD)为280 pm,纳米MIP传感器的检测极限(LOD),为4.16fm。HSA多传感器的总体响应包含八个数量级,表明匙形波导提供多尺度检测,并具有设计多分析物传感平台的潜力。图1(A)匙形光波导的几何形状(B)碗面角度的细节(C)等离子体传感平台的设置(D)光导效应的变化可以在未涂覆波导上被理解为光散射的变化。图2基于匙形聚合物波导的实验SPR传感器配置。图3(A)共振波长变化。图4是(A)纳米MIP的功能化感测区域的表面形貌的原子力显微镜3D视图;(B)抗体功能化传感区。图5(A )具有抗体受体的等离子体光谱,获得的HSA浓度范围为0.53-5300nm。(B)相对于空白的共振波长变化的绝对值,绘制为HSA浓度的函数(半对数标度);(C)具有纳米MIPS受体的等离子体光谱,HSA浓度范围为0.53–530 fM。(D)相对于空白的共振波长变化的绝对值。原文题目:Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude.原文链接:https://doi.org/10.1016/j.bios.2022.114707
  • “传感器+”技术助力大气监测网络建设
    --基于云校准+人工智能,成本仅为传统技术的1/7 为精准把脉空气质量状况,有的放矢地实施科学监管,“多、快、好、省”地完成空气质量监测的目标,各地都在积极落实各级政府和企业大气污染防治责任,有效传导治霾工作压力,建设完善大气环境监测网络体系。 河北省目前建议,在传输通道8城市的1464个乡镇推行建设小型空气站,主要测定pm2.5和so2两个参数。 据了解,目前市场上存在两种监测方法和产品能满足上述需求,一种是标准方法的小型空气站(以下简称小型站),其中pm2.5分析仪采用β射线法,so2分析仪采用紫外荧光法;另一种是传感器技术的微型空气站(以下简称微型站),其中pm2.5采用光散射法,so2采用电化学法。 作为新型监测方法,传感器方法已在全国近50个城市得到应用,安装布点近1万台。鉴于传感器技术的发展和完善,微型站的监测已经得到普遍认可。其中,河北省已经制定并发布了网格化监测的地方标准(db13),国家环境监测总站及北京市环境监测中心已经开展相关技术规范的制定工作,中国环境科学研究院也出具了权威使用报告。 那么,相比传统的监测方法,传感器技术在大气环境质量监测的应用具备哪些突出的优势?能否大范围推广呢? 投资运营成本低9台小型站投资可安装66台微型站 据了解,目前市场上销售的小型站价格在30万元~50万元区间,站房建设成本约1万元,年运维费约5万元;而相比,微型站的价格在6万元~7万元区间,年运维费约1万元。 以河北省廊坊市香河县为例,县辖9个乡镇,共需9台设备。以小型站投资计算,设备总费用一次性投入大约450万元,年运维费大约45万元;以微型站投资建设计算,设备一次性投入总费用大约60万,年运维费大约9万元。两者相差近376.5万元。按9台小型站的首年总费用估算,可以安装66台微型站。 河北省传输通道8城市有1464个乡镇,因此共需1464台设备,如果选用小型站,设备总费用大约需要7.32亿元,运维费用首年大约需要7320万元,总费用大约共计8亿元。如果选用微型站,1464台设备费用只需要9516万元,运维费用首年只需要1464万,总费用1.1亿。如果按照1464台小型站的首年总费用计算,大约可以安装10736台传微型站,基本实现河北省传输通道8城市网格化密集布点,精准监控的功能。 最大化提升服务质量满足快速、准确、全参数、全场景,多功能监测要求 成本的大幅降低,并不意味着传感器法产品在满足技术要求方面打折扣。在现实应用中,标准方法的小型站只能监测两种参数,对安装要求高,前期需要方案设计、点位筛选和站房建设的准备,在协调好电源后,需要包括1名专业人士在内的2人~3人,3天才能安装完成。同时,后期维护和数据校准繁琐,需要消耗大量的人力物力。 相对而言,基于云校准+人工智能技术平台的传感器型微站不仅小巧轻便、易安装,而且准确性满足当前环境监测的需求,成本低,能耗少,基本不需要现场运维,充分考虑现代仪器使用的自动化、智能化功能,可以实现快速、准确、全参数、全场景、多功能监测的要求。 