计算相位多普勒方法对盘芯喷嘴质量平衡进行体积有效性判定
The mass balance of orchard air-blast sprayers has historically been assessed using an array of samplersto capture airborne particles. However, these methods only provide an idea of flux with no other informationwhich is pertinent to understand the movement of droplets and their potential to drift. Whiledroplet analysis for agricultural sprayers has always been conducted in a laboratory setting with the useof laser devices, a new phase Doppler approach is being explored to assess droplet spectra, velocity, andflux in outdoor field conditions. Therefore it is the objective of this study to develop a methodology andthe potential limitations for using a phase Doppler system while in a laboratory setting. Due to theexpected variability of field conditions as well as the turbulence of orchard sprayers, a computationalapproach was sought to assess flux from a single scan of a conical spray plume' s diameter. Using aconstant scanning speed of 0.0079 m/s, a disc core (D1/DC33) hollow cone nozzle was examined at 310,410, and 520 kPa pressure at five different heights (10, 20, 30, 40, and 50 cm). Computational flux wasthen compared to the actual flow rate, finding a 3.3% average error with a range of 16.9% and 4.7%illustrating a small underestimation of mass with the phase Doppler which was related to distance anddroplet frequency. Further, comparisons were also assessed including pattern/symmetry, droplet spectra,velocity, and the overall number of samples. The proposed methodology indicates potential for the use ofphase Doppler technology for in situ measurements of spray equipment using a conical-type spraynozzle, such as that of the orchard air-blast sprayer.