当前位置: 仪器信息网 > 行业主题 > >

金属材料光谱仪

仪器信息网金属材料光谱仪专题为您提供2024年最新金属材料光谱仪价格报价、厂家品牌的相关信息, 包括金属材料光谱仪参数、型号等,不管是国产,还是进口品牌的金属材料光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金属材料光谱仪相关的耗材配件、试剂标物,还有金属材料光谱仪相关的最新资讯、资料,以及金属材料光谱仪相关的解决方案。

金属材料光谱仪相关的资讯

  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • 赛恩思OES-802型直读光谱仪——快速、准确的金属材料分析利器
    四川赛恩思仪器有限公司是一家集研发、生产与销售为一体的高新技术企业,其OES-802型直读光谱仪是一款高性能的分析仪器,最近在黑龙江多宝山铜业完成验收。黑龙江多宝山铜业是紫金矿业的全资子公司,拥有铜资源量达400万吨,钼金属15万吨,还有丰富的金、银、铼等伴生贵金属资源,产值超过1000亿元。公司现已发展成为中国第二大单体铜金属矿山、人均处理量最大的铜矿企业,是黑龙江省投资最多、生产能力最大的有色金属矿山。赛恩思OES-802型直读光谱仪是一种用于金属材料分析的高性能仪器,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。多宝山铜业将利用赛恩思OES-802型直读光谱仪对矿产样品进行元素全谱分析,提升产品质量,提高生产效率。OES-802型直读光谱仪具有高分辨率、高精度、高灵敏度等特点,能够对各种金属材料中的各种元素进行快速、准确的分析;自动化程度高,使用者只需将样品放入样品台上,选择相应的分析程序,即可进行分析;强大的数据处理能力,采用高速数字信号处理技术,能够在短时间内对大量样品进行快速分析除此之外,赛恩思OES-802型直读光谱仪还具备高度的灵活性和可定制性。该仪器配备了丰富的分析模式和参数设置选项,能够适应不同金属材料的分析需求,满足客户个性化的分析要求。四川赛恩思仪器有限公司自成立以来,依托专业的技术优势与丰富的行业资源,已成为全国知名分析仪器制造商,先后被授予“科技型中小企业”、国家级“高新技术企业”、“四川省质量信誉服务AAA单位”等荣誉称号。 现拥有HCS系列高频红外碳硫仪、OES系列直读光谱仪、ONH系列氧氮氢分析仪以满足客户不同的分析需求。
  • 新型金属材料光电磁检测仪器产业化项目通过验收
    3月31日,由中国钢研科技集团有限公司(简称中国钢研)纳克分析仪器有限公司承担的新型金属材料光电电磁检测仪器高技术产业化示范工程项目验收会在永丰高技术产业基地召开。   参加验收会的有北京市发改委领导、五位行业专家以及公司负责人等。与会专家在听取了项目实施情况的详细汇报后认真查阅了项目验收报告,并在现场参观了生产线的产品生产以及研发情况之后,对项目的实施情况给与了较高的评价:该项目成功研制了世界首台商品化金属原位分析仪,国内首台应用于火车车轮在役电磁超声探伤仪,国内首台动态冲击试验机并实现了产业化生产,其中的金属原位分析仪获得国家发明二等奖,项目建设和研发过程中取得多项专利、发表多篇论文。项目圆满完成了申报书中的各项目标,为促进国产高技术检测仪器具有很好的示范作用。   中国钢研利用自身在分析检测仪器技术方面的研发优势和很强的转化能力,借助国家支持,目前在金属材料分析检测技术和仪器研发生产方面取得很大发展,已经成为我国测试仪器研发和产业化的成功案例之一。
  • 金属材料检测或试验标准汇总
    p    span style=" color: rgb(0, 112, 192) " strong 金属材料化学成分分析 /strong /span /p p   GB/T 222—2006钢的成品化学成分允许偏差 /p p   GB/T 223.X系列钢铁及合金X含量的测定 /p p   GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) /p p   GB/T 4698.X系列海绵钛、钛及钛合金化学分析方法X量的测定 /p p   GB/T 5121.X系列铜及铜合金化学分析方法第X部分:X含量的测定 /p p   GB/T 5678—1985铸造合金光谱分析取样方法 /p p   GBT 6987.X系列铝及铝合金化学分析方法& amp #823& amp #823 /p p   GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 /p p   GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) /p p   GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 /p p   GB/T 13748.X系列镁及镁合金化学分析方法第X部分X含量测定& amp #823& amp #823 /p p    span style=" color: rgb(0, 112, 192) " strong 金属材料物理冶金试验方法 /strong /span /p p   GB/T 224—2008钢的脱碳层深度测定法 /p p   GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) /p p   GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 /p p   GB/T 227—1991工具钢淬透性试验方法 /p p   GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 /p p   GB/T 1979—2001结构钢低倍组织缺陷评级图 /p p   GB/T 1814—1979钢材断口检验法 /p p   GB/T 2971—1982碳素钢和低合金钢断口检验方法 /p p   GB/T 3246.1—2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法 /p p   GB/T 3246.2—2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法 /p p   GB/T 3488—1983硬质合金显微组织的金相测定 /p p   GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 /p p   GB/T 4236—1984钢的硫印检验方法 /p p   GB/T 4296—2004变形镁合金显微组织检验方法 /p p   GB/T 4297—2004变形镁合金低倍组织检验方法 /p p   GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 /p p   GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 /p p   GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法 /p p   GB/T 4462—1984高速工具钢大块碳化物评级图 /p p   GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) /p p   GB/T 5168—2008α-β钛合金高低倍组织检验方法 /p p   GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 /p p   GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 /p p   GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 /p p   GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 /p p   GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 /p p   GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 /p p   GB/T 10851—1989铸造铝合金针孔 /p p   GB/T 10852—1989铸造铝铜合金晶粒度 /p p   GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 /p p   GB/T 13298—2015金属显微组织检验方法 /p p   GB/T 13299—1991钢的显微组织检验方法 /p p   GB/T 13302—1991钢中石墨碳显微评定方法 /p p   GB/T 13305—2008不锈钢中α-相面积含量金相测定法 /p p   GB/T 13320—2007钢质模锻件金相组织评级图及评定方法 /p p   GB/T 13825—2008金属覆盖层黑色金属材料热镀锌单位面积称量法 /p p   GB/T 13912—2002金属覆盖层钢铁制件热浸镀层技术要求及试验方法 /p p   GB/T 14979—1994钢的共晶碳化物不均匀度评定法 /p p   GB/T 15711—1995钢材塔形发纹酸浸检验方法 /p p   GB/T 30823—2014测定工业淬火油冷却性能的镍合金探头试验方法 /p p   GB/T 14999.1—2012高温合金试验方法第1部分:纵向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.2—2012高温合金试验方法第2部分:横向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.3—2012高温合金试验方法第3部分:棒材纵向断口检验 /p p   GB/T 14999.4—2012高温合金试验方法第4部分:轧制高温合金条带晶粒组织和一次碳化物分布测定 /p p   YB/T 4002—2013连铸钢方坯低倍组织缺陷评级图 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料力学性能试验方法 /span /strong /p p   GB/T 228.1—2010金属材料拉伸试验第一部分:室温试验方法 /p p   GB/T 228.2—2015金属材料拉伸试验第2部分:高温试验方法 /p p   GB/T 229—2007金属材料夏比摆锤冲击试验方法 /p p   GB/T 230.1—2009金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺) /p p   GB/T 231.1—2009金属材料布氏硬度试验第1部分:试验方法 /p p   GB/T 232—1999金属材料弯曲试验方法 /p p   GB/T 233—2000金属材料顶锻试验方法 /p p   GB/T 235—2013金属材料薄板和薄带反复弯曲试验方法 /p p   GB/T 238—2013金属材料线材反复弯曲试验方法 /p p   GB/T 239.1—2012金属材料线材第1部分:单向扭转试验方法 /p p   GB/T 239.2—2012金属材料线材第2部分:双向扭转试验方法 /p p   GB/T 241—2007金属管液压试验方法 /p p   GB/T 242—2007金属管扩口试验方法 /p p   GB/T 244—2008金属管弯曲试验方法 /p p   GB/T 245—2008金属管卷边试验方法 /p p   GB/T 246—2007金属管压扁试验方法 /p p   GB/T 1172—1999黑色金属硬度及强度换算值 /p p   GB/T 2038—1991金属材料延性断裂韧度JIC试验方法 /p p   GB/T 2039—2012金属材料单轴拉伸蠕变试验方法 /p p   GB/T 2107—1980金属高温旋转弯曲疲劳试验方法 /p p   GB/T 2358—1994金属材料裂纹尖端张开位移试验方法 /p p   GB/T 2975—1998钢及钢产品力学性能试验取样位置及试样制备 /p p   GB/T 3075—2008金属材料疲劳试验轴向力控制方法 /p p   GB/T 3250—2007铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法 /p p   GB/T 3251—2006铝及铝合金管材压缩试验方法 /p p   GB/T 3252—1982铝及铝合金铆钉线与铆钉剪切试验方法 /p p   GB/T 3771—1983铜合金硬度和强度换算值 /p p   GB/T 4156—2007金属材料薄板和薄带埃里克森杯突试验 /p p   GB/T 4158—1984金属艾氏冲击试验方法 /p p   GB/T 4160—2004钢的应变时效敏感性试验方法(夏比冲击法) /p p   GB/T 4161—2007金属材料平面应变断裂韧度KIC试验方法 /p p   GB/T 4337—2008金属材料疲劳试验旋转弯曲方法 /p p   GB/T 4338—2006金属材料高温拉伸试验方法 /p p   GB/T 4340.1—2009金属材料维氏硬度试验第1部分:试验方法 /p p   GB/T 4340.2—2012金属材料维氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 4340.3—2012金属材料维氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 