当前位置: 仪器信息网 > 行业主题 > >

生颗粒燃烧定仪

仪器信息网生颗粒燃烧定仪专题为您提供2024年最新生颗粒燃烧定仪价格报价、厂家品牌的相关信息, 包括生颗粒燃烧定仪参数、型号等,不管是国产,还是进口品牌的生颗粒燃烧定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生颗粒燃烧定仪相关的耗材配件、试剂标物,还有生颗粒燃烧定仪相关的最新资讯、资料,以及生颗粒燃烧定仪相关的解决方案。

生颗粒燃烧定仪相关的论坛

  • 求问版友,管式炉燃烧烟气中的颗粒物如何测量?

    求问版友,管式炉燃烧烟气中的颗粒物如何测量?

    用管式炉燃烧试样(如下图所示。画图工具随手画的……),产生的烟气中的颗粒物该如何测量?只测颗粒物的质量。目前想到用玻璃纤维滤膜截留烟气称量来测,但不知道该怎么固定滤膜好。炉子管径40mm左右,出口温度约500℃。希望大家不吝赐教!http://ng1.17img.cn/bbsfiles/images/2016/04/201604012203_588914_3094317_3.png

  • 【资料】环境知识---颗粒物

    颗粒物是空气污染物中固相的代表物,以其多形、多孔和具有吸附性而成为多种物质的载体而成为一种成分复杂、较长时间悬浮于空气中能行至几千米-几十千米的主要污染物。当阳光从窗外射入室内的时候,在光束的侧面就可以看到室内空气中漂浮着细小的颗粒,这就是通常所说的悬浮颗粒。室内的悬浮颗粒主要来自室外、生活炉灶以及吸烟。这些颗粒成分很复杂,除一般尘埃外,还有炭黑、石棉、二氧化硅、铁、铝、镉、砷,多环芳烃类等130多种有害物质,在室内经常可以测出有50多种,因此悬浮颗粒是多种有害物质进入人体的载体,通过人的呼吸,将有害物质带入人体。悬浮颗粒可危害人的呼吸系统和引起心血管系统的病变,降低人体免疫功能。因此,要特别注意生活炉尘和吸烟的污染,夏季通风要注意有纱窗。室内风速不要过大,保持一定的湿度,搞室内卫生时不要扬尘,不要在居室内吸烟。1、颗粒物的形态颗粒物分为液、固两态,同时存在于空气中,其存在形态、化学成分、密度各异且具有重要的生物学作用。a、液态:①雾 ——悬浮于空气中的细液滴。 ②浓雾——地面上形成的云状物。 ③霾雾——悬浮于水滴中的灰尘、盐微粒。b、固态:①灰尘——悬浮于空气中的固体物质粉碎产生的微粒。 ②烟 ——不完全燃烧的产物。 ③煤烟——细小并有附着力的碳微粒。 ④烟雾——不完全氧化的金属细小微粒。2、在颗粒物中,我们主要研究的是工业除尘中不易被清除的长期飘浮于空气中,对人体危害更大的<10u的飘尘,而在飘尘中占有60%以上的细粒子PM2.5更值得关注,其为室内被控制的主要污染物之一。3、飘尘的特性⑴具有吸湿性,形成表面吸附性很强的凝聚核,能吸附有害气体、金属微粒及致癌性很强的苯并[a]芘。①细微颗粒物富集了大量有害重金属元素(Hg、As、Pb…)及氡及其子体衰变而成的金属(Bi、Po、Pb…)。②颗粒物富集着酸性非金属化合物,细粒子中NO3-、SO42-浓度较高,并呈明显的日、季节变化,白天高于夜晚,夏季白天NO3-、SO42-峰值浓度通常出现在10:00-12:00,表现出与光化学反应有较好的相关性。③细微粒中有机成分复杂,PM2.5中已检出多环芳烃(PAHs)约47种,其中萘类的物质13种、蒽类8种、芴类4种、苯并芘6种、菲类14种等等,其中强致癌的BaP在PM2.5中浓度很高,尤其在污染严重的采暖期。④细微粒是细菌和病毒的载体。有机粉尘为空气中细菌和病毒提供了所必需的营养和滋生场所。空气中带菌粒子比单体细菌大得多(约为1-50/um),其中多数为数个细菌组成的菌团。而病毒无完整的酶系统,不能独立进行物质代谢,更形成其寄生性,即附着于粉尘作为生存和传播的媒介。室内空气中微生物浓度在无人时可降至500个/m3,有人时为3000-8000个/m3或更高。⑵飘尘表面具有催化作用,如Fe2O3微粒表面吸附SO2经催化作用→SO3吸水后→H2SO4毒性要比SO2高10倍。例在1952年伦敦烟雾事件中,在不良的气象条件下,IP浓度为4.46mg/m3,比平时高5倍,SO2含量也增高,二者协同作用造成了危害极大的严重污染事件。4、气溶胶在环境受到污染的领域,人们呼吸时吸入的不是纯净的空气而是气溶胶。气溶胶对人体的危害程度主要与其成分、浓度、来源和粒径有关。气溶胶浓度和暴露时间决定了吸入剂量,有害颗粒物浓度越高、持续时间越长、危害就越大。气溶胶粒径与其在呼吸道内沉积、滞留和清除有关。颗粒物的来源分为生物(植物及动物)、矿物、燃烧、家庭或个人装饰及放射性气溶胶。植物气溶胶的粒径约为5-100um,如花粉、霉及其他杂物;动物气溶胶的粒径约为0.5-100um,最小约为0.01-0.8um,如细菌、病毒;燃烧产生的气溶胶,其粒径约为0.01-1000um,源于燃烧木材及烟草产物等;家庭或个人清洁及化妆产生的气溶胶,粒径分布在0.1-1000um之间;放射性气溶胶,主要是指放射性粒子附着在较大的颗粒上,其中部分颗粒可被吸入肺部。其放射性将损坏肺部并增加肺癌的危险。上述气溶胶的来源可能是短期的、季节性的连续性的,其粒径从毫微米到10um,对人体健康的危害很大。

  • 【仪器心得】FSQ-YW-001 型固态颗粒物发生器维护

    【仪器心得】FSQ-YW-001 型固态颗粒物发生器维护

    [font=宋体]【仪器心得[/font][font=宋体][font=宋体]】[/font]FSQ-YW-001 型固态颗粒物发生器[/font][font=宋体]维护[/font][font=宋体]摘要:[/font][font=宋体]FSQ-YW-001 型固态颗粒物发生器[/font][font=宋体]是为香烟烟雾自动发生提供解决方案,该[/font][font=宋体]型固态颗粒物发生器[/font][font=宋体][font=宋体]由机箱、燃烧腔视窗、气泵、流量计、开关按钮、点烟器、循环气泵及过滤器、[/font]CPU板及电源板几大部件组成[/font][font=宋体]。香烟燃烧后产生的焦油是影响设备发生量的关键因素,所以完善的维护保养工作不可或缺,及时的维护保养关乎着设备的运行寿命;下面我们分享关于[/font][font=宋体]FSQ-YW-001 型固态颗粒物发生器[/font][font=宋体]的维护保养。[/font][font=宋体]关键词:[/font][font=宋体]固态颗粒物发生器[/font][font=宋体],维护[/font][font=宋体]1. [/font][font=宋体]FSQ-YW-001 型固态颗粒物发生器[/font][font=宋体]维护项目[/font][font=宋体][font=宋体]维护项目一共[/font]5项,分别是设备燃烧[/font][font=宋体]腔视窗[/font][font=宋体]的清洁,点烟器的维护,烟雾过滤口,烟雾导管,[/font][font=宋体]燃烧[/font][font=宋体]腔[/font][font=宋体][font=宋体]室密封圈;接下来一一给大家详细介绍这[/font]5项维护事项。[/font][font=宋体][img=,687,356]https://ng1.17img.cn/bbsfiles/images/2022/11/202211021924330318_8574_2256877_3.jpg!w687x356.jpg[/img] [/font][font=宋体]1.1 [/font][font=宋体]燃烧[/font][font=宋体]腔视窗[/font][font=宋体]的清洁[/font][font=宋体]由于[/font][font=宋体]燃烧[/font][font=宋体]腔视窗[/font][font=宋体][font=宋体]壁容易被香烟焦油附着,严重影响观察香烟燃烧现象,下图是[/font]7根香烟燃烧后,[/font][font=宋体]燃烧[/font][font=宋体]腔视窗[/font][font=宋体]壁的焦油量,这个时候需要及时做好清洁,[/font][font=宋体]用酒精[/font][font=宋体]擦拭[/font][font=宋体]密闭罩内部,[/font][font=宋体]可快速去除表面焦油,并对[/font][font=宋体]接烟盘进行清洁,把表面焦油清洁干净,[/font][font=宋体]以及[/font][font=宋体]将接烟盘中的烟蒂和烟灰清除。[/font][font=宋体]以免烟灰掉入[/font][font=宋体]烟雾过滤器口,堵塞烟雾过滤器孔。[/font][font=宋体]清洁前和清洁后对比:[/font][font=宋体][img=,690,379]https://ng1.17img.cn/bbsfiles/images/2022/11/202211021925020598_1365_2256877_3.jpg!w690x379.jpg[/img] [/font][font=宋体]1.2 [/font][font=宋体]点烟器的维护[/font][font=宋体] [/font][font=宋体]自动点烟器的维护至关重要,关系着能否点燃香烟,减少香烟烟雾飘散室内对使用人的危害,[/font][font=宋体]打开仪器密闭罩,用[/font][font=宋体]镊子夹取[/font][font=宋体]棉花球沾取少量酒精对点烟[/font][font=宋体]器点火处[/font][font=宋体]进行[/font][font=宋体]细致[/font][font=宋体]清理[/font][font=宋体],[/font][font=宋体]酒精[/font][font=宋体]太多可能会导致点烟[/font][font=宋体]探头烧坏。[img=,567,374]https://ng1.17img.cn/bbsfiles/images/2022/11/202211021925351068_6764_2256877_3.jpg!w567x374.jpg[/img][/font][font=宋体] [/font][font=宋体]1[/font][font=宋体].3[/font][font=宋体]烟雾过滤口清洁[/font][font=宋体][font=宋体]烟雾滤口是最容易导致香烟焦油积累的位置,所以定时清理尤为重要,烟雾滤口关系这烟雾量的产生,制约着一根香烟发生量多少,影响产生[/font]P[/font][font=宋体]M2.5[/font][font=宋体][font=宋体]的量的多少;当焦油累积一定量时就会堵塞滤口,烟雾发生量会大大减少,两天一次清洁必不可少的;由于烟雾滤口孔较小,所以需要针对性的工具来清理,比如可以使用类似[/font]“笔芯”大小的物件来清理;再用酒精壶冲洗干净。[/font][font=宋体][img=,599,330]https://ng1.17img.cn/bbsfiles/images/2022/11/202211021926048244_6004_2256877_3.jpg!w599x330.jpg[/img] [/font][font=宋体]1.4 [/font][font=宋体]烟雾导管[/font][font=宋体]烟雾导管就像一个人的肺,长期吸烟后人的肺部就像下面那根烟雾导管内壁,附着大量焦油,[/font][font=宋体]难以[/font][font=宋体]清理[/font][font=宋体],[/font][font=宋体]建议直接更换新的[/font][font=宋体]烟雾导管[/font][font=宋体]到仪器上,[/font][font=宋体]每天必换点位。烟雾导管可换,人的肺无可替换。[/font][font=宋体][font=宋体]下图是新导管与吸收[/font]7根香烟后的导管以及导管内部现象图:[img=,690,348]https://ng1.17img.cn/bbsfiles/images/2022/11/202211021926384490_4158_2256877_3.jpg!w690x348.jpg[/img][/font][font=宋体] [/font][font=宋体]1.5 [/font][font=宋体]燃烧[/font][font=宋体]腔[/font][font=宋体]室密封圈[/font][font=宋体]由于[/font][font=宋体]燃烧[/font][font=宋体]腔[/font][font=宋体]室密封圈[/font][font=宋体]属于软[/font][font=宋体]橡材质[/font][font=宋体],[/font][font=宋体]长使用时间[/font][font=宋体]易[/font][font=宋体]老化[/font][font=宋体]变形导致腔室密闭性不良,出现[/font][font=宋体]漏气[/font][font=宋体]时[/font][font=宋体]气体流量[/font][font=宋体]变[/font][font=宋体]小[/font][font=宋体]从而[/font][font=宋体]影响发尘量,[/font][font=宋体]定期对腔室的[/font][font=宋体]密封性检查[/font][font=宋体]是有必要的[/font][font=宋体],也可根据转子流量计流速进行观察判断[/font][font=宋体][font=宋体],通常使用最大刻度流量进行测试,若最大流量达不到[/font]5L/min时,则需要排查是否出现密封圈密闭性不良的现象。[/font][font=宋体][img=,686,393]https://ng1.17img.cn/bbsfiles/images/2022/11/202211021927048491_6395_2256877_3.jpg!w686x393.jpg[/img] [/font][font=宋体]2. [/font][font=宋体]总结[/font][font=宋体]FSQ-YW-001 型固态颗粒物发生器[/font][font=宋体]优点在于无需人为点烟,避免人员操作过程中吸入二手烟。最大限度保护点烟人员健康。缺点在于[/font][font=宋体]发生器的密闭罩内容易积累焦油[/font][font=宋体],以及香烟燃烧后的焦油一直留在导管内,由于导管是连接内部腔室,不方便更换导管;甚至存在安全隐患。建议设备外部增加一个焦油收集容器,避免连续点烟导致焦油量增多影响试验效果。[/font]

