当前位置: 仪器信息网 > 行业主题 > >

界面剂配方分析

仪器信息网界面剂配方分析专题为您提供2024年最新界面剂配方分析价格报价、厂家品牌的相关信息, 包括界面剂配方分析参数、型号等,不管是国产,还是进口品牌的界面剂配方分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合界面剂配方分析相关的耗材配件、试剂标物,还有界面剂配方分析相关的最新资讯、资料,以及界面剂配方分析相关的解决方案。

界面剂配方分析相关的资讯

  • 材料表面与界面分析技术及应用
    表面和界面的性质在材料制备、性能及应用等方面都起着重要作用,是材料科学领域研究的重要课题。2023年12月18-21日,由仪器信息网主办的第五届材料表征与分析检测技术网络会议将于线上召开,会议聚焦成分分析、微区结构与形貌分析、表面和界面分析、物相及热性能分析等内容,设置六个专场,旨在帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作。其中,在表面和界面分析专场,北京师范大学教授级高工吴正龙、国家纳米科学中心研究员陈岚、暨南大学 实验中心主任/教授谢伟广、上海交通大学分析测试中心中级工程师张南南、岛津企业管理(中国)有限公司应用工程师吴金齐等多位嘉宾将为大家带来精彩报告。部分报告内容预告如下(按报告时间排序):北京师范大学教授级高工 吴正龙《X射线光电子能谱(XPS)定量分析》点击报名听会吴正龙,在北京师范大学分析测试中心长期从事电子能谱、荧光和拉曼光谱分析测试、教学及实验室管理工作。熟悉表面分析和光谱分析技术,积累了丰富实验测试经验。主要从事薄膜材料、稀土发光材料研究及石墨烯材料表征技术、表面增强拉曼光谱技术的研究,在国内外期刊发标多篇学术论文。现任全国表面化学析技术委员会副主任委员,主持和参与多项电子能谱分析方法标准。近年来,在多场国内电子能谱应用技术交流培训会上担任主讲人。报告摘要:X射线光电子能谱(XPS)作为最常用的表面分析技术,表面探测灵敏度高,可以检测表面化学态物种的表面平均含量、表面偏析;分析薄膜组成结构;评估表面覆盖、表面分散、表面损伤、表面吸附污染等。本报告在简要介绍XPS表面定量分析原理基础上,通过实际工作中的一些实例,探讨XPS定量结果解释,帮助大家正确理解XPS定量分析结果,更好地利用XPS技术分析表面。岛津企业管理(中国)有限公司应用工程师 吴金齐《岛津XPS技术在材料表面分析中的应用》点击报名听会吴金齐,岛津分析中心应用工程师,博士毕业于中山大学物理化学专业,博士毕业后加入岛津公司,主要负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展不同行业材料表征相关研究,具有多年XPS仪器使用经验,熟悉XPS数据处理及解析,合作发表多篇SCI论文。报告摘要:介绍相关表面分析技术及XPS在材料表面分析中的应用。国家纳米科学中心研究员 陈岚《纳米气泡气液界面的检测》点击报名听会陈岚,爱尔兰国立科克大学理学博士,剑桥大学居里学者,2014年至今,先后任国家纳米科学中心副研究员、研究员及博士研究生(合作)导师;主要从事纳米界面微观检测及纳米界面光电化学性能调控方面的研究;ISO/TC281注册专家,全国微细气泡技术标准化技术委员会(SAC/TC584)委员,中国颗粒学会微纳气泡、气溶胶专委会委员,Frontiers in Materials及Catalysts客座编辑,科技部在库专家,北京市科委项目评审专家;主持科技部发展中国家杰出青年科学家来华工作计划1项,参与国家重点研发计划“纳米科技”重点专项、“纳米前沿”重点专项各1项;共发表论文近60篇,授权专利9项,编制国家标准10部。报告摘要:体相纳米气泡具有超常的稳定性及超高的内压,高内压的纳米气泡在溶液中稳定存在的机制一直众说纷纭。因此,研究纳米气泡边界层对于解释纳米气泡的稳定性具有重要的意义。由于纳米气泡气液界面的特点,检测体相纳米气泡边界层十分困难,常规的方法和技术手段很难实现。在本工作中,首次采用低场核磁共振技术(LF-NMR)对体相纳米气泡边界层中水分子的弛豫规律进行了系统研究,提出了纳米气泡边界层测量的数学模型,并成功地测得了不同尺寸纳米气泡的边界层厚度。研究发现,纳米气泡粒径越小,边界层所占比例越高,因而也越可以对更高内压的气核进行有效保护,纳米气泡的稳定性也可以据此进行定量解释。暨南大学 实验中心主任/教授谢伟广《范德华异质结光电探测及光电存储器件》点击报名听会谢伟广,暨南大学物理与光电工程学院教授,博导。2007年博士毕业于中山大学凝聚态物理专业,导师为许宁生院士;研究方向是微纳尺度多场耦合行为及应用,半导体光电转换过程、器件及集成;在Advanced Materials, ACS Nano等期刊发表SCI论文80多篇,代表性成果包括:实现了多种二维半导体氧化物的CVD制备,首次发现了极性二维氧化物长波红外低损耗双曲声子极化激元现象;发展了钙钛矿薄膜的真空气相制备方法,实现了高效气相太阳能电池及光电探测阵列的制备。研究团队发展的多项方法已被国内外同行广泛采纳,并在Nature、Sciecne等著名期刊正面评价。主持国家基金面上项目、重点项目子课题、广东省自然科学基金杰出青年基金项目等多项项目;于2022年(排名第一)获得中国分析测试协会科学技术(CAIA)奖一等奖。报告摘要:二维钙钛矿(2DPVK)具有独特的晶体结构和突出的光电特性,设计2DPVK与其他二维材料的范德华异质结,可以实现具有优异性能的各类光电器件。本报告主要介绍下面两种异质结器件:(1)光电探测器:制备了2DPVK/MoS2范德华异质结器件,由于II型能带排列中层间电荷转移所诱导的亚带隙光吸收,器件在近红外区域表现出了单一材料均不具备的光电响应。在此基础上引入石墨烯(Gr)夹层,借助Gr的有效宽光谱吸收和异质结中光生载流子的快速分离和输运,2DPVK/Gr/MoS2器件的近红外探测性能进一步得到了大幅提升。(2)光电存储器:开发了基于MoS2/h-BN/2DPVK浮栅型光电存储器,其中2DVPK由于其高光吸收系数,能同时作为光电活性层与电荷存储层,器件展现了独特的光诱导多位存储效应以及可调谐的正/负光电导模式。上海交通大学分析测试中心中级工程师 张南南《紫外光电子能谱(UPS)样品制备、数据处理及应用分享》点击报名听会张南南,博士,2019年毕业于吉林大学无机化学系,同年入职上海交通大学分析测试中心,研究方向为材料的表界面研究,主要负责表面化学分析方向的X射线光电子能谱仪(XPS)及飞行时间二次离子质谱(ToF-SIMS)方面的测试工作。获得上海交通大学决策咨询课题资助,授权一项发明专利,并在 J. Colloid Interf. Sci., Catal. Commun.等期刊发表了相关学术论文。报告摘要:紫外光电子能谱(UPS),能够在高能量分辨率水平上探测价层电子能级的亚结构和分子振动能级的精细结构,广泛应用在表/界面的电子结构表征方面。本报告主要介绍UPS原理、样品制备、数据处理以及在钙钛矿太阳能电池、有机半导体、催化材料等领域的应用。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 中国科大实现界面化学动态过程的原位高分辨成像分析
    中国科学技术大学环境科学与工程系刘贤伟课题组在界面化学过程的原位高分辨成像方面取得进展,相关研究成果以“Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry”为题近日发表于Nature Communications。污染物的催化转化是水污染控制技术的重要方法,解析环境催化材料在污染物转化过程中活性位点的动态变化,对理解材料的构效关系,解析催化机理,设计并研发新的环境催化材料具有重要意义。尽管目前研究人员对分析纳米材料的活性位点有浓厚的兴趣,但在温和的水溶液环境中,对单个纳米材料界面反应的动态演绎过程研究仍然存在挑战。 图1高分辨表面等离子体散射相干成像示意图   针对上述挑战,研究团队研发了高分辨等离子体散射干涉成像技术,通过调制入射光有效消除了反射光的干扰,实现了具有高空间分辨率和高抗干扰能力的表面等离子体散射干涉成像。以银的表面化学反应为例,研究团队原位追踪了溶液中单根银纳米线的动态电化学转化过程,在空间上刻画了纳米线反应动力学分布,为建立纳米线表面缺陷、重构与反应活性的关系提供了关键证据。该免标记成像分析方法,可以与电子显微镜等技术耦合表征纳米材料的结构和化学组成,为高分辨原位成像分析污染物的催化转化动态过程和解析其构效关系提供了有效的分析方法与技术平台。 图2 单根纳米线表界面动态反应过程的成像分析   该研究工作得到了国家自然科学基金等项目的支持。
  • “材料表面与界面分析”网络主题研讨会 成功召开
    p & nbsp & nbsp 材料科学、信息科学和生命科学是当前新技术革命中的三大前沿科学,材料的表界面在材料科学中占有重要的地位。材料的表界面对材料整体性能具有决定性的影响,材料的腐蚀、老化、硬化、破坏、印刷、涂膜、粘结、复合等等,无不与材料的表界面密切有关。因此研究材料的表界面现象具有重要的意义。 /p p & nbsp & nbsp 如何更有效地测量材料的表界面情况,对其进行更深入地研究,成为颇具潜力的一个研究领域。2016年8月24日,仪器信息网邀请清华大学朱永法老师、国家纳米科学中心程志海老师、赛默飞孙文彬老师从不同角度分享表界面分析研究进展。 /p p & nbsp & nbsp 本次会议报告如下:(视频近期上线,请提前收藏地址) /p p img src=" http://img1.17img.cn/17img/images/201608/insimg/905de170-4040-41d0-8f2d-2daabe1bae7e.jpg" title=" QQ截图20160824152509.jpg" / /p p & nbsp & nbsp 视频上线地址,上线时间9月2日: /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2091" target=" _blank" title=" “材料表面与界面分析”网络主题研讨会" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2091 /a /p p br/ /p p & nbsp 近期更多精彩会议预告: /p p “热分析技术在多领域应用及进展”网络主题研讨会 & nbsp br/ /p p 中国科学技术大学丁延伟老师和北京化工大学刘玲老师主讲。 /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2094" target=" _blank" title=" “热分析技术在多领域应用及进展”网络主题研讨会" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2094 /a /p p br/ /p p “动物源食品安全性评价及检测”网络主题研讨会 & nbsp /p p 中国水产科学研究院李晋成老师和上海出入境检验检疫局朱坚老师主讲。 /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2119" target=" _blank" title=" " http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2119 /a /p p br/ /p p “土壤环境调查评估技术”网络主题研讨会 & nbsp /p p 南京环境科学研究所赵欣老师和中国科学院生态环境研究中心张莘老师主讲。 /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2132" target=" _self" title=" " http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2132 /a /p