此外,在数据的准确性上,传感器型微型站绝对偏差小、误差可控,完全符合国家标准的要求。以在河北省某县所布点的传感器微型站为例,通过与该县环保局标准站的数据进行比对(关于仪器准确性的具体对比方法参照hj618-2011标准规定),将传感器数据与国标站数据进行线性回归分析,以传感器设备数据为横轴,标准站数据为纵轴,计算回归曲线的斜率k和截距b(图1和图2),根据公式(|1-k|)*100%计算,pm2.5、so2数据与国站数据对比变化趋势一致,准确性较好,长期误差在10%以内。 图1. 传感器微型站与某县环保局标准站pm2.5准确性对比图2. 传感器微型站与某县环保局标准站so2准确性对比 管理功能更加强大有效帮助地方落实大气污染防治责任标准方法的小型站,只是小版本的传统空气站,仅用于表征各乡镇空气质量状况,无法充分完善大气环境监测网络系统功能,达不到精细化溯源的功能。 基于云校准+人工智能技术平台的传感器微型站,由于成本低、准确度高,可以实现高密度精细化布点,使得每个乡镇监测点位由目前的一个增加到几十个甚至上百个,由此形成的传感网络能覆盖从污染源到受体区域,监控污染形成的全过程,通过提供高精度空气质量地图、区域热点分析、污染排名分析和其它基础统计分析,准确定位污染源,通过污染事件监控报警、污染溯源分析和专业的数据分析报告为科学精准治霾提供有力支撑,具有更强大的功能。 据了解,目前基于云校准+人工智能技术平台的传感器微型站已经在全国二十多个城市安装布点,实现了高密度精准化监管功能。其中在河北某两个县的23个乡镇,一共布点了43台设备,总费用约345万元,实现了以下监测功能:一是完善大气环境监测网络系统;二是实时监控各乡镇街道的污染状况;三是实现各乡镇街道空气质量排名,提高管理效率;四是精确地找到污染源位置,达到追溯污染源的功能;五是有效帮助各级政府和企业落实大气污染防治责任。 图3是大数据软件平台对某县各乡镇站点一个月内(20170720-20170820期间)pm2.5浓度日均值进行排名,从图中可以看出,某县污染浓度高的地方集中在周边的东北部和西北部,几个站点排名靠前,其中k镇污染浓度最高,排名第一,而核心区域内pm2.5污染浓度最低,排名靠后。 图3.某县各乡镇站点pm2.5浓度排名统计效果图 图4为某县各镇pm2.5发生污染事件频次的统计图图5为某县各点位pm2.5发生污染事件频次的分布图 从另一个维度,用事件发生次数代表污染源排放情况。通过对该县监测站点颗粒物pm2.5污染事件的统计分析(图3)和(图4),可以看出,污染事件的高发区域集中在该县周边地区的东北部及西部地区,而核心区域内污染事件的频次最低,其中k镇污染频次为最高,统计时间段内发生污染次数为12次,污染频次最低的h管区和u管区集中在核心区域,观测期间内均发生3次污染。这与浓度排名分析结果相符,进一步印证了监测数据的科学性。 综上所述,基于云校准+人工智能技术平台的传感器微型站费用低,是传统小型站费用的1/7,技术上满足环境监测要求,而且功能更加智能强大,有现成的案例可以参考,极大地节省了人力和物力上的投入,适合实现高密度精细化布点,使得每个乡镇监测点位由当前的一个增加到几十个,由此形成的传感网络能覆盖从污染源到受体区域,监控污染形成的全过程,通过提供高精度污染地图、多种数据统计分析、污染来源追踪及精准定位等功能,能真正实现完善城市大气环境监测网络体系功能,有效传导治霾工作压力,为科学精准治霾提供有力支撑,实现更多的价值。
  • 中科院首次发展高选择性检测GSH荧光传感器
    近日,中科院理化技术研究所超分子光化学研究组首次发展了一类在活体细胞中选择性检测谷胱甘肽(GSH)的反应型荧光传感器。相关研究结果日前发表于《美国化学会志》。   自由基损伤是组织损伤的重要分子机制之一,许多疾病,如心脏病、阿尔茨海默氏症、帕金森氏症和肿瘤等的损伤机制中都有自由基的参与。   “含巯基的生物小分子,如半胱氨酸(Cys)、同型半胱氨酸(Hcy)、GSH,会通过清除生物体系内过多的自由基来维持氧化还原平衡。”该研究组副研究员陈玉哲说。   据介绍,作为细胞内含量最多的含巯基生物小分子,GSH不仅参与了细胞抗氧化反应、维持机体的氧化还原平衡,还参与了调节细胞增生、机体免疫应答以及在神经系统中充当神经调质和神经递质的作用。   