当前位置: 仪器信息网 > 行业主题 > >

进口植物荧定仪

仪器信息网进口植物荧定仪专题为您提供2024年最新进口植物荧定仪价格报价、厂家品牌的相关信息, 包括进口植物荧定仪参数、型号等,不管是国产,还是进口品牌的进口植物荧定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合进口植物荧定仪相关的耗材配件、试剂标物,还有进口植物荧定仪相关的最新资讯、资料,以及进口植物荧定仪相关的解决方案。

进口植物荧定仪相关的论坛

  • 【分享】加拿大修订根茎作物植物卫生进口要求

    近日,加拿大发出通报,公布加拿大根茎作物植物卫生进口要求修订指令,旨在缓解加拿大土壤传播植物检疫有害生物的传入和扩散风险。用于种植的植物和植物部分及参(Panax spp)根和食用马铃薯块茎(Solanum tuberosum)的要求不在本指令范围内。该修订指令建议修改以下内容:l 撤销大豆孢囊线虫(Heterodera glycines)相关要求;l 已知不存在本指令监管土壤传播有害生物的国家向美国大陆出口带土块根作物,可无须植物卫生证书,而凭产地证书出口加拿大;l 该指令规定范围内增加进口带根鲜草药;l 澄清现有要求;l 更新本指令监管土壤传播有害生物的分布区及相关植物卫生要求。该通报的拟批准2011年6月15日,目前正在征求意见中。

  • 【分享】美对进口植物繁殖材料实施新规

    近日,通过对美国相关网站的跟踪,发现美国近期修订法规,对进口植物繁殖材料实施新的植物检疫管理措施。通过本次修订,授权美国农业部动植物检疫局(APHIS)为进口植物繁殖材料设立了一个新的管理类别—“待有害生物风险分析后批准”。根据新规则,APHIS将公布一个被认为是检疫性有害生物或检疫性有害生物寄主的植物名单。名单内的植物只有APHIS完成有害生物风险分析后才允许进口。APHIS在有科学证据表明进口某种植物会带来检疫性有害生物被引入美国的风险时,可将该植物类别添加至NAPPRA目录内。在将任何植物补充进入NAPPRA目录之前,APHIS会通过公告寻求公众评议。NAPPRA名单将在网上公布。任何人都可以要求APHIS对列入NAPPRA目录的任何类别植物进行有害生物风险分析。完成分析后,APHIS将着手制定规则,允许属于限制类别的植物进口,如果因植物进口的相关风险不能有效减轻,则禁止其进口。该法规在5月27日的《联邦记事》上发布,6月27日生效。此前美国的相关法规仅将进境植物繁殖材料分为禁止进境和限制进境两种类别,并不像进口水果、蔬菜那样要求事先完成有害生物风险分析。APHIS不允许禁止进境类植物繁殖材料入境。对于限制进境类植物繁殖材料,则要求在原产地或第一入境口岸实施检查,同时要求随附由输出国家或地区官方签发的植物检疫证书。有关专家指出,美国新出台的管理措施,将对我国相关产品的出口产生重大影响。为此,检验检疫部门建议相关企业积极应对:随时掌握美国和其他国家、地区的有关植物检疫措施的最新进展;积极改进技术、管理手段,加强品牌和规模化经营,采取有针对性的措施,不断提高产品的质量和竞争力。

  • 【转帖】印度修订2009年植物检疫令

    [align=center][b]印度修订2009年植物检疫令[/b][/align]  印度近日发出G/SPS/N/IND/63/64号多项通报。印度农业部对2009年植物检疫令(印度进口法规)草案进行了第六次和第七次修订,修订内容包括:一是旨在进一步放宽从各国进口的12类产品的规定。12类中有7类是繁殖植物切条,一类是种植用种子,一类是食用果实,一类是带皮或无皮原木,一类是组织培植植物,一类是食用棕榈仁。有34类产品是首次添加到检疫令中的,使一些目前未批准进口的植物与植物材料向印度出口成为可能。二是旨在进一步放宽印度进口植物及植物材料的规定,增加进境港口使向印度进口植物与植物材料通过新增加的港口成为可能。  上述通报目前正在征求意见中。

  • 【转帖】国家质检总局发布公告 对进口植物种苗实施指定入境口岸措施

    国家质检总局发布公告 对进口植物种苗实施指定入境口岸措施 日前,国家质检总局发布公告,决定自2010年4月1日起对进口植物种子、苗木、砧木、接穗、插条、球茎、块根等活体植物繁殖材料(以下简称“植物种苗”)实施指定入境口岸措施。 公告指出,进口植物种苗口岸应具备现场查验、除害处理、隔离检疫设施等必要条件,所在检验检疫机构应具备相应的实验室检测手段和技术能力。进口商或其代理人进口植物种苗,应当依法办理进境检疫审批,并选择从公布的指定口岸入境。经国家质检总局组织专家实地考核评估,北京首都国际机场、浦东国际机场、天津新港、佛山南海港、大连大窑湾港等20个省(直辖市、自治区)的44个口岸(详细名单见国家质检总局网站)被指定为首批入境口岸。国家质检总局还将根据口岸条件和贸易需要,对指定入境口岸名单实施动态调整。 据了解,植物种苗传带外来有害生物的检疫风险极高,为此,世界各国均将进境种苗检疫作为植物检疫工作的重中之重。据统计,2008年我国进境植物种苗共1.46万批2.5亿美元,共截获各类有害生物644种,其中检疫性有害生物34种495次。2009年进境植物种苗共1.45万批2.4亿美元,共检出有害生物1136种11380次,其中检疫性有害生物67种558次。针对截获疫情,检验检疫机构依法采取了退运、销毁、除害处理等措施,有效地发挥了国门安全把关的作用。但是,进口活体种苗携带疫情检测鉴定技术难度很大,如果口岸查验隔离设施、实验室条件及检测人员达不到相应要求,很可能让一些外来有害生物成为“漏网之鱼”。 近年来,外来有害生物入侵我国呈明显递增趋势,出入境检验检疫机构在全国外来疫情监测中发现黄瓜环斑驳病毒、玉米褪绿斑驳病毒、花生黑腐病菌、黄顶菊、刺桐姬小蜂、红火蚁、扶桑绵粉蚧等一系列严重危害农林业生产安全的病虫害,并配合地方政府及相关部门采取铲除防控措施。据专家分析,这些新传入的外来疫情随进境种苗传入的可能性极大。对进口植物种苗实施指定口岸、隔离检疫等制度,是被发达国家实践证明防范外来有害生物传入的最有效措施。通过组织专家考核具备相应查验条件、技术手段、检测人员等检测能力的口岸,才允许进口种苗,能够确保种苗携带的各类有害生物特别是难以检测的细菌、病毒、真菌等得到快速准确的检测,从而确保国家安全引进种苗,既满足科研和生产的需要,又防止有害生物传入。