  • 稳定性线下课程-如何使用Turbiscan分析配方的不稳定机理,如何以数据微基础有效的改善配方,制定质控标准
    大昌华嘉科学仪器部重磅发布稳定性分析线下系列讲座,课程议题是如何使用Turbiscan分析配方的不稳定机理,如何以数据微基础有效的改善配方,制定质控标准。线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!课程详情主讲专家介绍何羽薇何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到哪些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程连续举办4期,每期3天:上海,10月14-16日收费标准本次线下课程为收费培训,市场价格3500元/人。开课前10天报名享优惠价格,2800元/人。本次课程开班人数最低为15人,报名满15人开班,不满暂不开班,请感兴趣的朋友踊跃预报名。报名方式:联系人:李文艳 电话:13811359706/4008210778邮箱:swallow.li@dksh.com或者识别以下二维码报名~
  • 中国科大在电催化界面过程成像分析上取得新进展
    近日,中国科大环境科学与工程系在电催化界面动态过程的原位成像分析方面取得进展,研究成果以“Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts”为题发表于Nature Communications上(Nature Communications 2022,13: 7869)。   污染物的电催化转化是水污染控制技术的重要方法。纳米催化剂的表界面是电催化反应发生的场所,因此在微观上理解电催化反应过程,建立纳米催化剂结构与催化转化性能的构效关系是提高催化剂活性的关键。传统电催化研究通过电极电流密度和催化产物,评估催化剂性能,难以在微纳尺寸上原位实时分析单个催化剂的活性分布或反应动态过程。 图1.单个二硫化钼纳米片的充电和催化过程成像分析示意图   针对上述问题,刘贤伟教授课题组博士生赵小娜和周晓丽博士通过表面化学调控,充分发挥了表面等离子体成像技术对电极表面电荷密度高度敏感的特性,原位成像分析了层状二维电催化材料的充电电荷密度分布和电催化界面电荷交换过程。该方法消除了电极表面充放电流的干扰,分别定量了催化剂表面的充电和氧化还原电流分布,结合课题组前期发展的表面等离子激元原位蚀刻技术(Chem, 2021, 7: 1626-1638),发现了二硫化钼催化性能和层数之间的依赖性,建立了催化剂导电性和电催化性能之间的关系。该研究对于设计新型高效污染控制电催化纳米材料具有重要的意义。 图2.单个二硫化钼纳米片随层数变化的电催化过程   该项工作得到了国家自然科学基金的资助,也获得了环境科学与工程系陈洁洁教授课题组在量化计算方面的支持。
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 直播预告:日化行业中表界面常用的表征方法及应用实例分析
    活动背景表界面参数在日化行业中扮演着重要的作用,可以影响产品的触感、功能、效果、和稳定性。因此,在日化产品的研发和生产过程中,越来越多的厂商开始重视表界面参数并通过标准化的测量程序实现对产品性能的多维度评价。本月19日上午10:00克吕士将举办主题为《日化行业中表界面常用的表征方法及应用实例分析》的线上研讨会。这次我们非常荣幸能够邀请到纳爱斯集团有限公司日用化工领域高级工程师徐杰作为本期讲座的嘉宾,徐杰作为项目负责人主导完成了日化产品泡沫多维度评价方法研究工作,探索了动态泡沫分析仪的实际应用,并通过差异化的自动测试程序实现了泡沫性能的多维度评价,在本次讲座中也将从分析仪器、常用参数、应用实例等多个方面和大家进行分享。KRÜ SS的应用专家张晶晶也会解析表界面参数在日化行业(比化妆品中的乳化、分散、增溶、发泡和清洁等)的作用,并结合多个实例进行介绍和讲解。本次研讨会完全免费热诚期待您的参加!专家团队:讲座安排:报名方法2023年10月19日(周四)上午10:00开始本次讲座通过微吼进行,可通过手机APP或PC客户端参与直播。您可以通过以下链接或者关注我司公众微信号(克吕士科学仪器),在底部“互动”选项中选择“直播大厅”即可找到这期活动的直播入口,进行报名,期待您的参与!。
  • 中国化学会第十七届胶体与界面化学学术会议
    由中国化学主办, 中国化学会胶体与界面化学专业委员会与江南大学共同承办的“ 中国化学会第十七届全国胶体与界面化学学术会议”拟定于2019年7月28日-8月1日在素有“太湖明珠”之称的江苏省无锡市召开。本次会议围绕(1)胶体与界面的基础问题;(2)两亲分子聚集体;(3)微纳材料;(4)软物质;(5)两亲分子与大分子的相互作用;(6)表面活性剂及其日用化学品工业应用;(7)食品和生物胶体 (8)应用胶体与界面化学 (9) 新理论、现象和实验技术;(10) 工业领域的胶体与界面化学等多个研究领域开展交流讨论.本次会议将邀请国内外学术和企业界知名专家和学者参加, 共同展示胶体与界面化学领域的最新进展和研究成果, 开展学术交流,为国内相关领域的科研技术人员提供一个良好的交流平台.会议主题近两年来胶体与界面化学领域的研究进展会议时间2019年7月29日-8月1日活动地点无锡君来湖滨饭店Biolin光学接触角测量仪Biolin光学接触角测量仪Attension Theta Flex,将进一步增强百欧林品牌在光学接触角仪器市场上的占有率和地位。有了这款产品,并搭配百欧林全新推出的网上支持系统Support Portal,能够提供更加优质的用户体验。1一台接触角测量仪,满足所有测试需求2一流的用户界面3优越的分析精度4实时分析5实时分析6为每个需求提供灵活性7便捷的数据处理和导出8优化工业使用Biolin全自动表面张力仪力学表面张力仪可测量表面张力、界面张力、临界胶束浓度、动态接触角、固体表面自由能、粉体润湿性、悬浊液沉降速度和液体密度等。可用于科研、研发和质量控制领域。力学表面张力仪可精确测量一系列的材料性质,表界面张力和接触角可以为气液固三相间的相互作用提供非常有价值的信息。而这一相互作用在如下研究中起到重要作用:润湿性、吸附性、配方科学、表面活性剂研发、粘附性。PMX颗粒电位滴定及粒度分析仪通过使用stabino,可实现快速便捷的颗粒的电位滴定测试。分散体中,同性带电离子的静电排斥作用是分散体避免凝聚保持稳定的主要原因,故带电粒子界面的表征是必不可少的。当颗粒离子化后,总电荷和电荷密度是需要知道的重要参数。电荷测量是通过建立动电信号来完成的。
  • 汪福意团队:表界面分析的原位液相二次离子质谱技术新进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。  近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。  汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。  汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。  研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。  液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
  • ACAIC2024同期论坛:下一代材料结构与界面分析技术论坛
    下一代材料结构与界面分析技术论坛高新材料产业是国家重要的基础性、战略性、先导性产业。要在这片蓝海占据先机,必须发展面向高精度、多尺度、动态和界面材料的下一代材料表征方法。在当前材料科学领域,对材料微观结构与表界面性质进行多维、精确表征已成为科研和工业界共同追求的重要目标。本次论坛分为上下场,分别围绕“分子结构分析”与“表界面表征”,涵盖新材料领域所需的代表性表征技术及其发展趋势,深入剖析包括中子散射大科学装置在内的散射技术、电化学扫描显微镜、等离子体表面成像、电子显微镜、石英晶体微天平、原子力显微镜等多种独特材料结构和界面表征装置的最新研究进展与动态,深入分析这些技术在材料表征领域的应用现状及其所面临的挑战,基于此讨论这些技术在未来的应用领域和方向,为科研和工业界提供有价值的参考。此外,论坛将着重探讨基于大科学装置的材料表征技术这一全新发展方向,以推动材料表征技术的持续创新与发展,有效促进材料科学领域的全新的合作和学术交流方式。 组织机构:华南理工大学材料科学与工程学院散裂中子源科学中心(高能所东莞研究部)广州市仪器行业协会论坛主席:华南理工大学材料科学与工程学院 张广照教授论坛召集人:华南理工大学材料科学与工程学院 龚湘君教授散裂中子源科学中心(高能所东莞研究部) 程贺研究员专题论坛日程安排:时间报告人报告主题14:00-17:00Section 1:材料结构表征大科学装置中国科学院高能物理研究所童欣研究员、孙志嘉研究员等中国散裂中子源极化中子、探测器和谱仪的研制与应用进展系列报告中国科学院上海高等研究院李娜研究员同步辐射溶液散射装置在生物制药领域的应用案例Section 2:材料表面分析表征技术东华大学陈前进研究员基于扫描电化学成像的单颗粒分析华南理工大学电镜中心王宇教授化学键强耦合半导体超结构的制备与原位电镜表征上海交通大学余辉长聘副教授用于表界面过程分析的超灵敏超分辨表面等离激元显微成像技术南昌大学王涛副教授石英晶体微天平的表征原理及应用创新广州中医药大学科技创新中心钱露高级工程师原子力显微镜探针改性及在新材料领域的应用论坛主席简介:张广照,华南理工大学教授、博导,国家杰青,长江学者,973首席科学家。长期从事高分子溶液与界面的工作,发展了QCM-D、微量量热等高分子表征方法,发现了阴离子杂化共聚反应。以此为基础,在海洋防污高分子材料方面取得突破。先后主持国家自然科学基金重点项目(3项)、973项目、军科委项目等国家级项目10余项。发表学术论文140余篇(通讯/第一作者),出版专著2部、译著1部。获授权中外发明专利60余件(美、日、新、澳大利亚专利5件)。担任国际海洋材料保护研究常设委员会(COIPM)委员, 国际标准化组织和国际电工委员会(ISO/IEC)海洋污损专家组成员。以第一完成人获广东省技术发明一等奖、教育部科技进步一等奖、广东省专利金奖等。分论坛召集人简介龚湘君,华南理工大学材料科学与工程学院教授,博导。2014年加入华南理工大学材料学院任副教授,2017年至今任教授。研究兴趣为设计高精度动态显微成像技术研究颗粒、微生物、细胞、生物和环境分子在界面附近的动态行为和物理化学现象。