4341.1—2014金属材料肖氏硬度试验第1部分:试验方法 /p p   GB/T 5027—2007金属材料薄板和薄带塑性应变比(r值)的测定 /p p   GB/T 5028—2008金属材料薄板和薄带拉伸应变硬化指数(n值)的测定 /p p   GB/T 5482—2007金属材料动态撕裂试验方法 /p p   GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法 /p p   GB/T 6400—2007金属材料线材和铆钉剪切试验方法 /p p   GB/T 7314—2005金属材料室温压缩试验方法 /p p   GB/T 7732—2008金属材料表面裂纹拉伸试样断裂韧度试验方法 /p p   GB/T 7733—1987金属旋转弯曲腐蚀疲劳试验方法 /p p   GB/T 10120—2013金属材料拉伸应力松弛试验方法 /p p   GB/T 10128—2007金属材料室温扭转试验方法 /p p   GB/T 10622—1989金属材料滚动接触疲劳试验方法 /p p   GB/T 10623—2008金属材料力学性能试验术语 /p p   GB/T 12347—2008钢丝绳弯曲疲劳试验方法 /p p   GB/T 12443—2007金属材料扭应力疲劳试验方法 /p p   GB/T 12444—2006金属材料磨损试验方法试环-试块滑动磨损试验 /p p   GB/T 12778—2008金属夏比冲击断口测定方法 /p p   GB/T 13239—2006金属材料低温拉伸试验方法 /p p   GB/T 13329—2006金属材料低温拉伸试验方法 /p p   GB/T 14452—1993金属弯曲力学性能试验方法 /p p   GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法 /p p   GB/T 15824—2008热作模具钢热疲劳试验方法 /p p   GB/T 16865—2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法 /p p   GB/T 17104—1997金属管管环拉伸试验方法 /p p   GB/T 17394.1—2014金属材料里氏硬度试验第1部分试验方法 /p p   GB/T 17394.2—2012金属材料里氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 17394.3—2012金属材料里氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 17394.4—2014金属材料里氏硬度试验第4部分硬度值换算表 /p p   GB/T 17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢 /p p   GB/T 17600.2—1998钢的伸长率换算第2部分奥氏体钢 /p p   GB/T 26077—2010金属材料疲劳试验轴向应变控制方法 /p p   GB/T 22315—2008金属材料弹性模量和泊松比试验方法 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料无损检测方法 /span /strong /p p   GB/T 1786—2008锻制圆饼超声波检验方法 /p p   GB/T 2970—2004厚钢板超声波检验方法 /p p   GB/T 3310—1999铜合金棒材超声波探伤方法 /p p   GB/T 4162—2008锻轧钢棒超声检测方法 /p p   GB/T 5097—2005无损检测渗透检测和磁粉检测观察条件 /p p   GB/T 5126—2001铝及铝合金冷拉薄壁管材涡流探伤方法 /p p   GB/T 5193—2007钛及钛合金加工产品超声波探伤方法 /p p   GB/T 5248—2008铜及铜合金无缝管涡流探伤方法 /p p   GB/T 5616—2014无损检测应用导则 /p p   GB/T 5777—2008无缝钢管超声波探伤检验方法 /p p   GB/T 6402—2008钢锻件超声检测方法 /p p   GB/T 6519—2013变形铝、镁合金产品超声波检验方法 /p p   GB/T 7233.1—2009超声波检验第1部分:一般用途铸钢件 /p p   GB/T 7233.2—2010铸钢件超声检测第2部分:高承压铸钢件 /p p   GB/T 7734—2004复合钢板超声波检验 /p p   GB/T 7735—2004钢管涡流探伤检验方法 /p p   GB/T 7736—2008钢的低倍缺陷超声波检验法 /p p   GB/T 8361—2001冷拉圆钢表面超声波探伤方法 /p p   GB/T 8651—2002金属板材超声波探伤方法 /p p   GB/T 8652—1988变形高强度钢超声波检验方法 /p p   GB/T 9443—2007铸钢件渗透检测 /p p   GB/T 9445—2015无损检测人员资格鉴定与认证 /p p   GB/T 10121—2008钢材塔形发纹磁粉检验方法 /p p   GB/T 11259—2015无损检测超声检测用钢参考试块的制作和控制方法 /p p   GB/T 11260—2008圆钢涡流探伤方法 /p p   GB/T 11343—2008无损检测接触式超声斜射检测方法 /p p   GB/T 11345—2013焊缝无损检测超声检测技术、检测等级和评定 /p p   GB/T 11346—1989铝合金铸件X射线照相检验针孔(圆形)分级 /p p   GB/T 12604.1—2005无损检测术语超声检测 /p p   GB/T 12604.2—2005无损检测术语射线照相检测 /p p   GB/T 12604.3—2005无损检测术语渗透检测 /p p   GB/T 12604.5—2008无损检测术语磁粉检测 /p p   GB/T 12604.6—2008无损检测术语涡流检测 /p p   GB/T 12604.7—2014无损检测术语泄漏检测 /p p   GB/T 12604.8—1995无损检测术语中子检测 /p p   GB/T 12604.9—2008无损检测术语红外检测 /p p   GB/T 12604.10—2011无损检测术语磁记忆检测 /p p   GB/T 12604.11—2015无损检测术语X射线数字成像检测 /p p   GB/T 12605—2007无损检测金属管道熔化焊环向对接接头射线照相检测 /p p   GB/T 12966—2008铝合金电导率涡流测试方法 /p p   GB/T 12969.1—2007钛及钛合金管材超声波探伤方法 /p p   GB/T 12969.2—2007钛及钛合金管材涡流探伤方法 /p p   GB/T14480.1—2015无损检测仪器涡流检测设备第1部分:仪器性能和检验 /p p   GB/T 14480.2—2015无损检测仪器涡流检测设备第2部分:探头性能和检验 /p p   GB/T 14480.3—2008无损检测涡流检测设备第3部分系统性能和检验 /p p   GB/T 15822.1—2005无损检测磁粉检测第1部分:总则 /p p   GB/T 15822.2—2005无损检测磁粉检测第2部分检测介质 /p p   GB/T 15822.3—2005无损检测磁粉检测第3部分设备 /p p   GB/T 18694—2002无损检测超声检验探头及其声场的表征 /p p   GB/T 18851.1—2005无损检测渗透检测第1部分总则 /p p   GB/T 18851.2—2008无损检测渗透检测第2部分:渗透材料的检验 /p p   GB/T 18851.3—2008无损检测渗透检测第3部分:参考试块 /p p   GB/T 18851.4—2005无损检测渗透检测第4部分设备 /p p   GB/T 18851.5—2005无损检测渗透检测第5部分验证方法 /p p   GB/T 19799.1—2005无损检测超声检测1号校准试块 /p p   GB/T 19799.2—2005无损检测超声检测2号校准试块 /p p   GB/T 23911—2009无损检测渗透检测用试块 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料腐蚀试验方法 /span /strong /p p   GB/T 1838—2008电镀锡钢板镀锡量试验方法 /p p   GB/T 1839—2008钢产品镀锌层质量试验方法 /p p   GB/T 10123—2001金属和合金的腐蚀基本术语和定义 /p p   GB/T 13303—1991钢的抗氧化性能测定方法 /p p   GBT 15970.X系列金属和合金的腐蚀应力腐蚀试验第X部分 /p p br/ /p
  • 四川赛恩思仪器与德昌亚王金属材料达成合作
    近日,四川赛恩思仪器生产的HCS-808型高频红外碳硫仪在德昌亚王金属材料有限责任公司安装调试完毕。测定样品硅铁、硅铬合金的碳硫含量数据准确,获得客户的认可。 德昌亚王金属材料是亚王能源集团位于凉山州德昌县“攀西战略资源创新开发实验区德昌集中发展区”的全资控股公司。公司年产高纯度工业硅3万余吨,年产值4亿元,是目前凉山州大型的工业硅生产企业。 金属硅是冶金、铸造、机械制造等行业的重要原料,碳、硫、磷等杂质元素会决定其品质。通过高频红外碳硫仪测定金属硅中的碳、硫含量,检出限低,操作快速、简便。四川赛恩思仪器研发生产的HCS系列高频红外碳硫仪分析,具有多项技术专利,其中智能休眠、自我保护、高频辐射屏蔽、快速分析等多项专利技术运用在高频红外碳硫分析仪。仪器研发销售二十多年以来,海内外合作客户逾千家。此外,为满足客户的生产需求,四川赛恩思仪器相继推出了真空直读光谱仪、氧氮氢分析仪等多元素分析检测仪器。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 金属材料还能自发改变颜色?最新研究来了!
    颜色是商品外观设计的重要属性。彩色的电子产品金属外壳不仅满足了人们的审美需求,也增加了商品的附加价值。电化学沉积是目前广泛应用的金属合金表面着色技术,其颜色来自于由表面氧化层厚度决定的可见光干涉。由于该氧化层的厚度在产品的使用过程中不会改变,因此,该技术实现的产品颜色在使用过程中是固定的。  近期,中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理实验室的博士研究生王朋飞在导师、特聘研究员孙永昊和研究员白海洋的共同指导下,与来自物理所、中国科学院大学、钱学森空间技术实验室和杨伊万格利斯达浦金野大学的科研人员合作,发现了一种可以在自然条件下自发改变颜色的金属材料。这种金属材料的表面颜色几乎每周一变。该材料色泽均匀明亮、其表面在磨损后可自行修复重现颜色,且在紫外光下具有荧光效果。  这种金属材料的可自发改变颜色特性来自该合金在室温条件下持续且不中断的自发氧化。这是一种由稀土元素铈作为主要组元的非晶合金。它由于具有铈的化学活性,因此在室温下具有高的氧化速率,由于非晶结构中均匀的缺陷分布,所以避免了如多晶合金中因局域缺陷位置快速氧化带来的锈斑,使得非晶合金的表面氧化层厚度均匀。研究人员通过在铈基非晶合金中掺杂钇,可加快该金属材料在自然条件下的变色,实现了对其变色速率的调节。图1. 不同钇元素掺杂的彩色金属玻璃宏观光学照片和光致发光现象图2.(a)无、(b)有钇元素彩色金属玻璃颜色随时间变化规律图3.高纯铈、非晶态铈基合金与同成分晶态铈合金的氧化动力学行为;非晶态铈基合金与同成分晶态铈合金经氧化后的光学照片  中科院院士、物理所研究员汪卫华带领的非晶合金团队在稀土基非晶合金的研究中具有丰富的经验,主要研究成果曾多次发表在Phys. Rev. Lett.、Nat. Communs.等上,相关工作曾入选中国科学十大进展。可以自发改变颜色的金属材料的发现为稀土基非晶合金在功能材料的应用上添砖加瓦。该研究成果不仅说明了稀土基非晶合金在外观应用上的独特优势,也发现非晶合金可作为某些功能材料的前驱体,无论是在应用还是在基础研究上均具有潜力。  研究工作获得国家自然科学基金等的支持。相关研究成果发表在Journal of Alloys and Compounds上。论文链接:https://linkinghub.elsevier.com/retrieve/pii/S0925838821015486
  • 金属材料元素分析仪器的基本使用
    金属材料元素分析仪器的基本使用 金属材料元素分析仪器可检测普碳钢、低合金钢、高合金钢、生铸铁、钢、铁、有色金属、金属材料、球铁、合金铸铁等多种材料中的Si、Mn、P、Cr、Ni、Mo、Cu、Ti等多种元素。每个元素可储存99条工作曲线,品牌电脑微机控制,全中文菜单式操作。可以满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析的需要。 金属材料元素分析仪器产品专利号:ZL2008 2 0041074.X 一、仪器的联接与通电 用电源线将主机电源插座与市电连接,并将仪器可靠接地,(否则易受干扰,引起数据波动);检查排液胶管安装是否牢固(不要将放液胶管的出口端没入废液中,以免放液不畅),并向比色杯中注入蒸馏水(参比液),打开仪器电源开关,打开电脑电源,运行QL-1000A应用程序,波长初始化调整。 二、零点输入和满度调整 仪器在日常使用中,需进行调整零点及满度的工作,一般零点不需经常调整,每次开机后调整一次即可。 零点输入:将灵敏度档位切换到档位0,稍等片刻,零点的值将等于满度值,然后将档位切换到档位1。 满度调整:按调满按扭,自动调满。 金属材料元素分析仪器的详细请参考http://www.jqilin.com 南京麒麟分析仪器有限公司技术部