  • 【转帖】美国制定关于熟猪皮进口最终法规

    [align=center][b]美国制定关于熟猪皮进口最终法规[/b][/align]  美国近日发出G/SPS/N/USA/1842A1号通报,对熟猪皮的进口制定最终法规。法规准许在某些条件下从口蹄疫(FMD)、猪水泡病(SVD)、非洲猪瘟(ASF)及传统猪瘟CSF)地区进口熟猪皮。美国农业部动植物健康检验局(APHIS)经过风险评估得出结论:蒸煮方法经试验足以杀灭来自疫区进口熟猪皮所携带的相关病原菌。因此,本法规在继续防止相关疫病传入的同时,决定撤销熟猪皮的进口限制,并于2010年1月开始生效。

  • 凯氏定氮法和杜马斯法测定植物样品中的全氮方法比较

    1 引 言氮是植物需求量最大的矿物质营养元素,同时也是植物个体乃至自然生态系统和人工生态系统(包括农业系统)生长最常见的限制因子。在植物体中含有的氮,大部分是作为蛋白质、氨基酸、酰胺及其它与蛋白质有关的物质的组成而存在的,此外少部分作为硝酸态存在。全氮是植物成分分析中非常重要的项目之一。全氮的测定方法有很多种,最经典的方法为凯氏定氮法,但是普通的凯氏法不便定量硝态氮,而其含量可能相当高。此外,对-N=N-,http://www.dsddy.cn/Upload/UploadPic/201042612017583.jpg,-N=O, -NO2等的定量也是困难的。对于大量含有这些形态氮的样品,应采用各自的定量方法进行检测。但通常用能定量植物样品中大部分氮素的凯氏法所定量的氮作为全氮。若样品中含有较多硝态氮时,可用水杨酸硫酸分解法还原硝酸,这种方法比较烦琐。目前在欧美等发达国家广泛采用杜马斯燃烧法取代凯氏法。这种方法是使样品在高温纯氧环境中燃烧后,分离出氮气,并被热导检测器检测,检测出的结果包含了硝态氮。此法也因其快速,精确,无污染等优点而得到了广泛的认可。对两种定氮方法做一比较是非常必要的。以下简介杜马斯燃烧定氮法,并对两种方法测定几种植物样品中的全氮进行了对比。2 杜马斯燃烧定氮法早在1833年,Jean Baptiste Dumas就开发出燃烧定氮法,后人定名为杜马斯(Dumas)法。该方法的发明比凯氏法还早50年,但是由于早期的杜马斯法只能检测几个毫克的样品,使它的实际应用受到了极大的限制,在随后的岁月里这种方法没有被广泛的应用开来。近十年来,随着可以检测克级样品的杜马斯法快速定氮仪问世,才拉开了其在食品、饲料、肥料、植物、土壤及临床等领域上广泛应用的序幕。目前,在西方国家的很多实验室都已用杜马斯法代替凯氏法检测全氮。 http://www.dsddy.cn/Upload/UploadPic/201042612051639.jpg

  • 【资料】日本官方检疫所对进口植物源性食品50项必检农残项目

    日本官方检疫所对进口植物源性食品50项必检农残项目 英文 中文 EPN 苯硫磷 AZINPHOS-METHYL 甲基谷硫磷 AZOXYSTROBIN 嘧菌酯 ALACHLOR 甲草胺 ISOPROTHIOLANE 稻瘟灵 IPRODENFOS 异稻瘟净 INDOXCARB 茚虫威 ETHION 乙硫磷 ETHOPROPHOS(ETHOPROP) 灭线磷 ENDOSULFAN 硫丹 QUINALPHOS 喹恶磷 QUINTOZENE 五氯硝基苯 KRESOXIM-METHYL 醚菊酯 CHLORPYRIFOS 毒死蜱 CHLORPYRIFOS-METHYL 甲基毒死蜱 CHLORFENAPYR 溴虫腈 CYHALOTHRIN 三氟氯氰菊酯 CYFLUTHRIN 氟氯氰菊酯 CYPRODINIL 嘧菌环胺 CYPERMETHRIN 氯氰菊酯 DIMETHOATE 乐果 DIAZINON 二嗪磷 TETRACONAZOLE 四氟醚唑 TETRADIFON 三氯杀螨砜 TEBUFENPYRAD 吡螨胺 DELTAMETHRIN,TRALOMETHRIN 溴氰菊酯和四溴菊酯 TRIAZOPHOS 二唑磷 PARATHION 对硫磷 PARATHION-METHYL 甲基对硫磷 DIFENTHRIN 联苯菊酯 PIRIMIPHOS-METHYL 甲基嘧啶磷 PYRIMETHANIL 嘧霉胺 FENITROTHION 杀螟硫磷 FENTHION 倍硫磷 PHENTHOATE 稻丰散 FENVALERATE 氰戊菊酯 FENPROPATHRIN 甲氰菊酯 FLUOYTHRINATE 氟戊菊酯 FLUSILAZOLE 氟硅唑 FLUVALINATE 氟胺氰菊酯 PROCYMIDONIL 腐霉利 PROTHLOROS 丙硫磷 PROPICONAZOLE 并环唑 PROFENOFOS 丙溴醚 PERMILTHRIN 苄氯菊酯 PRORATE 甲拌磷 MALATHION 马拉硫磷 MYCLOBUTANIL 腈菌唑 METHAMIDOPHOS 甲胺磷 METHIDATHION 杀扑磷

  • 植物冠层分析仪有哪些优势

    植物冠层分析仪有哪些优势

    [size=16px]  植物冠层分析仪是一种用于测量和分析植物群落中植物冠层结构的工具。它在生态学、林业、农业等领域中被广泛使用,有许多优势:  非破坏性测量:植物冠层分析仪通常使用激光、雷达或摄影等技术进行测量,这些方法不需要直接接触植物,因此不会对植物造成损伤,有利于长期监测和研究。  高效快速:与传统的人工测量方法相比,植物冠层分析仪可以快速地收集大量数据。这对于研究人员来说节省了时间和精力,并且能够获得更全面的数据集。  准确性和精度:现代植物冠层分析仪使用先进的传感器和算法,能够提供高度准确和精确的测量结果。这对于科研工作和资源管理决策非常重要。  多维信息获取:植物冠层分析仪不仅可以获取植物的高度信息,还可以获得关于植物分布、密度、覆盖度、树冠形状等多种信息,帮助研究人员更好地理解植物群落的结构与功能。  长期监测和比较:由于植物冠层分析仪具有非破坏性和高效快速的特点,可以用于长期的生态监测和植被变化的研究。研究人员可以跟踪不同时间点的数据,分析植物群落的动态变化。  自动化和标准化:使用植物冠层分析仪进行测量可以减少主观因素的影响,使数据更加客观和可重复。这对于科研的可靠性和数据比较具有重要意义。  适用于多种环境:植物冠层分析仪适用于不同类型的植被,包括森林、草原、农田等,扩展了其应用范围。  生态学研究与资源管理:植物冠层分析仪为生态学研究和自然资源管理提供了强大的工具。研究人员可以更好地了解植物群落的结构、物种多样性、生长状态等信息,从而制定更有效的保护和管理策略。  尽管植物冠层分析仪具有许多优势,但也需要考虑其成本、数据处理复杂性以及某些环境条件下的限制。云唐建议在选择使用植物冠层分析仪时,需要综合考虑其优势和局限性,以满足特定研究或管理的需求。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251010121585_7702_6098850_3.png!w690x690.jpg[/img][/size]