包括:(1)三维动态光学显微镜的研制;(2)颗粒、气泡、微生物和细胞的相互作用表征、附着机制和运动策略;(3)生物分子和环境污染分子在界面的动态和迁移行为;(4)颗粒、气泡、微生物及细胞筛选、识别和控制技术。发表SCI论文40余篇,授权专利10项(美国专利1项),主持国家自然科学基金等纵向及横向科研项目19项。获2023年中国仪器仪表协会朱良漪分析仪器青年创新奖。程贺,散裂中子源科学中心(中国科学院高能物理研究所东莞研究部)研究员,微小角中子散射谱仪科学家。中国材料与试验标准委员会(CSTM)下属科学试验技术领域委员会(FC98)委员、中国晶体学会小角散射专业委员会委员、中国化学会高分子学科委员会分子表征专业委员会。目前主要研究方向:一先进中子散射谱仪设计及关键部件研发;二中子散射研究软物质多相多尺度动态学和动力学。在先进谱仪设计研发方面,作为子课题主要参与者,建设我国第一台基于反应堆的小角中子散射谱仪,填补国内空白,该谱仪已于2012年10月通过科技部和中国科学院的验收;物理设计并组织建成世界上第1台基于散裂中子源的微小角谱仪,该谱仪已于2023年7月通过广东省科技厅组织的专家验收;使用散射方法,研究软物质——聚合物溶液和聚合物共混物中多相多尺度结构的动力学和动态学行为,已发表60余篇SCI论文、2篇专著。报告人简介及报告摘要报告题目:中国散裂中子源极化中子、探测器和谱仪的研制与应用进展系列报告 报告人1:中国科学院高能物理研究所 童欣研究员 童欣,中国科学院高能物理研究所研究员、散裂中子源科学中心副主任、中国科学院大学博士生导师、国家重点研发计划首席科学家、百千万人才工程国家级人选、中国散裂中子源学术委员会主任。2018年获中国科学院重大人才工程项目资助,加入中国科学院高能物理研究所,负责组建中国散裂中子源极化中子中心,领导并规划极化中子领域的建设与发展。获国家自然科学基金、科技部、中国科学院、广东省科技厅等十余项项目支持,获广东省自然科学基金杰出青年项目资助。获2020年度李氏基金会杰出成就奖,获橡树岭国家实验室重大事件奖多次,入选东莞市第九批创新创业领军人才。报告摘要:利用光泵的方法可将氦三原子核的极化进行累积,形成超极化态。超极化氦三气体在中子散射、医疗器械、粒子物理、精密测量等多个领域的应用。在报告中,本人将讲述氦三气体极化器的研制过程,研制的极化器解决了卡脖子问题,仪器性能指标达到国际先进水平。报告人2:中国科学院高能物理研究所 孙志嘉研究员孙志嘉,研究员是国家重大科技基础设施-中国散裂中子源探测器研发团队负责人和学科带头人,现任国家重点研发计划首席科学家和广东省高精度射线探测技术重点实验室主任,主要从事射线探测技术与方法研究,长期致力于高端科研仪器装备研发。近五年来,先后主持了国家自然科学基金重大科研仪器和重点项目、国家重点研发计划项目和广东省重点项目。在国内外核技术领域著名期刊发表高水平论文80余篇,获授权发明专利30余项。先后担任了中国核学会电离辐射计量分会、中国核学会核电子学与核探测技术分会、中国计量测试学会电离辐射专业委员会等多个核技术学术组织的理事和委员,2018年入选中国科学院青年创新促进会优秀会员,2023年入选中国人民政治协商会议第十四届全国委员会委员(科学技术界),为实现我国科技高水平自立自强建言献策。报告摘要:中国散裂中子源(CSNS)是“十二五”期间重点建设的大科学装置,是国际前沿的高科技、多学科应用的大型科研基础设施。探测器作为中子谱仪重要核心设备之一,长期以来严重依赖进口,并受制于发达国家的技术封锁,已成为制约我国中子谱仪建设与运行的“卡脖子”问题。探测器团队依托大科学工程CSNS建设,围绕中子谱仪的紧迫需求,通过对探测器、电子学、数据获取和实时控制等全技术链条的长期系统研究,解决了探测器多项共性的关键技术,建立了工程化大规模应用的探测器体系,先后完成了多台中子谱仪探测器的研制任务。未来将继续完善中子谱仪探测器研发体系,朝着更大面积、更高空间分辨、更高探测效率以及更高集成度四方向发展,促进我国中子科学与技术蓬勃发展。报告人3:中国科学院高能物理研究所 陈洁研究员陈洁,博士,中国科学院高能物理研究所研究员,中国散裂中子源能量分辨中子成像谱仪负责人。中国晶体学会固体局域结构与全散射技术专业委员会委员,国家重点研发计划课题负责人。2017年入选中国科学院青年创新促进会,2021年入选中国科学院基础研究领域青年团队,东莞市特色人才(二类),获2023年创新东莞科技进步奖一等奖(排名第二)。主要从事中子谱仪技术、中子衍射与成像实验方法学及其应用等研究。近年科学合作在Science Advances、Nature Communications、Advanced Materials、JACS、Nano Energy、Acta Materialia、Corrosion Science等学术期刊上发表论文30余篇。报告摘要:中国散裂中子源(CSNS)能量分辨中子成像谱仪(ERNI)是国内首台的高分辨成像与衍射相结合的中子成像谱仪。ERNI可探测材料和器件内部数厘米深处的结构信息,具备多尺度、多维度、多模态耦合的表征手段:常规中子照相和中子CT可提供试样内部的缺陷、孔洞、裂纹等信息;布拉格边中子成像和中子衍射可获得材料内部晶体结构、磁结构和应力应变的二维/三维空间分布;中子光栅成像可对材料内部的磁畴结构进行3D可视化。ERNI将服务新能源、新材料、高端装备制造等领域中,材料和器部件的研发与设计、加工制造、运行与服役性能评价等研究与应用,同时将应用于文化遗产和考古、植物生理学、地质、深海等特色研究领域。报告人4:中国科学院高能物理研究所 康乐正高级工程师康乐,中国科学院高能物理研究所东莞研究部(散裂中子源科学中心)正高级工程师,硕士生导师。现任职散裂中子源科学中心合作谱仪机械总工程师,南方科技大学合作谱仪——高压中子衍射仪项目负责人,散裂中子源二期工程副总工程师。2005年在中国科学技术大学精密机械与精密仪器系取得学士学位,同年保送硕博连读,2010年在中国科学技术大学国家同步辐射实验室取得核科学与技术专业博士学位。2010年入职中国科学院高能物理研究所,参与大科学装置-中国散裂中子源建设工作,主要从事中子散射技术,中子谱仪物理、工程设计,中子及同步辐射光学工程方面的研究工作。报告摘要:中国散裂中子源是国家“十一五”期间重点建设的十二大科学装置之首,是我国首台基于散裂反应的加速器驱动脉冲中子源,于2018年8月23日顺利通过国家验收,为材料科学、生命科学、资源环境、新能源等方面的基础研究和高新技术研发提供了强有力的研究平台,对满足国家重大战略需求、解决前沿科学问题、解决瓶颈问题具有重要意义。基于高压中子散射探针在新能源、功能材料、凝聚态物理、地球物理及生命科学方面的重大需求,南方科技大学联合散裂中子源科学中心在中国散裂中子源建设一台兼具衍射和成像功能的高压粉末中子衍射仪,将实现多种服役条件下对矿物、陶瓷、水合物、有机物等物质结构性能的研究。报告人5:中国科学院高能物理研究所 缪平研究员缪平, 中国科学院高能物理研究所研究员、博导、中国散裂中子源(CSNS)高分辨中子衍射仪负责人。在CSNS主持建设我国首台超高分辨中子衍射仪,并且创新探索高分辨中子衍射技术的多学科交叉应用,在磁性反常热膨胀、量子自旋液体、铁基超导以及有机质子导体材料等领域,产出多项成果。报告摘要:中国散裂中子源高分辨中子衍射仪(TREND)由中国散裂中子源与北京大学深圳研究生院合作建设,其最佳分辨率设计指标达到≤0.05%的超高水平,将成为我国首台、世界第三台的超高分辨中子衍射仪。同时,为了满足小样品测试以及动态原位观察的需求,样品处中子通量也将达到较高水平,其设计指标为1×106n/s/cm2@100kW。该谱仪的应用领域如下:(1)凝聚态物理领域里细微结构变化引发的物性变化以及临界行为;(2)精确解析功能材料复杂晶体结构;(3)功能材料原位实验高精度测量结构变化、及其对性能的影响;(4)金属材料的晶粒和晶格微应力测量;(5)晶体学方法学研究,比如非公度晶体结构、非公度磁结构等。报告人:中国科学院上海高等研究院 李娜研究员报告题目:同步辐射溶液散射装置在生物制药领域的应用案例李娜,研究员,同步辐射生物小角X-射线散射线站科学家、上海光源BL19U2同步辐射溶液散射线站负责人,主要研究方向为同步辐射溶液散射技术方法学开发及其在软物质领域中的应用研究。现已以第一作者、通讯作者和共同作者的身份在国际知名期刊发表论文83篇;作为项目负责人主持科技部、中科院、上海市各类科研项目合计14项。现已提交专利申请8项,获批5项。现已出版科普译著3部、专著1部;同时参与撰写学术专著1部;主持完成学术译著1部。2017年入选中国科学院青年创新促进会会员,2021年入选中国科学院特聘研究岗位“骨干研究员”。2022年入选上海市青年科技人才协会。2023年入选中国科学院“关键技术人才”(工程技术类)。现任Frontiers in Molecular Biosciences学术期刊编审,同时作为Scientific Reports,Biochimica et Biophysica Acta特约审稿人。报告摘要:溶液小角散射实验方法是表征溶液体系多尺度时空结构的研究利器,在软物质研究领域已得到广泛应用。位于上海同步辐射光源的BL19U2生物溶液小角X-射线散射(SAXS)线站,具有光通量高以及准直性好的特点。从应用研究需求出发,线站自主开发了多元化的溶液SAXS原位实验装置,同时线站配备有快速数据采集探测器以及自动散射数据分析处理程序,使得弱散射体系的小角散射测量以及结构演化动力学时间分辨测定更为方便。本报告将分享BL19U2线站最新实验装置方法学研究进展以及在生物制药领域的应用研究案例。报告人:东华大学 陈前进研究员报告题目:基于扫描电化学成像的单颗粒分析陈前进,东华大学研究员,国家高层次青年人才。本科和博士分别毕业于四川大学和香港中文大学,随后在美国犹他大学和德州大学奥斯汀分校从事博士后研究。2018年加入东华大学化学与化工学院,任特聘研究员、博士生导师。独立工作以来以通讯作者在PNAS, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Anal. Chem.等期刊发表SCI论文 30余篇。主持国家自然科学基金面上/青年、上海市自然科学基金探索/面上等项目。2022年获中国颗粒学会自然科学奖二等奖(唯一完成人),受邀担任中国颗粒学会理事会理事,《中国化学快报》等期刊青年编委。主要研究方向为电分析化学,单颗粒分析,电化学成像。报告摘要:高效低廉的电催化剂合成和开发是电化学研究的重要方向之一。传统方法主要将纳米催化剂与导电碳粉、粘合剂等混合制备复合电极,所获得的结果是一种系综平均,难以反应催化剂个体的真实活性和反应异质性。我们发展了基于微液滴方法的扫描电化学成像技术,实现了电化学过程的单粒子水平研究。(1)单个纳米晶颗粒及其有序组装体的电催化反应过程,从单个颗粒水平建立其本征尺寸、晶相、结构、组成和电催化活性的构效关系;(2)在亚个体水平识别空间反应活性位点,明确活性分布与贡献;(3)基于电化学析气反应产生局域气体过饱和条件实现单个纳米气泡动态行为的实时电化学监测,在单个气泡水平理解界面异相成核行为,定量描述了表面纳米拓扑结构-气泡成核能垒的关系。报告人:华南理工大学电镜中心 王宇教授报告题目:化学键强耦合半导体超结构的制备与原位电镜表征王宇,华南理工大学电镜中心与前沿软物质学院双聘教授,珠江青年拔尖人才。