然而,含巯基的生物小分子结构和反应活性的相似性,往往使得一般检测GSH的荧光探针对Cys和Hcy产生相同或相似的响应。因此,发展高选择性检测GSH的荧光传感器仍然存在巨大挑战。   在文章中,研究组报道了一类基于单氯代BODIPY类衍生物的比率式荧光化学传感器。不同于传统的荧光检测机理,研究组利用了全新的“两步反应”,将GSH与Cys和Hcy区分开来。   “常规的检测,主要是通过巯基和传感器之间发生反应来实现,因而对GSH、Cys和Hcy会产生相似的响应 而我们利用新颖的两步反应机制,Cys和Hcy通过巯基和氨基的协同反应最终生成氨基取代的产物,而GSH生成巯基取代的产物,使其在光谱上产生明显的变化,与Cys和Hcy区分开来。”陈玉哲阐述。   业内专家认为,该成果将为研究肿瘤、心脏病、衰老等疾病的影响及诊疗手段提供新的方法。   据了解,相关研究工作得到了国家自然科学基金委优秀青年科学基金、科技部“973”计划以及中科院“百人计划”的资助
  • 生物传感器监测植物生长
    日前,德国拜罗伊特大学和图宾根马克斯普朗克发育生物学研究所科学家开发出一种新型传感器,可以实时显示植物细胞中生长素的空间分布,并可快速检测环境变化对植物生长的影响。这种传感器为研究人员打开了观察植物内部运作的全新视角。相关研究成果发表在最近的《自然》杂志上。  无论是种子的胚胎发育、根系生长,还是植物对阳光方向的反应,生长素都具有协调植物对外界刺激反应的功能。为了触发对外部刺激的反应,它必须存在于所需的细胞组织中。迄今为止,人们还无法在细胞分辨率上直接确定生长素的时空分布。  此次,研究人员开发出一种新型基因编码的生物传感器,可将植物体内生长素的分布定量可视化。其特殊之处在于,它是一种植物经改造后可自己产生的人造蛋白质,而不必经由外部引入。他们利用这种传感器实时观察了细胞组织需要生长素的时空间分布动态过程。  在开发这种生物传感器时,研究人员发现大肠杆菌中有一种蛋白质可与两种荧光蛋白偶联,并在这些配对蛋白非常接近时发生荧光共振能量转移(FRET)。这种蛋白可与氨基酸色氨酸结合,但与生长素的结合要差得多。他们希望通过基因改造,使其能更好地与生长素结合,并使其FRET效应只在蛋白质与生长素结合时发生。  研究人员对植物进行了基因改造,使其在某种刺激下可在细胞组织中产生满足这些要求的蛋白质。于是,新型生物传感器诞生了:强烈的荧光信号表明了细胞组织中生长素的位置,提供了细胞内生长素分布的精确“快照”,且不会对生长素控制过程造成永久影响。  “传感器的发展是一个漫长的过程,在这个过程中,我们已经获得了关于蛋白质如何被选择性地改变以结合特定小分子的基本见解。”拜罗伊特大学蛋白质设计学教授比尔特哈克说,“预计在未来几年,新的生物传感器将发现更多关于植物内部运作以及它们对外界刺激反应的新见解。”
  • 新型纳米传感器可检测多种有害气体
    p & nbsp & nbsp & nbsp & nbsp 据麦姆斯咨询报道,纳米气体传感器创新厂商AerNos近日宣布,它们开发出了一款微型、高精度、经济型纳米气体传感器,能够同时探测多种ppb级(十亿分之一)的有害气体,这款气体传感器专为物联网互联设备集成而设计。 /p p   利用AerNos专利的AerCNT技术,其智慧城市空气污染纳米气体传感器(AerSCAP)产品线得以探测一氧化碳、二氧化碳、氮氧化物、地表臭氧、二氧化硫以及瓦斯泄漏。目前,AerNos AerSCAP产品提供三种配置,分别能够支持同时探测3、4、7种有害气体。AerNos AerSCAP产品为固定式和移动应用进行了优化设计,能够方便的集成进入现有的城市基础设施,如街灯、泊车计时器、交通灯、监控系统、公共运输系统以及其他智慧城市实施。 /p p /p
  • 拉曼生物传感器检测脑瘤只需一滴血