  • 【资料】进境食用植物油检疫规定有调整

    为了保证进境食用油的质量安全,同时促进进口贸易的发展,根据2009年植物保护国际公约(IPPC)发布的植物检疫措施国际标准《基于有害生物风险的商品分类》和《中华人民共和国进出境动植物检疫法》有关规定,国家质量监督检验检疫总局在对进境食用植物油进行风险评估的基础上,决定对我国《出入境检验检疫机构实施检验检疫的进出境商品目录》"检验检疫类别"中,有"P/Q"要求的进境食用植物油需随附官方《植物检疫证书》的规定自2011年1月1日起进行调整。 根据新规,2011年,对于进境后不再进行分装或加工的预包装食用植物油,入境时不再要求随附《植物检疫证书》。对于其他进境食用植物油,根据《进境植物和植物产品风险分析管理规定》,应由输出国家或地区官方向国家质检总局提供进境食用植物油加工工艺等有关信息。国家质检总局组织对出口国或地区提供的加工工艺进行风险评估,并根据风险评估结果,决定是否要求随附输出国家或者地区官方出具的《植物检疫证书》,有关决定将以书面形式通知。对于愿意继续出具《植物检疫证书》的输出国家或地区,其输华食用植物油可免予上述风险评估程序。 在此,检验检疫部门提醒有意进口食用植物油的企业,高度重视产品使用条件和标识,必须了解清楚相关法规要求,积极做好准备,以免引起不必要的损失。

  • 手持式植物养分速测仪如何检测植物叶面温度

    手持式植物养分速测仪如何检测植物叶面温度

    [size=16px]  手持式植物养分速测仪如何检测植物叶面温度  手持式植物养分速测仪通常不用于测量叶面温度,而是用于测量植物的营养元素含量、叶绿素含量等参数。要测量叶面温度,通常需要使用红外热像仪或红外温度计等专门的仪器。以下是如何使用红外热像仪来测量植物叶面温度的一般步骤:  准备手持式植物养分速测仪:  打开手持式植物养分速测仪,并确保它已经达到稳定的工作状态。  根据仪器的使用说明,进行必要的校准和设置。  准备测量环境:  在测量之前,确保测量环境没有明显的干扰因素,如直射阳光、风、或其他热源。  将手持式植物养分速测仪对准要测量的植物叶面区域。  进行测量:  按下手持式植物养分速测仪上的触发按钮来拍摄或记录叶面的红外热图像。  等待仪器处理图像数据,以获取叶面温度信息。  手持式植物养分速测仪可以直接显示叶面温度,而其他仪器可能需要将数据传输到计算机或移动设备上进行分析。  分析结果:  分析所获得的红外热图像,查看叶面温度的分布情况。  记录或分析所需的温度数据,以了解植物的温度状况。  云唐手持式植物养分速测仪能够测量物体表面的温度,因此可以用于监测植物叶面的温度分布,以帮助农业和植物研究人员更好地理解植物的生长和健康状态。要获得准确的叶面温度数据,确保仪器的使用和环境设置是适当的,并根据仪器的说明进行操作。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181128595765_5081_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 定氮仪在我国成功研制摆脱进口

    从国务院国有资产监督管理委员会了解到,大型央企新兴铸管集团旗下3503英美尔科技开发有限公司新版《中国仪器仪表厂商名录》征集中近日与中科院土壤研究所共同成功研制出国产定氮仪。此产品仪器仪表产品目录的研制成功大大提高了相关科研分析数据的精确度,也有助于国内摆脱此类仪器设备主要依赖进口的窘况。据了解,定氮仪是植物氮元素分析的前置设备,用于提取土壤和植物中氮元素初样,在发达国家被广泛应用于环境分析、农作物及植物生态状况分析。由于我国对定氮仪的研究相对滞后,目前主要依赖进口仪器设备。此次由我国独立研制成功的定氮仪设备,工作性能与进口仪器设备相当,而其价格仅为进口产品的1/6,刚一问世,便接到了国内使用单位大量产品订单。 信息来源:http://www.qyhc.com.cn