本科毕业于南京大学基础学科强化部,博士毕业于厦门大学化学系,曾于美国阿克伦大学、加州大学伯克利分校、劳伦斯伯克利国家实验室从事博士后研究,2021年加入华南理工大学。长期从事可控组装及催组装的方法学发展以及组装原位表征技术发展。开发原位液相透射电镜表征方法,创制高通量电镜智能操作与分析系统,开发电镜成像模拟算法,将人工智能用于图像及物相分析。通过(催)组装构建功能材料并发展智能电子显微镜技术,以材料制备与表征方向的创新推动光电、催化、及电池领域。近年来,发表通讯或第一作者论文包括Nature Communications (3)、JACS (3)、Science Advances、Chemical Society Reviews 在内的科学论文十余篇。报告摘要:半导体超晶格中强电子耦合则有望带来超原子晶体、超导、超高电荷迁移率材料等新物理和新材料突破。自组装过程中量子点的配体演化决定超晶格中的电子耦合强度,能否实现新物理的关键,但因缺少高分辨原位表征手段,人们对该过程的认知仍十分匮乏。我们针对纳米粒子自组装体系设计了原子分辨率透射电镜液相原位池,研究半导体量子点自组装形成超晶格过程中的配体物理化学,获得量子点原子分辨率实时成像,揭示了不同化学环境下配体移除所导致的迥异自组装动力学及其对超晶格中电子耦合强度的影响。基于原位表征获得的配体物理化学认知,我们开发了一类新的强电子耦合超晶格及其制备方法,通过高效率配体移除将二维量子材料组装成界面强电子耦合的扭角超晶格,通过电子能谱与理论计算共同揭示了此类扭角超晶格中可在室温下涌现出新能带结构,为超原子晶体和信息存储提供一类新材料。本报告也将简单涉及人工智能在原位电镜图像及物相分析中的应用。报告人:上海交通大学 余辉长聘副教授报告题目:用于表界面过程分析的超灵敏超分辨表面等离激元显微成像技术余辉,上海交通大学生物医学工程学院长聘副教授,博士生导师。本科与博士均毕业于浙江大学,并先后在香港科技大学和美国亚利桑那州立大学开展研究工作。2017年回国担任独立PI,带领团队开展光学成像技术、光学传感技术及体外诊断技术研究,在无标记动态光学成像、生物标志物检测等方向取得创新成果,在PNAS等顶级期刊发表学术论文40余篇,申请/授权专利10余项。担任十四五国家重点研发计划专项课题负责人、基金委国家重大科研仪器研制项目子课题负责人、国自然面上项目负责人,入选上海市浦江人才计划。报告摘要:对微纳米尺度材料表界面的动态分析至关重要,已有技术在灵敏度与分辨率上仍存在关键局限。表面等离激元是存在于金属与介质界面处的倏逝波,并仅对界面附近纳米级区域内的折射率变化敏感,是非标记动态分析界面过程的有效工具。表面等离激元显微成像技术结合了表面等离激元的高灵敏度与光学成像的高分辨率,为界面处分子相互作用分析、单颗粒催化过程分析、电化学成像等领域提供了独特的研究手段。本报告将介绍表面等离激元显微成像技术应用与表界面分析的基本原理、技术及系统,并汇报本课题组近年来在进一步发展超灵敏与超分辨表面等离激元显微成像技术方面所取得的研究进展。报告人:南昌大学 王涛副教授 报告题目:石英晶体微天平的表征原理及应用创新王涛,2013年博士毕业于中国科学技术大学高分子化学与物理专业,2016年加入南昌大学,获得江西省首批“双千计划”项目,主持国家自然科学基金3项,江西省自然科学基金1项,主要研究方向包括高分子材料界面化学与物理、界面功能材料和高分子能源材料等。本人主要涉及的表征仪器为耗材型石英晶体微天平(QCM-D),研究内容从研究高分子材料在界面上的构象与性能的关系,逐渐扩展界面功能材料、纳米材料等方面的应用,尤其是近几年开展了基于电化学石英晶体微天平(EQCM-D)在储能材料界面性质的研究。
  • 直播预告!第四届材料表征与分析检测技术网络会议之表界面分析分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/表面与界面分析主题专场会议日程:报告时间报告题目报告人专场二:表界面分析(12月14日下午)14:00--14:30XPS谱峰拟合中国科学技术大学理化科学实验中心高级工程师 姜志全14:30--15:00分辨率、液相、物性测试——原子力显微镜在表界面分析中的应用牛津仪器科技(上海)有限公司AFM应用工程师 竺仁15:00--15:30电池中的表界面分析中国科学院苏州纳米技术与纳米仿生研究所研究员 沈炎宾15:30--16:00钕铁硼磁性材料的电子探针表征岛津企业管理(中国)有限公司应用工程师 赵同新16:00--16:30铜基金属催化剂表界面的原位环境透射电镜研究天津大学教授 罗浪里16:30--17:00应用非线性光学技术探测物质表界面东南大学研究员 卢晓林直播抽奖:暖心青年玻璃杯5个嘉宾介绍:中国科学技术大学理化科学实验中心高级工程师 姜志全姜志全,理学博士,中国科学技术大学高级工程师。研究领域为表面化学与纳米催化,在不同层次构筑纳米催化模型体系,利用各种光谱和能谱技术对物质进行测试和分析,同时致力于构建原位测试表征系统,力图在原子分子水平上揭示研究体系的构效关系和作用机制。作为项目负责人,已主持完成两项国家自然科学基金项目(项目批准号20803072与11079033)和一项中国科学院仪器设备功能开发技术创新项目(项目编号2015gf05)。已在国内外学术期刊发表SCI收录论文七十余篇。【摘要】 针对XPS数据处理过程中的谱峰拟合问题,报告主要介绍了谱峰拟合的基础知识、拟合方法和相应的拟合参数设置,并结合实例示范了谱峰拟合的操作流程。牛津仪器科技(上海)有限公司AFM应用工程师 竺仁2015年毕业于美国明尼苏达大学机械工程系,在博士以及博士后期间积累了多年的原子力显微镜使用和研发经验。2016年加入牛津仪器Asylum Research ,任职原子力显微镜应用工程师,负责原子力显微镜的技术支持和应用开发。【摘要】 在众多的表界面分析工具中,原子力显微镜(AFM)具有独特的优势及应用。通过纳米针尖和样品的近场相互作用,AFM可以达到远超光学技术的分辨率,甚至实现晶格缺陷级别的表征。由于不依赖于真空技术,AFM适合在复杂液体环境中进行扫描,包括对液相反应进行原位成像。功能化的AFM针尖,还能够对样品的电学性质和力学性质进行表征。凭借这些特点,AFM不仅是表界面学术研究中的常用工具,也愈来愈多地被用于解决工业研发和生产中的问题。中国科学院苏州纳米技术与纳米仿生研究所研究员 沈炎宾沈炎宾,中国科学院苏州纳米技术与纳米仿生研究所研究员,博导,国家级青年人才,江苏省双创人才。哈尔滨工业大学学士,丹麦奥胡斯大学博士。长期从事先进二次电池关键材料、界面化学调控、原位电化学机理研究。截止2022年4月,已在J. Am. Chem. Soc., Nature Commun., Joule等期刊发表研究论文~80篇,是30余项中外发明专利的发明人,主持国家省市各级基金和产业界横向合作项目十余项,《物理化学学报》和《电化学》青年编委。【摘要】 锂电池的界面稳定化学对电池循环寿命和安全性影响极大,聚焦界面化学研究是实锂电池长循环寿命和高安全性突破的关键。我们致力于锂电池界面化学研究,近几年围绕着锂电池的三个界面问题,即电极活性材料的界面化学稳定性、电极|电解液界面的循环稳定性、以及固态金属锂电池固-固界面的离子传输挑战开展研究,提升锂电池的性能。在这个报告中,我将跟大家分享我们在锂电池表界面分析中的一些经验。岛津企业管理(中国)有限公司应用工程师 赵同新从事电子显微分析十多年,专长于材料表征,在材料微区测试和金属构件的失效分析上有着丰富的经验,曾参与CNAS压力容器失效分析机构认可标准制定和研讨。在大型的行业研讨会上主讲过《金属构件的失效分析》、《汽车材料的电子探针测试与分析》、《含超轻元素矿物的微区定量测试》、《电子探针及其在材料测试中的应用》等专题。现专职于微区定量测试研究,负责不同行业材料的应用开发。对多种材料的微区观察、测试和分析需求有着深入的理解,为行业用户提供现场技术支持及应用解决方案。【摘要】 介绍超轻元素和稀土元素的电子探针测试特点、NdFeB磁性材料微区定量测试方法探讨、NdFeB磁性性能改善晶界扩散Tb/Dy的表征等问题。天津大学教授 罗浪里天津大学分子+研究院教授,国家青年人才计划入选者,在纽约州立大学获得博士学位,先后在美国西北大学、能源部西北太平洋国家实验室从事研究工作。主要研究方向为原位透射电子显微学在异相催化、锂电池等领域的应用,以第一/通讯作者在Nature Mater., Nature Nano., PNAS, JACS, PRL, Angew等杂志上发表论文40余篇。【摘要】 气体与金属界面的相互作用是相催化研究的核心科学问题之一。反应气体在金属表面上的吸附、解离和反应过程决定了催化反应的机理和金属催化剂的性能。金属催化剂设计中的表观形貌、表面原子结构、元素掺杂、物相以及应变调控等等策略都需要对于金属催化剂表面原子级的精准表征。更重要的是,反应气体分子与上述金属催化剂表面的相互作用的原子过程,厘清这些原子过程既可以为反应机理的研究例如活性位点的确定提供直接证据,又可以为催化剂的衰减机制研究提供有力证据,从而优化催化剂设计。 在诸多高分辨原位表征手段中,透射电子显微学一直走在催化科学研究的应用前沿。球差矫正的扫描透射成像(AC-STEM)以其亚埃级的空间分辨率,成为催化剂材料中单原子、原子团簇以及原子尺度结构调控几乎唯一的直接结构表征手段。另一方面,球差校正环境透射电镜(AC-ETEM) 作为原位透射电镜技术中为催化研究而开发的技术,为样品室创造出加热/气体环境的同时保持基本不损失电镜本身的分辨率,是研究催化剂在反应气体中动态变化的强有力的手段之一。本工作以广泛用于合成甲醇、水煤气转换、CO/烃类选择氧化等众多反应的铜基催化剂为例,研究了铜及合金单晶表面和纳米颗粒在CO氧化反应、水蒸汽中反应条件下的动态结构的变化,厘清了一系列反应气体驱动的活化原子机理,丰富了催化理论以及指导原子精准催化剂的设计。东南大学研究员 卢晓林研究员,博士生导师,东南大学生物科学与医学工程学院,生物电子学国家重点实验室。任多个协会/学会委员或会员,曾参与评审科技部、科技委和省一级基础研发和应用类项目等。【摘要】 和频振动光谱(Sum frequency generation vibrational spectroscopy,SFG)技术最近几十年来发展迅速。由于这种二阶光学技术本身所具有的表界面选择性和对分子基团取向的敏感性,已经成为了研究物质表界面的一种重要和有效的工具。报告将介绍和频振动光谱在高分子和生物界面研究方面的一些成果。会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 苏州医工所生物分子界面分析仪通过欧盟CE认证