  • 上海材料研究所金属材料硬度试验培训
    上海材料研究所将开展金属材料硬度试验国家标准方法培训   金属材料的力学性能检验是保证产品质量的重要手段之一。GB/T 230.1-2009《金属材料洛氏硬度试验 第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺) 》、GB/T 231.1-2009《金属材料布氏硬度试验第1部分:试验方法》、GB/T 4340.1-2009《金属材料维氏硬度试验第1部分:试验方法》将于2010年4月1日实施。为帮助本专业人员对新标准的各项技术规定有全面系统的理解,指导试验人员正确进行试验操作,更好地实施新的国家标准试验方法,中国机械工程学会理化检验分会、国家金属材料质量监督检验中心、上海材料研究所检测中心将联合举办上述三项标准的宣贯培训。   时间:2010年3月18日, 9:00~16:00   地点:香槐园宾馆(上海材料研究所对面)七楼会议室,邯郸路80号   主讲人:王滨(标准主要起草人之一)   联系人:金永祥,电话:021-65556775-251   注:会议提供免费午餐。   中国机械工程学会理化检验分会   国家金属材料质量监督检验中心   上海材料研究所检测中心   2010.3.6 文档下载:www.jiangwenco.com/UploadFiles/20103914210.pdf
  • 溯源新型金属材料全球顶尖实验室
    传统的金属材料历史源远流长。在我国古代,一种新型金属材料的出现往往是一个新时代开启的标志,如石器时代后,出现了铜器时代、铁器时代。   在当代社会,金属材料不仅在日常生活中随处可见,先进金属材料更是汽车、军事、航空航天、3D打印等高端领域中扮演着极其重   目前全球新型金属材料的研究,特种金属功能材料和高端金属结构材料是两大主流方向。我国新材料产业&ldquo 十二五&rdquo 规划也将这两种材料作为重点发展方向。   总体而言,金属材料领域全球范围内研究实力较为均匀。美国、欧洲并驾齐驱,其中美国在军事、航空航天领域更为出色,德国、英国等欧洲国家作为老牌工业强国,同样掌握着话语权。此外,欧洲还在3D打印领域占据先机。   中国、日韩等亚太地区则迎头赶上。目前,我国的3D打印钛合金大型零件研究已经走在世界最前沿,日本则在核电用钢的研究方面一枝独秀。   美国实验室   美国是传统的军事、航空航天和汽车工业强国,其在金属材料的研究优势也主要体现在这几个领域。   在国家实验室方面,除了世界鼎鼎有名的橡树岭国家实验室、劳伦斯伯克利国家实验室、阿贡国家实验室、国家航空航天局(NASA)设有专门的研究金属材料团队之外,还有一些并不耳熟能详但是在高端金属研究领域极具地位的研究所,其中包括美国金属加工技术国家中心(NCEMT)、美国国家增材制造创新研究所。   其中,美国国家增材制造创新研究所成立于2012年10月,是美国为了巩固其在3D打印领域的优势而成立的。目前该研究所至少拥有85家公司、13所研究型大学、9个社区学院和18个非营利机构,成员组织机构庞大。   美国大学对金属材料的研究以基础研究为主,主要分成两大类:一类是麻省理工学院、西北大学、加州大学圣芭芭拉分校、伊利诺伊大学香槟分校、斯坦福大学、康奈尔大学、哈佛大学、宾夕法尼亚大学等传统的材料科学工程研究顶尖院校,这些著名高校在金属材料这个分支的研究实力都比较强。   日前,来自麻省理工学院的材料工程系的迈克尔· 戴姆克维兹教授和研究生徐国强在一项金属特性实验中意外发现受损的金属也具有自我修复的功能,并通过计算机模型重现了这一修复机制。这一发现,意味着可以自我修复的金属材料的面世已经指日可待。   另一类是康涅狄格大学、密歇根理工大学、田纳西大学、奥本大学、新墨西哥矿业技术学院、密苏里大学-罗拉分校、普渡大学、凯斯西储大学、密歇根州立大学、伍斯特理工学院等一些材料科学总体排名略差的大学,但这些学校在金属材料领域的研究并不比MIT等名校逊色。   在公司研究室方面,最为典型的代表无疑是波音公司和通用电气公司。其中,通用电气全球研发中心下面专门设有一个增材制造实验室,团队有600名工程师,其目标则是在2020年之前制造出10万个增材零件,利用增材制造的产品让每个飞机引擎减少1000磅。目前,通用电气公司使用了超过300件的3D打印器材。   欧日韩实验室   欧洲作为现代工业革命的发源地,在金属材料的研究和发展方面一直走在世界前沿。   大学实验室方面,英国的曼彻斯特大学冶金系、伯明翰大学冶金和材料分校、剑桥大学材料科学和冶金系、诺丁汉大学和巴斯大学等都是在全球范围较早进行金属材料研究的院校。   在德国大学中,埃尔兰根-纽伦堡大学和拜罗伊特大学金属材料系是这一领域最杰出的代表。其中,埃尔兰根-纽伦堡大学是一所建立于1742年的综合性大学,该校材料学科是第一批进入德国优势学科建设领域,设有金属材料加工研究所、特种金属材料研究所、金属科学与技术研究所等。   此外,奥地里莱奥本大学物理冶金和材料测试系、瑞典皇家技术学院材料科学与工程系、俄罗斯莫斯科国立钢铁合金学院冶金系、芬兰赫尔辛基理工大学物理冶金和材料科学实验室等在金属材料的研究上也比较突出。   日本在金属材料方面的研究优势则主要体现在汽车工业和核电用钢方面。东京大学材料科学与冶金系、大阪大学工程系、京都大学钢铁研究所、日本东北大学等在金属材料方面的研究比较出色。   其中,日本东北大学的金属材料学世界排名第一,附属的金属材料研究所始建于1916年4月,该研究所先后有两位金属材料领域的科学家获得诺贝尔奖,分别是1987年开发扫描隧道显微镜的海因里奇· 罗雷尔和2007年发现巨磁电阻效应皮特· 克鲁伯格。   在国家实验室方面,德国的马普协会和弗劳恩霍夫协会、法国国家科学研究中心、瑞典金属研究所、荷兰金属研究所、英国国家物理实验室以及日本国立材料研究所等金属材料研究都比较出名。   公司实验室方面,作为汽车工业大国的德国、日本和韩国,大众、宝马、奔驰、保时捷、丰田、本田、日产、现代等汽车公司都有自己的材料实验室,这些公司对金属零部件各项指标检测和质量认证要求近乎苛刻。   当然还有空中客车公司。这是在超大型客机的研发上目前唯一能和美国波音公司竞争的企业。   中国实验室   中国对传统金属材料的研发已有数千年历史,在新型金属材料方面自然没有被落下。在国内,金属材料研究领域最权威的机构是中科院金属所。   中科院金属所主要的六大科研机构全面覆盖新型金属材料,包括沈阳材料科学国家(联合)实验室、金属腐蚀与防护国家重点实验室、沈阳先进材料研究发展中心、材料环境腐蚀研究中心、国家金属腐蚀控制工程技术研究中心、高性能均质合金国家工程研究中心。   大学实验室方面,目前在国内研究新型金属材料的高校主要的有清华大学、上海交通大学、西北工业大学和华南理工大学。其中,华南理工大学国家金属材料近净成形工程技术研究中心和国家人体组织功能重建工程技术研究中心都属于国家工程技术研究中心。   公司实验室方面,钢铁科技领域的安泰科技、稀土研发领域的包钢稀土、半导体研发领域的路明科技以及高品质特殊钢领域的中联重科研发能力具有代表性。
  • 江阴金属材料创新研究院携手 HORIBA,共建国际合作实验室
    11月2日,2019中国(江阴)金属新材料产业创新论坛隆重开幕,来自国内外金属新材料领域的专家学者齐聚一堂。作为此次共建国际合作实验室的合作方,HORIBA集团科学仪器事业部(以下简称“HORIBA”)总经理濮玉梅女士受邀参加本次论坛。期间,江阴金属材料创新研究院与HORIBA集团完成了合作实验室签约仪式。国际合作实验室签约仪式江阴金属材料创新研究院是江阴高新区重点引进的新型研发机构,依托江阴扎实的工业基础,以东北大学和中科院金属研究所深厚的技术背景为支撑,以先进钢铁材料、特种有色金属材料、先进功能材料为主要发展方向,旨在促进高校、院所、企业间的深度协作和产业创新,努力打造海内外先进的金属材料研发中心,推动江阴及长三角地区的高端装备走向世界。论坛开幕式上,无锡市委常委、江阴市委书记陈金虎致开幕辞,希望以本次论坛为契机,全面加强与高校院所、专家学者、业内企业广泛合作,使江阴成为金属新材料产业发展的领跑者。HORIBA作为业内龙头企业参与共建实验室,希望为全国金属新材料产业的高质量发展贡献力量。现场启动仪式启动仪式结束后,HORIBA集团科学仪器事业部代表郭云昌博士与江阴金属材料创新研究院代表进行了项目签约仪式,国际合作实验室正式成立。仪式结束后,论坛继续进行,来自中国工程院、乌克兰工程科学院等各方专家学者就推进金属新材料产业集群创新发展进行了深入交流。(右)江阴金属材料创新研究院副董事长汪涛先生(左)HORIBA集团科学仪器事业部代表郭云昌博士会后,HORIBA集团代表受邀参观本次合作实验室,交流探讨了关于实验室创办思路及未来发展方向。本次与江阴金属材料创新研究院共建国际合作实验室的正式签约,表明HORIBA在推动产学研协同发展方面更进一步。未来,HORIBA还将努力进取,积开拓,争取有更大的作为。江阴金属材料创新研究院常务副院长刘伟先生(右)向 HORIBA 集团科学仪器事业部总经理濮玉梅女士(左)介绍合作实验室 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 弗尔德仪器成功参加第三届全国有色金属材料制备大会
    有色金属结构材料是材料领域的一个极其重要的组成部分,大力发展有色金属新材料产业,加速有色金属结构材料的研究与开发,对促进国民经济的可持续发展具有极其重要的战略意义。为继续推进我国有色金属材料的学术繁荣、技术创新、产业发展,满足结构材料向高性能化、复合化、结构功能一体化发展的需求,促进有色金属材料各项新技术、新工艺和新产品的研究、开发与应用,加强产、学、研、用深度结合,交流有色金属材料领域近年来具有创新性的科技成果、应用成果;中国有色金属学会、广东省科学院等单位于2017 年3 月29-31日在广东省广州市共同举办“第三届全国有色金属结构材料制备/加工及应用技术交流会”。3月29日弗尔德仪器携旗下4大品牌现身有色金属大会。弗尔德仪器总经理董亮先生在会上首先介绍了Retsch Technology(莱驰科技)的干湿两用多功能粒度粒形分析仪Camsizer X2在金属材料检测领域的应用。Camsizer X2采用动态图像法,可以同时并实时测量大的或小的颗粒并记录所有关于颗粒大小、形状、透明度、球形度等信息,比激光法精度更高,进样量大,能给出量化的结果,检测速度快,是非常好的一种全新的分析方法。CAMSIZER X2的专利测量技术——两个数字采样镜头能够实时记录颗粒的大小和形状,并自动优化,这样可以在600nm至8mm的范围内精确的分析样品,并在整个测量范围内无需人工调节和校正。德国Retsch(莱驰)的高能球磨仪Emax非常适合于纳米研磨及合金制备:2000转/分的高速设计在球磨仪中无可匹敌,相应的研磨罐设计保证了能量有效输出。在冲击力、摩擦力和循环往复运动的协同作用下,超精细研磨时间大大缩短。由于创新高效的水冷系统散热快速,长时间的高速研磨也不用担心样品温度过热。 Carbolite Gero(卡博莱特 盖罗)的HTK金属炉特别适用于金属粉末注射成型(MIM),无碳气氛,烧结,镀金属等等。金属炉可提供精确定义的高纯度气氛环境(6N或更好),可达最高真空度。矩形炉体,前开门设计使加样和取样非常方便。HTK提供6种不同的尺寸供选择。最小体积8L,25L通常用于实验室开发和研究。80L,220L,400L或600L主要用于生产系统试验或大型生产。 除此之外,弗尔德仪器旗下的德国ELTRA(埃尔特)元素分析仪也特别适合这个行业。元素分析仪被用来精确测量给定样品里的元素含量,一般常见于研发及质量控制实验室。金属材料中的C浓度和表面碳含量以及O,H,N的水平是非常重要, ELTRA分析仪以其精确性,稳定性和灵活性而闻名。 弗尔德仪器作为进口研磨仪、粒度仪、马弗炉气氛炉及元素分析仪的厂家,在有色金属材料制备领域有着极大的优势。德国Retsch(莱驰)粉碎、研磨、筛分设备,德国Retsch Technology(莱驰科技)多功能粒度粒形分析仪,Carbolite Gero(卡博莱特 盖罗)烘箱、高温烘箱、箱式马弗炉、灰化炉、管式马弗炉、气氛马弗炉、真空马弗炉、高温马弗炉及工业定制炉,Eltra(埃尔特)碳/氢/氧/氮/硫元素分析仪。弗尔德仪器在有色金属材料制备领域中为您提供完美的全方位解决方案。
  • 2019年中国西南区金属材料分析研讨会暨第二届聚光光谱技术交流会圆满结束