  • 锂离子电池负极材料石油焦的燃烧特性介绍

    石油焦的颗粒直径、升温速度、挥发分释放特性指数等都对石油焦的着火温度及燃尽产生不同的影响。不同颗粒直径下的石油焦的着火温度和燃尽温度各不相同。通常150-200目石油焦的着火温度小于300℃,燃尽温度为580℃;100-150目石油焦的着火温度为300℃左右,燃尽温度为590℃;1.0 mm石油焦的着火温度为450℃,燃尽温度为650℃,即随着颗粒直径的增加,着火温度和燃尽温度也随之增高。  石油焦的燃烧特性处于烟煤和无烟煤之间,石油焦的着火点及燃尽温度也处于烟煤和无烟煤之间。挥发分的释放有利于石油焦的燃烧,挥发分特性指数大的石油焦,其燃烧特性指数也大。  改性后用于玻璃熔窑的石油焦粉在燃烧前首先利用气力输送原理将成品仓内的粉料采用特殊设备将其与压缩空气混合成一定比例且呈流态化的固、气两相流体,通过管道喷吹,在雾化作用下将石油焦粉喷入熔窑,石油焦粉在高温下与助燃空气混合后,使挥发分挥发燃烧,接着粉状颗粒燃烧。石油焦粉燃烧火焰的黑度系数高,火焰的辐射能力比重油要强,所以,石油焦粉实际单耗量要比按热值计算的重油量要少。石油焦粉火焰与重油燃烧的火焰存在少许差异,主要表现是石油焦粉燃烧时火根温度低于火梢15-30℃。其他如火焰长度、扩散面、形状等都与重油燃烧时的火焰相似。  由于石油焦粉是一种粉状固体燃料,即表面燃烧,难点燃,着火温度高,燃烧不稳定而且难以燃尽,常规燃烧会带来很多不完全燃烧物,造成未燃焦炭含量过高而影响玻璃液透光率。若采用专用燃烧及雾化技术等措施改变石油焦粉的燃烧特性,则可改善其燃烧效果。

  • 锂离子电池负极材料石油焦的燃烧特性介绍

    石油焦的颗粒直径、升温速度、挥发分释放特性指数等都对石油焦的着火温度及燃尽产生不同的影响。不同颗粒直径下的石油焦的着火温度和燃尽温度各不相同。通常150-200目石油焦的着火温度小于300℃,燃尽温度为580℃;100-150目石油焦的着火温度为300℃左右,燃尽温度为590℃;1.0 mm石油焦的着火温度为450℃,燃尽温度为650℃,即随着颗粒直径的增加,着火温度和燃尽温度也随之增高。  石油焦的燃烧特性处于烟煤和无烟煤之间,石油焦的着火点及燃尽温度也处于烟煤和无烟煤之间。挥发分的释放有利于石油焦的燃烧,挥发分特性指数大的石油焦,其燃烧特性指数也大。  改性后用于玻璃熔窑的石油焦粉在燃烧前首先利用气力输送原理将成品仓内的粉料采用特殊设备将其与压缩空气混合成一定比例且呈流态化的固、气两相流体,通过管道喷吹,在雾化作用下将石油焦粉喷入熔窑,石油焦粉在高温下与助燃空气混合后,使挥发分挥发燃烧,接着粉状颗粒燃烧。石油焦粉燃烧火焰的黑度系数高,火焰的辐射能力比重油要强,所以,石油焦粉实际单耗量要比按热值计算的重油量要少。石油焦粉火焰与重油燃烧的火焰存在少许差异,主要表现是石油焦粉燃烧时火根温度低于火梢15-30℃。其他如火焰长度、扩散面、形状等都与重油燃烧时的火焰相似。  由于石油焦粉是一种粉状固体燃料,即表面燃烧,难点燃,着火温度高,燃烧不稳定而且难以燃尽,常规燃烧会带来很多不完全燃烧物,造成未燃焦炭含量过高而影响玻璃液透光率。若采用专用燃烧及雾化技术等措施改变石油焦粉的燃烧特性,则可改善其燃烧效果

  • 电池燃烧试验箱的操作说明

    电池燃烧试验箱的操作说明

    电池燃烧试验箱用来测试电池耐燃性能,在进行测试时,需要一直将电池烧毁或电池发生爆炸为止,观察电池在燃烧中的现象,并对燃烧的过程进行计时。[url=http://www.dongguanruili.com/product/12.html][color=#333333]电池燃烧试验箱[/color][/url]与其他电池类检测设备一样,都是动力电池在实际使用前必须要进行的测试,直到通过测试才可以在电动交通工具上进行使用。[align=center][img=电池燃烧试验箱瑞力检测,650,403]http://ng1.17img.cn/bbsfiles/images/2017/06/201706191744_01_3225823_3.jpg[/img][/align]  电池燃烧试验箱试验时带有一些危险性,所以一定要确保操作过程是按照说明书上来的。在操作前要检查电池燃烧试验箱是否能够正常运行,要注意及时清理箱体。电池燃烧试验箱有两种燃烧试验方式,一种是燃烧颗粒试验,一种是抛射体燃烧试验。  [b]1、燃烧颗粒试验[/b]  要求:每个试验样品单体电池或电池放在钢丝网筛上,网筛每25.4mm(1英寸)有20个孔眼,钢丝线径为0.43mm(0.017英寸)。网筛安装在燃烧器上方38.1mm(1.5英寸)处。燃烧与空气流量的比例要调节到能产生明亮的兰色火焰,使钢丝网筛灼热成明亮的红色。一块多层纱布要垂直放置,从网筛中心到纱布的距离为0.94m(3英尺)。纱布屏面积为914X914mm(1码2),由四层纱布组成,纱布的称重为12~18g/m2(0.4~0.6盎司/码2)。试验样品要这样放置,使火花或燃烧颗粒最大可能地射向纱布屏的中心。在有些情况下,可以有必要将试验样品捆在网筛上,使其固定位置。然后将燃烧器点燃,并对电池观察,一直到电池爆炸或一直到电池烧毁为止。  [b]2、抛射体燃烧试验[/b]  要求:每个试验样品单体电池或电池放在一个平台上,台板中心开一个孔径为102mm(4英寸)的孔,孔上盖个网筛,网筛由钢丝制成,每25.4mm(1英寸)有20个孔眼,钢丝线径为0.43mm(0.017英寸)。在试验样品上要罩上一个八角形带顶罩的金属丝笼子,笼子对边长610mm(2英尺),高305mm(1英尺),采用金属网筛制成。金属网筛由直径0.25mm(0.010英寸)的金属丝编织成,在每个方上,每25.4mm(1英寸)有16~18根金属线。样品放在盖住台板中心孔的网筛上,并对样品进行加热,一直到样品爆炸或一直到样品烧毁为止。原文来自于瑞力检测:http://www.dongguanruili.com/news/315.html

  • 【分享】南京科瑞星分析仪器公司谈电弧炉燃烧试样的注意事项

    电弧炉燃烧试样时的探讨 在现场分析检测钢铁材料中的碳硫含量,大多使用气体容量法定碳、碘量法定硫的碳硫高速分析仪(简称气容仪)。其试样燃烧多使用电弧炉。电弧炉用于燃烧样品。将其燃气导入气容仪等各种分析设备,定量分析样品中的碳、硫含量。电弧炉的工作原理是:在一定压力的富氧条件下,以瞬间高频高压电使试样与电极间产生电弧,以瞬间的工频大电流点燃在一定压力的富氧条件下的样品,让其高速燃烧,使样品中的碳元素氧化成CO2、硫元素氧化成SO2。用本设备燃烧钢铁样品的基本工艺是 “前大氧、后控气”。“前大氧”是指燃烧室(由炉体和坩埚组成)前供应的氧气要“大”(具体讲是氧气压力要达到40kPa)、“后控气”是指流出燃烧室的燃气流速要控制在一定范围(具体要求是控制在80-100L/h)。这样才能保证充分燃烧。电弧炉可在很多情况下(尤其是碳、硫分析方面)代替管式炉。它与管式炉比具有体积小,重量轻,不必预热,无热辐射,清洁卫生,并且有显著的节能效果。 钢的熔点约为1515℃,铁的熔点约在1535℃。这么高的熔点电弧炉是怎么将其熔化并释放出CO2和SO2呢?是添加剂起了至关重要的作用。 首先添加剂在氧气流中氧化燃烧。输出大量的热能.可以提高炉温.有显著的发热作用; 其次添加剂由于液化密度小于铁的氧化物或受热后生成气体物质,在炉体 内部向上飘浮的过程中,可加快碳、硫离子的扩散,有利于与氧气接触,使氧化反应加快起到良好的搅拌作用; 第三.氧化燃烧生成的CO2,和SO2部属于酸性氧化物,碱性介质不利于CO2和SO2的释放,而选取适量的偏酸性添加剂加入燃烧体系可使介质变成中性或弱酸性.有利于CO2和SO2的逸出; 第四,燃烧后生成的Fe2O3、SnO2,等粉尘对SO2有吸 附作用,导致测试结果偏低。加入有关的添加剂可阻止吸附消除干扰。电弧燃烧炉中常用的添加剂有纯锡粒和硅钼粉。硅主要起发热作用.燃烧产生热量,另外硅氧化后的产物是SiO2属酸性氧化物,它的密度比铁及其氧化物都小,在液体中有漂浮作用,有利于CO2和SO2的释放。MoO3是酸性氧化物,它的加入有利于SO2的释放。它在1155℃生成气体, 从液相中逸出时.起到良好的搅拌作用,有利于硫离子的扩散和SO2的生成。它能破坏Fe2O3的催化作用,防止管道吸附。锡的熔点是231℃,可以降低整个燃烧体系的熔点,主要作用是助熔并兼有发热稳燃的作用。 第五,分析检测铁或铁合金时,要加入适量纯铁(以添加后和试样合计为1克为宜),其主要作用是帮助燃烧,有利于在瞬间提高炉体内的温度,保证试样中碳硫的释放。 由于添加剂所起的重要作用,因此对添加剂的要求也很高,要求杂质成份含量少,碳、硫含量低,它的几何形状,粒度、空隙度也有一定的要求。使用这些添加剂会对测量的结果产生很大的误差而影响生产,建议用户选择正规的添加剂。 由于铁的熔点比钢高,而其称样往往只有钢的试样的一半或四分之一,因此保证铁试样在电弧炉中的燃烧是非常重要的。需要注意以下方面: 1. 正确确定称样重量和应补足的纯铁份量; 2. 做好试样的制样工作,样品颗粒小一点为宜,这样才能保证试样与氧气充分接触,有利于引弧燃烧,使碳硫充分释放; 3. 硅钼粉和锡粒等添加剂配比适当; 4. 及时清理电弧炉除尘器,防止过多的粉尘吸附SO2;5. 及时清理电极上的积炭,保证引弧燃烧效果