    p   近日,中国科学院苏州生物医学工程技术研究所传感创新中心周连群研究员及其团队,研发的生物分子界面分析仪(Mole-Q),通过权威实验室CE(EMC\LVD)\FCC(EMC)等相关测试,获得相关认证证书及报告。 /p p   分子界面分析仪主要应用在生物生命分析领域中,实现对生物分子的分子相互作用、动力学研究、细胞吸附、迁移变化、药物作用与药物筛选、生物相容性、聚电解质膜层的组装等高灵敏度检测和分析,也可应用于石油、化工、航天等领域。采用薄膜压电技术,利用薄膜压电晶片实现生物分子界面分析。当物质在压电薄膜表面发生吸脱附反应或表面的液体性质发生变化时,均引起频率的变化。芯片共振频率的变化,与芯片表面吸附的物质的质量相关。通过分析频率的变化可以获得吸附层相应的质量、吸附层厚度、粘弹性(剪切模量)等信息。 /p p   该款迷你型生物分子界面分析仪(Mole-Q)是面向国内外科研院所、高校、企业以及个体研究人员的测试需求定向开发的便携式产品。产品外形采用象牙白和透明材质曲面设计,总体重量不超过500g,便携性强,“即插即用”,仪器通过USB数据线连接分析终端如PC电脑即可实现数据实时采集和分析。液体流路易于观察,传感器易于清洗更换。芯片上方测试样品为10μL,频率分辨率0.1Hz,在空气中10分钟内频率漂移小于2Hz。该产品和芯片的部分参数性能优于目前市场上动辄百万元的同类进口产品,综合性能达到国际先进水平。 /p p   周连群研发团队攻克高灵敏度压电薄膜核心技术,优化微纳加工工艺实现薄膜化压电晶片(Lamb波器件、高频QCM器件)的批量化制备,完善质量控制和工序管理,提高生物分子分析仪核心传感单元工程化的效率。研发出厚度信号强度大于60dB的薄膜压电传感器,将对生物分子检测灵敏度提升至皮克量级。独创的芯感& reg MEMS技术、结合一体式微流控进样和高频信号采集等模块,实现芯片和系统的低成本、高性能、高兼容性。突破国外垄断产品的专业壁垒,获得20余项相关发明专利的授权,申请的国际PCT专利已进入日本和美国。 /p p   在苏州医工所“创新”“转化”双轮驱动政策的大力支持下,“分子界面分析仪(Mole-Q)”产品和芯片已落地在苏州国科芯感医疗科技有限公司(简称“国科芯感”)进行研产转化。新型成果转化模式的拓展,有效弥补传统技术研发与市场需求脱节、开发速度慢、周期长、权属模糊等弊端,促进科研和产业优势互补,实现研产双赢。此次Mole-Q产品通过欧盟CE认证及美国的FCC认证,证实苏州医工所科研能力和成果有效转化的实力,促进后续系列产品的研发和推广,也为产品出口欧盟等国际市场提供强有力的保障。 /p p /p p & nbsp /p p style=" TEXT-ALIGN: center" img title=" W020171206585288196153.jpg" src=" http://img1.17img.cn/17img/images/201712/noimg/0df49df2-5d14-4f84-9300-856809703341.jpg" / /p p style=" TEXT-ALIGN: center" 分子界面分析仪(Mole-Q)产品 /p
  • 面向动态表界面分析的原位液相二次离子质谱新技术研究获进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
  • 赛默飞世尔科技手持式原料鉴定分析仪Truscan RM推出中文操作界面
    赛默飞世尔科技TruScan RM手持式拉曼光谱仪 全球服务科学的领导者赛默飞世尔科技公司,今天宣布推出一款新型产品TruScan RM,这是一款设计用于快速检测原料和进行成品检验的手持式分析仪。TruScan RM建立于分析能力已得到证实的TruScan分析仪基础上,符合全球数以百计的GMP规范,以提供先进的特性和功能。 为了广大中国用户更简易操作,赛默飞世尔推出中文版操作界面的Truscan RM。
  • 华东理工自主研制界面光电分析装置 可用于超灵敏光电生物传感器构建
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/insimg/18580eb5-c78e-4baa-a5ae-f6bc8e181e94.jpg" title=" 149034298047758_meitu_5.jpg" / /p p & nbsp & nbsp & nbsp & nbsp 对界面上电荷传输信息的精准获取,是深入认识生命活动与光电能量转化过程的基础,可应用在超灵敏光电生物传感器的构建和敏化太阳能电池光电转化效率的提高等方面。 /p p   刚刚获得2016年度上海市自然科学一等奖的“功能化界面电荷传输过程中的电分析化学基础研究及其应用”项目,所研究的正是这一领域。 /p p   针对界面光电分析化学基础研究中存在的关键问题与挑战,华东理工大学龙亿涛、花建丽、应佚伦、马巍、武文俊等老师,经过10年的努力,取得了多项成果:在研制界面光电分析装置上,通过设计与制备结构可控的光电分子,聚焦功能化动态界面电荷传输过程,发展了高时空分辨的“电化学—纳米光谱”单纳米粒子动态界面传感新方法,应用于纳米粒子界面电荷传输的动态、原位、实时、高通量分析 提出纳米孔道电化学限域效应,建立纳米孔道单分子界面分析技术,实现了对多尺度界面单分子动态结构研究,为功能化复杂界面电荷传输新机制的研究提供了新方法。 /p p   据介绍,该获奖团队目前正在以筹建中的“国际合作联合实验室”和“界面光电分析化学基础研究”创新研究群体项目为依托,通过构建新型功能化动态界面,对单分子水平和单颗粒水平上的电荷传输机制进行探索。 /p p br/ /p
  • 大昌华嘉表界面化学分析仪器供应商—德国KRUSS公司在阿赫玛展会上发表演讲
    大昌华嘉表界面化学分析仪器供应商&mdash 德国KRUSS公司于2012年6月18-22日参加了在德国法兰克福举办的第30届国际化学工程、环境保护和生物技术展览暨会议(ACHEMA 2012)。并在会上发表演讲,为参会者讲解了:&ldquo 高压下流体热物理性质的测量&rdquo 以及&ldquo 液体泡沫的 应用、特点、方法&rdquo 具体内容请见以下链接: http://www.instrument.com.cn/netshow/SH100150/down_209952.htm http://www.instrument.com.cn/netshow/SH100150/down_209946.htm 德国KRÜ SS公司全心致力于表面/界面张力和接触测量技术的创新,开发和应用研究,使之成为全球市场的领导者,以及表面/界面张力和接触角测量仪器的国际标准。 50年来KRÜ SS公司开发出众多的实验室和工业在线仪器仪满足最苛刻的科学研究需要和严格的工厂质量控制,为全世界的客户提供世界级的产品、销售和售后服务。并多次被评为最具创新能力的100家中等规模的国有企业之一。 今天,作为在表面界面科学仪器领域的全球第一品牌,KRÜ SS公司的各种表面/界面张力仪,接触角测量仪,已成为众多顶级研究机构,大型企业的首选。 大昌华嘉商业(中国)有限公司是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。大昌华嘉作为Kruss产品、在国内的总代理,负责其所有产品、技术的推广销售和服务。
  • TOF-SIMS在半导体领域的应用(二)——浅层、薄层、界面的深度分析
    TOF-SIMS在半导体领域有着广泛的应用,如表面痕量金属的检测和定量、工艺过程的有机污染、超浅层深度剖析、超薄介电层分析、界面/bond pad/test pad的分析等等。TOF-SIMS技术的性能优势主要体现在高质量分辨率、高质量精度和良好的数据速率等方面。另外,低能量、小束斑、高电流的新型双束离子溅射源可以实现溅射快、精度高的深度分析,深度分辨<1nm。且TOF-SIMS技术无需复杂的样品前处理,可以对样品进行直接测试。本文主要分享半导体器件的浅层、薄层、界面的深度分析的应用案例。(表面的痕量金属的检测和定量、表面污染检测等方面的分析测试案例请参考之前的推文。)一、包埋500nm深度处的多膜层深度分析Profiling Conditions: sputtering Cs 2 keV, 45°, analysis Bi 25 keV, 50 kHz interlacedSpeed: 2 µ m in 1200 s, 3 datapoints per s, 1.7 nm/s (102 nm/min), 0.5 nm per datapoint二、N, C, O, 和 Cl离子注入的深度分析三、浅层注入的深度分析四、SiGe Testpad中B注入的深度分析Analysis Beam:Bi1 @ 15 keV, 1 pA,35 x 35 µ m2Sputter Beam:O2 @ 500 eV, 90 nA,200 x 200 µ m2Total time for analysis including pad alignment: ≈15 min五、SiCP Testsample的深度分析Analysis Beam:Bi1 @ 15 keV, 8 pA,50 x 50 µ m2Sputter Beam:O2 @ 500 eV,80 nA,200 x 200 µ m2Total time for analysis: ≈10 min六、GaAs/InGaP多膜层深度Analysis Beam:Bi1 @ 15 keV, 7 pA,00 x 100 µ m2Sputter Beam:Cs @ 1000 eV,100 nA,300 x 300 µ m2Total time for analysis: ≈20 min关注公众号“IONTOF-CHINA”,更多TOF-SIMS案例分享和实际应用技术解读。
  • 科众精密-解析气-液-固界面接触角的测量原理
    一、液-固界面接触角的测量的实验目的1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。2. 接触角测定材料表面接触角和表面张力的方法。二、接触角测量的过程 : 用接触角测量仪注射器针头将一滴待测液体滴在基质上。液滴会贴附在基质表面上并投射出一个阴影。投影屏幕千分计会使用光学放大作用将影像投射到屏幕上以进行测量。三、接触角测量原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固-液界面所取代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来,有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类型示于图1。 光学接触角测量仪可以记录液滴图像并且自动分析液滴的形状。液滴形状是液体表面张力、重力和不同液体样品的密度差和湿度差及环境介质的函数。在固体表面上,液滴形状和接触角也依赖于固体的特性(例如表面自由能和形貌)。使用液滴轮廓拟合方法对获得的图像进行分析,测定接触角和表面张力。使用几种已知表面张力的液体进行接触角测试可以计算得到材料的表面自由能。 作为光学方法,光学接触角测量仪的测量精度取决于图片质量和分析软件。Attension光学接触角测量仪使用一个高质量的单色冷LED光源以使样品蒸发量降到zui低。高分辨率数码镜头、高质量的光学器件和精确的液体拟合方法确保了图片质量。图1 各种类型的润湿当液体与固体接触后,体系的自由能降低。因此,液体在固体上润湿程度的大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图2所示。图2 接触角假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即γSG - γSL = γLGcosθ 式中γSG,γLG,γSL分别为固-气、液-气和固-液界面张力;θ是在固、气、液三相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0o-180o之间。接触角是反应物质与液体润湿性关系的重要尺度。在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是:粘附润湿,铺展润湿, 粘附润湿、铺展润湿过程的粘附功、铺展系数。 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把θ=90°作为润湿与否的界限,当θ>90°,称为不润湿,当θ<90°时,称为润湿,θ越小润湿性能越好;当θ角等于零时,液体在固体表面上铺展,固体被完全润湿。