    加拿大研究人员在美国化学会《ACS纳米》上发表论文称,他们开发出一种生物传感器,可帮助医生从微小的血液样本中精确诊断出脑癌。图片来源:ACS纳米根据美国国家癌症研究所的数据,脑肿瘤的死亡率很高,5年生存率仅为36%。更准确的诊断或会改善这种情况,但组织活检具有侵入性,且可能会错过有关肿瘤组成的重要信息;而基于成像的方法又无法提供足够的灵敏度和分辨率。为了有效治疗脑癌,医生不仅需要确认恶性肿瘤的存在,还需要确定它是起源于此(原发性肿瘤)还是从其他器官转移到大脑(继发性肿瘤)。医生还需要知道肿瘤位于器官的哪个位置。由于现在没有诊断技术可在无手术或痛苦的脊椎穿刺的情况下完成这一任务,研究人员希望开发一种使用少量血清的无创测试方法。研究人员使用高强度激光束在镍芯片上产生3D镍—镍氧化物纳米层。通过这个过程形成的超敏生物传感器能检测出微量的肿瘤衍生物质,如核酸、蛋白质和脂质,这些物质通过血脑屏障进入循环。传感器使用表面增强拉曼光谱法检测这些组分,该方法为每个样品生成分子谱或指纹。然后,研究人员使用深度神经网络分析这些特征,以找到脑肿瘤的证据并确定其类型,并预测其在大脑中的位置。使用液体活检平台,研究人员可从5微升血清中检测出脑癌,还可将其与乳腺癌、肺癌和结肠直肠癌区分开来,具有100%的特异性和敏感性。他们在区分原发性脑肿瘤和从肺或乳腺转移到大脑的继发性肿瘤方面取得了类似的成功。新技术使研究人员能以96%的准确率确定肿瘤位于9个脑区室中的哪一个。研究人员说,该测试的非侵入性允许随着时间的推移监测癌症的发展,以便医生作出更好的治疗决策。
  • 传感器进化让监测仪器数据更加准确
    据了解,得益于传感器的进化,有利于实现更精准的身体数据监测,让运动监测设备们变得更好用。在未来,传感器配合更先进的软件算法,有可能帮助我们获得更准确的监测数据。   几年前,运动手环还仅仅是一个简单的计步器,但现在它们已经完全不同,可以监测心率甚至是紫外线指数。可以肯定的是,大量传感器的植入让运动监测设备们越来越全面、智能,那么这些传感器都是什么呢?   加速度计   加速度计是运动监测设备普遍具备的基本传感器,通常被用来记录行进步数。通过测量方向和加速度力量,加速度计能够判断设备处于水平或是垂直位置,来判断设备是否移动,从而达到计步操作。   当然,并不是所有的加速度计都是准确的。基本的款式仅有两轴,相对来说不够准确 而三轴传感器则可更好地检测设备在三维空间中的位置,实现更精准的记录。   全球定位系统(GPS)   GPS虽然已经是非常普及的技术,通过使用29颗地球总轨道卫星中的四颗进行定位,便能够获得误差较小的精确位置。不过,由于耗电量偏大,所以尚未在运动手环中普及,只有一些定位专业运动监测的运动手表才具备GPS芯片,用于记录用户的地理位置、跑步路线等等。   光学心率监测器   光学心率传感器是目前运动监测设备逐渐流行的配置,使用LED发光照射皮肤、血液吸收光线产生的波动来判断心率水平,实现更精准的运动水平分析。   不过,目前对于光学心率传感器的准确性也存在较大争议,因为每种设备都会添加一些肤色弥补技术,来适应更广泛的人群,所以不同设备的差异也较大。   皮电反应传感器   皮电反应传感器是一种更高级的生物传感器,通常配备在一些可以监测汗水水平的设备上。简单来说,人类的皮肤是一种导电体,当我们开始出汗,皮电反应传感器便可以检测出汗水率,配合加速度计及先进的软件算法,有利于更准确地监测用户的运动水平。   环境光及紫外线传感器   环境光传感器模拟人类眼镜对光线的敏感度,可以根据周围光线的明暗来判断时间,并有效节省运动监测设备的电力消耗。而紫外线传感器则可监测到光线中的紫外线指数,实现防晒提醒操作。   生物电阻抗传感器   Jawbone的新款UP3运动手环,配备了更先进的生物电阻抗传感器,可通过生物肌体自身阻抗来实现血液流动监测,并转化为具体的心率、呼吸率及皮电反应指数,是一种更先进的综合生物传感器,准确性也相对更高。   总结   显然,得益于传感器的进化,有利于实现更精准的身体数据监测,让运动监测设备们变得更好用。在未来,这些传感器配合更先进的软件算法,有可能帮助我们获得更准确的监测数据,甚至能够分享到医疗机构,帮助我们预防疾病。
  • 小型传感器监测食品污染