  • 【原创大赛】火焰燃烧器的调整方法

    【原创大赛】火焰燃烧器的调整方法

    前 言:众所周知,自从原子吸收光谱仪问世以来,最早的原子化器就是火焰燃烧器,到目前为止,该类型原子化器仍然被广泛地应用于原子吸收光谱仪上。由于火焰燃烧器的原子化温度低相对石墨炉而言较低,加之待测元素的基态原子在火焰的检测区域停留的时间短暂且密度较分散,所以测试灵敏度较低。为此,如何将燃烧器调整到最佳状态就显得尤为重要了。但是,根据我多年的工作经验得知,许多仪器的使用者对于燃烧器的工作原理、雾化效率和最佳位置的调整不太了解,甚至可以说是知之甚少。在实际操作中,基本就是按照届时仪器的状态来测试,从未对于燃烧器的状态给予正确的调整,为此今就该题目发表一下我多年的燃烧器的调整维护心得,以飨版友。一、火焰燃烧器的结构:火焰燃烧器基本是由:喷雾器、撞击球、雾化室和燃烧头组合而成的;结构示意图和几款代表机型的外观图如下所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711372967_01_1602290_3.jpg图-1 燃烧器结构示意图http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711381072_01_1602290_3.jpg 图-2 几款代表机型燃烧器的外观图二、样品提升量的检查:样品提升量的大小是直接影响火焰吸光值高低的重要因素之一。大多数操作者平时是不太注意这个量值的,只有到了明显感到灵敏度下降了时,才会想起来检测样品的提升量。样品提升量的物理意义:就是每分钟喷雾器可以吸入多少毫升的样品。这个检测步骤很简单:燃烧器点火后将进样毛细管插入一只盛满10毫升去离子水的量筒,并开始计时。一分钟到时后,马上撤出毛细管并记下剩余液面的刻度;用10毫升初始体积量减去剩余的液量体积量就是样品提升量。例如图-3的例子中10毫升的水被喷雾器吸入一分钟后还剩余4毫升的水,那么该燃烧器的提升量就是:10mL-4mL=6mL。http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711394746_01_1602290_3.jpg图-3 检查样品的提升量值得注意的是:不同的仪器的样品提升量是不同的。这个提升量的范围一般在仪器使用手册中均会给出。如果没有给出,则要在正常的仪器上实际测试后记录备案,以作为今后检查样品提升量的参考依据。 影响样品提升量的因素主要有二个:(1)首先是助燃气的流量是否满足仪器的设计要求,例如图-3 仪器的助燃气的流量就是6L/min;(2)其次就是喷雾器的状态是否正常,如果喷雾器的毛细管或者出气环被异物堵塞,即便助燃气的供给正常也会降低提升量的。三、雾化效率的确认: 燃烧器的另一个重要指标就是雾化效率。对于这个技术指标我主观估计至少有一半人不了解或者概念模糊。所谓的雾化效率简单地讲就是已经转换为气溶胶的样品量与喷雾器吸入的样品量之间的百分比值。这个比值越大,说明雾化效率越高。传统的雾化效率的检查过程如图-4所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711442081_01_1602290_3.jpg图-4 传统的雾化效率检查在上图中,燃烧器点火后吸入10毫升的去离子水(不限时,吸净为止),同时用另一个量筒置于燃烧器的废液排放口处(例如图-4 中的水封处)来承接排出的废液。最后用总的吸入量减去排出的废液量后再除以吸入量则为雾化效率;其计算公式为:(吸入量—废液量)÷吸入量×100/100。例如图-4中的废液量为7毫升,那么雾化效率的计算结果为:(10-7)÷10×100/100=30/100=30%。但是有些操作者则往往将上面所提到的样品提升量误认为就是雾化效率,这明显的是将二者概念混淆一谈了。雾化效率的高低取决于最终进入到火焰中的样品气溶胶颗粒总数的多少,而影响气溶胶颗粒的多少的因素又有哪些呢?(1)样品的提升量的多少?对于同一台仪器而言,在相同的单位时间内,吸入的样品越多,有可能形成气溶胶的颗粒也就会越多,这是一个不争的事实。(2)严格地讲,在燃烧器中真正让样品由溶液转变为气溶胶的部件就是通过喷雾器(喷嘴)与撞击球(撞散球)组成的雾化器来完成的。那么喷雾器毛细管的出口与撞击球的垂直对位切点是否为撞击球直径的一端就显得尤为重要了。雾化过程见图-5所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711452575_01_1602290_3.jpg图-5 液体样品转换为气溶胶的过程示意图从上图不难看出,左侧对位正确的雾化器的雾化效率要优于右侧的对位偏离的雾化器的雾化效率。为了确保喷雾器与撞击球的正确对位,以前那种老式的可调式雾化器基本已经淡出市场了;目前绝大部分仪器的雾化器已经采用喷雾器与撞击球二者一体化的结构了。所不同的是撞击球和喷雾器的材质不同而已。严格地讲,这种玻璃材质一体化的雾化器的撞击球还可以通过转动微调来达到最佳的位置。如图-6所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711462767_01_1602290_3.jpg图-6 两种材质不同的一体化雾化器当然了,也有喷雾器与撞击球虽然是固定对位的但是二者也可随意分离的雾化器;这样设计的优点是便于清洗和单独购买二者其一被损坏的配件。这种结构的雾化器见图-7所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711474254_01_1602290_3.jpg图-7 分体固定雾化器(3)当喷雾器毛细管出口破损时,所喷出的液雾则会偏离毛细管与撞击球的垂直切点,从而减少了气溶胶颗粒的总数,自然也就影响到了雾化效率。这种喷雾器毛细管受损的情况以玻璃喷雾器的几率最大;因为玻璃喷雾器内衬毛细管壁非常薄非常脆,尤其是使用通丝清通管腔时,稍不留意就会损伤毛细管出口,这就是玻璃雾化器的一个先天的短板。但是即便是铂金材料的毛细管,如果用通丝清通管腔时手法不正确,同样可以损坏毛细管的出口,而造成液雾偏离撞击球的垂直切点;如图-8所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711514383_01_1602290_3.jpg图-8 两种喷雾器喷射状态的对比(4)撞击球表面不光洁造成产生气溶胶颗粒总数的减少。由于这个道理很简单,就不做过多的赘述了。目前国内外原吸撞击球的制作材料而言不外乎三种:一种是最常见的玻璃材料;另一种就是特氟龙(聚四氟乙烯)材料,还有一种就是石英材料的。http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711534100_01_1602290_3.jpg图-9 玻璃材料和特氟龙材料撞击球上述两种材料的撞击球各有优缺点。玻璃球体的优点是:表面硬度和光洁度较高。缺点是:质地较脆易破损且不耐氢氟酸。特氟龙球体的优点是:不易破损耐氢氟酸。缺点是:因长期受液雾喷射表面容易变毛糙。无论是何种材料的撞击球只要是表面不光洁或者受到污染,均不会得到较高的雾化效率。图-10便是受到样品污染的撞击球的外观图:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711543431_01_1602290_3.jpg图-10 受到污染的撞击球(5)由于雾化室内壁的不洁净致使已经形成的气溶胶在喷向燃烧头的过程中产生“挂壁”现象。在这种情况下,即便雾化器的状态再好,产生的气溶胶颗粒再多,由于雾化室内壁的不光洁,造成一部分气溶胶挂壁而转变为大滴的液珠成为废液。这种情况的雾化室见图-11所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711564624_01_1602290_3.jpg图-11 内壁结垢的雾化室(6)不洁的燃烧缝造成气溶胶不能完全进入火焰中变为基态原子。燃烧头是燃烧器的最后一个关口,它承担着将雾化器产生的气溶胶在火焰中转换为基态原子的任务。既然如此,燃烧头上的燃烧缝更是重中之重。大家知道,朗伯—比尔定律Abs=K C L中的L就是燃烧缝的长度。如果燃烧缝因样品堵塞而造成总长度变短或者宽度变窄的话,其雾化效率也会变差。这种燃烧缝不洁的燃烧头如下图-12所示:http://ng1.17img.cn/bbsfiles/images/2017/10/2015070711574392_01_1602290_3.jpg图-

  • 【原创大赛】颗粒度分析

    1、颗粒的定义自然界中存在的物质大多是固体颗粒:土壤、砂石、大气与水中的有机与无机颗粒尘埃等等。它们有的造福于人类,有的则为害于人类,威胁着健康和各种机械的安全运转,被视为“污染颗粒”。广义地说,颗粒也可以由气体或液体组成,称液体颗粒或气体颗粒。如燃烧室中喷嘴喷出的雾滴,是气体中的液体颗粒,液压油、燃油中的水滴是液体中的液体颗粒;滑油、液压油、推进剂中的微小气泡和战斗机翻转时油箱中的气泡,是液体中的气体颗粒;在自然界则更是如此,人类环境、宇宙空间,从星际尘埃到足下土地,从天空、山川,到田地、河流,到处皆有颗粒。因此,从宏观上看,可以说物质的世界是颗粒的世界。2、颗粒学的出现自二十世纪四十年代开始,颗粒学作为一门学科,发展至今已有五十多年的历史。随着现代科学技术的发展,颗粒技术作为一门新兴的边缘学科,已深入到兵器、航空、航天、航海、化工、冶金、石油、煤炭、电力、轻工、环保、地质、水利、医药、食品、气象、材料以及交通运输等许多领域中。它在这些领域中的应用是十分广泛的。大到宇宙爆炸星球起源的研究,小至分子、原子技术、生物工程的开发利用。3、颗粒的物化性能不同的颗粒粒径,使得颗粒呈现出不同的物化性能,从而有时对夹带它的流动介质功能产生不同程度的利和弊。燃油中适量的微小气泡可以提高喷嘴的雾化性能而促进其燃烧,提高发动机效率(如加气喷嘴等);过大的气泡则会导致燃烧恶化甚至熄火;火箭推进剂中的固体颗粒会堵塞喷嘴,使发动机工作失常;纳米级微粒则可能使一些物质具有独特的物化特性;在液压系统中大的颗粒易于被滤除,而小一些的颗粒则会进入系统破坏系统的可靠性、安全性。4、颗粒分析在航空航天领域的应用对于航空航天领域,燃油、滑油、液压油及火箭推进剂系统中污染颗粒的测量分析应包括粒度测量和颗粒分析。粒度测量问题由于颗粒形状及粒相的三态性,使得它不是一个简单的单个颗粒几何线度测量问题。球形固体颗粒可以在显微镜下测量并溯源到几何量,而球形气、液态颗粒则无法直接用几何测量法来测量;对非球形颗粒来说,无论其等效投影粒径、等效体积粒径、等效质量粒径、等效沉降粒径、等效流阻粒径还是等效光散粒径都不是简单的几何测量问题。5、颗粒度分析的重要性颗粒是以一个群体的形式存在,粒度量通常是用一定量的颗粒群体的粒径统计分布来表示。其影响因素包括颗粒线度、颗粒形状、颗粒的表面状态、颗粒在测量体中的方位、折射率、密度及其他物理特性等。因此,在通常的工程科研中,粒度量的校准是采用物化性能与被测的颗粒相近的标准粉尘或由它配制的标准样液。为了分析污染颗粒的来源,光有颗粒度测量还不够,还必须对颗粒成分进行分析。