  • 【转帖】凯氏定氮法和杜马斯法测定植物样品中的全氮方法比较

    【转帖】凯氏定氮法和杜马斯法测定植物样品中的全氮方法比较

    1 引 言 氮是植物需求量最大的矿物质营养元素,同时也是植物个体乃至自然生态系统和人工生态系统(包括农业系统)生长最常见的限制因子。在植物体中含有的氮,大部分是作为蛋白质、氨基酸、酰胺及其它与蛋白质有关的物质的组成而存在的,此外少部分作为硝酸态存在。 全氮是植物成分分析中非常重要的项目之一。全氮的测定方法有很多种,最经典的方法为凯氏定氮法,但是普通的凯氏法不便定量硝态氮,而其含量可能相当高。 此外,对-N=N-,http://www.dsddy.cn/Upload/UploadPic/201042612017583.jpg,-N=O, -NO2等的定量也是困难的。对于大量含有这些形态氮的样品,应采用各自的定量方法进行检测。但通常用能定量植物样品中大部分氮素的凯氏法所定量的氮作为全氮。若样品中含有较多硝态氮时,可用水杨酸硫酸分解法还原硝酸,这种方法比较烦琐。目前在欧美等发达国家广泛采用杜马斯燃烧法取代凯氏法。这种方法是使样品在高温纯氧环境中燃烧后,分离出氮气,并被热导检测器检测,检测出的结果包含了硝态氮。此法也因其快速,精确,无污染等优点而得到了广泛的认可。对两种定氮方法做一比较是非常必要的。以下简介杜马斯燃烧定氮法,并对两种方法测定几种植物样品中的全氮进行了对比。2 杜马斯燃烧定氮法 早在1833年,Jean Baptiste Dumas就开发出燃烧定氮法,后人定名为杜马斯(Dumas)法。该方法的发明比凯氏法还早50年,但是由于早期的杜马斯法只能检测几个毫克的样品,使它的实际应用受到了极大的限制,在随后的岁月里这种方法没有被广泛的应用开来。近十年来,随着可以检测克级样品的杜马斯法快速定氮仪问世,才拉开了其在食品、饲料、肥料、植物、土壤及临床等领域上广泛应用的序幕。目前,在西方国家的很多实验室都已用杜马斯法代替凯氏法检测全氮。http://ng1.17img.cn/bbsfiles/images/2010/12/201012032157_264274_1641058_3.jpg 凯氏定氮法需要较大的劳动强度和分析时间,且操作过程较为危险,产生化学废物污染环境。相比之下,杜马斯法有很大的优势:它不需要对样品做复杂的前处理,只要适当的粉碎;单个样品分析只要3-5分钟,可用自动进样器连续进样,不需要人看守;它不用有害试剂,不产生污染物质,对操作人员和环境都是安全的。表1归纳了两种方法的特点。3 实验部分3.1凯氏定氮法3.1.1原理利用浓酸溶液将有机物中的氮分解出来。均匀的样品在沸腾的浓硫酸中作用,形成硫酸铵。加入过量的碱于硫酸消解液中,将NH4+ 转变成NH3,然后蒸馏出NH3,用接受液吸收。通过测定接受液中氨离子的量来计算样品中氮的含量。3.1.2仪器全自动凯氏定氮仪。3.2杜马斯燃烧定氮法3.2.1原理样品在900℃~1200℃高温下燃烧,燃烧过程中产生混合气体,其中的干扰成分被一系列适当的吸收剂所吸收,混合气体中的氮氧化物被全部还原成分子氮,随后氮的含量被热导检测器检测。3.2.2仪器蛋白质测定仪 。3.2.3反应过程(基于ZDDN-II氮/蛋白质分析仪)样品在高温下燃烧,燃烧生成的气体被载气 CO2携带直接通过氧化铜(作为催化剂)而被完全氧化。此外,化合物中一定量的难氧化部分会被载气携带通过作为催化剂的氧化铜和铂混合物进一步氧化。燃烧生成的氮氧化物在钨上还原为分子氮,同时过量的氧被结合。用传感器控制最佳燃烧所需的氧气量,以保证氧气和钨的消耗量最少。用一系列的吸收剂将干扰成分如H2O、SO2、HX从被检测气流中除去。用TCD热导检测器来检测 CO2 载气流中的氮。用标准物质独立校正,被测样品中含氮量自动计算、打印和存储。4 结果与讨论凯氏法一个公认的局限性是它不能定量NO3-N (植物样品全氮的重要组成部分)( Silvertooth和Westerman,1988)。Sader等人(2004)发现NO3-N的存在会影响全氮含量。Simonne et al.(1995)和Etheridge et al.(1998)也证实,在分析植物样品时,杜马斯法得到的全氮值总是略微高于凯氏法的测定值。本实验也得到了同样的结果。http://ng1.17img.cn/bbsfiles/images/2010/12/201012032158_264275_1641058_3.jpg由表2可以看出,凯氏氮总是低于杜马斯氮,D/K的值均大于1。Sader等(2004)认为,凯氏氮与杜马斯氮在同类样品中呈线性相关,通过校正因子对硝态氮进行校正后,两种结果差异不显著。对于草类样品,凯氏氮低于杜马斯氮的程度是否与样品中硝态氮的含量有关及其相关性如何尚需进一步研究。此外,植物的不同部位以及生长的不同阶段其硝态氮的含量和分布会有所不同,用凯氏法及杜马斯法测得的总氮结果会有何等差异,在本文中未曾涉及,有待进一步探讨。5 结 论由于植物样品中多含有硝态氮,某些样品硝态氮的含量占全氮的10%以上,所以杜马斯法测定结果往往高于凯氏法的结果。可见杜马斯定氮法所得到的全氮结果更接近真值。而且,杜马斯法不需要消煮,大大缩短了工作时间,减少了实验的危险性,对环境没有任何污染。作者认为可以用杜马斯燃烧法进行植物样品中全氮的测定。

  • 能测定植物地下根系的NIR有便携式的吗?

    能测定植物地下根系的NIR有便携式的仪器吗? 最好国外进口的仪器,国内仪器质量不好,不满足应用要求。比如,测定地下植物根系生物量,含C P K 等含量。 谁知道,联系我,我想买仪器。 联系人:13810269812

  • 【讨论】植物净化室内空气

    常见花卉植物的净化效果如下: 长春藤可以清除1.48mg的甲醛、0.91mg的苯;黑美人可以清除0.93mg的甲醛、0.4mg的苯、2.49mg的氨;绿萝可以清除0.59mg的甲醛、2.48mg的氨;黄金葛可以清除4.11mg的氨;发财树可以清除0.48mg的甲醛、2.37mg的氨;散尾葵可以清除0.38mg的甲醛、1.57mg的氨;一帆风顺可以清除1.09mg的甲醛、3.53mg的氨;孔雀竹芋可以清除0.86mg的甲醛、2.91mg的氨;元宝树可以清除1.33mg的氨;非洲茉莉可以清除1.29mg的氨。  植物虽能当"清道夫" 净化室内空气。但卧室不宜摆放过多花卉,夜间植物呼吸作用旺盛,放出二氧化碳,不利于夜间睡眠。 而其他场所根据装修材料不同,污染物质也不同,可以选择不同净化功能的植物。  一般情况下,10平方米左右的房间,1.5米高的植物放两盆比较合适。利用花卉植物净化室内环境应注意:一些花草香味过于浓烈,会让人难受,甚至产生不良反应,如夜来香、郁金香、五色梅等。一些花卉,会让人产生过敏反应。像月季、玉丁香、五色梅、洋绣球、天竺葵、紫荆花等,人碰触抚摸它们,往往会引起皮肤过敏,甚至出现红疹,奇痒难忍。有的观赏花草带有毒性,摆放应注意,如含羞草、一品红、夹竹桃、黄杜鹃和状元红等。

  • 推荐一下冷冻球磨机-研磨植物用

    大家推荐一下可以研磨拟南芥等植物样品的冷冻球磨机吧! 进口的和国产的都行,进口的好像比较贵,不知道有没有国产的比较好用的,先谢谢了http://simg.instrument.com.cn/bbs/images/brow/em09507.gif

  • 【简讯】美国拟修订水果蔬菜进口法规

    2008年1月3日,美国动植物健康检验局(APHIS)拟修订水果蔬菜进口法规,取消对从中国山东进口的鸭梨的一项处理要求;澄清从韩日进口砂梨的条件 并澄清植物垃圾或碎屑的划分标准。这些拟议修改将取消不必要的处理要求,并澄清现有的某些规定,使法规更便于理解和执行。 文章来源:中国 WTO/TBT-SPS 国家通报咨询网

  • 谁做过液相测植物油中苯并芘?