    新华网首尔12月25日电 韩国工程师日前说,他们发明了一种小型传感器,可以作出准确、实时的回应,有助于开展食品安全和环境保护工作。 设在大田、由郑奉铉领导的韩国生命科学和生物技术研究所说,该设备使用了世界上最小的生物芯片传感器,还利用表面等离子体共振(SPR)技术来监测DNA和蛋白质是否存在受污染迹象。 研究人员计划利用SPR技术及相关的生物芯片,通过接收被扫描物体表面反射的激光共振信号,来辨别分子层面的结构。 该研究所首席研究员郑奉铉说,这种新装置一只手就能提起来,与那些只能用在实验室的笨重机器形成鲜明对比。这种装置可以进行需要迅速反应的“即时检验”,这在应对与食品有关的问题及环境问题时至关重要。 专家说,这种生物芯片传感器经过改造,也有助于制药和检测供水系统,还可能应用于军事领域。 研究人员说,一旦研发成功,这种机器可以创造价值5000亿韩元(约合3.72亿美元)的全球市场,因为对高科技分析机器存在很大需求。 这家由韩国教育科技部提供科研经费的国有生物工程实验室说,它已经为这一生物芯片的主要部件申请了知识产权保护,其中包括高速转镜和电子束调制装置。
  • 美发明快速检测癌症的纳米传感器
    新华网洛杉矶12月13日电 美国科研人员日前研发出一种可快速检测癌症的纳米传感器,这种仪器能在更短时间内发现癌症的早期迹象,从而为治疗争取更多时间。   美国耶鲁大学的科研人员13日发表公报说,他们研发的这种仪器可以从病人的血液中找到前列腺癌、乳腺癌和其他癌症的生物标记,与传统检测方法相比,其检测结果更加准确,而且成本不高。生物标记是监测及追踪癌症发展的重要工具。   研究报告的撰稿人、参与研究的马克里德介绍说,这种仪器操作方便,医生只需从病人手指上取一点血,便可很快完成检测,整个过程只需20分钟。   他说,由于血液的成分复杂,为找到能监测癌症的生物标记,研究人员使用了一个类似过滤器的装置,使这种纳米传感器能直接从血液中过滤出所需检测的物质,其精度相当于从一个巨大的游泳池中找到一颗盐粒。   研究人员认为,虽然这种仪器目前还不能马上投入实际应用,但在进一步对其完善的基础上可以制造出更简便快捷的癌症诊断仪器。   这份研究报告已刊登在英国《自然纳米技术》杂志网络版上。
  • 明日开播!传感器/MEMS研究与检测技术讲座通知
    半导体产业作为现代信息技术产业的基础,已成为社会发展和国民经济的基础性、战略性和先导性产业,是现代日常生活和未来科技进步必不可少的重要组成部分。当前,全球半导体科技和产业的竞争愈演愈烈,各国围绕提升半导体领域竞争力,相继出台了一系列政策举措。半导体行业归根结底属于设备类行业,行业内素有“一代设备,一代工艺,一代产品”的说法。SEMI在SEMICON Japan 2022上发布了《2022年度总半导体设备预测报告》。报告指出,原设备制造商的半导体制造设备全球总销售额预计将在2022年创下1085亿美元的新高,连续三年创纪录,较2021创下的1025亿美元行业纪录增长5.9%。基于此,仪器信息网联合电子工业出版社于四、五月将启动“半导体主题月”活动。活动同期,仪器信息网与电子工业出版社特组织三场“半导体材料、器件研究与检测技术系列讲座”,旨在邀请领域内专家围绕相关论坛主题分享精彩报告,依托成熟的网络会议平台,为半导体产业从事研发、教学、生产的工作人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩的报告。点击图片直达会议页面一、主办单位仪器信息网 & 电子工业出版社二、举办时间2023年4月11-26日,每周一期三、会议日程4月26日:传感器/MEMS研究与检测技术报告时间报告题目报告嘉宾单位职称14:00-14:40MEMS无线智能温振传感器及应用王建国苏州捷研芯电子科技有限公司副总经理14:40-15:20面向呼气标志物检测的气体传感器研究刘凤敏吉林大学教授四、参会指南1、点击会议页面链接报名;会议页面:https://insevent.instrument.com.cn/t/RUs 2、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接;3、本次会议不收取任何注册或报名费用;4、会议联系人:3i讲堂—材料小周( 邮箱:zhouhh@instrument.com.cn;微信二维码如下,可加入会议交流群)会议联系人微信二维码
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制