  • 扫描电镜下的雾霾颗粒

    星球?胶囊?果冻?不,都不对,这些其实是扫描电子显微镜下的雾霾颗粒。昨日,西安交通大学师生将收集的西安雾霾颗粒,放大数十万倍呈现在记者眼前,复杂的形貌和成分令人震惊。http://www.tianjinwe.com/rollnews/201410/W020141023154816568703.jpg硫酸盐颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154817343457.jpg富钛合包壳颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154818129466.jpg烟尘集合体颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154819219347.jpg铁氧化物颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154819840103.jpg未知颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154823437238.jpg附着的超细颗粒http://www.tianjinwe.com/rollnews/201410/W020141023154824069781.jpg铁氧化物颗粒群http://www.tianjinwe.com/rollnews/201410/W020141023154824848817.jpg含铬、铅颗粒  星球?胶囊?果冻?不,都不对,这些其实是扫描电子显微镜下的雾霾颗粒。昨日,西安交通大学师生将收集的西安雾霾颗粒,放大数十万倍呈现在记者眼前,复杂的形貌和成分令人震惊。  好奇 雾霾到底是什么 师生研究了两个月  “很多人都知道雾霾,但雾霾到底是什么?”今年春季雾霾困扰时,西安交大微纳中心执行主任单智伟教授提出了这个问题,但周围没人能回答他。  “雾霾是什么成分?长什么样?”在单智伟指导下,研究生丁明帅和同学开始了一项特殊研究。他们3月至4月连续两个月,每天用硅片收集空气中沉降的颗粒物,然后通过扫描电子显微镜放大数万至数十万倍。  丁明帅说,他们从中选取了1081个颗粒分析,其中PM2.5颗粒494个。显微镜下的雾霾颗粒令他大开眼界。  分析 扬尘颗粒占比最高 主要是汽车尾气  根据形貌和成分,他们把空气颗粒分为七大类。占比最高的是扬尘颗粒,达到33.4%,主要成分是硅铝酸盐、富钙颗粒,形状极不规则。  其次是含硫颗粒,占14.8%。外形有的像盐粒,有的像绒球。“主要来源是汽车尾气。其中的硫酸物一旦进入空气中和水蒸气结合,易生成弱酸性物质,有腐蚀作用。”单智伟说。  燃煤飞灰和烟尘集合体的比例,分别占9.5%、6.1%。燃煤飞灰的形貌大多是规则的球形。他们认为,这两种成分应与煤炭和天然气燃烧有关。  还有一些成分来源很难确定,如硅氧化物、铁氧化物。  惊叹 外貌好奇特 含锌颗粒像一串葡萄  含微量元素颗粒最为奇特。其中含钛颗粒是半透明的球体,内部装满了钛氧化物微粒;含碲颗粒像长满枝杈的竹子,来源不明;含锌颗粒则像一串葡萄。  最让单智伟担心的是含铅、铬颗粒。“这种颗粒多次观察到。铅本身比重比较大,但与其他物质结合后,就像坐了小飞机,悬浮在空气中到处传播,对健康的危害尤其严重。”  他们还测试了一些颗粒的力学性能,发现部分颗粒硬度达到钢铁的5~10倍。颗粒内部也很奇特,把燃煤飞灰颗粒切开,内部全是泡状。  建议 锁定雾霾来源 采取措施降低危害  “明白了雾霾成分,就便于锁定来源,有针对性采取措施。”单智伟说。  他建议,对于扬尘颗粒,要通过立法规范建设行为;对于汽车尾气,可以加装装置进行有效过滤;对于燃煤飞灰和烟尘集合体,可采取新技术和调整能源结构加以解决。  单智伟还提醒,在关注健康危害的同时,也不要忽视PM2.5对工业的影响。“高硬度的颗粒可能给高精度机械设备带来损害,造成损失。要改进封装工艺、封装环境,降低雾霾对工业的影响。”

  • 生物质颗粒检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-15811.html[/url]生物质颗粒检测机构哪里有?专业生物质颗粒检测机构,国联质检,为您提供准确的生物质颗粒燃料检测报告,具有CMA检测资质,是陕西一家上市检测机构,高新技术企业,值得信赖,全国范围上百家联盟实验室,位于山西,河南,安徽,浙江,四川,重庆,北京,上海,广东,山东等,快速匹配实验室,周期短,欢迎咨询了解。生物质颗粒燃料的介绍: 生物质颗粒燃料是以木屑、竹屑、树枝等为原料,经过专业机械、特殊工艺,无任何化学添加剂,高压低温压缩成型的颗粒状燃料。其主要来源于农业、畜牧业、食品加工业、林业及林业加工等行业的固体生物质或挤压成型的固体颗粒,主要包括木炭、燃料木和成型燃料等几种产品,目前发展最快的当属固体成型燃料。生物质颗粒燃料发热量高,清洁无污染,是替代化石能源的高科技环保产品。 生物质颗粒燃料在燃烧时所释放出的CO2大体上相当于其生长时通过光合作用所吸收的CO2,所以生物质颗粒的温室气体CO2为零排放。生物质燃料属于可再生能源。只要有阳光存在,绿色植物的光合作用就不会停止,生物质能源就不会枯竭,温室气体保持动态平衡。检测产品: 农林废弃物(如秸秆、锯末、甘蔗渣、稻糠等)、秸秆、稻草、稻壳、花生壳、玉米芯、油茶壳、棉籽壳原材料:农作物、农作物废弃物、木材、木材废弃物和动物粪便、秸秆、树木、木质纤维素、农产品加工业下脚料等。其他:生物质颗粒、生物质燃料、生物质炭、生物质压块、生物质油、生物质灰渣等。检测项目及指标:项目 生物质木屑指标热值 >4000Kcal/kg密度 >1.1t/立方米外观 呈淡黄色圆柱型6mm灰分 <=1.1%燃烧率 >=95%热效率 >=81%排尘浓度 <=80mg/立方米排烟黑度(林格曼级 <1)其他指标:水分检测,灰分检测,燃烧值检测,热效率检测,挥发分检测、固定碳检测、热值检测,退税检测,成分含量检测,成分分析等。相关参考标准GB/T 21923-2008 固体生物质燃料检验通则GB/T 28730-2012 固体生物质燃料样品制备GB/T 28731-2012 固体生物质燃料工业分析GB/T 28732-2012 固体生物质燃料全硫测定GB/T 28733-2012 固体生物质燃料全水分测定GB/T 28734-2012 固体生物质燃料中碳氢测定GB/T 30725-2014 固体生物质燃料灰成分测定GB/T 30726-2014 固体生物质燃料灰熔融性的测定GB/T 30727-2014 固体生物质燃料发热量测定GB/T 30728-2014 固体生物质燃料中氮的测定GB/T 30729-2014 固体生物质燃料中氯的测定GB/T 31741-2015 林业生物质能源名词术语GB/T 35564-2017 生物质清洁炊事炉具GB/T 35808-2018 林业生物质原料分析 纤维素酶活性测定GB/T 35809-2018 林业生物质原料分析 蛋白质含量测定GB/T 35811-2018 林业生物质原料分析 淀粉测定GB/T 35812-2018 林业生物质原料分析 预处理后不溶固体含量测定GB/T 35816-2018 林业生物质原料分析 抽提物含量的测定GB/T 35818-2018 林业生物质原料分析 多糖及木质素含量的测定GB/T 35820-2018 林业生物质原料分析 取样GB/T 35821-2018 生物质/塑料复合材料生物质含量测定GB/T 35905-2018 林业生物质原料分析 总固体含量测定GB/T 36055-2018 林业生物质原料分析 含水率的测定GB/T 36056-2018 林业生物质原料分析 可溶性糖的测定GB/T 36057-2018 林业生物质原料分析 灰分的测定GB/T 36058-2018 林业生物质原料分析 不可溶性糖测定国联质检,环境检测领域具有丰富的检测经验,针对农业固体废弃物,工业固体废弃物等综合利用领域提供专业的数据分析。欢迎咨询。[align=center][/align]

  • 【讨论】燃烧秸秆对环境有什么危害

    由于农业作业方式的改变和农民生活水平的提高,一些农村地区不再将植物秸秆作为主要的生活燃料,而是将其付之一炬,一烧了之。殊不知秸秆的燃烧对环境的危害极大。 一是污染大气。一般而言,我国农村的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量要好于城市,但由于燃烧秸秆,使得空气中烟尘、颗粒物和其他污染物的浓度急剧增加,空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量迅速下降,不利于人体健康。 二是降低大气能见度,妨碍交通,特别是机场飞机的起降和高速公路上汽车的行驶,容易导致交通事故的发生。 保护环境,从我做起。收获季节,帮助一下农民解决秸秆问题也是“三农”问题的好体现。