    11月27日,由北京聚光盈安科技有限公司(以下简称:聚光盈安)主办的“2019年中国西南区金属材料分析研讨会暨第二届聚光光谱技术交流会”,在重庆两江假日酒店隆重召开。 会议邀请了重庆市计量质量检测研究院高级工程师、重庆市机械工程学会理化分会副秘书长、中文核心期刊《冶金分析》杂志编委周西林先生;聚光AES产品经理彭中樑先生;行业研究经理王菲菲女士;CNAS技术评审员、兵装集团理化考监委委员、研究员高工李启华先生等多位专家领导,更吸引了重庆及周边地区110多名金属分析领域专业人士前来参加。 本次会议由聚光盈安西南大区经理主持,14时,交流会正式开始,聚光盈安总经理钟炜铭做了精彩的致词演讲,拉开了会议序幕。首先钟炜铭先生对大家的到来表示热烈欢迎,并向大家介绍了聚光盈安的基本概况。聚光盈安初创于1995年,在2007年成为聚光科技的一员。专业的研发队伍,先进的生产设备、齐全的检测设备、严格的质量管理体系, 24小时在线,48小时到达服务现场的技术支持,保障了聚光盈安从咨询、方案、安装、培训到售后“全生命周期”360度的优质服务。多年来,聚光盈安生产的多种产品被广泛应用于黑色和有色金属、冶金、铸造、机加工等行业中。 会上,重庆市计量质量检测研究院高级工程师、重庆市机械工程学会理化分会副秘书长、中文核心期刊《冶金分析》杂志编委周西林先生的《冷压及热成型制样技术在直读光谱的应用》演讲,为大家细致地讲解了冷压及热成型制样技术的基本原理、实验方法、和如何制样的方法等。 聚光AES产品经理为大家带来了《CMOS —火花直读光谱仪跨时代技术转变》的主题演讲,对CMOS技术在火花直读光谱仪的应用及前景进行了详细解读。CMOS检测器同时拥有PMT的高精度高灵敏性及CCD的全谱分析特性,让金属分析变得更为高效、精准和稳定。接下来聚光火花直读光谱仪产品将全面升级为CMOS检测器,为用户带来更加高效的金属分析体验。聚光光谱仪是国内佼佼者,一流的火花直读光谱仪自主研发品牌,卓越的性能源于我们对产品专注、专业和精益求精的设计。 聚光盈安行业研究经理在《激光诱导击穿光谱技术在金属材料快速分析中的应用》的主题演讲中,介绍了LIBS技术来源、原理、特色优点,并隆重介绍了针对手持测碳需求而专门研发的英国阿朗Calibus产品。Calibus激光光谱仪具有谱线范围宽、分析能力强、分析速度快、样品适用性广的特点,可应用在小型件、焊点快检、大型机械成品件及管道质量控制、铝合金Li,Si,B,Na元素控制、汽车工业材料成分化学检测与分析等。会议交流期间,多家企业领导均表达了对该产品的认同和赞许,更表达了明确的采购意向。随后,CNAS技术评审员、兵装集团理化考监委委员、研究员高工李启华先生分别做了《火花源直读光谱仪标准分析方法讨论》等精彩的专题学术报告。会议的最后,聚光盈安技术服务工程师分享了光谱仪的操作维护技巧,并针对在场领导和专业人士提出的疑问,进行了深入交流与探讨。会后,参会领导对本次交流会的举办好评如潮,他们纷纷表示,参加此次会议受益匪浅,分享交流了许多问题,以后希望能更多的参与到此类活动中。北京聚光盈安科技有限公司作为金属分析的解决方案专家,将会充分利用自己的技术研发优势,继续为广大相关行业厂家提供更优质的光谱仪产品和技术服务。
  • 全国首个金属材料与焊接高端技术创新联盟在浙江杭州成立
    10月24日,全国首个金属材料与焊接高端技术创新联盟正式成立。联合国科学院院士和国际欧亚科学院院士冯长根、美国纽约科学院院士和乌克兰科学院院士弗拉基米尔郭瑞、中国工程院院士赵振业、中国工程院院士谭建荣4位材料与焊接领域知名专家,来自全国各地高等院校、科研院所的知名教授学者、技术专家,以及行业协会和大型企业领军人物齐聚浙江杭州钱塘区,共同交流探讨我国金属材料与焊接技术发展。该联盟由冯长根院士和郭瑞弗拉基米尔院士领衔,首批入盟单位汇集了浙江大学、上海交通大学、哈尔滨工业大学等13所高等院校以及浙江巴顿焊接技术研究院等3家科研院所,由浙江省特种设备科学研究院作为秘书处承担单位。据了解,联盟将以打造改善科技创新生态高地为引领,瞄准我国金属材料与焊接技术领域科技难点,建立高校、科研院所、企业定制实验室,启动“成果转化优先”机制,实现科技成果共建共享。将以打造激发创新创造活力高地为目标,大力实施国际科技合作战略,采取召开产业发展峰会、分领域研讨会、专题展览、国际培训认证等方式,培养造就一批国际水平的金属材料与焊接技术领域领军人才和团队。将以打造支撑行业高质量发展高地为主旨,围绕航空航天、特种设备、核能核电等高端制造领域的金属材料及焊接产业技术创新的关键问题,针对我国高端轴承钢、高端焊接电源、超精密抛光工艺、高强度不锈钢等“卡脖子”技术,开展“政产学研用一体化”科研攻关,研究核心技术,研制新装备,研发新工艺,建立行业技术标准,提升产业核心竞争力。去年,我国工业增加值已达31.31万亿元,连续11年位居世界第一制造业大国,但是高端装备产品及零部件的生产仍长期被发达国家所掌控。其中被誉为“工业骨骼”的金属材料与被誉为工业制造“缝纫机”的焊接技术,相较于日本、欧洲、北美等发达国家还存在着诸多瓶颈和掣肘,例如焊接技术自动化程度普遍较低、焊接行业市场竞争力偏弱、高端核心技术能力不足、认证门槛高等。目前我国焊接行业企业近700家,但年主营业务收入超过1亿的仅50余家,超过2亿的仅20余家,多数以中小民营企业为主,技术良莠不齐,还呈现出一定的周期性和地域性。作为技术密集型产业,国内金属材料与焊接技术高级技术和管理人才严重不足,导致一些高端装备尤其核心技术被国外垄断。以国产C919为例,原材料的国产化程度不到5%。为着力破解我国焊接技术自动化程度偏低、焊接行业市场竞争力偏弱、认证门槛高等难题,浙江省市场监管局汇聚整合政、产、学、研、用等各方资源及优势,由其下属浙江省特科院牵头成立金属材料与焊接高端技术创新联盟,通过搭建一个集设计、产品中试、验证检验、技术咨询、科研攻关为一体的金属材料与焊接技术产业公共服务技术平台,推动特种设备、核能核电等高端制造行业的关键金属材料和焊接技术发展及其成果转化,提升核心关键技术自主研发能力,打破金属材料与焊接技术壁垒,助力浙江高质量发展建设共同富裕示范区和我国高端装备制造业转型升级发展。
  • 我国科学家发现纳米金属材料新特质
    人民网科技2月2日讯 据中国科学院金属研究所消息,1月30日,《科学》报道了中科院金属研究所沈阳材料科学国家(联合)实验室卢磊研究员领导的研究小组与卢柯研究员、丹麦Risφ国家实验室的黄晓旭博士合作研究的成果,他们利用共格孪晶界独特的稳定界面结构获得了具有超细特征尺寸的纳米结构金属,并发现减小孪晶片层厚度将增加材料的强度。这一发现表明当纯金属的特征尺寸降低至纳米量级时,由于塑性变形机制的变化会导致极值强度的出现,同时表现出一般金属材料所不具备的超高加工硬化效应。评审人认为作者在利用纳米孪晶强化材料本质方面获得了具有重大意义的发现,不但丰富和拓宽了人们对纳米尺度材料塑性变形的本质的认识,同时也为进一步发展高性能纳米结构材料及其应用提供了重要线索。   普通多晶体金属材料的强度通常随晶粒尺寸的减小而升高。这种晶粒细化强化源于更多晶界阻碍了位错运动,从而使塑性变形困难。但是,当晶粒尺寸小至纳米量级时,晶格位错运动将受到抑制,塑性变形的控制机制由晶格位错运动逐步转化为晶界行为,从而使材料强度下降。因此,理论分析和分子动力学模拟均预测当金属材料的晶粒尺寸小至纳米量级时其强度将出现一极大值,随晶粒尺寸进一步减小会导致材料软化。然而迄今为止这种极值强度在纯金属力学性能实验中尚未观察到。其主要原因是制备超细晶粒尺寸(通常小于10纳米)的纳米材料非常困难:由于纯金属材料中晶粒具有很高的长大驱动力。通常晶粒愈小,长大驱动力愈大,晶粒很容易在室温状态或更低的温度下就发生长大。因此如何制备出稳定的超细特征尺寸的纳米结构材料并探索其本征变形机理长期以来是纳米金属材料领域一大难题。   卢磊研究员及其合作者采用脉冲沉积技术通过细致的工艺探索在纯铜样品中成功地将孪晶片层平均厚度(λ)减小到约4 nm,并发现减小孪晶片层厚度材料的强度增加。当孪晶片层厚度为15nm时,材料强度达到最大值。进一步减小孪晶片层,强度反而减小、出现软化现象。随孪晶片层减小,样品的塑性和加工硬化能力单调增加。当孪晶片层小于10纳米时,其加工硬化系数超过了粗晶纯铜的加工硬化系数,即铜及铜合金的加工硬化系数上限,表现出超高加工硬化能力。分析表明纳米孪晶铜中极值强度的出现是由于随孪晶片层尺寸减小塑性变形机制从位错孪晶界相互作用主导转变为由孪晶片层结构中预存位错运动主导所致。而超高加工硬化效应则来源于纳米孪晶片层中大量孪晶界可有效吸纳高密度位错,其位错密度较一般多晶体中的饱和位错密度高1-2个数量级。   塑性变形过程中共格孪晶界可有效阻碍位错,具有和普通晶界相似的强化作用。同时,共格孪晶界又可作为位错的滑移面吸纳大量位错,与普通晶界相比孪晶界结构更加稳定,其晶界过剩能仅为普通晶界的十分之一。因此,纳米孪晶结构从能量上要比相同化学成分的纳米晶体结构稳定很多。这种稳定的超细纳米孪晶结构的获得不仅是传统材料制备技术的突破,同时也为深入研究金属材料力学行为的纳米尺寸效应提供了可能。
  • 上海衡翼非破坏性金属材料力学试验机新品上市
    往往在现实生活中很多不可能的事,如今上海衡翼精密仪器限公司就做到了,上海衡翼打破了金属破坏性能的力学试验,在过去做力学试验时,只有把样品破坏以后才能分析出材料的力学性能,浪费了很多材料,给企业、国家带来巨大的经济损失。根据现状,上海衡翼精密仪器有限公司研发了一款新型的非破坏金属材料力学性能试验机。 非破坏金属材料力学性能试验机的特点是:在不损坏材料、样品的情况下,就能测出材料、样品的力学性能,为企业节省了大量材料、样品,从而给企业带来了巨大的经济收入。 衡翼非破坏金属材料力学性能试验机顺利交付到上海交通大学实验室,并安装调试完毕,并且得到了饶教授的赞赏!现在已有很多大学、科研单位陆续来我司咨询并订购。 非破坏金属材料力学性能试验机的主要技术指标: A.采用直接加压方式,电机轴与加压头同轴设计 B.位移传感器采用高精度位移传感器,量程约10毫米,测量误差小于正负1微米。位移传感器偏心安装装在刚性良好的下板上,与电机轴偏心小于50毫米,在加、卸载过程中,直接与被测表面接触,监测压头的位移情况。 C.采用双磁吸式底座,单侧磁吸的吸力大于30kg. D.加载方式可以采用载荷—时间控制或位移-时间控制,可以设置单次循环加卸载,也可以设置多次循环加载-卸载。加卸载过程中的载荷—位移数据以excel格式存储于电脑中,可以由其他软件读取。
  • 无机非金属材料领域成杰青基金资助重点
    p    /p p   5年时间(2012-2016),在金属材料、无机非金属材料、有机高分子材料三大材料学科中,工程与材料学部杰青基金资助了54位科研人员;其中无机非金属材料领域9000万元,金属材料相关领域3900万元,有机高分子材料领域3800万元,总计资助金额1.675亿元。 /p p   以下是54个资助项目全名单: /p p /p table cellspacing=" 0" cellpadding=" 0" colgroup col width=" 72" / col width=" 287" / col width=" 72" / col width=" 201" / col width=" 72" span=" 2" / /colgroup tbody tr class=" firstRow" td width=" 72" 学科 /td td width=" 287" 项目 /td td width=" 72" 负责人 /td td width=" 201" 学校 /td td width=" 72" 金额(万) /td td width=" 72" 申请年 /td /tr tr td width=" 72" 金属 /td td width=" 287" 金属基储氢材料 /td td width=" 72" 余学斌 /td td width=" 201" 复旦大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 金属 /td td width=" 287" 磁性功能材料 /td td width=" 72" 王守国 /td td width=" 201" 北京科技大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 金属 /td td width=" 287" 金属材料的强韧化与变形断裂 /td td width=" 72" 刘刚 /td td width=" 201" 西安交通大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 金属 /td td width=" 287" 材料的微观结构与性能 /td td width=" 72" 于荣 /td td width=" 201" 清华大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 金属 /td td width=" 287" 计算材料学辅助的新材料设计与制备 /td td width=" 72" 秦高梧 /td td width=" 201" 东北大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 金属 /td td width=" 287" 磁性材料与器件 /td td width=" 72" 李润伟 /td td width=" 201" 中科院宁波材料所 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 金属 /td td width=" 287" 金属纳米材料的稳定性 /td td width=" 72" 宋晓艳 /td td width=" 201" 北京工业大学 /td td width=" 72" 400 /td td width=" 72" 2014 /td /tr tr td width=" 72" 金属 /td td width=" 287" 高温防护涂层 /td td width=" 72" 郭洪波 /td td width=" 201" 北京航空航天大学 /td td width=" 72" 400 /td td width=" 72" 2014 /td /tr tr td width=" 72" 金属 /td td width=" 287" 高温熔盐中金属材料的制备及服役行为 /td td width=" 72" 汪的华 /td td width=" 201" 武汉大学 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 金属 /td td width=" 287" 面向聚变堆应用的高性能金属材料模拟与设计 /td td width=" 72" 吕广宏 /td td width=" 201" 北京航空航天大学 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 金属 /td td width=" 287" 金属磁性材料 /td td width=" 72" 姜勇 /td td width=" 201" 北京科技大学 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 金属 /td td width=" 287" 新型生物医用金属材料 /td td width=" 72" 郑玉峰 /td td width=" 201" 北京大学 /td td width=" 