    各位大侠,谁用液相测过植物油中苯并芘的,请问有哪些注意事项?1 苯并芘标准品用固体还是液体,液体的话溶剂怎么选?一般是不是用进口的多?大家都用什么牌子的、规格的?2 植物油预处理大家都有什么好的方法推荐的?氧化铝柱子还是凝胶的?3 苯并芘是强致癌剂,请问操作时有啥保护措施?4 其他注意点请前辈指教,不胜感激!!!

  • 【分享】常见的大气污染与一些监测植物

    大气是人类及一切生物赖以生存必不可少的物质和基本环境要素之一,是自然环境的重要组成部分。成年人每天要吸入10 ~12m3 空气, 质量约为13 ~15kg,总计要呼吸两万多次。人离开空气5 分钟就会死亡。人类生存需要的是新鲜、清洁的空气,通常认为海平面附近的空气是干燥洁净空气,其组成成分基本不变。但是,随着经济和社会的不断发展,大气却正在不断受到污染,而且越来越严重。 如今,大气污染是人类面临的最严峻问题之一。我国城市的大气污染现状随着工业及交通运输业的迅速发展而加剧。如燃烧矿石、火力发电、合成化学物质、汽车尾气排放等等,使大气中一些有害气体的浓度成倍甚至几百倍地增高。调查研究表明:大气污染物浓度的增加,不仅会引发人的呼吸道疾病、心脏病、皮肤病等,还会引起多种癌症,甚至导致死亡。 目前,城市的主要大气污染包括SO2、HF、CI2、O3、NH3、光化学烟雾等。我国的大气污染主要集中在城市和工业区域,大气污染的危害程度居于其他环境污染之首,成为急遽解决的重要问题之一。 我国政府正在努力采取一系列强有力的措施减少污染源的数量,控制污染气体的排放量,同时也在采取一系列有效措施监测大气中的有害气体的含量。例如,有些植物不仅具有净化作用,同时还具有监测作用。因此,利用这些植物来净化与监测大气是最经济,最有效的措施之 一。 所谓监测作用,就是利用某些植物对有害气体的敏感性,当有害气体在空气中达到一定的含量且此状况持续一段时间后,不同的植物就会表现不同程度的伤害特性,反映出有害气体的大概浓度,作为大气污染程度的指示,这就是监测作用。这些植物就称为监测植物。 目前,主要采用观察植物外观伤害症状(通常观察植物叶片)来判断植物的受害程度。伤害因伤斑的部位、形状、颜色和受害叶龄等特征的不同而相互区别。下面就几种常见的有害气体对一些植物的伤害加以分析:(1) SO2  当植物吸收SO2 后,叶脉间出现黄白色点状“烟斑”,轻者只在叶背气孔附近,重者从叶背到叶面均出现“烟斑”。随着时间推移,“烟斑”由点扩展成面。危害严重时,叶片萎缩,叶脉褪色变白,植株萎蔫,甚至死亡。 植株受害的顺序:  先期是叶片受害,然后是叶柄受害,后期为整个植株受害。叶片受害与叶龄的关系:在一定浓度的SO2 范围内,叶片的受害与叶龄有关。其受害的先后顺序是成熟叶,然后是老叶,最后是幼叶。这是因为幼叶的抗性最强,成熟叶最敏感,老叶介于两者之间。 对SO2 敏感的植物:落叶松、向日葵、梨、雪松、苹果、复叶槭等。对SO2 抗性强的植物:大叶黄杨、夹竹桃、女贞、臭桐、凤仙花、菊花、一串红、牵牛花、金盏菊、石竹、西洋白菜花、紫背三七、青蒿、扫帚草等。较强者: 温州蜜柑、广玉兰、香樟、棕榈、海桐、蚊母、珊瑚树、龙柏、罗汉松、梧桐、石榴、白蜡、泡桐、白杨、八仙花、美人蕉、蜀葵、蓖麻等。 (2) FH 当植物吸进FH后,常在叶片尖端和边缘积累,到足够浓度时,使叶肉细胞产生质壁分离而死亡。故它引起的伤斑大多是在叶尖、叶缘,少脉间。其伤斑成环带分布,然后逐渐向内扩展,颜色呈暗红色。严重时叶片枯焦脱落。叶片受害与叶龄的关系: 先幼叶受害,再老叶受害。对FH敏感的植物:雪松、菖兰、郁金香、杏、葡萄、榆叶梅、紫薇、复叶槭等。对FH抗性强的植物:夹竹桃、龙柏、罗汉松、小叶女贞、桑、构树、无花果、丁香、木芙蓉、黄连木、竹叶椒、葱兰等。较强者:大叶黄杨、珊瑚树、蚊母树、海桐、杜仲、胡颓子、石榴、柿、枣等。 (3) Cl2  Cl2 对叶肉细胞有很强的杀伤力,进入叶肉细胞后很快破坏叶绿素,产生点、块状褪色伤斑,叶片严重失绿,甚至全叶漂白脱落。其伤斑部位大多在脉间,伤斑与健康组织之间没有明显界限。对CI2 敏感的植物: 圆柏、垂柳、加拿大杨、油松、紫薇、栾树等。对CI2 抗性强的植物:樱花、丝棉木、臭椿、小叶女贞、接骨木、木槿、乌桕、龙柏等。较强者:海桐、大叶黄杨、小叶黄杨、女贞、棕榈、丝兰、香樟、枇杷、石榴、构树、泡桐、刺槐、葡萄、天竺葵等。 (4)NO2  它所引起的主要症状为黄化现象。主要发生在叶脉间或叶缘处,成条状或斑状不一,幼叶在黄化现象产生之前就可能先脱落。但与其他原因所产生的黄化现象较难区分开。对NO2 敏感的植物:榆叶梅、连翘、复叶槭等。对NO2 抗性强的植物:圆柏、侧柏、刺槐、臭椿、旱柳、紫穗槐、桑树、毛白杨、银杏、栾树、白榆、五角枫等。 较强者:加拿大杨、核桃、泡桐、油松、北京杨、白蜡树、杜仲等。 (5)O3  它由气孔进入叶子,与叶肉细胞接触后首先破坏其细胞膜,因而造成细胞死亡。其伤斑大多数叶面,少脉间。黄化斑点及白色斑纹是最常见的病症,也可能出现叶面完全漂白者。其受害叶最先为中龄叶。对O3 敏感的植物:悬铃木、连翘等。对O3 抗性强的植物:圆柏、侧柏、刺槐、旱柳、紫穗槐、桑树、毛白杨、栾树、白榆、五角枫、垂柳、加拿大杨、核桃等。较强者:苹果、泡桐、金银木、油松、复叶槭等。 NH3  当空气中的NH3 达到一定浓度时,植物叶片首先会受到伤害。其部位大多为叶脉间,伤斑点、块状,颜色为黑色或黑褐色,与正常组织之间界限明显。另外,症状一般出现较早,稳定的也快。对NH3 敏感的植物:悬铃木、杜仲、龙柏、旱柳等。对NH3 抗生强的植物:臭椿、银杏、紫薇、女贞、木槿等。 (7)光化学烟雾 它使叶片下表皮细胞及叶肉中海绵细胞发生质壁分离,并破坏其叶绿素,从而使叶片背面变成银白色、棕色、古铜色或玻璃状。叶片正面还会出现一道横贯全叶的坏死带,受害严重时会使整片叶变色,很少发生点块状伤斑。对光化学烟雾敏感的植物:紫薇、连翘、白蜡树、复叶槭等。对光化学烟雾抗性强的植物:圆柏、侧柏、刺槐、臭椿、旱柳、紫穗槐、桑树、毛白杨、银杏、栾树、白榆、五角枫等。 以上的这些植物虽然能在一定程度从宏观上监测与净化大气污染,但不能彻底根除大气污染。故而,我们要有效地控制污染物的排放,控制污染的源头,且还要利用现代科学技术手段对城市空气进行进一步监测与净化。