  • 【资料】室内颗粒物浓度的影响因素和研究进展

    室内颗粒物浓度的影响因素和研究进展(摘至中国毕业论文网)摘要:本文简述了室内颗粒物的来源,总结了室内颗粒物浓度的影响因素,介绍了国际上关于室内颗粒物浓度的研究成果和研究进展,特别对颗粒物对建筑围护结构的穿透因子的研究进行了较深入系统地分析,提出了穿透因子存在差异的可能原因和相应的解决方法,希望能对国内的室内颗粒物浓度研究提供借鉴。 关键词:颗粒物 室内颗粒物浓度 穿透因子 沉降 0 引言最近,室内空气品质受到人们越来越多的关注。为了提高室内空气品质,减少室内污染物水平,目前普遍采用的一种方式就是引入更多的室外新鲜空气。然而越来越多的流行病学研究表明,即使一般情况下大气颗粒物浓度水平较低,而且在国家相关标准的允许范围之内,人群的发病率和死亡率的不断上升与该浓度水平仍然存在显著相关性[1~3];另一方面,现代社会中,人们几乎90%的时间是在室内度过的[4]。由此可以推知,从室外迁移进入室内的颗粒物对人体健康有着重大影响。大量关于室内外颗粒物污染物关系的研究表明,迁移进入室内环境的大气颗粒物浓度水平与室外颗粒物浓度水平处在同一数量级[5]。因此可以认为,室内环境即便不是最重要的,也是相当重要的大气颗粒物暴露场所。室内环境与人们的生活息息相关,颗粒物又是影响室内环境质量的重要因素之一,给人们的健康产生了相当不利影响。因此,国外早在二十多年前就开始了对颗粒物的研究,室内颗粒物的浓度及其影响因素也就成了一个重要的研究方向及课题。研究这个问题有利于了解颗粒物的影响因素,促进人们采取有利措施,改善室内空气品质,降低和避免颗粒物对人体健康的危害。本文综述了影响室内环境中颗粒物浓度的各因素以及国际上对影响室内颗粒物浓度因素的研究成果和研究进展,希望有利于推动国内在该方面研究和发展。1 影响室内颗粒物浓度的因素空气悬浮颗粒物是空气中固体颗粒和液滴的混合物。颗粒物重要的物理特征包括颗粒数密度和颗粒数密度分布、质量浓度和质量浓度分布、吸湿性、挥发性、带电性及单个颗粒的表面积和形状[6]。其中,粒径是决定颗粒物空气动力学特性的重要参数,颗粒物在空气中的迁移特性就取决于粒径。在颗粒物研究中,一般假设颗粒物为球形,常用空气动力学直径(da)来表示颗粒物的大小,其粒径范围为0.001~100微米[7]。其中,空气动力学直径是指在空气中与被研究颗粒物具有相同的沉降速度,密度为1g/cm3的球形颗粒的直径[8]。粒径不同,颗粒物进入人体的部位就不同,其对人体产生的危害也就不同。大于10微米的颗粒物由于惯性作用易被鼻腔与呼吸道黏液排除,因此对人体健康影响较大的是可吸入颗粒物(da≤10微米)。其中,粗颗粒物(2.5微米≤da≤10微米)一般沉积在支气管部位,并可能进入血液循环,导致与心肺功能障碍有关的疾病。粗颗粒物主要由机械过程产生,如建筑施工、道路扬尘等,一般由Si、Fe、Al、Na、Ca、Mg等30余种元素组成;细颗粒(da B≤2.5微米,PM2.5)则可能沉积到肺叶,尤其事呼吸细支气管及肺泡。细颗粒物主要由燃烧过程产生,如汽车尾气、电厂废气、木材燃烧、工业生产以及柴油机等,往往含有硫酸盐、硝酸盐、铵盐、炭黑等。当二氧化硫、氮氧化合物和可挥发性有机物等燃烧产物在空气中发生化学反应时,也可能生成极细颗粒(da ≤0.1微米)。1.1 室内颗粒物的来源 颗粒物的化学组成对人体的健康影响很大,决定了其对人体呼吸道或人体本身可能产生的危害及危害程度。然而,目前关于影响人体健康的颗粒物的化合物成分及其尺寸范围都还没定论。因此有必要分析对颗粒物的来源进行分析。从20世纪80年代开始,西方国家做了大量关于室内颗粒物浓度的大规模现场测试和研究。所有研究都发现,烟草烟雾是室内环境中细颗粒的主要来源[6];烹调是室内另一种重要的颗粒污染源,尤其是粗颗粒的重要来源;室内活动对颗粒物浓度的影响也很大,如吸尘打扫、走动和小孩的玩耍等对室内颗粒浓度也有重大影响,但其贡献率相比则要小得多[9]。另外,还有7-26%的室内颗粒物不能解释其来源[10]。

  • 环境空气细颗粒物污染防治技术政策(试行)

    环境空气细颗粒物污染防治技术政策(试行)(征求意见稿)一、总则(一)为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律法规,防治环境污染,保障生态安全和人体健康,完善环境空气细颗粒物污染防治措施,促进技术进步,制定本技术政策。(二)本技术政策为指导性和说明性文件,根据污染物的来源和污染现象的成因,提出了防治环境空气细颗粒物污染的建议措施,供各有关方面在工作中参照采用。(三)环境空气中的细颗粒物包括固态和液态两种形态,主要来源于两个方面:一是各种污染源和发生源向空气中直接释放的细颗粒物,包括烟尘、粉尘、扬尘、油烟、油雾和花粉等;二是部分具有化学活性的气态污染物在空气中发生反应后生成的细颗粒物,这些前体污染物包括二氧化硫、氮氧化物、挥发性有机物(VOCs)和氨等。防治环境空气细颗粒物污染应针对其成因,全面而严格地控制各种细颗粒物及其前体污染物的排放行为。(四)控制细颗粒物及前体污染物排放的重点领域包括工业污染源、移动污染源、生活污染源、农业污染源、各种施工工地、各种粉状物料贮存场等。工业污染源包括:火电、钢铁、建材、化工、炼油、有色冶金、各种锅炉和窑炉、各种废物焚烧装置、各种表面喷涂装置等。移动污染源包括:汽车(含低速货车和三轮汽车)、摩托车和轻便摩托车、机动船舶、航空器、各种移动式机械和动力装置等。生活污染源包括:饮食业(烹饪油烟、烧烤和炉灶烟雾)、干洗业(VOCs)、家庭装修和使用气雾剂(VOCs)、城乡家庭厨房(油烟和炉灶烟雾)家庭取暖煤(油)炉、生活垃圾和城市园林绿化废物(落叶等)露天焚烧、燃放烟花爆竹和吸烟、宗教和祭祀礼仪活动(焚香、焚化祭品)等。农业污染主要来自农业用地扬尘、秸秆等农业废物焚烧等。(五)环境空气中的细颗粒物的生成与社会生产、流通和消费活动有密切关系,防治灰霾污染应以降低环境空气中的细颗粒物浓度为目标,宜采取“各级政府主导、社会各界参与,预防发生为主、应急防护为辅,配套综合措施、坚持长期不懈”的原则,通过优化能源结构、变革生产方式、改变生活方式,不断减少污染物排放量。(六)应将能源利用作为防治细颗粒物污染的重点领域,实行煤炭总量控制,大力发展清洁能源。在特大型城市核心区域应实行能源无煤化。限制高硫份高灰份煤炭的开采与使用,提高煤炭洗选比例,研究推广煤炭清洁化利用技术,减少煤炭燃烧造成的污染物排放。(七)应将制定城市建设规划作为防治细颗粒物污染的重要手段,优化城市功能布局,合理设置公共交通系统,缓解交通拥堵。要通过调整产业结构,强化规划环评,合理部署产业空间格局,推动生态工业发展,淘汰落后产能,严格实施“区域限批”制度和行业准入制度。(八)在开展细颗粒物排放总量调查的基础上,实行细颗粒物排放总量控制制度,将细颗粒物纳入污染物减排统计、监测考核体系,不断削减排放总量,严格控制新增排放量,实施清洁生产,从源头上减少细颗粒物的产生和排放。(九)各地防治污染工作,应将构建细颗粒物及其前体污染物的排放监测体系作为基础,开展环境空气中的细颗粒物成分和来源分析研究,确定本地区需重点控制的污染源名单。在城市密集区域,应开展城市间大气污染联防联控工作。(十)细颗粒物污染防治目标:到2015年,建立有效的排放监控机制和考核机制,构建完善的政府和企业目标责任制,基本建立起重点区域细颗粒物污染防治体系,并逐年减少细颗粒物排放总量;到2020 年,建立区域层面大气污染监测、评估、监督体系,细颗粒物排放总量显著下降。二、工业污染源治理(一)制定严格、完善的国家和地方工业污染物排放标准,明确各行业排放控制要求。对环境污染严重、污染物排放量大的地区,应在国家排放标准中规定特别排放限值或制定实施严格的地方排放标准。尽快制定工业烟(废)气中VOCs、氨的国家或地方排放标准。研究制定适用于低浓度颗粒物烟(废)气的监测方法标准。各级环保部门应严格执法,确保长期、稳定达标排放。(二)对于排放细颗粒物的工业污染源,应按照生产工艺、排放方式和烟(废)气组成的特点,采用适用的高效除尘技术,降低排放浓度;对于非密闭式排放烟尘、粉尘的生产装置,应采用集气装置收集烟气、废气,经净化后排放。(三)对于排放前体污染物的工业污染源,应分别采用去除硫氧化物、氮氧化物、VOCs和氨的治理技术。(四)采用氨作为还原剂的氮氧化物净化装置,应根据烟气中氮氧化物浓度,合理设置氨用量工艺参数,防止投加氨过量造成大量逃逸。(五)鼓励火电企业采用湿式电除尘等新技术,防止脱硫造成的“石膏雨”污染。三、移动污染源治理(一)应将尽快降低燃料有害物质含量和加速淘汰高排放老旧机动车辆作为当前治理移动源污染的重点,并建立长效机制,不断降低全国机动车船污染物排放水平。(二)进一步提高全国车用燃油的清洁化水平,降低硫等有害物质含量,为实施更加严格的新车排放标准、降低在用车辆排放水平创造必要条件。采取措施切实保障各地车用燃油的质量,防止车辆由于使用不符合要求的燃油造成车辆损坏或导致车辆排放控制性能降低。提高船舶和其他动力机械用燃油质量。(三)制定并实施新的机动车船大气污染物排放标准,收紧颗粒物、碳氢化合物、氮氧化物等污染物排放限值。以压燃式发动机和缸内直喷点燃式发动机汽车为重点,实施严格的颗粒物质量排放限值,同时制定实施颗粒物数量排放限值。(四)升级汽车氮氧化物排放净化技术,采用尿素等还原剂净化尾气中的氮氧化物,并建立车用尿素供应网络。(五)制定和实施非道路机械大气污染物排放标准,明确颗粒物排放控制要求。(六)严格控制加油站、油罐车和储油库的油气污染物排放,按时实施国家排放标准。(七)新生产压燃式发动机汽车应安装尾气颗粒物捕集器。严格限制轻型压燃式发动机乘用汽车的数量。用于公用事业的压燃式发动机在用车辆,可按照规定进行改造,提高排放控制性能。(八)大力发展地铁等大容量轨道交通设施,发展使用燃油替代能源的新能源汽车和电动汽车。加速淘汰老旧、高排放机动车,按照国家标准规定按时报废运营车辆,采用奖励等经济补偿措施促进更换各种在用社会车辆,缩短社会车辆更新周期。四、生活污染源治理(一)在全社会倡