72" 200 /td td width=" 72" 2012 /td /tr tr td width=" 72" 金属 /td td width=" 287" 纳米金属材料的力学性能和变形机理 /td td width=" 72" 赵永好 /td td width=" 201" 南京理工大学 /td td width=" 72" 200 /td td width=" 72" 2012 /td /tr tr td width=" 72" 有机 /td td width=" 287" 生物医用高分子材料 /td td width=" 72" 张拥军 /td td width=" 201" 南开大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 有机 /td td width=" 287" 高分子流变学与高分子加工 /td td width=" 72" 俞炜 /td td width=" 201" 上海交通大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 有机 /td td width=" 287" 生物医用高分子材料 /td td width=" 72" 尤业字 /td td width=" 201" 中国科学技术大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 有机 /td td width=" 287" 高效率有机电致发光材料与器件 /td td width=" 72" 苏仕健 /td td width=" 201" 华南理工大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 有机 /td td width=" 287" 单晶复合有机光电功能材料与器件 /td td width=" 72" 李寒莹 /td td width=" 201" 浙江大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 有机 /td td width=" 287" 高分子分离膜设计制备与应用研究 /td td width=" 72" 靳健 /td td width=" 201" 中科院苏州纳米所 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 有机 /td td width=" 287" 聚合物有序结构材料 /td td width=" 72" 朱锦涛 /td td width=" 201" 华中科技大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 有机 /td td width=" 287" 有机半导体材料与器件 /td td width=" 72" 张浩力 /td td width=" 201" 兰州大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 有机 /td td width=" 287" 特种及功能性弹性体材料 /td td width=" 72" 田明 /td td width=" 201" 北京化工大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 有机 /td td width=" 287" 高分子物理 /td td width=" 72" 门永锋 /td td width=" 201" 中科院长春应化所 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 有机 /td td width=" 287" 有机发光材料与器件 /td td width=" 72" 段炼 /td td width=" 201" 清华大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 红外增透保护薄膜及金刚石单晶 /td td width=" 72" 朱嘉琦 /td td width=" 201" 哈尔滨工业大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 无机热电能量转换材料 /td td width=" 72" 史迅 /td td width=" 201" 中科院上海硅酸盐所 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 无机/聚合物复合电介质的理性设计与性能调控 /td td width=" 72" 沈洋 /td td width=" 201" 清华大学 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 碳纳米管的可控制备与应用探索 /td td width=" 72" 刘畅 /td td width=" 201" 中科院金属所 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 高能量密度固态锂电池关键材料的研究 /td td width=" 72" 崔光磊 /td td width=" 201" 中科院青岛能源所 /td td width=" 72" 350 /td td width=" 72" 2016 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 超高温陶瓷基复合材料 /td td width=" 72" 张幸红 /td td width=" 201" 哈尔滨工业大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 碳功能材料的表界面调控和层次化构建 /td td width=" 72" 杨全红 /td td width=" 201" 天津大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 新型与高性能亚稳材料 /td td width=" 72" 徐波 /td td width=" 201" 燕山大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 新型信息光子材料与器件 /td td width=" 72" 潘安练 /td td width=" 201" 湖南大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 功能纳米材料在新型肿瘤治疗方法中的应用探索 /td td width=" 72" 刘庄 /td td width=" 201" 苏州大学 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 生物陶瓷涂层 /td td width=" 72" 刘宣勇 /td td width=" 201" 中科院上海硅酸盐所 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 碳纳米材料的电化学储能研究 /td td width=" 72" 李峰 /td td width=" 201" 中科院金属所 /td td width=" 72" 350 /td td width=" 72" 2015 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 无机非线性光学晶体材料 /td td width=" 72" 叶宁 /td td width=" 201" 中科院福建物构所 /td td width=" 72" 400 /td td width=" 72" 2014 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 光电功能晶体材料 /td td width=" 72" 潘世烈 /td td width=" 201" 中科院新疆理化所 /td td width=" 72" 400 /td td width=" 72" 2014 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 纳米线储能材料与器件 /td td width=" 72" 麦立强 /td td width=" 201" 武汉理工大学 /td td width=" 72" 400 /td td width=" 72" 2014 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 先进结构陶瓷 /td td width=" 72" 范同祥 /td td width=" 201" 上海交通大学 /td td width=" 72" 400 /td td width=" 72" 2014 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 无机/有机介电功能复合材料设计与实现 /td td width=" 72" 党智敏 /td td width=" 201" 北京科技大学 /td td width=" 72" 400 /td td width=" 72" 2014 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 无机能量转换功能材料 /td td width=" 72" 暴宁钟 /td td width=" 201" 南京工业大学 /td td width=" 72" 400 /td td width=" 72" 2014 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 光电功能晶体生长与应用研究 /td td width=" 72" 杨春晖 /td td width=" 201" 哈尔滨工业大学 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 二维碳基材料 /td td width=" 72" 任文才 /td td width=" 201" 中科院金属所 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 电池材料 /td td width=" 72" 李泓 /td td width=" 201" 中科院物理所 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 无机非 /td td width=" 287" VO2智能节能材料研究 /td td width=" 72" 高彦峰 /td td width=" 201" 上海大学 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 低维功能纳米材料结构与物性调控的研究 /td td width=" 72" 杜世萱 /td td width=" 201" 中科院物理所 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 功能碳纳米材料与应用 /td td width=" 72" 曹安源 /td td width=" 201" 北京大学 /td td width=" 72" 200 /td td width=" 72" 2013 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 半导体材料 /td td width=" 72" 孙志梅 /td td width=" 201" 北京航空航天大学 /td td width=" 72" 200 /td td width=" 72" 2012 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 铁电低维材料的制备及相关效应研究 /td td width=" 72" 吕笑梅 /td td width=" 201" 南京大学 /td td width=" 72" 200 /td td width=" 72" 2012 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 先进陶瓷与陶瓷基复合材料 /td td width=" 72" 贾德昌 /td td width=" 201" 哈尔滨工业大学 /td td width=" 72" 200 /td td width=" 72" 2012 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 能量转换与储存材料研究 /td td width=" 72" 郭玉国 /td td width=" 201" 中科院化学所 /td td width=" 72" 200 /td td width=" 72" 2012 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 储氢材料研究 /td td width=" 72" 陈萍 /td td width=" 201" 中科院大连化物所 /td td width=" 72" 200 /td td width=" 72" 2012 /td /tr tr td width=" 72" 无机非 /td td width=" 287" 介孔结构纳米复合材料与性能研究 /td td width=" 72" 陈航榕 /td td width=" 201" 中科院上海硅酸盐所 /td td width=" 72" 200 /td td width=" 72" 2012 /td /tr /tbody /table p /p
  • 金属材料、涂层的快速分析利器——手持式XRF分析仪