  • 咨询植物根系生长监测系统

    单位最近要采购监测植物根系生长的仪器,现在接触的有两家进口的BTC-100和CI-600、还有一家国产仪器rootscanner,各家都在展示自己的优点。各位不知有没有用过,说说使用心得,帮助我做出选择。

  • 植物分类系统与化学成分的关系

    现代植物分类是按照植物形态的异同、习性的差别以及亲缘关系的远近系统排列的。因此,一般说来,在植物分类系统中位置愈接近的植物,它们的亲缘关系就愈接近。植物分类系统与化学成分的关系,实际上是指植物亲缘关系与化学成分的关系。    各种植物由于新陈代谢类型的不同,产生了各种不同的化学物质——生物碱类、甙类、萜类等等。这些化学成分在植物中的遗传和变异,是与植物系统位置、植物的环境条件(气候、土壤与生物等)密切有关的。植物分类系统与化学成分的关系可大致归纳为下述几个方面:  1.每一种植物在恒定的环境条件下、具有制造一定的化学成分的特性,而这个特性是这种植物的生理生化特征。如颠茄产生莨菪烷衍生物类生物碱,人参产生三萜类皂甙,薄荷产生萜类等等。  2.亲缘关系相近的植物种类由于有相近的遗传关系,往往具有相似的生理生化特征。亲缘关系愈近,共同性愈多;亲缘关系愈远,共同性愈少。如异喹啉类生物碱主要分布于多心皮类及其近缘类植物的一些科中,如木兰科、睡莲科、马兜铃科、防已科、毛莨科、小檗科、罂栗科、芸香科等。这些科中的生物碱的化学结构也显示相互之间有紧密的亲缘关系,与产生它们的植物科之间的亲缘关系一致。吲哚类生物碱中最大的一族为鸡蛋花烃(Plumerane)型吲哚生物碱,这族生物碱仅存在于夹竹桃科中的鸡蛋花亚科植物中。同属植物的亲缘关系很相近,因而往往含有近似的化学成分。如小檗属(Berberis)植物含小檗碱,大黄属(Rheum)植物含羟基蒽醌衍生物等等。  3.一般说来与广泛存在于植物界的代谢产物有更近似化学结构的简单化学成分(如黄嘌吟与咖啡碱化学结构很近似),在植物界的分布较广,分布的规律性不明显。有些化学成分在系统发育过程中,经过一系列的突变,因而结构也较复杂,如马钱子碱、奎宁等。这类物质的分布往往只限于某一狭小范围的分类群中。但某些起源古老的成分,虽经一系列突变,结构亦较复杂,但它们在植物界中的分布,还是有一定范围的,而且这种类型成分与植物亲缘之间的联系表现得更为明显和突出,例如上述异喹啉类生物碱的分布。  植物分类系统与化学成分间存在着联系性这一概念,已广泛应用于药用植物的研究、野生资源植物的寻找等方面。如具有降压与安定作用的蛇根碱(Reserpine)自印度的夹竹桃科萝芙木属植物蛇根木Rauvolfia serpenitina (L.)Benth ex Kurz中发现后,从该属的其他约20种植物中亦发现了利血平,并根据植物的亲缘关系在萝芙木属的两个近缘属中找到了同类生物碱。为了发掘具抗菌作用的小檗碱的资源植物,经植物分类学与植物化学综合研究,发现小檗碱在中国主要分布在5个科(小檗科、防已科、毛莨科、罂粟科、芸香科)16个属的多种植物中,而以小檗科小檗属较理想。又据研究,莨菪烷类生物碱主要集中分布于茄科茄族(So1aneae)中的天仙子亚族(Hyoscyaminae)、茄参亚族(Mandragorinae)及曼陀罗族(Datureae)植物中,并发现了含碱量较高,有生产价值的新原料植物——矮莨菪(Przewalskia shebbearei(C.E.C.Fischer) Kuang, ined)及马尿泡(P. tangutica Maxim.)。再如生产可的松等激素药物的原料——甾体皂甙,不仅在薯蓣属(Dioscorea)的几十种植物中有发现,而且在亲缘关系相近的一些科中也有发现。必须注意的是,植物的系统发育与其所含化学成分的关系是十分复杂的。由于植物界系统发育的历史很长,发掘出来的古生物学资料不够齐全,加上多数植物的化学成分尚未明了,有些成分的分布规律还未被揭示及认识,所以,有关植物的系统发育与化学成分的关系的研究尚未成熟,有待于进一步研究。在应用植物分类系统与化学成分间的联系性时,必须具体问题具体分析。  近年来,在植物分类学与植物化学这二门学科间出现了一门新的边缘学科——植物化学分类学(P1ant chemotaxonomy)。它的主要研究任务是:  (1)探索各级分类群(如科、属、种等)所含化学成分(包括主要成分、特有成分和次要成分)及其合成途径。   (2)探索各种化学成分在植物系统中的分布规律。  (3)在以往研究的基础上,配合传统分类学及各有关学科,从植物化学成分的角度,共同探索植物的系统发育。  显然,这一新兴学科在认识植物系统发育方面有重大的理论意义,并可为有目的地开发、利用植物的资源、寻找工业原料等提供理论依据。例如通过对毛莨科与单子叶植物的百合目植物所含生物碱、甾体化台物、三萜化合物、氰醇甙和脂肪酸等五类化学成分的比较分析,发现二者具有很多类似的化学成分,有的成分甚至仅仅为它们所共有。联系到百合目与毛莨科的一些原始类群在形态和组织解剖上的某些相似性,从而认为二者有着十分密切的亲缘关系,即单子叶植物通过百合目起源于原始的毛莨科植物。这一研究结果在了解客观存在的植物系统发育的真实情况方面,具有一定的理论意义。  又如根据国内外在药用植物研究工作方面的大量实践、目前从中国药用植物中大致归纳出一些具重要生物活性的成分(生物碱、黄酮类、萜类、香豆精等)及药理作用的植物类群。由此可见,植物化学分类学是一门富有活力的新学科,它的研究成果值得药用植物学与药用植物化学工作者重视与运用。