  • “免煎汤剂”统一标准,赛默飞“柱”力中药配方颗粒质量控制
    中药配方颗粒是近几年发展较快的中药制剂,由单味中药饮片经提取浓缩而成,供中医临床配方用,具有见效快,吸收好,疗效显著,携带方便等特点。中药配方颗粒的发明是中医药的一次重大革新,是适应现代快节奏生活的一种必然产物。中药配方颗粒目前已有700余种,占中药饮片品种50%。目前市场上针对配方颗粒的应用主要担心两点:①中药配方颗粒质量不确定。②市场对配方颗粒的疗效是否与共煎一致有疑虑。 2016年2月26日,国务院印发了《中医药发展战略规划纲要(2016-2030年)》,明确将中药配方颗粒纳入国家中医药发展战略规划内容之中。2016年8月5日,国家药典委员会发布了《中药配方颗粒质量控制与标准制定技术要求(征求意见稿)》,全面启动中药配方颗粒国家标准研究,共有包括国家6家试点企业在内的多家企业参与了国家标准的研究。2019年11月8日,国家药典委公示了巴戟天配方颗粒、白芍配方颗粒等一批160个中药配方颗粒品种试点统一标准。全国规范统一的质量标准将提高配方颗粒的市场接受度,有利于配方颗粒行业的长远发展。 对于公示的中药配方颗粒品种,赛默飞液相色谱柱展示了优异的性能。 1 甘草配方颗粒特征图谱及特征峰分析结果 在下方甘草配方颗粒色谱图中,测试结果呈现12 个特征峰,以甘草苷、甘草酸参照物峰相对应的峰为S1、S2峰,各项指标符合统一标准公示稿中的要求。Vanquish Flex+ Acclaim RSLC 120 C18 (2.2mm×100mm,2.1μm)分析结果峰2:芹糖甘草苷 峰3(S1):甘草苷 峰5:异甘草苷 峰6:甘草素 峰10(S2):甘草酸 公示稿提供的参考对照特征图谱(推荐Acclaim RSLC 120 C18) 2 肉桂配方颗粒特征图谱及特征峰分析结果 在下方肉桂配方颗粒色谱图中,测试结果呈现5个特征峰,以桂皮醛参照物峰相对应的峰为S 峰,各项指标均符合统一标准公示稿中的要求。 Vanquish Flex+ Syncronis C18(2.1mm × 100mm,1.7 μm)分析结果峰1:香豆素;峰2:肉桂醇;峰3:肉桂酸;峰4:桂皮醛(S) 公示稿提供的参考对照特征图谱 3 生地黄配方颗粒特征图谱及特征峰分析结果 在下方生地黄配方颗粒色谱图中,测试结果呈现11个特征峰,以毛蕊花糖苷参照物峰相对应的峰为S 峰,各项指标均符合统一标准公示稿中的要求。 Vanquish Flex+ Hypersil Gold aQ(2.1mm× 100mm ,1.9μm)分析结果峰2:洋地黄叶苷C 峰3:焦地黄苯乙醇苷A1 峰5(S):毛蕊花糖苷 峰6:焦地黄苯乙醇苷B1 峰7:异毛蕊花糖苷 公示稿提供的参考对照特征图谱 赛默飞色谱仪器结合色谱柱,完全可以满足中药配方颗粒分析需求,为中药配方颗粒质量控制保驾护航。希望通过上述案例分享,能够为大家在中药配方颗粒分析时带来帮助,我们下期再会! 配方颗粒公示标准中所采用的赛默飞色谱柱
  • 2018年中国中药配方颗粒行业发展现状分析
    p   中药配方颗粒以其使用方便、计量准确的优势赢了广大消费者的青睐,配方颗粒虽隶属于中药饮片但是其近年的增长速度却远超中药饮片的整体增速,年复合增长率近30%,是医药行业为数不多的保持超高速增长的细分领域。目前配方颗粒的整体竞争格局依旧由原有六大配方颗粒生厂商引领,但配方颗粒庞大的市场份额及较强的增长潜力让众多药企趋之若鹜,纷纷布局。 /p p    strong 市场规模:我国中药配方颗粒市场呈现不断增长态势,增速高于中药饮片整体增速 /strong /p p   近几年,中药配方颗粒保持了快速增长态势,未来市场空间广大。2006-2016年,中药配方颗粒全国销售额由2.28亿元上升到118.25亿元,CAGR为48.42%,远高于同期中药饮片26.7%的复合增速。 /p p   其中,2009年全国中药配方颗粒年试制产量超过1万吨,且出口到欧美等30多个国家和地区,逐渐形成产业化优势。2016年中药配方颗粒销售额约为118.25亿元,同比增长46.3%。 /p p   据测算2017年的行业市场规模在125亿元左右,2006-2017年的年均复合增长率高达43.9%。行业整体处于高速发展阶段。 /p p   图表1:2006-2017年中药配方颗粒市场规模及增长情况(单位:亿元,%) /p center img alt=" 图表1:2006-2017年中药配方颗粒市场规模及增长情况(单位:亿元,%)" src=" http://c.cnfolimg.com/20180228/52/14911871783058065832.jpg" height=" 354" align=" middle" width=" 500" / /center p   统计数据显示,天江药业占到全国中药配方颗粒市场份额的近一半左右,红日药业增长较快,2016年份额上升至19.94%,华润三九为17.23%,位居第三。 /p p   图表2:2010-2016年中药配方颗粒竞争格局(单位:%) /p center img alt=" 图表2:2010-2016年中药配方颗粒竞争格局(单位:%)" src=" http://c.cnfolimg.com/20180228/26/17516510398363907766.jpg" height=" 279" align=" middle" width=" 500" / /center p    strong 竞争格局:2018年省级试点生产企业将打破原有竞争格局 /strong /p p   自2002-2004年间,通过CFDA备案审评,并得到试点生产企业批复的只有江阴天江药业、华润三九、北京康仁堂药业(后被红日药业并购)、培力(南宁)药业、四川新绿色药业和广东一方药业(后被天江药业并购)6家中药配方颗粒试点企业。 /p p   其中,培力(南宁)药业主要向港澳医院供应浓缩中药配方颗粒,是香港最大的浓缩中药配方颗粒供货商,市场份额达80% 深圳三九是上市公司华润三九的子公司,市场覆盖了国内近两千家家中医院与中医医疗机构 康仁堂于2010年4月被红日药业收购部分股份,并在2012年10月完成100%收购 江阴天江于2008年收购广东一方成为市场份额最大的企业,并引入第一大股东上海家化,后在2015年10月其87.3%权益被中国中药约以87.6亿元收购。 /p p   图表3:6家中药配方颗粒生产企业行业地位对比情况 /p center img alt=" 图表3:6家中药配方颗粒生产企业行业地位对比情况" src=" http://c.cnfolimg.com/20180228/57/14873087481458137133.jpg" height=" 264" align=" middle" width=" 500" / /center p   从区域分布来看,现有的六家试点企业主要位于华南(深圳三九、广东一方、培力南宁)、华北(康仁堂)、华东(天江药业)、西南(四川新绿色),其市场覆盖区域也以自身地缘位置为中心辐射四周,除了天江药业基本覆盖全国,其他竞争对手主要是区域性布局。 /p p   从需求区域分布来看,目前对西方颗粒接受度较高的区域为华南、华东,其中广东、浙江、江苏、北京等省市的西方颗粒较为普遍,而西北地区较为空白。 /p p   图表4:6家中药配方颗粒试点企业的主要市场覆盖领域 /p center img alt=" 图表4:6家中药配方颗粒试点企业的主要市场覆盖领域" src=" http://c.cnfolimg.com/20180228/59/17665054714145269223.jpg" height=" 203" align=" middle" width=" 500" / /center p   2008年6月江阴天江收购广东一方后,两家公司的市场份额最大,其次依次是南宁培力、康仁堂药业、深圳三九、四川新绿色。目前,北京康仁堂在北方市场上一家独大,而其他5家主要集中在南方市场。 /p p   图表5:6家中药配方颗粒试点企业的产能对比分析 /p p style=" text-align: center "    img alt=" 图表5:6家中药配方颗粒试点企业的产能对比分析" src=" http://c.cnfolimg.com/20180228/49/17926811081026613001.jpg" height=" 186" align=" middle" width=" 500" / /p p   国家对中药配方颗粒的发展一直持谨慎态度,2001年7月,CFDA颁发了《中药配方颗粒管理暂行规定》,明确将中药配方颗粒纳入中药饮片管理的范畴。这一政策直到2015年才有所松动,2015年底,CFDA发布《中药配方颗粒管理办法(征求意见稿)》及《中药配方颗粒质量控制与标准制定技术要求》(征求意见稿),提出配方颗粒的试点限制将被放开,中药生产企业只需经过所在地的省级食药监部门批准,并履行相关程序即可生产。 /p p   国家《中药配方颗粒管理办法(征集意见稿)》自颁布以后到目前为止虽说未能彻底落地,但是很多省份都出台了各自个性化的试点生产政策。目前中药配方颗粒已有国家级试点生产企业6家,国家级试点生产企业子公司8家,省级试点企业(包含1个子公司)3家,另外27家企业获得省级科研专项,未来随着试点政策逐步放开,市场竞争将更加激烈,现有格局将被改变。 /p
  • 干货分享 | 冻干样品配方的关键温度的测量