  • 颗粒物的产生、危害与治理

    [b][font=宋体] 颗粒物的产生、危害与治理[/font] [font='Times New Roman']1. [/font][font=黑体]基本[/font][font='Times New Roman'][font=黑体]概念[/font][/font] [font='Times New Roman']1.1. [/font][font=黑体]颗粒物[/font][/b] [font=宋体][font=宋体]颗粒物([/font][font=Times New Roman]particulate matter[/font][font=宋体])又称尘。大气中的固体或液体颗粒状物质。颗粒物可分为一次颗粒物和二次颗粒物。一次颗粒物是由天然污染源和人为污染源释放到大气中直接造成污染的颗粒物,例如土壤粒子、海盐粒子、燃烧烟尘等等。二次颗粒物是由大气中某些污染气体组分(如二氧化硫、氮氧化物、碳氢化合物等)之间,或这些组分与大气中的正常组分(如氧气)之间通过光化学氧化反应、催化氧化反应或其他化学反应转化生成的颗粒物,例如二氧化硫转化生成硫酸盐。[/font][/font] [b][font='Times New Roman']1.2. [/font][font=黑体]组成[/font][/b] [font='Times New Roman'][font=宋体]颗粒物的组成十分复杂,而且变动很大。大致可分为三类:有机成分、水溶性成分和水不溶性成分,后两类主要是无机成分。有机成分含量可高达[/font]50%[font=宋体](重量),其中大部分是不溶于苯、结构复杂的有机碳化合物。可溶于苯的有机物通常只占[/font][font=Times New Roman]10%[/font][font=宋体]以下,其中包括脂肪烃、芳烃、多环芳烃和醇、酮、酸、脂等。有一些多环芳烃对人体有致癌作用[/font][font=Times New Roman],[/font][font=宋体]如苯并[/font][font=Times New Roman](a)[/font][font=宋体]芘等。可溶于水的成分主要有硫酸盐、硝酸盐、氯化物等,其中硫酸盐含量可高达[/font][font=Times New Roman]10%[/font][font=宋体]左右。颗粒物中不溶于水的成分主要来源于地壳[/font][font=Times New Roman],[/font][font=宋体]它能反映土壤中成土母质的特征[/font][font=Times New Roman],[/font][font=宋体]主要由硅、铝、铁、钙、镁、钠、钾等元素的氧化物组成。其中二氧化硅的含量约占[/font][font=Times New Roman]10[/font][font=宋体]~[/font][font=Times New Roman]40%[/font][font=宋体],此外还有多种微量和痕量的金属元素,有些对人体有害,如汞、铅、镉等。[/font][/font] [b][font='Times New Roman']2. [/font][font=黑体]分类[/font][/b] [font=宋体]对颗粒物目前尚无统一的分类方法,按尘在重力作用下的沉降特性可分为飘尘和降尘。习惯上分为:[/font] [font=宋体][font=宋体]尘粒:较粗的颗粒,粒径大于[/font][font=Times New Roman]75[/font][font=宋体]微米。[/font][/font] [font=宋体][font=宋体]粉尘:粒径为[/font][font=Times New Roman]1[/font][font=宋体]~[/font][font=Times New Roman]75[/font][font=宋体]微米的颗粒[/font][font=Times New Roman],[/font][font=宋体]一般是由工业生产上的破碎和运转作业所产生。[/font][/font] [font=宋体][font=宋体]亚微粉尘:粒径小于[/font][font=Times New Roman]1[/font][font=宋体]微米的粉尘。[/font][/font] [font=宋体][font=宋体]炱:燃烧、升华、冷凝等过程形成的固体颗粒,粒径一般小于[/font][font=Times New Roman]1[/font][font=宋体]微米。[/font][/font] [font=宋体][font=宋体]雾尘:工业生产中的过饱和蒸汽凝结和凝聚、化学反应和液体喷雾所形成的液滴。粒径一般小于[/font] [font=Times New Roman]10[/font][font=宋体]微米。由过饱和蒸汽凝结和凝聚而成的液雾也称霾。[/font][/font] [font=宋体][font=宋体]烟:由固体微粒和液滴所组成的非均匀系,包括雾尘和炱,粒径为[/font][font=Times New Roman]0.01[/font][font=宋体]~[/font][font=Times New Roman]1[/font][font=宋体]微米。[/font][/font] [font=宋体]化学烟雾:分为硫酸烟雾和光化学烟雾两种。硫酸烟雾是二氧化硫或其他硫化物、未燃烧的煤尘和高浓度的雾尘混合后起化学作用所产生,也称伦敦型烟雾。光化学烟雾是汽车废气中的碳氢化合物和氮氧化物通过光化学反应所形成,光化学烟雾也称洛杉矶型烟雾。[/font] [font=宋体][font=宋体]煤烟:煤不完全燃烧产生的炭粒或燃烧过程中产生的飞灰,粒径为[/font][font=Times New Roman]0.01[/font][font=宋体]~[/font][font=Times New Roman]1[/font][font=宋体]微米。[/font][/font] [font=宋体]煤尘:烟道气所带出的未燃烧煤粒。[/font] [font=宋体][font=宋体]粉尘由于粒径不同,在重力作用下,沉降特性也不同,如粒径小于[/font][font=Times New Roman]10[/font][font=宋体]微米的颗粒可以长期飘浮在空中,称为飘尘,其中[/font][font=Times New Roman]10[/font][font=宋体]~[/font][font=Times New Roman]0.25[/font][font=宋体]微米的又称为云尘[/font][font=Times New Roman],[/font][font=宋体]小于[/font][font=Times New Roman]0.1[/font][font=宋体]微米的称为浮尘。而粒径大于[/font][font=Times New Roman]10[/font][font=宋体]微米的颗粒,则能较快地沉降,因此称为降尘。[/font][/font] [b][font='Times New Roman']3. [/font][font=黑体]三模态[/font][/b] [font=宋体][font=Times New Roman]1978[/font][font=宋体]年,[/font][font=Times New Roman]Whitby[/font][font=宋体]将颗粒物粒径分为三模态:核模[/font][font=Times New Roman]nucleation[/font][font=宋体]([/font][/font][font='Times New Roman']0.002-0.1μm[/font][font=宋体][font=宋体]),积聚模[/font][font=Times New Roman]accumulation[/font][/font][font='Times New Roman'][font=宋体]([/font]0.1-1μm[font=宋体])[/font][/font][font=宋体][font=宋体],粗模[/font][font=Times New Roman]coarse[/font][/font][font='Times New Roman'][font=宋体]([/font]1μm[font=宋体])[/font][/font][font=宋体][font=宋体]。其中核模又可分为纯核模[/font][font=Times New Roman]pure nucleation[/font][/font][font='Times New Roman'][font=宋体]([/font]0.002-0.02[font=宋体])[/font][/font][font=宋体][font=宋体]和爱根核模[/font][font=Times New Roman]Aitken[/font][/font][font='Times New Roman'][font=宋体]([/font]0.02-0.1[font=宋体])[/font][/font][font=宋体][font=宋体],积聚模分为冷凝模[/font][font=Times New Roman]condensation[/font][font=宋体]([/font][font=Times New Roman]0.1-0.6[/font][font=宋体])和微滴模[/font][font=Times New Roman]droplet[/font][font=宋体]([/font][font=Times New Roman]0.6-1[/font][font=宋体])。[/font][/font] [b][font='Times New Roman']4. [/font][font=黑体]产生途径[/font][/b] [font=宋体]颗粒物的来源主要有自然源和人为源两种:自然源包括土壤扬尘、海盐、植物花粉、孢子、细菌等。自然界中的灾害事件,如火山爆发向大气中排放了大量的火山灰,森林大火或裸露的煤原大火及尘暴事件都会将大量细颗粒物输送到大气层中。人为源包括固定源和流动源。固定源包括各种燃料燃烧源,如发电、冶金、石油、化学、纺织印染等各种工业过程、供热、烹调过程中燃煤与燃气或燃油排放的烟尘。流动源主要是各类交通工具在运行过程中使用燃料时向大气中排放的尾气。[/font] [b][font='Times New Roman']5. [/font][font=黑体]主要[/font][font='Times New Roman'][font=黑体]危害[/font][/font][/b] [font=宋体][font=宋体]颗粒物中[/font][font=Times New Roman]1[/font][font=宋体]微米以下的微粒沉降速度慢[/font][font=Times New Roman],[/font][font=宋体]在大气中存留时间久,在大气动力作用下能够吹送到很远的地方。所以颗粒物的污染往往波及很大区域,甚至成为全球性的问题。粒径在[/font][font=Times New Roman]0.1[/font][font=宋体]~[/font][font=Times New Roman]1[/font][font=宋体]微米的颗粒物,与可见光的波长相近,对可见光有很强的散射作用。这是造成大气能见度降低的主要原因。由二氧化硫和氮氧化物化学转化生成的硫酸和硝酸微粒是造成酸雨的主要原因。大量的颗粒物落在植物叶子上影响植物生长,落在建筑物和衣服上能起沾污和腐蚀作用。粒径在 [/font][font=Times New Roman]3.5[/font][font=宋体]微米以下的颗粒物,能被吸入人的支气管和肺泡中并沉积下来,引起或加重呼吸系统的疾病。大气中大量的颗粒物,干扰太阳和地面的辐射,从而对地区性甚至全球性的气候发生影响。[/font][/font] [b][font='Times New Roman']6. [/font][font='Times New Roman'][font=黑体]监测[/font][/font][font=黑体]方法[/font][/b] [font='Times New Roman'][font=宋体]通过《[/font][/font][font=宋体][font=Times New Roman]GB/T 16157-1996[/font][font=宋体]固态污染源排气中颗粒物测定于气态污染物采样方法[/font][/font][font='Times New Roman'][font=宋体]》测定[/font][/font][font=宋体]各种锅炉、工业炉窑及其他固定污染源排气中颗粒物的测定和气态污染物的采样。[/font] [font='Times New Roman'][font=宋体]《[/font][/font][font=宋体][font=Times New Roman]HJ836-2017[/font][font=宋体]固定污染源废气 低浓度颗粒物的测定重量法[/font][/font][font='Times New Roman'][font=宋体]》[/font][/font][font=宋体]本标准适用于低浓度的测定,当测定结果大于[/font][font=宋体][font=Times New Roman]50mg/m[/font][/font][sup][font=宋体][font=Times New Roman]3[/font][/font][/sup][font=宋体][font=宋体]时,表述为[/font][font=宋体]“[/font][font=Times New Roman]50mg/m[/font][/font][sup][font=宋体][font=Times New Roman]3[/font][/font][/sup][font=宋体][font=宋体]”。当采样体积为[/font][font=Times New Roman]1m[/font][/font][sup][font=宋体][font=Times New Roman]3[/font][/font][/sup][font=宋体][font=宋体]时,本标准方法检出限[/font][font=Times New Roman]1.0mg/m[/font][/font][sup][font=宋体][font=Times New Roman]3[/font][/font][/sup][font=宋体]。适用于各类燃煤、燃油、燃气锅炉、工业窑炉、固定式燃气轮机以及其它固定污染源废气中颗粒物的测定。[/font] [font=宋体][font=宋体]《[/font][font=Times New Roman]HJ/T397-2007[/font][font=宋体]固定源废气监测技术规范》本标准适用于各级环境监测站,工业、企业环境监测专业机构及环境科学研究部门等开展固定污染源废气污染物排放监测,建设项目竣工环保验收监测,污染防治设施治理效果监测,烟气连续排放监测系统验收监测,清洁生产工艺及污染防治技术研究性监测等。[/font][/font] [font=宋体][font=宋体]《[/font][font=Times New Roman]HJ/T55-2000[/font][font=宋体]《大气污染物无组织排放监测技术导则》本标准适用于环境监测站对具有无组织排放的固定污染源实行监督监测和建设项目环境保护设施的竣工验收监测亦适用于固定污染源为进行自我管理而进行的监测等。[/font][/font] [b][font='Times New Roman']7. [/font][font='Times New Roman'][font=黑体]治理措施[/font][/font] [font=黑体][font=Times New Roman]7.1[/font][/font][font=黑体]城市生态环境整治建议[/font][/b] [font=宋体]城区生态环境综合整治方案的设计范围是以城市中心区的建成区为核心地域向外延伸。[/font] [b][font=黑体][font=Times New Roman]7.1.1[/font][font=黑体]水域生态工程方案[/font][/font][/b] [font=宋体]城市中的水域是唯一不起尘的地域,而且还具有吸尘、降尘和调节城市气候的重要作用,是城市生态平衡的重要因素。因此,要充分利用城市地质条件,保持并扩大现有水域面积,同时积极开发新的水域,提高水域覆盖率。该工程方案除了具有生态效益外,还可考虑其经济效益,例如建设水上训练基地或旅游渡假村等。[/font] [b][font=黑体][font=Times New Roman]7.1.2[/font][font=黑体]绿色生态工程方案[/font][/font][/b] [font=宋体][font=宋体]绿化是城市生态建设的另一重要组成部分。绿化可以调节气候、减少污染、净化空气、防风固沙,是非常经济的生物防治措施,称之为[/font][font=Times New Roman]"[/font][font=宋体]城市肺[/font][font=Times New Roman]"[/font][font=宋体]。中心区 [/font][font=Times New Roman]TSP [/font][font=宋体]中扬尘比例较高,与城市绿化率不高有着密切关系。因此,方案对绿化工程作出重点规划。绿化工程的设计思想:以林为主,草花为辅,建设大型防护林带和城市森林公园,尽快形成城市森林系统,使绿化工程最大限度地发挥环境保护和生态平衡作用;规划设计大、中、小型的以林为主,林、草、花相间的城市立体景观系统,使中心区内已建成地域的裸地全部绿化,作到黄土不露天;在建地域的裸地应随建设工程的结束时间而完成绿化工程。[/font][/font] [font=宋体][font=Times New Roman](1[/font][font=宋体])围绕城市外部建立外防护林带,形成以抵抗外来大气颗粒污染物的防护墙。再在城市中,沿河流、湖泊建立内防护林带,保证城市大气颗粒污染物的净土。[/font][/font] [font=宋体][font=Times New Roman](2[/font][font=宋体])建立城市森林公园,给城市建造有一个[/font][font=Times New Roman]"[/font][font=宋体]肺[/font][font=Times New Roman]"[/font][font=宋体],便于城市消耗以产生的城市大气颗粒物污染。[/font][/font] [font=宋体][font=Times New Roman](3[/font][font=宋体])许多城市都在近郊有储灰场,用来堆积城市建筑、日常生活所产生的灰尘、垃圾。储灰场是重要起灰源之一。该工程拟先在储灰坑周围建设高大防护林地,以阻挡灰坑起尘。注重储灰场的封闭问题,尽可能的避免其灰尘外扬。生活垃圾场周围也需建设高大防护林地,以阻挡垃圾山起尘。服务期满后进行土地恢复处理。还要做好裸地绿化工作,尽量做到城市退耕还林,将废弃的、或暂时无用处的裸地充分利用,建立绿化带或防护林带。[/font][/font] [b][font=黑体][font=Times New Roman]7.2[/font][font=黑体]城市工业环境整治方案[/font][/font][/b] [font=宋体]目前,我国许多城市内或近郊都存在一些具有一定大气污染的工厂。对于这些工厂,我们不但需要对其工厂环境进行改造和绿化(如上部分方案)。还需严格按照国家相关部门的要求,要求工厂进行废气的处理,达到环保要求。对于大气颗粒物污染,有以下几种控制技术:[/font] [font=宋体]根据除尘技术原理,可以概括为机械力除尘、过滤除尘、静电除尘和湿式除尘四种类型,其中前三种可统称为干式除尘。[/font] [b][font=黑体][font=Times New Roman]7.2.1[/font][font=黑体]机械力除尘[/font][/font][/b] [font=宋体]机械力除尘是借助质量力的作用达到除尘目的的方法,相应的除尘装置称为机械式除尘器.质量力包括重力、惯性力和离心力,主要除尘器形式为重力沉降室、惯性除尘器和旋风除尘器等。[/font] [font=宋体][font=Times New Roman](1[/font][font=宋体])重力沉降。[/font][/font] [font=宋体][font=宋体]利用颗粒污染物与气体密度不同,使颗粒污染物在重力作用下自然沉降下来,与气体分离的过程。重力沉降室结构简单,造价低,压力损失小,便于维护,且可以处理高温气体。主要缺点是只能捕集粒径较大的颗粒物,仅对[/font][font=Times New Roman]50[/font][font=宋体]微米以上的颗粒物具有较好的捕集作用,因而效率低,只能作为初级除尘手段,主要用于高效除尘装置的前级除尘器。[/font][/font] [font=宋体][font=Times New Roman](2[/font][font=宋体])惯性除尘。[/font][/font] [font=宋体]利用颗粒污染物与气体在运动中惯性力不同,使颗粒污染物从气体中分离出来的过程。通常是使气流冲击在挡板上,气流方向发生急剧改变,气流中的颗粒物惯性较大,不能随气流急剧转弯,便从气流中分离出来。[/font] [font=宋体][font=Times New Roman](3[/font][font=宋体])离心除尘。[/font][/font] [font=宋体]利用旋转的气流产生的离心力,将颗粒污染物从气体中分离处理的过程。[/font] [font=宋体][font=宋体]离心除尘器也称为旋除尘器,具有结构简单、占地面积小、投资低、操作维修方便、压力损失中等、动力消耗不大、可用各种材料制造、能用于高温或高压及腐蚀性气体、并可直接回收干颗粒地优点。一般用来捕集[/font][font=Times New Roman]5[/font][font=宋体]至[/font][font=Times New Roman]15[/font][font=宋体]微米以上地颗粒物,除尘效率可达[/font][font=Times New Roman]80[/font][font=宋体]%左右,是机械式除尘器中效率最高的。主要缺点是对[/font][font=Times New Roman]5[/font][font=宋体]微米以下的细小颗粒物去除效果不理想。[/font][/font] [b][font=黑体][font=Times New Roman]7.2.2[/font][font=黑体]过滤除尘[/font][/font][/b] [font=宋体]过滤除尘是使气流通过多孔滤料,将气流中颗粒污染物截留下来,使气体得到净化的过程,主要有袋式除尘及颗粒层过滤除尘两种方式。[/font] [font=宋体]([/font][f