  • 【分享】不同环境污染物的吸附类植物或敏感性植物

    1.二氧化硫: ①抗性强的植物:大叶黄杨、雀舌黄杨、瓜子黄杨、海桐、蚊母、山茶、女贞、小叶女贞、枳橙、棕榈、凤尾兰、夹竹桃、枸骨、枇杷、构树、无花果、枸杞、白蜡、木麻黄、相思树、榕树、十大功劳、九里香、侧柏、银杏、广玉兰、北美鹅掌楸、柽柳、梧桐、重阳木、合欢、皂荚、刺槐、国槐等。 ②敏感的植物:苹果、梨、羽毛槭、郁李、悬铃木、雪松、油松、马尾松、云南松、落叶松、白桦、樱花、毛樱桃、贴梗海棠、梅花、玫瑰、月季等。 2.氯气: ①抗性强的植物:龙柏、侧柏、大叶黄杨、海桐、蚊母、山茶、女贞、夹竹桃、凤尾兰、棕榈、构树、木槿、紫藤、无花果、樱花、枸骨、臭椿、榕树、九里香、小叶女贞、丝兰、广玉兰、柽柳、合欢、皂荚、国槐、黄杨、白榆、丝棉木、正木、沙枣、苦楝、白蜡、杜仲、厚皮香、桑树、柳树、枸杞等。 ②敏感的植物:池柏、薄壳山核桃、枫杨、小锦、樟子松、紫椴、赤杨等。 3.氟化氢: ①抗性强的植物:大叶黄杨、海桐、蚊母、山茶、凤尾兰、瓜子黄杨、龙柏、构树、朴树、花石榴、石榴、桑树、香椿、丝棉木、青冈栎、侧柏、皂荚、国槐、柽柳、木麻黄、白榆、正木、沙枣、夹竹桃、棕榈、红茴香、杜仲、细叶香桂、红花油茶、厚皮香等。 ②敏感的植物:葡萄、杏、山桃、榆叶梅、紫荆、梓树、金丝桃、慈竹、池柏、白千层等。 4.乙稀: ①抗性强的植物:夹竹桃、棕榈、悬铃木、凤尾兰、女贞、榆树、枫杨、重阳木、乌桕、红叶李等。 ②敏感的植物:月季、十姐妹、大叶黄杨、苦栎、刺槐、臭椿、合欢、玉兰等。 5.氨气: ①抗性强的植物:女贞、樟树、丝棉木、腊梅、柳杉、银杏、紫荆、杉木、石楠、石榴、朴树、无花果、皂荚、木槿、紫薇、玉兰、广玉兰等。 ②敏感的植物:紫藤、小叶女贞、杨树、虎杖、悬铃木、薄壳山核桃、杜仲、珊瑚树、枫杨、芙蓉、栎树、刺槐等。

  • 【原创大赛】《关于加强食用植物油标识管理的公告》与《食品安全国家标准 植物油》(GB 2716-2018)的解读

    【原创大赛】《关于加强食用植物油标识管理的公告》与《食品安全国家标准 植物油》(GB 2716-2018)的解读

    近日,国家市场监督管理总局农业农村部、国家卫生健康委员会发布了《关于加强食用植物油标识管理的公告》。主要对植物油标识管理做出了一些新的规定。结合植物油的新标准《食品安全国家标准植物油》(GB 2716-2018,2018年12月21日实施)的一些变化,小编整理本篇干货,快马加鞭的为大家一一解读:[b]一、标准名称和适用范围变化情况[img=,690,444]http://ng1.17img.cn/bbsfiles/images/2018/07/201807060924580266_6913_3421623_3.png!w690x444.jpg[/img][b]二、指标变化情况[img=,690,960]http://ng1.17img.cn/bbsfiles/images/2018/07/201807060925428551_9850_3421623_3.png!w690x960.jpg[/img][/b]三、增加食品营养强化剂使用要求[/b]与《食用植物油卫生标准》(GB 2716-2005)对比,《食品安全国家标准植物油》(GB 2716-2018)增加了“食品营养强化剂的使用应符合GB 14880的规定”。[b]四、增加标签标示要求[/b]为维护消费者的知情权和规范市场,《食品安全国家标准 植物油》(GB 2716-2018)增加了“食用植物调和油产品应以‘食用植物调和油’命名”和“食用植物调和油的标签标识应注明各种食用植物油的比例”的要求,并鼓励在食用植物调和油标签标识中注明产品中大于2%脂肪酸组成的名称和含量(总脂肪酸的质量分数),新标准的附录A为资料性附录,生产者可自愿标示。1、在符合GB7718及相关规定要求的前提下,生产者可在配料表中或配料表的临近部位[color=red]使用不小于配料标示的字号[/color],选择以下任意一种或其它类似表意相同的标示方式标注各种食用植物油的比例:[list][*]a.大豆油(50g/100g)、玉米油(30g/100g)、菜籽油(20g/100g);[*]b.大豆油(50%)、玉米油(30%)、菜籽油(20%);[*]c.大豆油、玉米油、菜籽油添加比例为5:3:2。[/list]2、对于配料比例≤5%的食用植物油,允许相对误差为±10%,对于配料比例>5%的食用植物油,允许相对误差为±5%。对于非直接提供给消费者的预包装食用植物调和油,可以选择在食品标签、随附文件、说明书、合同或文件中注明各种食用植物油的比例。3、由于脂肪酸名称不在现行《食品安全国家标准预包装食品营养标签通则》(GB 28050-2011)的可选择标示内容中,因此食用植物调和油中大于2%脂肪酸的标示应独立于营养成分表之外。4、《国家市场监督管理总局农业农村部 国家卫生健康委员会关于加强食用植物油标识管理的公告》还指出食用植物油的名称应当反映食用植物油的真实属性。单一品种食用植物油应当使用该种食用植物油的规范名称,不得掺有其他品种油脂。转基因食用植物油应当按照规定在标签、说明书上显著标示。对我国未批准进口用作加工原料且未批准在国内商业化种植,市场上并不存在该种转基因作物及其加工品的,食用植物油标签、说明书不得标注“非转基因”字样。[b]《食品安全国家标准 植物油》(GB2716-2018)与2018年12月21日实施[/b][color=#333333]参考文献:1.《食用植物油煎炸过程中的卫生标准》(GB 7102.1-2003)2.《食用植物油卫生标准》(GB 2716-2005)3.《食品安全国家标准 植物油》(GB 2716-2018)4.国家卫健委食品安全标准与监测评估司《标准等解读材料》5.国家市场监督管理总局农业农村部 国家卫生健康委员会《关于加强食用植物油标识管理的公告》[/color]