    为了更好地帮助仪器用户通过此次财政贴息贷款选购适合的仪器设备,仪器信息网联合多家优质仪器厂商上线了专门的仪器展示专题,提升用户选购仪器的效率;同时面向广大仪器厂商发起征稿活动,仪器厂商可围绕“2000亿贴息贷款政策下,如何助力快速选型采购”这一主题进行原创稿件创作(字数1000字左右),稿件一经采用将发布在仪器信息网上并收录到相关专题中。专题链接:https://www.instrument.com.cn/topic/txdk2022.html近期,2000亿贴息贷款政策正进行的如火如荼,高校和相关企业都在加紧申报购买需要的仪器设备。金属材料,作为目前工业中使用量最大的材料种类,一直就是科研攻关的热点领域,同时,相关企业生产也离不开金属材料的检测分析。为了帮助高校和相关企业更好更快的选择心仪的仪器设备,朗铎科技特别推出了此文章,希望对金属材料及涂层相关的高校和生产企业提供一定的帮助。对于生产企业来说,为保障产品的可靠性和生产过程中的和安全性,用于制造质量保证和控制的金属合金验证十分重要。从金属生产到服务中心和分销商,从组件制造到最终产品组装——材料混淆的可能性非常大,可追溯性的需求现在是重中之重。对于生产企业金属材料检测可以采用的检测方式有很多,如原子吸收光谱法(AAS)、滴定法、电感耦合等离子体光谱法(ICP)等,但这些方法都无法做到无损检测,而且检测周期长,无法对来料进行全部检测,这时候X射线荧光光谱法(XRF)就可以大展拳脚!XRF的优势在于无损、快速、准确,可以对所有来料进行快速筛查,对生产过程中的质量进行实时监控,是相关金属企业的必备工具,其中手持式XRF使用最为广泛,它方便携带,且可以检测成品及一些不好触及的位置,已经成为一些企业的必备仪器。手持式XRF分析仪可在多个领域进行材料检查:1. 过程物料识别——管道系统和其他工艺组件的例行检查,以确保加工流中不存在不相容合金(Retro PMI)2.维护和制造相关的材料标识——确保在施工和维护程序(新管道、阀门等)期间不会将不相容的合金插入工艺流中。3. 来料 QA/QC——确保您收到的材料与订单相符4. 出货 QA/QC——对客户进行最终检验和认证装运5.库存管理与恢复——确保材料的隔离受到控制,也可协助回收“丢失”的材料以正确地重新放入供应链除上述合金材料外,金属涂层工艺在金属制造中也非常普遍,其工艺可用于装饰目的或增强金属制品表面的物理或化学性能。金属镀层可用于增强金属的耐蚀性、耐磨性、耐热性、导电性、附着力、可焊性和润滑性。涂层过厚会显着增加制造成本,而涂层过薄会导致产品失效。为了避免这些可能,控制涂层重量或涂层厚度在金属表面处理、制造、汽车和航空航天工业中至关重要,以确保组件具有正确的特性并同时优化生产成本。过去,XRF分析技术一直用于固定式或台式仪器测量涂层厚度。但是,必须将样品放入分析仪样品仓内或靠近分析仪样品仓以便使用固定式 XRF 方法进行分析,这使得在不切割样品的情况下测量大型和重型零件上的涂层厚度变得不切实际。现在,使用手持式 XRF 分析仪可以克服这一限制,手持式XRF涂层测厚分析技术俨然成为一种成熟的金属和合金鉴定技术。朗铎科技 Niton XL2、XL3 和 XL5 系列由朗铎科技代理的赛默飞世尔 Niton XRF 分析仪(全国总代理)可在几秒钟内提供合金等级鉴定和化学分析。它们被用于制造车间、铸造厂、服务中心和石化精炼厂,以验证来料合金、恢复丢失的材料可追溯性并确认成品——所有这些都是无损完成的。朗铎科技的客户已经确定他们不能再依赖工厂测试报告 (MTR),而是亲自动手来确认材料成分的全检。 从低合金钢到不锈钢再到超级合金,从钛合金到稀有元素——Niton 合金分析仪为您提供无法从一张纸上获得的材料可靠性信心。从最简单的到最复杂的涂层样品,Niton 手持式XRF分析仪涂层模式均可满足分析要求,并提供准确的结果。用 Niton 手持式XRF分析仪进行涂层分析的操作界面简单直观,用户可根据 AISI/ASTM、DIN 或 GB 标准选择涂层类型,并使用元素列表或可用合金库输入涂层和基材的组成即可使用,近乎“开箱即用”无过多调整及设置。为确保满足客户的涂层规格,需要在生产前、在线或最终产品 检验期间进行质量控制。Niton XRF 分析仪帮助操作员: • 通过测量金属等级和成分,确保收到的货物与采购订单相符 • 通过最小化生产错误降低生产成本- 涂层太薄Niton XRF 分析仪可能导致耐腐蚀性差、保修成本高和 / 或产品故障 - 涂层太厚会增加生产成本- 无损分析意味着不需要切割或损坏高价值产品 • 通过多次测量和自动平均,确保整个产品的涂层一致,从而提高质量 • 提供更快的运行速度,立即产生结果,无需样品制备(与统计取样和实验室分析相比,后者耗时) • 通过简单的报表生成工具生成质量报告和证书 • 创建从进货检验到产品出厂的产品审计跟踪 • 遵守国际方法 ISO 3497 和 ASTM B568,实现安全生产 无论是在现场还是在车间,Niton XRF 分析仪都能使您随时应对最具挑战的工业环境,操作人员可检测各种材料,满足不同分析需求。识别纯金属和合金,检测杂质元素或获取涂镀层数据,真正实现多应用合一—— Niton XRF分析仪随时应对各种分析挑战。 除了金属材料检测和涂层快速无损检测外,朗铎科技 Niton XRF 分析仪还可以应用于石油化工、能源电力、汽车制造、地质地矿、文博考古等领域。感兴趣的老师欢迎联系朗铎科技,点击进入朗铎科技展位(https://www.instrument.com.cn/netshow/SH103331/),了解更多信息。
  • 中关村材料试验技术联盟关于《金属材料 管 压扁-胀形试验方法》等10项的立项公告
    各位专家、委员及相关单位:经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)审查,CSTM标准化委员会批准以下 CSTM标准立项,特此公告。序号标准名称标准立项号1金属材料 管 压扁-胀形试验方法CSTM LX 0100 01259—20232金属材料 薄板和薄带 非等轴胀形试验方法CSTM LX 0100 01260—20233硅酸二钙-硫铝酸钙-硫硅酸钙水泥熟料CSTM LX 0301 01261—20234固废基无熟料、少熟料硅铝质水泥CSTM LX 0301 01262—20235预处理铝灰制备水泥混凝土砌块的技术要求CSTM LX 0324 01263—20236催化裂化催化剂酸性可接近性 指数测定方法CSTM LX 0500 01264—20237民用飞机纳米陶瓷铝合金TiB2颗粒粒径测试方法CSTM LX 6600 01265—20238铝制多层复合钎焊板 氧化膜厚度的测试方法 俄歇电子能谱法CSTM LX 9802 01266—20239粉末冶金钛合金材料CSTM LX 9900 01267—202310增材制造用高温合金粉末CSTM LX 9900 01268—2023如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。请登录CSTM官网http://www.cstm.com.cn/channel/details/3-2-CSTMgonggao?page=1查看立项公告通知。CSTM标准委员会秘书处联系方式联系人:陈鸣,罗倩华 办公电话:010-62187521手机:13011072266,13611338417 邮箱:chenming@ncschina.com, luoqianhua@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081 CSTM标准化委员会
  • 金属所张哲峰团队:金属材料拉伸与疲劳性能预测研究取得新进展
    拉伸性能与疲劳性能是金属材料工程应用的关键指标,建立二者之间定量关系,实现金属材料不同力学性能之间关系的定量预测是金属结构材料领域重要研究目标之一。由于目前相关理论不够完善,基于微观变形与损伤机制的拉伸性能与疲劳性能定量预测模型并未建立起来。因此,虽有大量实验数据表明金属材料拉伸强度与塑性之间存在明确的倒置关系,拉伸强度与疲劳强度之间存在特定的关系,但至今仍缺乏定量模型来描述上述定量关系。因此,建立金属材料拉伸性能与疲劳性能定量预测具有重要科学意义。金属研究所张哲峰团队长期坚持材料疲劳与断裂基础理论研究,团队成员张振军项目研究员前期在缺陷与金属材料加工硬化关系方面进行了系统性研究,包括四类典型缺陷:1)零维缺陷:发现过饱和空位可提升合金的加工硬化能力;2)一维缺陷:在位错主导塑性形变的合金中实现了加工硬化能力回升;3)二维缺陷:在FeMnCAl系TWIP钢中实现随孪晶密度增加应变速率敏感性由负到正的转变;4)三维缺陷:在TWIP钢等强加工硬化材料中建立了微孔致颈缩判据。近来,在加工硬化微观机制研究基础上,张振军项目研究员提出了新的位错湮灭模型,并通过考虑初始组织状态与合金成分对加工硬化的影响,建立了单相金属材料普适性硬化模型-指数硬化(ESH:Exponential Strain-Hardening)模型,并据此首次推导出单相金属材料拉伸应力(σ)-应变(ε)定量关系:其中硬化指数n为位错湮灭距离(ye)的表达式反映合金成分的影响。η为初始缺陷对屈服强度(σy)非位错性贡献的比例,反映微观组织的影响;ΘⅡ为第二阶段硬化率,对同一金属合金体系为常数。该ESH模型得到了6种合金成分、100余种不同微观组织状态单相铜铝合金的实验验证,如图1所示。该ESH模型阐明了单相金属材料形变过程中一些重要规律:1)用一个参数(n)统一了五阶段加工硬化规律;2)揭示了极限强度、临界强度、真抗拉强度与成分及变形机制之间关系;3)首次推导出"屈服强度-抗拉强度-均匀延伸率"之间定量关系(公式(2-4),图2a-2c);4)定量揭示了拉伸强度-塑性同步提升的两个基本原则,即成分优化(提升位错滑移平面性)与组织优化(降低初始高能缺陷),在铜合金、镍基合金、TWIP钢、高氮钢、316L不锈钢等单相合金中均得到了系统性实验验证;5)实现了单相铜铝合金拉伸强度、塑性及拉伸应力-应变曲线的定量预测,如图2d-2f所示: 上述研究成果最近以2篇论文连载方式发表在Acta Mater 231 (2022) 117866和231 (2022) 117877上。基于该ESH模型,博士生曲展在张振军项目研究员的指导下,进一步揭示了三类变形铝合金(2xxx、6xxx、7xxx)拉伸强度和塑性随时效时间变化的共性转变规律与机制,建立了三类铝合金加工硬化指数与时效过程中析出相性质及几何特征之间的定量关系,提出了变形铝合金时效过程对加工硬化能力提升的析出相控制原理(J Mater Sci Technol 122 (2022) 54-67)。为了建立金属结构材料拉伸性能与疲劳性能之间定量关系,该团队成员刘睿博士在对铜铝单相合金拉伸性能与高周疲劳强度系统性研究的基础上,从疲劳损伤过程弹性变形与应变局部化两方面入手,通过引入合金成分、微观组织与宏观缺陷参数,建立了金属结构材料高周疲劳强度预测模型:其中参数C代表合金成分(或弹性模量)对疲劳强度的影响,强度σy和σb为微观组织对疲劳强度的影响,参数ω反映了宏观缺陷对疲劳强度的影响,如图3(a)所示;该高周疲劳强度预测模型得到了钢铁材料、铝合金、铜合金、钛合金、镁合金等20余种典型工程结构材料系统性疲劳实验验证,如图3(b)所示。该研究成果也以2篇论文连载方式发表在J Mater Sci Technol 70 (2021) 233-249和70 (2021) 250-267上。在疲劳裂纹扩展预测模型方面,最近李鹤飞博士在团队成员张鹏研究员的指导下,针对高强钢强度-韧性匹配关系,通过断裂力学理论分析,建立了以静态力学性能预测其疲劳裂纹扩展速率模型:其中σb为拉伸强度,KIC为断裂韧性,E为弹性模量,R为应力比,α为扩展速率常数。同时,为了指导关键构件材料强度-韧性优化提高疲劳裂纹扩展阻力,建立了高强度金属材料等效疲劳裂纹扩展速率模型(如图4(a)所示)。通过选择高强度金属材料强度-韧性之间匹配关系,可快速预测和降低其疲劳裂纹扩展寿命(如图4(b)所示),进而可以指导关键构件材料抗疲劳损伤容限设计。上述关于疲劳裂纹扩展速率预测模型在多种高强铝合金、钛合金及高强钢材料中得到了验证。该研究成果发表在J Mater Sci Technol 100 (2022) 46-50上。将上述金属材料拉伸性能和疲劳性能定量预测模型联合起来,可以实现通过测试金属结构材料少数组织状态的拉伸性能快速预测和优化其疲劳性能的功能,为金属结构材料疲劳性能预测与优化软件研发奠定理论基础,也为金属结构材料及工程构件抗疲劳设计与制造提供理论支撑。上述研究工作得到了国家自然科学基金重大项目(51790482)、重点项目(51331007、52130002)、面上项目(51771208、51871223)项目、中国科学院王宽诚率先人才计划"卢嘉锡国际合作团队"(GJTD-2020-09)、"青年促进会"项目(2018182、2021192)及辽宁省"兴辽计划"创新团队项目(XLYC1808027)的资助。相关成果列表及链接:1. Zhang ZJ*, Qu Z, Xu L, Liu R, Zhang P, Zhang ZF*, Langdon TG. A general physics-based hardening law for single phase metals. Acta Mater 231 (2022) 117877https://www.sciencedirect.com/science/article/pii/S1359645422002531#sec00202. Zhang ZJ*, Qu Z, Xu L, Liu R, Zhang P, Zhang ZF*, Langdon TG. Relationship between strength and uniform elongation of metals based on an exponential hardening law. Acta Mater 231 (2022) 117866.https://www.sciencedirect.com/science/article/pii/S135964542200252X3. Qu Z, Zhang ZJ*, Yan JX, Gong BS, Lu SL, Zhang ZF*, Langdon TG. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys. J Mater Sci Technol 122 (2022) 54-67.https://www.sciencedirect.com/science/article/pii/S1005030222001967?via%3Dihub4. Liu R, Zhang P*, Zhang ZJ, Wang B, Zhang ZF*. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction. J Mater Sci Technol 70 (2021) 233-249.https://www.sciencedirect.com/science/article/pii/S1005030220307441?via%3Dihub5. Liu R, Zhang P*, Zhang ZJ, Wang B, Zhang ZF*. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement. J Mater Sci Technol 70 (2021) 250-267.https://www.sciencedirect.com/science/article/pii/S100503022030743X?via%3Dihub6. Li HF, Zhang P*, Wang B, Zhang ZF*. Predictive fatigue crack growth law of high-strength steels. J Mater Sci Technol 100 (2022) 46-50.https://www.sciencedirect.com/science/article/abs/pii/S1005030221005053?via%3Dihub7. 张振军、张哲峰、张鹏、王强;一种金属材料拉伸性能的预测方法, 2021-7-6, ZL201711234799.0,发明。已授权8. 张哲峰、刘睿、张鹏、张振军、田艳中、王斌、庞建超;一种金属材料疲劳强度的预测方法,2021-8-10,ZL201711235841.0,发明。已授权9. 张鹏、李鹤飞、段启强、张哲峰;一种预测高强钢疲劳裂纹扩展性能的方法,2021-3-26,ZL201910030260.6,发明。已授权图1 ESH模型的建立与实验验证:(a-b) 模型推导过程;(c-d) 强度与塑性验证图2 ESH模型的应用:(a)建立"屈服强度-抗拉强度-均匀延伸率"之间定量关系;(b)实现拉伸性能及拉伸应力-应变曲线定量预测图3 高周疲劳强度预测模型的建立与验证:(a) 模型建立过程;(b,c) 系统性实验验证图4 (a)等疲劳裂纹扩展速率模型图 (b)工程材料强度-韧性与疲劳裂纹扩展速率关系
  • 国家新材料测试评价平台先进无机非金属材料行业中心启动大会通知
    p   国家新材料测试评价平台先进无机非金属材料行业中心启动大会 /p p   时间:2019.10.25 /p p   地点:国家会议中心E236AB /p p   主办方:中国建材检验认证集团股份有限公司 /p p   为加快国家新材料测试评价平台先进无机非金属材料行业中心建设工作,共商合作共赢模式与机制,推动无机非金属新材料领域测试评价技术创新与工程应用,中国建材检验认证集团股份有限公司拟于近期组织召开“国家新材料测试评价平台先进无机非金属材料行业中心启动大会”,特邀贵单位参加。 /p p   主要活动: /p p   上午会议主要日程: /p p   1、中国建材检验认证集团股份有限公司领导致辞 /p p   2、工信部领导解读国家新材料测试评价平台建设方案、政策 /p p   3、新材料产业发展规划(院士、专家报告) /p p   4、新材料检测、标准与评价(院士、专家报告) /p p   5、先进无机非金属材料行业中心建设进展报告 /p p   6、无机非金属材料测试评价新技术报告。 /p p   下午会议主要日程: /p p   1、先进无机非金属材料行业中心理事会和专家委员会筹建情况介绍 /p p   2、选举理事长、副理事长单位 /p p   3、宣读理事会、理事、专家委员会成员名单、颁发证书,颁发先进无机非金属材料行业中心共建单位牌匾 /p p   4、讨论通过先进无机非金属材料行业中心章程、管理办法 /p p   5、先进无机非金属材料行业中心网站介绍 /p p   6、先进无机非金属材料行业中心建设工作研讨 /p p   7、总结发言。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 163px height: 163px " src=" https://img1.17img.cn/17img/images/201910/uepic/91a263ae-23b9-4015-9718-c4bd850b3f8b.jpg" title=" bceia-仪器信息网报名渠道.png" alt=" bceia-仪器信息网报名渠道.png" width=" 163" height=" 163" / /p p style=" text-align: center " 扫码报名 /p
  • 西工大“金属材料快速凝固系统”仪器专项通过中期检查
    2月9至11日,国家自然科学基金委员会工程与材料科学部组织专家,对西北工业大学魏炳波院士主持的国家重大科研仪器设备研制专项项目“基于静电悬浮的金属材料快速凝固实验系统”进行了中期检查。专家组认为,该项目按照计划任务时间节点和目标完成了预定的中期研制任务,取得了显著的阶段研究成果。  国家自然科学基金委员会副主任姚建年院士和高瑞平教授,综合计划局温明章副局长,工程与材料科学部车成卫副主任,王之中处长和郑雁军处长等参加了会议。由王光谦院士、马伟明院士、郭东明院士、沈保根院士、谭建荣院士、金红光院士、宣益民院士等组成的16位专家对项目进展情况、经费使用情况和下一步进展安排进行了全面检查。  学校校领导张炜、魏炳波、宋保维、张卫红,科技管理部、理学院等单位负责同志以及项目组全体成员出席了会议。会议在陕西宾馆召开,由国家自然科学基金委员会工程与材料科学部车成卫副主任主持。  张炜首先致辞欢迎并感谢各位专家领导的指导。他指出,该项目在基金委的支持下,在各位专家领导的指导下进展顺利,各项指标均达到了预期目标,项目组成员艰苦奋斗,在科学研究和技术革新上寻找源头创新,取得了一批卓越的阶段性成果,培养了一批优秀的学术骨干。学校将一如既往地支持基础研究、鼓励源头创新、为该项目的顺利完成做好保障工作。  姚建年副主任代表基金委讲话,首先感谢西工大多年来对基金委工作的支持,也祝贺西工大获得基金委自然科学基金管理先进单位的称号。他强调国家重大科研仪器设备研制专项着眼于科学研究与工程技术的源头创新,希望该项目能够做成一个有代表性的高水平项目。  高瑞平副主任在最后的总结讲话中详细介绍了国家重大科研仪器设备研制专项的评审和管理过程。她认为,该项目能够立项就已经代表项目组具有相当水平 项目执行3年以来,基金委全程跟踪,专家组指导有方,监理组督导到位,希望学校能够在后期执行的过程给予充分保障,基金委也会在项目运行的后一阶段加强管理,并进一步研究考虑在项目结题以后的作用发挥上继续给予支持。  在专家组组长沈保根院士的主持下,项目负责人魏炳波院士从“立项目标和研制任务、中期计划任务完成情况、研制国际合作交流、前三年经费使用情况、后续工作安排与计划调整”5方面做了中期进展报告。项目组主要成员王海鹏教授就该项目的真空系统研制过程做了详细汇报,并播放了研制过程视频。胡亮副教授针对该项目关键科学问题的阶段研究做了汇报。  专家组认真听取了汇报、观看了现场视频、审查了财务支出情况、进行了热烈的讨论,在充分质疑和研讨基础上给项目组提出建议和下一阶段的工作意见。专家组一致同意该项目通过中期检查并认为,项目按期完成了实验系统的总体设计,优化布局各子系统设计方案,并通过外协单位完成加工主要部件。  2013年12月,由魏炳波院士主持申报的“基于静电悬浮的金属材料快速凝固实验系统”,正式获批国家重大科研仪器设备研制专项项目。该实验系统是材料科学和空间科学领域新型先进科学仪器,是国家开展超常凝固研究和空间模拟研究科学技术水平的重要标志之一。该项目也是西北工业大学获得资助的首个国家重大科研仪器设备研制专项项目。  项目实施3年多以来,在静电悬浮的优化设计方面,实现了悬浮能力和悬浮稳定性进一步提高 在快速凝固子系统的优化设计方面,实现了快速凝固过程的动态检测和难熔合金的静电悬浮深过冷与快速凝固。
  • 英斯特朗与客户联合举办高性能金属材料测试专题研讨会
    高性能金属材料将促进未来装备制造、航空航天、汽车工业、新能源、石油化工、国防安全等战略性支柱行业的发展。越来越多的材料研发和质量管理工作者对原材料及成品的性能提出了更高的要求。在对高性能金属材料进行力学性能测试时,最重要的其实是基于对测试标准的正确理解,从而得出的试验数据才最能真实有效的反映材料本身的性能是否达到要求。 2016年7月,国际标准委员会对金属材料测试标准 ISO 6892-1进行了更新。 10月,英斯特朗针对此项测试标准的更新,分别在徐州质检国家网架及钢结构产品质量监督检验中心和武汉理工大学理学院举办高性能金属材料测试应用专题研讨会。会议特邀来自美国英斯特朗全球金属材料测试应用经理,同时也是ISO标准委员会成员的Matthew Spiret 先生,针对 ISO 6892-1:2016中的方法A1和A2进行了深度解析,并对执行该标准时可能遇到的挑战给出了相对应的解决方案。另外,两场会议除了由Matthew Spiret现场主讲外,我们也特别邀请了来自中国科学院金属研究所副研究员姚戈先生、武汉理工大学刘记立老师以及武汉大学尹颢老师,在会上分享了他们在金属材料断裂疲劳测试、形状记忆合金等领域的研究成果及测试应用方面的丰富经验。 来自徐州卡特彼勒、歌博铸造、霍斯利机械、罗特艾德、中国矿业大学、徐州矿业集团、徐工集团研究院、武汉大学、武汉理工大学、华中科技大学、东风商用车、康明斯、神龙汽车、武汉锅炉、武汉钢铁等与金属测试密切相关的客户出席了研讨会,并在现场进行了充分的交流探讨,对ISO标准更新的内容有了更加全面深入的理解。
  • 关于举办“金属材料拉伸试验方法培训班”的通知
    GB/T 228.1-2010《金属材料 拉伸试验 第1部分:室温试验方法》国家标准已由国家标准化管理委员会正式发布,并于2011.12.1实施。新标准对于试验速率的控制、试验结果的数值修约等要求作了较大修改,增加了拉伸试验测量不确定度的评定、计算机控制拉伸试验机使用建议、考虑试验机刚度后估算的横梁位移速率等内容。 为确保各材料实验室有效实施新的拉伸试验方法标准、出具准确可靠的检测结果,长春中机检测培训中心将于2013年6月举办&ldquo 金属材料拉伸试验方法培训班&rdquo 。具体安排如下: 1、培训时间、地点 培训时间:2013年6月19日-22日,培训地点:长春市 2、主办单位 主办单位长春中机检测培训中心,协办单位国家试验机质量监督检验中心。长春中机检测培训中心是通过全国分析检测人员能力培训委员会(NTC)资质认定的培训机构,培训师资由全国分析检测人员培训委员会(NTC)培训大纲编写组专家、多项试验机国家标准主要起草人等教授、高级工程师组成。 3、培训内容 1)试验机结构原理及维护校准 金属材料拉伸试验相关试验设备及装置(电子万能试验机、液压万能试验机、电液伺服万能试验机等)的基本结构、维护保养、日常检查方法、检测/校准项目及相关要求。 2) 试验机操作技术 电子万能试验机、液压万能试验机、电液伺服试验机及引伸计、高温炉和环境箱的操作技术和使用注意事项。 3)金属材料拉伸试验技术基础 金属材料拉伸试验的分类、特点,拉伸试验技术的相关术语。 4)标准方法与应用 金属材料室温拉伸(GB/T228.1-2010)标准最新变化、试验参数设置、试验方法、试验机和引伸计的使用,结果不确定度评定和数据处理方法。高温拉伸(GB/T4338-2006)、弹性模量和泊松比(GB/T22315-2008)、薄板塑性应变比(GB/T5027-1999)、拉伸应变硬化指数 (GB/T5027-1999) 标准试验方法,试验要求及试验技术。 5)实操指导 在长春中机检测培训中心力学实验室按照GB/T228.1-2010新标准的要求进行现场演示试验和实操指导。 4、培训证书 本培训班考核合格者将由全国分析检测人员能力培训委员会(NTC)发放相应技术的《分析检测人员技术能力证书》。全国分析检测人员能力培训委员会是由科技部、国家认监委等部门共同推动下于2008年成立的,负责对全国分析检测人员技术能力的培训管理与考核工作。该能力证书可作为实验室认可、实验室资质认定以及其他各种认证认可中检测人员的技术能力证明。 5、培训班联系方式 联系电话:0431-87963561、85154488 传真:0431-87963560 邮箱:sactc122@163.com 联系人:李金明 朱庆坤
  • 有色金属材料制备加工国家重点实验室通过验收