    *本文内容来源于英国Biopharma技术有限责任公司研发总监Kevin Ward博士样品配方的关键温度在进入冻干工艺的开发前,对配方的深入研究是极有必要的。研发人员必须保证配方中的活性成分在整个冻干周期中都能保持稳定,来保证得到的产品有着良好的外观和性能。有着不良产品外观的产品在冻干过程中可能遭遇了软化甚至塌陷,因为这些样品超过了它们的“关键温度”!样品配方的关键温度指的是:对于有晶体结构的样品,指的是共晶点(Teu);对于非晶体型样品,指的是塌陷温度(Tc);对于混合体系的样品,关键温度则低于上面所指的两种温度。在进入冻干工艺的开发前,有必要对该配方的关键温度进行分析。目前使用的方法主要有:共晶点:热分析(DSC)或阻抗分析(Zsinφ)塌陷温度:冻干显微镜(FDM)冻干显微镜的应用在使用这些分析仪器进行配方分析时,除了关注以上所述的关键温度以外,还可以利用这些仪器进行更多的分析,本文针对冻干显微镜在其中的应用进行详细说明。▲(左图)Biopharma公司最新一代冻干显微镜Lyostat5(右图)冻干显微镜的进样方法冻干显微镜搭载了真空泵,真空计和冷冻台,作为“微型冻干机”,可以在2uL的规模上模拟样品在冻干机中的冷冻和干燥过程,在90min内就可以分析出样品的塌陷温度(Tc)。▲ 在Lyostat5上观测样品的干燥界面在冻干显微镜中进行冷冻干燥,通过摄像机可以观察到样品干燥界面的推移。当温度上升到超过塌陷温度(Tc)时,可以看到样品结构的消失,当再次进行降温后可以重新看到保有结构的干燥界面,借此可以对一个样品进行重复实验以提高测量准确性。▲(左图)温度超过塌陷温度Tc后样品结构消失(右图)再次降温冷冻后观察到新的干燥结构对于某些配方,溶质有可能会聚集于液体表面导致起皮(Crust formulation),这样的配方容易阻碍冷冻干燥的进程。起皮现象也可以通过冻干显微镜进行观察,根据程度判断是否会影响后续的冻干工艺开发。▲(左图)用Lyostat5观察到样品溶质高浓度集中于边缘处(右图)边缘破开后冷冻干燥过程得以继续,由于温度过高样品结构丧失另外,在不同温度下比较样品结晶现象出现的速率,也可以辅助确定该样品是否适用于热退火工艺,以及确认最合适的退火温度。▲(左图)结晶现象不明显(右图)在-10℃继续维持10min后结晶开始增加不仅仅是提供塌陷温度综上所述,冻干显微镜除了能够非常经济便利地提供塌陷温度(Tc)外,能额外分析出样品是否起皮以及退火相关的信息。另外,Biopharma最新一代冻干显微镜Lyostat5还可以使用DSC模块替换掉冷冻台部分,使显微镜作为DSC进行使用,从而测定另一个关键的温度共晶点(Teu)。由Biopharma公司提供的可替换的DSC模块总结在将样品放入冻干机进行研发之前,获取该样品配方的相关信息对研发的效率至关重要。相比“Trial and Error”模式,基于科学方法得出的数据进行开发显得更加有的放矢,对配方特性更全面的掌握,也能更好的避免后续潜在问题的出现。使用冻干显微镜等分析设备在工艺开发前期的重要性不言而喻。下期预告阻抗分析(Zsinφ):冻干配方分析的新维度——详解冷冻状态分析仪Lyotherm3的应用测量冻干饼强度的意义——Micropress仪器的应用
  • 热点专题讲座 | 月旭科技中药配方颗粒分析解决方案
    近日全国的疫情防控形势变得复杂严峻,多地也升级了疫情防控措施。在疫情防控期间,不少老师已经减少外出,居家办公。月旭科技也为各位老师准备了线上专题讲座,将通过月旭科技视频号进行直播,感兴趣的你,不要错过哦!讲座主题《月旭科技中药配方颗粒分析解决方案》讲座内容1.中药配方颗粒背景介绍2.中药配方颗粒中色谱柱的选型3.中药配方颗粒常见问题及基本对策讲座时间2022年3月25日(周五)14:00主讲人简介
  • 省时省力, 二维液相分析配方奶粉中的维生素A D E
    省时省力, 二维液相分析配方奶粉中的维生素A D E 关注我们,更多干货和惊喜好礼配方乳——脂溶性维生素维生素是人和动物为维持正常的生理功能而必须从食物中获得的一种微量有机物质,根据物理性质不同分为水溶性和脂溶性两大类,其中脂溶性维生素A、D、E在人体的视觉能力、免疫功能、抗氧化抗衰老能力等诸方面都有着重要的生理功能。维生素不足会造成人体的亚健康,因此对于维生素的补充越来越受到人们的重视。婴幼儿及成人配方乳品是脂溶性维生素强化的重要形式之一。配方奶粉基质复杂,我国和欧洲的关于食品中维生素 D 现行标准方法中,需采用正相制备色谱、反相分析色谱两套仪器,分别进行净化制备和分析,分析效率很低。 赛默飞很早提出了二维液相的解决方案,采用一套液相两根色谱柱中心切割的方法可以将维生素A、D、E异构体完全分离,方案被伊利、君乐宝等诸多乳品企业所采用。本文在前期研究的基础上,介绍更省时的超快速在线二维方案和既省时又省力的在线固相萃取-二维液相方案。超快速在线二维方案 本方案仪器配置如下仪器:Thermo Fisher Vanquish高效液相色谱仪泵:Vanquish Dual Pump(VF-P32-A-01)自动进样器:Vanquish Autosampler (VF-A10-A, 100 μL Sample Loop)柱温箱:Vanquish Column Compartment(VH-C10-A, 含两个Viper Only 2p-6p切换阀)检测器:Vanquish Diode Array Detector HL(含10mm或60mm光纤池)样品收集环体积:500 μL色谱软件:变色龙Chromeleon 7.3仪器连接图见图2。图2 仪器连接图(超快速在线二维方案)(点击查看大图) 供试品溶液制备参考GB 5009.82-2016的方法,精密称取固体奶粉试样约10 g(精确到0.01 g)于150 mL平底烧瓶中,用约30 mL 45 ℃~50 ℃温水使其溶解,混匀。于上述处理的试样溶液中加入1.0 g抗坏血酸和0.1 g BHT,混匀,加入30 mL无水乙醇,充分混匀后加入约20 mL 0.5 g/g的氢氧化钾水溶液混匀,在80 ℃恒温水浴振荡皂化约30 min后,取出立刻用冷水冷却到室温。 将上述皂化液转移入250 mL分液漏斗中,加入50 mL石油醚-乙醚混合液(1:1, V:V),振荡萃取5 min,将下层溶液转移至另一个250 mL分液漏斗,加入50 mL石油醚-乙醚混合液再次萃取,合并醚液,用约100 mL水洗涤醚液,重复3次,至醚液洗至中性。醚液通过无水硫酸钠脱水过滤,滤液收入250 mL圆底烧瓶中,于旋转蒸发仪上在40 ℃水浴旋蒸至约2 mL,立即氮气吹干,用甲醇复溶转移至10 mL容量瓶后定容,上机分析。12min即可完成维生素A、D、E异构体7个化合物的分析,测定谱图见图3。图3维生素A、D和E混合标准溶液分析谱图(a:维生素A;b:维生素D2和D3;c:维生素E)(点击查看大图) 在线固相萃取-二维液相方法 上面介绍的超高效液相平台方案给大家节省了分析时间,下面这个方案可在赛默飞常规液相上运行,结合在线固相萃取,可以实现皂化液直接上机分析,省时又省力。样品皂化过程同上,皂化后,取出立刻用冷水冷却到室温,用50%乙醇水溶液转移并定容到100mL量瓶中。皂化液高速离心5~10min(5000rpm)后用0.22μm尼龙材质针式过滤器过滤后上机分析。 该方案仪器配置上采用三泵两检测器双阀实验所用仪器配置如下:仪器:Thermo Fisher Vanquish高效液相色谱仪泵:Vanquish Dual Pump(VF-P32-A-01)和Vanquish quatery Pump (VF-P20-A)自动进样器:Vanquish Autosampler (VF-A10-A, 100 μL Sample Loop)柱温箱:Vanquish Column Compartment(VH-C10-A, 含两个Viper Only 2p-6p切换阀检测器:Vanquish Diode Array Detector HL(含10mm或60mm光纤池),U3000 VWD3100 Detector(含11 μL流通池)样品收集环体积:500 μL色谱软件:变色龙Chromeleon 7.3 仪器连接图见图4,测定谱图见图5和图6。图4 仪器连接图(在线固相萃取-二维方案)(点击查看大图)图5. Vd测定谱图(a为对照品,b为样品)图6. Va和Ve测定谱图(a为对照品,b为样品)(点击查看大图) 总结 赛默飞为大家提供了多种维生素A、D、E异构体的测定方案,方案涵盖常规液相和超高效液相、离线SPE和在线SPE,无论是对于现有仪器的升级改造还是全新平台的建立都可以找到对应的选择。现代化的仪器方法提高了奶粉样品中脂溶性维生素的分析效率,减少了每日多批次样品检测任务的繁重。 “码”上下载填写表单即刻获取【Thermo Scientific Vanquish UHPLC系统样本】 如需合作转载本文,请文末留言 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 岛津原子力显微镜-从表面到界面
    人类认识真理的过程就像剥洋葱,由表及里一层层递进。 反映到对化学反应过程的认识,一开始,人们通过物质的形、色等外在表象认识化学反应。正如现代化学之父拉瓦锡重复的经典“氧化汞加热”实验一样,氧化汞由红色粉末变为液态的金属汞,这个显著的变化意味着反应的发生。即使到了近现代,仪器分析手段越来越多样,我们做常用的分析手段也是通过物质外在状态的变化进行观察,或者利用各类显微镜及X射线衍射仪观察物质的结构变化。 拉瓦锡之匙拉瓦锡对化学反应中物质的质量、颜色、状态变化的观察,犹如在重重黑暗中,找到了打卡化学之门的那把钥匙。 元素周期表 到19世纪,道尔顿和阿伏加德罗的原子、分子理论确立,门捷列夫编列了元素周期表。原子、分子、元素概念的建立令化学豁然开朗 自从用原子-分子论来研究化学,化学才真正被确立为一门科学。正是随着对不同元素的各种微粒组合变化的认识发展,化学的大门终于被打开。伴随金属键、共价键、离子键、氢键等各种“键”概念的提出,人们逐渐认识到各种反应的本质是原子或分子等微粒间的力学变化。于是,对反应的观测需要微观下的力学测量工作。 作为专门利用极近距离下极小颗粒间作用力工作的原子力显微镜,此事展现了自身巨大优势。无论是直接测试不同分子间的作用力,还是利用力的测量完成表面形貌的表征,原子力显微镜以高分辨率出色地完成了任务。 对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,因此其表面作用力极其微弱。从测试曲线上可以看出,脂质膜对探针的力只有约1pN,但是原子力显微镜的测试曲线上可以很清晰地捕捉到这个变化。 有趣的是,人们对真理的发掘,是由表及里的。但是利用原子力显微镜对化学反应本质的发现,却是由内而外的。 原子力显微镜基本是被作为一种表面分析工具使用的。这使其只能用来观察反应前后固相表面的结构变化,或者通过固相表面的各种属性,如机械性能、电磁学性能等侧面论证反应的发生。而要真正观察到反应的过程,是要对界面层进行观测的。因为几乎所有的反应,都是发生在两相界面处的,表面只是最终反应结果的呈现。 在界面处,反应发生时,原有的原子/分子间的作用力——也就是各种“键”,因为电子的状态变化(得失或者偏移)无法维持原有的稳定性,从而导致了原子/分子的重新排列,直到形成了新的力学稳定态——也就是新的“键”形成后,反应结束。这个过程的核心就是原子/分子间的“力的变化”。 反应的本质——微粒间力的分分合合 当化学科学的车轮推进到纳米时代,当探索的前锋触摸了两相界面,当理论的深度深入到动力学的研究。原子力显微镜是否能够当此重任呢? 能。但是需要一番蜕变。 界面处的力梯度有两个特点。一是更为集中,一般在0.3nm-1nm左右的范围内会有2-4个梯度变化;二是更为微弱,现在的原子力显微镜可以有效捕捉皮牛级的力变化,但是在表征界面时依然分辨率不足,需要的分辨率要提高1-2个数量级。 新的需求引导了新的技术蜕变。调频模式的成熟化,几乎完美应对了界面处的力梯度特点。一方面,只有几个埃的振幅可以有效对整个界面区进行表征,另一方面,检测噪音压低到20 fm/√Hz以内,保证了极高的分辨率。 岛津调频型原子力显微镜SPM-8100FM 例如对固液界面的观察。我们都知道,因为在固液界面处,因为液体分子和固体表面分子的距离不同,会形成不同的作用力,如氢键、偶极矩、色散力等。因此形成的液体分子的堆积密度会有不同。这种液体分子的分层模型,是润滑、浸润、表面张力等领域的底层原理。但是长期以来,这些理论只存在于数理模型和宏观现象解释之中,没有一个合适的直观观测工具。 界面观测之牛刀小试 岛津的SPM-8100FM的出现,将固液界面的高效表征变成了现实。上图右侧就是云母和水的界面处,水分子的分层结构,在约0.6nm的范围内,可以清楚看到3个分层。 具体到现实应用中,对表面润滑的研究很适合采用这种分析工具进行定性定量化测试。使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析。 图示为4组对照实验,分别是仅使用PAO(聚α-烯烃)和添加了不同浓度的C18AP(正磷酸油酸酯)的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向结构被C18AP取代,在基片上形成了吸附膜。随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。和微观界面表征的结果非常吻合。 由此可见,使用SPM-8100FM对润滑油-氧化铁界面实施滑动表面摩擦特性分析评估,可有效加快润滑油开发进度。 技术的发展推动了科学的进步,科学的发展也渴求更多的技术发展。原子力显微镜表征技术由表面向界面的延伸,一定会有力地推动对化学由表象向本质的探索。岛津将一如既往地尽其所能,提供帮助。 本文内容非商业广告,仅供专业人士参考。