  • 【分享】《食用植物调和油》新国标拟年内出台

    《食用植物调和油》国家标准目前已原则上通过了专家审定,现正在各部门中广泛征求意见,并计划于年内正式出台。记者了解到,调和油配料比例问题,极有可能被强制性要求在产品标签中明示。   日前,全国粮油标准化技术委员会专家介绍,目前倾向于将标注配料比例列为强制性条款。对于要求在标签中标注每种配料油比例,多数企业基本认同,争议主要在冠名上。  一部分企业坚持认为,被冠名的配料油含量至少应在50%以上,而也有企业认为被冠名的配料油只要在所有配料油中含量最高即可。  标准解读  ●定义  《食用植物调和油》标准对“食用植物调和油”下的定义是:由两种以上(含两种)的成品植物油调配制成的食用油脂。  ●规定  《食用植物调和油》征求意见稿中规定  当以某种或某类原料成品油对产品进行冠名时,应注明该种或该类原料成品油的实际含量(质量分数),且文字和数字的高度不得小于1.8mm;  食用调和油的标签中应标注产品的质量等级,未标注质量等级将按不合格判定;应标注原料成品油的加工方式,如“压榨”或“浸出”;应标注所添加的香精和香料;  食用调和油中不得掺入非食用油和不合格的原料成品植物油;  食用调和油应具可追溯性,每个生产批次所用的原料成品油、调配好的成品油和其他添加物均应封样留存,样本保存期不得低于本批次产品的保质期。  新闻背景  由于食用植物调和油一直没有统一的国家标准,特别是没有对调和油配料比例的统一要求,一些生产企业常常会打出一些模糊概念,对消费者造成误导。调和油市场还存在以次充好、随意勾兑、冠名标识混乱等问题。  《食用植物调和油》标准从2005年开始制定,当年10月形成征求意见稿,至今已多次公开征求专家和企业的意见。  市场发现  市场上的调和油价格差距较大,同是5升装的调和油,以“花生调和油”冠名的价格在70多元,以“葵花籽调和油”或“玉米调和油”冠名的价格在60元左右。而以“山茶油调和油”或“橄榄油调和油”冠名的价格则要超过70元。  记者仔细看了每种调和油的配料,发现几乎所有调和油中都有大豆油,而一桶5升装纯大豆油仅售40多元。  记者采访的50位消费者中,多达32人最关注各种油的比例和被冠名的那种油是否真是配料油中含量最高的。

  • 【“仪”起享奥运】ID鉴别识别植物提取物的常用方法

    [font=宋体, SimSun][size=16px][color=#000000]ID鉴别是通过[b]化学方法[/b]来识别植物提取物的品质优劣、鉴别真伪。[/color][/size][/font][size=16px][font=宋体, SimSun][color=#000000]常用的方法有薄层色谱法(TLC)和高效薄层色谱法(HPTLC)。[/color][/font][b][font=宋体, SimSun][color=#000000]TLC:[/color][/font][/b][font=宋体, SimSun][color=#000000]是一种依靠同一吸附剂对不同化学成分吸附能力不同而达到分离的色谱方法。它是鉴别中药的最常用的手段,具有操作方便、设备简单、灵敏度好、可比性大、专属性强、显色容易等优点。可以依靠薄层板上斑点的有无来判定药材的真假,斑点的颜色的深度以及尺寸可一定程度上反映出药材的品质。同理植物提取物也可采用薄层色谱法来判断提取物的真假。[/color][/font][b][font=宋体, SimSun][color=#000000]HPTLC:[/color][/font][/b][font=宋体, SimSun][color=#000000]相比TLC,HPTLC具备简单性、准确性、低成本高效益等优点。其呈现的指纹图谱具有更好的分辨率,能在较短的时间内合理准确估算天然药物中的多种活性成分。HPTLC为执行可靠的鉴别提供了有力保证,因为其能够提供彩色的色谱指纹图谱信息,可被可视化并以数字图像存储[i][/i]。[/color][/font][b]HPTLC在中药、天然产物的分析应用:[/b][font=宋体, SimSun]植物药物活性物质定性分析[/font][font=宋体, SimSun]植物药物溶出度含量测定[/font][font=宋体, SimSun]天然药物真伪鉴别[/font][font=宋体, SimSun]未知活性物质筛选[/font][font=宋体, SimSun]产品一致性的分析[/font][b]实际应用案例《中国药典[i][/i]》中药材涉及的TLC鉴别:[/b][font=宋体, SimSun][back=transparent]如:人参、人参总皂苷、黄芪、麦冬、丹参、党参、水飞蓟[i][/i]、红景天、枇杷叶、马齿苋、木瓜、姜黄等几百种[/back][/font][/size][b]植物提取物TLC方法鉴别:[/b][font=宋体, SimSun][back=transparent]如:红景天提取物、姜黄素、葛根提取物、接骨木[i][/i]提取物、车前草提取物等近百种。[/back][/font]

  • 植物冠层分析仪应用范围

    植物冠层分析仪应用范围

    [size=16px]  植物冠层分析仪是一种用于评估植物群落结构和生长状态的工具。它通过非接触式的方式,通常使用激光雷达、摄影设备或其他传感技术,来测量植物的空间分布、高度、覆盖度等参数。这些信息有助于科学家、生态学家、农业研究人员等更好地理解植物群落的动态变化和生态系统的健康状况。植物冠层分析仪的应用范围包括但不限于:  生态学研究: 通过植物冠层分析,可以了解不同植物种类在一个生态系统中的分布、竞争关系、生长状态等,从而揭示生态系统的结构和功能。  农业和园艺: 农业研究人员可以利用植物冠层分析仪来监测作物的生长情况、病虫害的影响、植被覆盖度等,以优化农作物的管理和产量。  森林管理: 植物冠层分析有助于评估森林内不同树种的分布、树木的高度和生长状况,为森林资源管理和保护提供数据支持。  城市规划: 在城市环境中,植物冠层分析可以用于评估绿地的覆盖度、树木的分布以及城市绿化的健康状况,从而改善城市空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量和居住环境。  环境监测: 植物冠层分析仪可以用于监测自然生态系统的变化,例如湿地、草原和荒漠等,以及气候变化对植被的影响。  自然灾害评估: 在自然灾害(如森林火灾、洪水等)后,植物冠层分析仪可以用于评估植被恢复的情况,帮助恢复受损的生态系统。  科学研究: 科学家可以利用植物冠层分析仪的数据来研究植物生长的模式、群落动态、物种多样性等问题。  总之,植物冠层分析仪在生态学、农业、环境科学等领域都具有广泛的应用,它为研究人员提供了非常有价值的数据,有助于更好地理解和管理自然和人工生态系统。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251011533536_221_6098850_3.png!w690x690.jpg[/img][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制