  • 上海大气颗粒物源解析表明80%来自人为污染

    长达10年的上海大气颗粒物源解析已取得初步成果,“常态源解析初步揭示PM2.5来源,得出空气中PM2.5本地人为污染排放贡献占八成,交通和工业是重头。其中 初步研究表明,上海市PM2.5的主要来源为:机动车船等移动源占25%;石化、化工、工业喷涂、钢铁和建材等工业工艺过程占15%;工业锅炉、工业炉窑占11%;电站锅炉占10%;建筑工地、道路和堆场扬尘等占10%;干洗、餐饮和民用涂料等生活面源占5%;秸秆燃烧、化肥使用和畜禽养殖等农业源占4%;区域影响占20%。  在以上PM2.5的的主要来源中,机动车尾气污染不容忽视,大量的柴油车在道路行驶过程中会产生PM2.5,司机不良驾驶习惯如急加速、急减速还会排放更多的PM2.5。同时上海市还有20多万辆的高污染黄标车在道路上行驶,这些车排放的大气污染物是国四排放标准车辆的二十到三十倍,加速淘汰高污染车辆势在必行。 基于此,上海制定了180多项有针对性治理措施。上海市环境监测中“为了定性或定量识别大气颗粒物来源,上海逐步构建大气污染源排放清单与源谱,探索颗粒物来源解析技术方法,在常态源解析和重污染快速源识别两个方面均取得进展,并在治污中得到有效应用。

  • 【转帖】岑可法:让生命充分燃烧

    岑可法:让生命充分燃烧能源环境工程专家,专长工程热物理及热能工程。1935年1月15日出生于广东省南海市。现任浙江大学机械与能源工程学院院长、浙江大学热能工程研究所所长、教授、博士生导师。中国工程热物理学会副理事长,动力工程学会国际合作委员会主席。1995年当选为中国工程院院士(能源与矿业工程学部)。在“以煤代油、煤的高效低污染燃烧、垃圾等有机有毒废弃物焚烧、煤的多联供技术”等领域均有开拓性成就。 走近院士岑可法,我们得先看一组身边的数据: 上海每天产生生活垃圾约12000吨,北京每天产生8000吨至9000吨,我们杭州每天也有2200吨左右。据航空遥感测到,北京附近堆放的垃圾占地已有1250万平方米,形成了座座垃圾山。 人类制造的垃圾正在围剿人类自己,对此你我都无能为力吗?中国工程院院士、浙大热能工程研究所所长岑可法和他的同仁们,却使垃圾变成宝贝。 日前引起市民关注的浙江大学锦江集团余杭垃圾发电示范厂,用的就是这一专利发明技术。近来,利用这一技术,属国家高新技术产业化项目,日处理城市生活垃圾800吨的又一个大型发电厂在余杭动工兴建。 至此,你不必焦虑垃圾“吃”人了,因为有个岑可法。 他让煤身价百倍 走进岑可法的科研世界,如同走进了迷宫。 簇新的浙大热能工程研究所大楼,有考究得要脱鞋的实验室,也有铜管铁皮杂乱堆积的露天“车间”。可谁都不敢小觑哪个地方。岑老说,这是监测二恶英的;那个实验装置可供80户农家燃气用电;那个高得像电视发射塔的,可是全国最大的悬浮燃烧试验台。 但是,岑可法科研生命的起点不在这里。 岑可法是能源工程专家。 中国是世界第一产煤大国。 所以,岑可法的能源生命里有许多解不开的“煤结”。 1958年,国家选派研究生到前苏联留学,别人选择制造火箭、舰艇等尖端学科,而岑可法却矢志不渝地选择了又普通又脏的专业。 全世界产油大国都赚大钱,全世界第一产煤大国却为什么亏本?就像父亲放弃联合国官员的职位,回来与祖国共浴抗日战火一样,岑可法想的也是富国强国之道。 从1978年开始,岑可法带着攻关小组研究油煤浆技术。仅两年时间,他在杭州和鞍钢之间就往返了22趟。为了研究的完成,岑可法把一切家务都抛给夫人沈珞婵教授了。一次,岑可法从鞍钢深夜回到杭州,他使劲敲着家门,直到吵醒邻居。邻居惊奇地问:“你家早已搬走了,你怎么忘了?”邻居哪里知道,为了能源,他压根儿就忘了家在哪里。 80年代初,岑可法随一个科学代表团到美国。美国人拿出一小袋东西说:“我们已经搞出了‘水煤浆’,可以100%地代替油。”开价几千万元要中国人买他们的成果。回国后岑可法就向国家提出了要攻克水煤浆代油的难关,并于1982年在浙大试验成功。1983年,美国人为了打开中国市场,与中国合作,在美国实验室用中国煤做水煤浆燃烧试验。正当美方接近成功的时候,岑可法发现他们在试验中加入了天然气,就胸有成竹地说:“还是按我们的方法试烧吧。”他从容不迫地调试起来。试验结果,光是煤和水,不加天然气,不加一滴油,就代替了100%的油。 迄今,除了以煤代油外,煤还可以气化,可以制冷,从煤中可提炼矾、铝、铀等金属,利用煤渣可做水泥、砖头……煤不再是简单地一把火烧了。这些国内首创、达到国际水平和国际领先水平、具有重大经济效益的“水煤浆技术”、“煤水混合物异重度燃烧技术”、“废弃物焚烧及资源化技术”、“煤的多联产综合利用技术”、“高效低污染流化床燃烧技术”等等,听起来有些拗口,却使煤一夜间身价百倍。 他逼学生成龙 走出实验室的岑可法,有点像我们家隔壁那个熟悉的好老头,幽默、利索,还特别喜欢年轻人,护着年轻人。 他从电脑里调出一幅他们的集体照,一一指给我看:要宣传就宣传这些年轻人吧,倪明江、樊建人、骆仲泱、严建华、姚强、方梦祥、池涌、周俊虎、池作和……获得过“霍英东基金会高校青年教师奖”、国家首批“跨世纪人才”、“中国青年科技奖”、“青年科学家提名奖”、“长江计划特聘教授”等等----可都是全国百里挑一的人才。 这么平和、谦恭的老师,却还会骂学生。 在岑可法的家,他的博士马增益说:“岑老师会骂人,有时兴冲冲地拿个论文请他看,他却挑了一堆的‘刺’,骂得人很窘迫。可他要不骂你了,你就不长进了。”岑可法笑得一脸无辜:“科学就需要这么严谨嘛。” 这么个不留情面的老头,他这个所的梧桐树却最留得住凤凰了。至今,全所100多人,平均年龄不到40岁,却67%有博士学位。其中博士生导师有10个,有的刚30出头就当博导了。用“凤凰”们自己的话说:岑老师总是给年轻人压担子、出课题,把出国出名的机会让给你---千方百计“逼”你成龙. 还有个原因,这个把心爱的学生“藏”在电脑里的老头,还是一个让年轻人觉得投缘的追逐新生事物迷。1986年出国,他给所里买回第一台086电脑,为所内开展计算机辅助数值计算打下了坚实基础。他说,创新和年轻,都是他崇尚的。 他说:“21世纪是人才竞争的时代”。像爱迪生、牛顿那样,个人奋斗成功的科学时代结束了,创造新的科学奇迹需要跨学科人才的复合与凝聚。这也是他作为一个院士,把育人看得比科研成果更重要的一个原因。所以,65岁的岑可法,一边在科学马拉松长跑 中竭尽全力跑着,一边还鞭打快牛,帮助更多的学生、更多的中国人超越自己。这就像他研究的“煤的燃烧”,为了科学,他让自己和更多的生命充分燃烧了。

  • 【讨论】颗粒产品标准的制定(征求意见)

    大家好,我们公司正做一种2.5±1mm的颗粒产品,想做个企业标准,希望大家给些意见。我的想法: 分两部分,一是工艺加工技术标准,二是产品标准,不知道是否应该分开来做,或是单独做?工艺技术标准相对简单,主要是制定各工序工艺参数及在制品技术要求,但颗粒产品标准应该包括哪些内容就不是很清楚。个人认为一是颗粒粒度要求,2.5±1mm,二是检测方法之类的,其它的不清楚,还有应该是什么格式的希望大家给些建议,或参考资料。不胜感激!