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • 金属所在非共格界面的结构与物性研究方面取得进展
    功能材料界面由于经常表现出不同于体材料的新颖物理、化学现象与性质而备受关注。比如,人们在材料界面上发现了二维电子气、界面超导、界面发光和界面磁性等。这些有趣的界面现象与性质通常归因于界面上强烈的物理与化学交互作用,因此它们大多数出现在共格界面和半共格界面上。从共格界面到半共格界面、再到非共格界面,界面上的晶格失配不断增大,从而导致了材料界面上存在不同的晶格失配调节机制和界面结构。共格界面的晶格失配小,界面失配由两相邻晶格的弹性变形来调节,界面上形成了原子间完美匹配的界面结构;半共格界面的晶格失配适中,通过形成周期性排列的界面失配位错来补偿晶格失配。非共格界面的晶格失配非常大,界面两侧相邻晶体将保持各自原有的晶格而刚性堆叠在一起,不容易形成界面失配位错。虽然非共格界面比其他两类界面更常见,但由于它的晶格匹配度差并且界面键合强度弱,导致界面上的交互作用非常弱,因此非共格界面上很少表现出独特的界面现象与性质,这极大地限制了非共格界面的相关研究与应用。为了探索非共格界面上的新颖界面现象与物性,中国科学院金属研究所研究团队围绕非共格界面的原子与电子结构及界面交互作用开展了系统地研究工作,发现大晶格失配(~ 12 %)的AlN/Al2O3(0001)非共格界面上存在不寻常的强界面交互作用。强烈的界面交互作用显著调控了AlN/Al2O3界面的原子与电子结构及发光特性。透射电镜显微结构表征的研究结果表明,在AlN/Al2O3非共格界面上形成了界面失配位错网络和堆垛层错,这在其他非共格界面上是很少见的。原子层分辨的价电子能量损失谱表明,AlN/Al2O3非共格界面的带隙降低为~ 3.9 eV,显著小于AlN和Al2O3体材料的带隙(分别为5.4eV和8.0eV)。第一性原理计算表明,界面上带隙的减少主要由于在界面处形成了畸变的AlN3O四面体和AlN3O3八面体,从而导致了界面上存在Al-N键和Al-O键的竞争及键长的增大。阴极荧光光谱分析表明,该非共格界面具有界面发光特性,可发射波长为320 nm的紫外光,发光强度比AlN薄膜的本征发光高得多。该研究表明具有大晶格失配的非共格界面可表现出强烈的界面交互作用和独特的界面性质,深化和拓展了人们关于非共格界面的认识,可为开发基于非共格界面的先进异质结材料和器件提供借鉴与参考。相关研究工作得到国家杰出青年科学基金、中国科学院前沿研究重点项目和广东省基础与应用基础研究重大项目等的资助。相关研究成果以Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface为题于5月15日在《自然-通讯》(Nature Communications)上在线发表。
  • L-8900高速全自动氨基酸分析仪肽配方降钙素中氨基酸组成分析
    评价类似肽配方的质量之一是确认其组成氨基酸的种类及含量,本文采用日立L-8900高速全自动氨基酸分析仪,以药典规定的分析法(采用3μm色谱柱)测定了降钙素的氨基酸组成。测试样品采用市售的降钙素(鲑鱼)。  http://www.instrument.com.cn/netshow/SH100322/s243938.htm 公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 沃特世携手广东一方制药共建中药配方颗粒品质评价与分析检测联合实验室
    中国上海 - 2017年8月30日 – 中国中药一方制药 - 沃特世中药配方颗粒品质评价与分析检测联合实验室(以下简称“联合实验室”)签约仪式暨广东中药质量研究高端会议于2017年8月29日在广东佛山成功举办。 广东一方制药总经理程学仁先生与沃特世公司中国区总经理于笑然先生签订合作协议 中国中药控股有限公司技术总监袁春平先生、中国中药控股有限公司副总裁黄掌欣先生、沃特世公司中国区总经理于笑然先生、广东一方制药总经理程学仁先生、沃特世公司华南区总经理庄淑萁女士、广东一方制药副总经理魏梅女士、佛山德众药业有限公司总经理杨雄辉先生等出席仪式,共同见证了联合实验室投入运营这一历史性时刻。 双方领导共同启动签约仪式(从左至右依次为:广东一方制药总经理程学仁先生、中国中药控股有限公司副总裁黄掌欣先生、沃特世公司中国区总经理于笑然先生、沃特世公司华南区总经理庄淑萁女士) 中药成分的复杂特性给中药指纹图谱的建立带来了很大挑战,一方制药创新性地将新技术UPLC用于中药配方颗粒新的质量标准建立,志在建立最高的行业标准。而UPLC作为目前中药指纹图谱建立的最佳分离工具,也是国家最新出台的《中药配方颗粒质量标准指导原则(征求意见稿)》推荐方法。此次联合实验室的成立将充分发挥双方在人才、技术及设备等方面的优势,促进中药配方颗粒技术的发展、克服中药行业检验检测的技术难题,为整个行业的发展做出贡献。 中国中药控股有限公司副总裁黄掌欣先生在致辞中解读了联合实验室成立的背景及重要意义。“中药配方颗粒经过漫长的发展,目前已成为中医药领域增长最快和最具发展潜力的板块之一。一方制药作为中药配方颗粒行业的领导者,我们希望通过与沃特世这样的公司强强联合,抢占技术的制高点,继续保持领先优势,为国家、民族做出积极贡献。”黄掌欣先生说道。 中国中药控股有限公司副总裁黄掌欣先生致辞 沃特世公司中国区总经理于笑然先生在致辞中表示:“沃特世公司作为全球分析技术的领导者,在中药及天然产物领域拥有丰富、完善的整体解决方案,致力于让中药的分离解析更高效、便捷、准确。联合实验室的成立必将助推队伍建设、方案交流、技术互补和综合实力的提高, 在中药学研究以及人才发展上取得突破性进展,为推进中药学研究模式的创新、以及中药学学科的发展发挥重要作用。” 沃特世公司中国区总经理于笑然先生致辞 广东一方制药总经理程学仁先生随后说道:“广东一方制药是国家首批‘中药配方颗粒试点生产企业’以及国家中医药管理局‘中药饮片剂型改革生产基地’和‘单味中药饮片浓缩颗粒研究开发试点单位’。在公司的发展过程中,我们非常重视先进科研仪器的使用。在双方合作的近10年间,沃特世的先进仪器为实验室的各项检验和检测工作提供了极大的帮助。今天,双方将以共建联合实验室为契机,开启更广阔、深入的合作。” 广东一方制药总经理程学仁先生致辞 中国中药控股有限公司技术总监袁春平先生表示:“一方制药是目前中药配方颗粒行业生产规模最大、研发实力最强、市场覆盖及销量遥遥领先的企业;而沃特世是全球领先的实验室分析仪器企业,联合实验室的成立是将全球先进的技术资源和国内传统的中药质量体系紧密结合起来,从而获得更优质的质量评价以及检测标准的成果。” 中国中药控股有限公司技术总监袁春平先生致辞 签约仪式过后,广东一方制药副总经理魏梅女士带领与会人员一同参观了联合实验室。 联合实验室参观 在下午同期举办的广东中药质量研究高端会议上,暨南大学药学院教授戴毅、沃特世首席科学家郏征伟分别作了题为“中药药效作用物质基础研究”、“中药配方颗粒指纹图谱建立、共有峰确认暨沃特世中药指纹图谱文集分享”的专题演讲,并与与会者展开了积极的讨论。 暨南大学药学院教授戴毅(左)、沃特世首席科学家郏征伟(右)分别做精彩报告 沃特世作为全球液相、液质联用技术以及信息化整体方案的领导者,在中药以及中药配方颗粒的质量研究领域拥有先进、完整的解决方案和丰富的应用案例。其UPLC+高分辨质谱+UNIFI的整体解决方案将助力中药配方颗粒质量标准的全面提升。 关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 中药配方颗粒将全面放开,质量标准紧跟2015年版《中国药典》
    p   2015年12月24日,CFDA发布《中药配方颗粒管理办法(征求意见稿)》,向社会公开征求修改意见。目的是加强对中药配方颗粒的管理,引导产业健康发展,更好满足中医临床需求。引人注目的是,中药配方颗粒生产将采用备案制,且 a title=" " href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" span style=" color: rgb(255, 0, 0) " strong 质量标准 /strong /span /a 紧跟2015年版《中国药典》。 /p p   中药配方颗粒是由单味中药饮片经提取浓缩制成的、供中医临床配方用的颗粒,其便于携带和服用且疗效显著提高,符合现代人生活节奏,具有很大的市场优势。2001年7月,CFDA颁发《中药配方颗粒管理暂行规定》,明确将中药配方颗粒纳入中药饮片管理的范畴,长久以来,仅6家企业获CFDA批准试点生产。 /p p   2015年,中药饮片企业面临危机,全国共收回82张中药饮片GMP证书,而此时中药颗粒的全面放开则意味着原本只有6家企业拥有的中药配方颗粒生产资格,在未来则有数百家企业有望参与竞争,这对中药企业无疑是一个利好。但需指出,政策的放开并不意味着质量降低,而是借此引导产业升级,弥补饮片不足。 /p p   征求意见稿中明确规定由国家药典委员会组织中药配方颗粒统一药品标准的制定和修订,同时重点强调了中药配方颗粒药品标准的制定要求:应与标准汤剂作对比研究,充分考虑与中药饮片基本属性的一致性与性状缺失的特殊性,充分考虑在药材来源、饮片炮制、中药配方颗粒生产及使用等各个环节影响质量的因素,加强专属性鉴别和多成份、整体质量控制,充分反映现阶段药品质量控制的先进水平和质量源于设计的理念。其药品标准的格式和用语应紧跟2015年版《中国药典》,主要包括:名称、来源、制法、性状、鉴别、检查、特征图谱或指纹图谱、含量测定、规格、贮藏等。并应制定农药残留、重金属与有害元素、真菌毒素及内源性有毒有害成份的限量或含量。 /p p   基于以上要求可以看出,虽然配方颗粒的生产采取备案制,生产准入政策比较宽松,但药品标准的制定更加科学合理,且越来越多的先进分析仪器应用其中,如特征指纹图谱的获得涉及薄层色谱法、高效液相色谱法、气相色谱法及毛细管电泳的应用 农药多残留量测定法涉及质谱法 重金属检查涉及电感耦合等离子体质谱法 真菌毒素则涉及薄层色谱法、酶联免疫测定法、胶体金免疫层析法、高效液相色谱法和液相色谱质谱联法,这些均可保证中药配方颗粒的质量安全。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制