    2010年12月21日,科技部组织专家在北京对有色金属材料制备加工国家重点实验室(北京有色金属研究总院)进行了建设验收。科技部基础研究司、科技部基础研究管理中心、国资委规划发展局、北京有色金属研究总院等单位相关负责同志参加了会议。验收专家组由来自国内高校、科研院所、企业的7名同领域知名专家组成,组长由机械科学研究总院陈蕴博院士担任。   验收专家组认真听取了有色金属材料制备加工国家重点实验室熊柏青主任所作的建设报告,现场考察了实验室,并与实验室及其依托单位有关人员进行了广泛交流。专家组认为,实验室在建设期内紧密围绕有色金属材料制备加工领域重大科学问题、前沿技术、有色金属材料制备加工行业共性关键技术开展应用基础研究。承担了大量国家级科研任务,如973、863计划、科技支撑计划、国家自然科学基金、国家重大科技专项和国防军工等课题79项,获得科研经费1.3亿元,取得一批有影响的科研成果,获得省部级科技奖15项,授权发明专利36项,发表论文382篇,自主研发的多项新技术在国民经济和国防建设中获得广泛应用,在行业关键技术创新、辐射和推广方面发挥了重要的带动作用。在队伍建设、平台建设、对外开放和运行管理等方面均取得了重要进展。实验室圆满完成了建设任务,实现了预期建设目标。专家组一致同意通过验收,并对实验室今后的建设和发展提出了意见和建议。
  • 陶春虎主任:金属材料的超高周疲劳及其实验研究
    仪器信息网讯 为提高广大试验机用户的应用水平,并促进用专家、用户、厂商之间的相互交流,2012年5月16日,在CISILE 2012召开期间,由中国仪器仪表行业协会试验机分会与仪器信息网主办、北京材料分析测试服务联盟与我要测网协办的“第一届中国试验机技术论坛”在中国国际展览中心综合楼二楼204会议室成功举办。   如下为中航工业航材院航空材料检测研究中心陶春虎主任所作报告的精彩内容: 中航工业航材院航空材料检测研究中心陶春虎主任 报告题目:金属材料的超高周疲劳及其实验研究   陶春虎教授首先在报告中介绍到,按疲劳强度设计的许多零部件在远小于疲劳极限107的应力下仍会发生疲劳破坏,这使得基于传统疲劳极限设计的零件,尤其是高速转动件很不安全,因此超高周疲劳损伤问题已经引起人们的广泛关注。工程上的疲劳分为低周疲劳、高周疲劳和超高周疲劳,而超高周疲劳则涉及失效特征、试验方法和试验设备、失效机理等方面。   随后,陶春虎教授对金属材料的超高周疲劳特征和疲劳失效机理进行了分析与总结,并指出,金属材料超高周疲劳失效基本特征是裂纹起源。一般情况下,传统高周疲劳的裂纹基本从表面萌生,除非试样亚表面存在较大的缺陷或试样表面经过了改性处理;而超周疲劳的裂纹则通常在试样亚表面萌生。其中,“鱼眼”特征的断口一般分为三个区域:光学黑区、平滑区域和粗糙区域。其中,光学黑区的形成相当于具备了试样表面能够形成累积疲劳损伤而发生常规疲劳损伤的条件。然后,陶春虎教授借用王仁智提出的理论和实验阐述了常规疲劳裂纹萌生与亚表面的过程,并分别就加载频率、加载方式和环境对金属材料超高周疲劳及试验机研究进行了详细介绍。   最后,陶春虎教授提出,超高周疲劳研究亟待解决的主要问题主要有:考虑到试验周期、实验频率的影响以及与实际 服役环境的一致性,应当研制具有1kHz-3kHz、能够实现弯曲加载的超高周疲劳试验机;整理和积累各种合金的疲劳实验数据,组建数据库,与传统高周疲劳实验数据进行对比分析,建立试验标准和适应于工程应用的数据处理和修正规范;明确裂纹萌生机理特别是超高疲劳过程裂纹由表面转入亚表面的转移和竞争机制,并尝试借助断口定量分析的手段裂纹早期扩展机制。 会议现场
  • YB/T 5293-2022《金属材料 顶锻试验方法》标准解读
    检验金属材料性能时,除了常规的拉伸、弯曲、冲击、硬度、金相检验等之外,还需进行顶锻试验以检验其延展性能。金属材料顶锻试验方法的新版标准YB/T 5293-2022于2023年4月1日正式实施,YB/T 5293-2014自行废止。8月16日,宝钢检化验中心主任工程师张华将于第二届试验机与试验技术网络研讨会期间分享报告,讲述顶锻试验国家标准的发展概况,对金属材料顶锻试验方法的新版标准进行技术解析。关于第二届试验机与试验技术网络研讨会为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/testingmachine2023
  • 标准解读 |《汽车用金属材料圆棒室温高应变速率拉伸试验方法》
    10月26日,中国汽车工程学会正式发布由泛亚汽车技术中心有限公司联合中国汽车技术研究中心有限公司、清华大学苏州汽车研究院、中国飞机强度研究所、ITW集团英斯特朗公司、道姆光学科技(上海)有限公司、东风汽车集团有限公司等单位联合起草的CSAE标准《汽车用金属材料圆棒室温高应变速率拉伸试验方法》(T/CSAE 233-2021)。本标准提出的金属材料圆棒高应变速率拉伸试验方法适用于汽车底盘用的铸造、锻件类零件材料的高应变速率拉伸测试。本标准在GB/T 228.1-2010及GB/T 30069.2-2016基础上,对金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的规定,以确保棒材高应变速率拉伸测试的准确性。当前,汽车底盘用的铸造类零件如Knuckle和Mount等零件的材料高速拉伸曲线是CAE碰撞分析中重点关注技术参数,为了建立CAE分析用高速拉伸所需数据库,提高碰撞安全分析的准确性,需要借助高速拉伸机、三维光学测试(Digital Image Correlation, DIC)技术获取金属棒材的应力、应变场数据。目前对于铸铁、铸铝的圆棒试样的高速拉伸测试还没有相应的国际、国内标准,各整车企业及总成制造商对铸件材料的高应变率拉伸试验方法未见详细说明,测试结果也存在在较大差异,由此带来该对底盘类铸件材料性能和可靠性的评价存在诸多差异。起草工作组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了GB/T 30069 《金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。编制组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了《GB/T 30069 金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。图1 钛合金和45#钢夹具及分别在100-1s时的拉伸曲线在应变片的粘贴和标定方面做了详细的试验,在本标准中给出了具体阐述,尤其指明标定的系数R2≥0.999。设备状态的确认中,如果测试力的同时还需要测试应变,设备需要连接额外的数据线,试验前需检查所有的连线是否牢固连接,尤其是信号触发线。每次测试前先在静态试验机上低应变速率拉伸,然后在高速试验机上以同样的速率拉伸同一批次的试样检验设备。静态试验根据 GB/T 228.1-2010规定进行。为了验证验证圆棒试样的应变是否需要三维测试,分别用单台和两台相机试验,发现当使用单台相机时,大截面尺寸(5毫米直径棒材)会出现由于散斑扭曲导致跟踪不了散斑变化产生测量误差或试验失效,因此当出现散斑测试的应变变化跟不上力值变化时,应使用两台相机测试。如图2、3所示。铸铝(左) 铸铁(右)图2 一台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线铸铝(左) 铸铁(右)图3 两台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线标准起草组对于数据采集频率也做了研究,图像拍照及采集系统的采样频率应考虑试样断裂时间。当应变速率≤100s-1时,所取得的应变有效数据大于力值的采样数据,而且一般会大于400。当应变速率100s-1时,应变的有效数据会急剧下降,应调整应变的采集频率和拍摄参数,最终应变的有效采集不低于100个点。否则不能有效测出弹性模量及剪切模量。对于拉伸速度偏差认可的确认,各测试单位做了详细讨论,考虑到高应变率速度的影响因素复杂,因此给出按照最大力对应的应变划分不同平均速度的限制要求。即当最大力对应的应变率大于5%时,实际应变速率的平均值推荐在目标应变速率的±5%以内,当最大力对应的应变率小于5%时,记录实际应变速率到报告中。试样尺寸也是本标准重点考虑的内容,较短的测试长度有助于获得高的应变速率,但测量长度不能过小,否则不能保证反映材料的性能。因此参考静态的标准及高应变速率拉伸的现有标准,制作了4种不同的试样并测试。试样的装夹方式,尺寸及夹具材料在标准中得到具体描述。优化后的的试样如图4,并给出推荐尺寸。 图4 典型的试样尺寸说明:(1)尺寸公差为0.05mm,平行段工作部分粗糙度0.32,同轴度为0.01毫米。(2)推荐区域直径为5mm,=10mm,=15mm,R=16mm,=5mm,=35mm,D=12mm,或者区域直径为3mm,=10mm,=15mm,R=12mm,=5mm,=35mm,D=6mm。综上所述,该标准围绕车用金属材料的使用工况,对3毫米直径以上的哑铃型拉伸试样进行充分的试验,给出了从夹具,散斑制作,相机标定,系统试验前验证,试样尺寸与装夹,力的测试,数据采集及处理等方面系统的说明,试验准确性高,试验失效率低,同时避免不同试验员试验结果差异等问题。本标准充分考虑了汽车行业用到的铸件和锻件零件,具有普遍适用性,可以为CAE仿真高效地提供更加准确可靠的材料数据。与目前使用的GB/T 30069 《金属材料 高应变速率拉伸试验》和ISO 26203 《金属材料高应变率拉伸试验》中的方法协调统一,互不交叉,提供了标准外的常用形状试样的高应变速率下的详细试验方法,对现有标准起到补充作用。
  • 我国首个国产自研飞机金属材料检测实验室在疆投运
    2月4日,我国首个国产自研飞机金属材料检测实验室在位于乌鲁木齐市的南航技术分公司新疆基地正式投运。这不仅是民航业内首次在该领域使用国产自研高精尖检测仪器,同时也打破西方长期以来技术垄断,提升航班运行安全。  该实验室采用国产第三代国仪钨灯丝扫描电镜设备,在不拆解核心机械部件情况下,可以把飞机内部微小颗粒和碎屑进行30万倍电子放大,快速了解飞机健康状况。工程师正在操作仪器检查金属微粒。张洁 摄  南航技术分公司新疆基地技术培训室工程师吕首杰介绍:“该实验室通过对飞机‘血液’内细微金属颗粒尺寸、形状及表面特征形貌进行分析,从而确定磨损、剪切、断裂等成因,并使用能谱仪分析合金各类金属组成比例,判断碎屑具体来源,综合检测结果,快速了解飞机健康状况”。  实验室建立之前,飞机金属碎屑要运送到广州、北京等地进行检测,整个过程耗时2天,不仅耗时长,而且也限制着航班正常运行。随着实验室投运,工程师在3个小时内就能获取详细检测报告,旅客出行更加便捷可靠。  除了金属检测实验室,针对飞机健康监控,南航还有多种“黑科技”。比如基于大数据的南航“天瞳”系统,工程师在地面就可以对飞机进行实时跟踪,获得各系统状态多种参数,针对不同参数给出方案,提高维护效率,并通过大量历史数据进行分析预判,找出关键部件的发展趋势,提前发现问题,进行预防性维护。再比如运用AI人工智能设备,维护人员定期对飞机进行孔探检查,使用内窥镜探测飞机内部结构,判断内部扇叶等结构是否存在问题,并借助人工智能设备自动判断测量损伤,减少人工孔探的误差。
  • 中国金属材料产品质量分析检测大会,南京滨正红仪器赞助参展
    南京滨正红仪器有限公司专业研发、生产、销售痕量、超痕量分析器皿。产品质量可与国外品牌相媲美。为促进我国金属材料领域产品质量技术进步,优化制造流程与产品的过程控制,推动关键技术、核心装备和重大产品创新,促进在相关领域的产业化应用,发挥科研院所、高等院校资源与技术优势,搭建产、学、研、用技术对接与合作平台。在中国有色金属学会的指导下,由广东省工业分析检测中心(广东省科学院)、国家钢铁材料测试中心(钢铁研究总院)、国家轻金属质量监督检验中心(中国铝业郑州有色金属研究院有限公司)、轻质高强结构材料国防科技重点实验室(中南大学)联合主办,北方中冶(北京)工程咨询有限公司承办的“中国金属材料产品质量分析检测大会”已于 2019 年 6 月 19 日-21 日在广东省广州市隆重召开 大会现在南京滨正红展示多了个实验室新品,深受广大实验者老师的青睐!多功能电热板消解仪,耐腐蚀,四氟柱脚,分体式设计电源线套有PFA管畅销产品:特制特氟龙消解器皿,微波罐,消解瓶,消化罐,烧杯,坩埚南京滨正红真诚希望能与每位老师的合作共赢!
  • 中关村材料试验技术联盟《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》和《金属材料 氩含量的测定 脉冲加热惰性气体熔融-质谱法》2项团体标准审查会成功召开
    4月11日,由中国材料与试验标准化委员会综合标准化领域委员会(FC99)对《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》和《金属材料 氩含量的测定 惰气脉冲熔融质谱法》2项团体标准以线上+线下形式召开了标准审查会。会议由钢研纳克检测技术股份有限公司首席专家贾云海担任审查专家组长,来自钢铁研究总院有限公司、原武汉钢铁有限公司、中关村材料试验技术联盟、原宝钢股份有限公司、首钢京唐公司、国家钢铁产品质量检验检测中心7位审查专家出席了会议,标准起草单位广东省科学院工业分析检测中心、广东省科学院新材料研究所、广东省珠海市质量计量监督检测所、广州禾信仪器股份有限公司和钢研纳克检测技术股份有限公司代表以及中关村材料试验技术联盟秘书处等10余人参加了此次标准审查。会上,专家组听取了标准申报单位对申报标准的情况介绍,包括文本规范性,技术要素和指标的科学性、合理性及可操作性,与国内外先进标准的比对情况和征询意见汇总情况等方面进行了详细汇报。与会专家对标准的具体内容进行了质询,并提出了意见和建议。最后,两项标准一致通过了审查。《高速工具钢 多元素含量的测定 火花放电原子发射光谱法(常规法)》采用用直读光谱仪测定高速工具钢中C、Si、P、S、Mn、Cr、Ni、Mo、Al、Cu、W、V等元素含量。本标准的制定,检测机构、工厂企业、科研单位可采用此标准快速、准确地测定高速工具钢的化学成分,有利于提高工作效率,降低分析成本,具有广泛的市场应用价值。《金属材料 氩含量的测定 脉冲加热惰性气体熔融-质谱法》采用目前广泛应用的惰气脉冲熔融技术,结合质谱分析技术,研究开发了脉冲加热惰性气体熔融-质谱法测定金属材料中氩元素含量,本标准的制定有利于满足新型材料的研究、生产与应用的迫切需要。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制