  • 为什么要针对低浓度颗粒物测定制定一个新标准?

    [color=#333333]环境保护部近日印发《固定污染源废气 低浓度颗粒物的测定 重量法》(HJ836-2017)国家环境保护标准,环境监测司负责人就相关问题回答了记者提问。[/color][color=#333333][/color][hr/]问:为什么要针对低浓度颗粒物测定制定一个新标准,原先的方法标准有哪些不适用的地方?[color=#333333]答:我国正在大力推进燃煤电厂低浓度排放改造,要求改造后的颗粒物排放浓度不大于5mg/m3,而现行的颗粒物监测标准方法《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996),在颗粒物浓度较低、烟气湿度较大的情况下,监测结果准确度相对较差,主要原因一是沉积在采样嘴及采样管前段的颗粒物无法回收,造成监测结果偏低;二是在烟气湿度较大的情况下,长时间采样容易造成滤筒受潮破损,影响颗粒物测试的准确度。为解决上述问题,满足现行污染源排放的监测需求,特制定本标准。同时在《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)修改单中规定:当测定固定污染源排气中颗粒物浓度时,浓度小于等于20 mg/m3时,适用HJ 836(《固定污染源废气 低浓度颗粒物的测定重量法》);浓度大于20mg/m3且不超过50mg/m3时,与HJ 836同时适用。[/color][color=#333333][/color][hr/]问:低浓度颗粒物方法标准的技术路线和GB/T 16157-1996的区别是什么?[color=#333333]答:GB/T 16157-1996采用干燥皿冷却,并只称量采样滤筒。而本标准则采用恒温恒湿平衡—整体称重,恒温恒湿平衡,就是样品在采样前后要在统一的温湿度状况下平衡稳定后称量,与GB/T 16157-1996相比,恒温恒湿平衡可以有效减少称量波动,提高称量的稳定性;整体称重,就是将滤膜封装在采样头内采样,并将采样头整体进行称量,这种方式能有效避免滤膜破损,并保证沉积在采样嘴及采样管前段的样品得到回收,提高了测定的准确度。[/color][color=#333333][/color][hr/]问:如何保证低浓度测定结果的准确性?[color=#333333]答:在低浓度颗粒物监测过程中,样品污染会引起较大的监测误差,本标准引入了“全程序空白”质控要求,可判断样品在测定过程中是否受到污染。“全程序空白”指除采样过程中采样嘴背对气流不采集废气外,其他操作与实际样品操作完全相同获得的样品。标准规定,任何低于全程序空白增重的样品均无效。[/color][color=#333333]本标准对采样准备、布点、采样、运输、预处理和称量等各个环节的质量控制提出了更为严格的要求,提高了测定结果的准确性。[/color][color=#333333]以上内容来自于:中国环境报[/color]

  • 固定污染源颗粒物采样问题

    如果固定污染源采集颗粒物/低浓度颗粒物时,流速只有1.0多。按照标准颗粒物为等速采样,但采时太长。如果用等速采样,浓度会偏高还是偏低?

  • 原子吸收的三缝燃烧器比单缝燃烧器稳定

    最近在看一些文献教材,看到关于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]燃烧器这一部分。3,燃烧器 试液的细雾滴进入燃烧器,在火焰中经过干燥、熔化、蒸发和离解等过程后,产生大量的基态自由原子及少量的激发态原子、离子和分子。通常要求燃烧器的原子化程度高、火焰稳定、吸收光程长、噪声小等。燃烧器有单缝和三缝两种。燃烧器的缝长和缝宽,应根据所用燃料确定。目前,单缝燃烧器应用最广。 单缝燃烧器产生的火焰较窄,使部分光束在火焰周围通过而未能被吸收,从而使测量灵敏度降低。采用三缝燃烧器,由于缝宽较大,产生的原子蒸气能将光源发出的光束完全包围,外侧缝隙还可以起到屏蔽火焰作用,并避免来自大气的污染物。因此,三缝燃烧器比单缝燃烧器稳定=======================================从来没有见过三缝燃烧器啊?既然三缝燃烧器稳定,那为什么没有大规模普及呢??

  • 崂应——固定污染源超低排放颗粒物测定解决方案

    崂应——固定污染源超低排放颗粒物测定解决方案

    [b]摘要:国家环境保护部2017年第87号公告,为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,规范环境监测工作,现批准《固定污染源废气 低浓度颗粒物的测定重量法》等五项标准为国家环境保护 标准,并予发布,标准自2018年3月1日起实施。[/b][hr/][b]关键词[/b]:低浓度、超低排放、颗粒物[b][/b][hr/]涉及仪器:崂应3012H-D型便携式大流量低浓度烟尘自动测试仪崂应1085D型低浓度烟尘多功能取样管崂应 9020A 型 智能自动压膜机其他所需仪器设备:十万分之一天平、烘箱、马弗炉、恒温恒湿设备、其他实验室常用设备[hr/]1、[b]相关标准依据[/b]HJ836-2017《固定污染源废气 低浓度颗粒物的测定 重量法》 GBT_16157-1996《固定污染源排气中颗粒物和气态污染物采样方法》2、[b]适用范围[/b]各类固定污染源超低排放废气中低浓度颗粒物的测定,当颗粒物浓度小于等于20mg/m3时,适用于HJ836,当颗粒物浓度大于20mg/m3且不超过50mg/m3时,HJ836与GB16157同时适用,当测定结果大于50mg/m3时,HJ836表述为“>50mg/m3”。当采样体积为1m3时,方法检出限为1.0mg/m3。[b]3、与传统采样相比增加的试剂和材料[/b]石英或特氟龙材质滤膜φ(47±0.25)mm,密封铝圈、采样头、不锈钢托网、一次性手套(无粉末、抗静电)、丙酮试剂、石英棉,聚四氟乙烯材质堵套,防静电密封袋袋或密封盒,样品箱,取样管出气口密封装置4、 [b]实验室准备 [/b]4.1制定方案HJ836低浓度采样方法与GB16157相比,采样准备的最大不同在于本标准不 能在现场根据实际流速更换采样嘴直径,故需要事先知道现场基本流速等状况,选择相对应的采样嘴直径的采样头,以及确定样品数量,选择滤膜的材质,以 便采样前实验室准备。4.2[b]准备仪器设备[/b]属于国家强制检定目录内的工作计量器具,必须按期送计量部门检定,检定合格,取得检定证书后方可用于监测工作。按照HJ/T48的要求对颗粒物采样 装置瞬时流量准确度、累积流量准确度进行校准,对于组合式采样管皮托管系数,每半年校准一次,当皮托管外形发生明显形变时,应及时校准或更换。4.3[b]采样头的准备 [img=,690,330]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251509460475_8781_3254867_3.png!w690x330.jpg[/img] 5、 现场采样5.1 [/b]采样[img=,690,346]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251510129005_1661_3254867_3.png!w690x346.jpg[/img]5.2[b]采样后处理 [img=,690,382]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251510587858_9442_3254867_3.png!w690x382.jpg[/img] 6、 质量控制及注意事项 6.1 皮托管保护[/b]HJ836中再次强调了皮托管系数的准确性,平时使用和存放过程中,一定要 对皮托管前端进行保护,防止磕碰变形,不使用时,将皮托管保护套套好,一旦发生明显形变是,要及时更换,皮托管系数的准确性,直接影响到测量结果 的准确性。[b]6.2取样管放置[/b]采样嘴应先背后气流方向插入管道,采样时采样嘴必须对准气流方向,偏差不超过10°。采样结束,应先将采样嘴背后气流,迅速抽出管道,防止管道负压将尘粒倒吸。当将采样嘴插入或是抽出烟道时,注意采样嘴不要碰触管壁,防止灰尘进入采样嘴,影响测试准确度,依据 HJ836现在是整体称重,灰尘进入采样嘴将直接影响采样结果。[b]6.3取样管加热[/b]对于超低排放来说取样管加热的功能非常重要,因为超低排放的时候很多 工况都是基本上都是用的湿式除尘。那么烟道里一般温度低、湿度高的工况, 如果不选择加热,滤膜在采样过程中很快就会吸湿,阻力非常大。造成滤膜抽破或者仪器直接停机保护,无法完成采样,但是标准要求加热温度不高于110℃,这一点也要注意下。因此取样管的加热功率、加热性能是个重要指标。[b]6.4滤膜材质选择[/b]HJ836 中规定应选择石英或特氟龙材质滤膜,滤膜材质不应吸收或与样气 中的气态化合物发生化学反应,在预计最高的采样温度下应保持热稳定。玻纤滤膜可能和废气中的SO3等发生反应,导致样品结果异常增加,HJ836 中已经去 掉,当分析采集颗粒物的组分选择时,还应考虑过滤材料中相应组分的空白, 另外采购滤膜时,捕集效率也要满足标准要求。[b]6.5关于全程序空白[/b]HJ836 中增加了全程序空白样品的制备,全程序空白对于整个采样过程起到了很关键的质控作用,标准中规定,任何低于全程序空白增重的样品均无效。 全程序空白增重除以对应测量系列的平均体积不应超过排放限值的10%。颗粒物 浓度低于方法检出限时,对应的全程序空白增重不高于0.5mg,失重不多于0.5mg。 全程序空白就是和采集样品的放置时间和移动方式是完全一样的。唯一不同的是采样嘴背对气流不采样,采集全程序空白样时,一定要密封取样管的出气口, 避免烟道为正压或者负压,气流会通过滤膜,造成滤膜上集结颗粒物,造成全 程序空白质量异常增加。全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次,在实验室处理和准备采样头时,注意将全程序空白的用量考虑进去。[b]6.6跟踪率[/b]注意在采样时控制等速率在90%-110%之间,即采样嘴处的吸气速率与测点处的烟气速率相对误差在10%以内,超过此误差范围,数据无效。为保证跟踪率,首先注意采样点的选择,流速不能波动太大,其次要注意采样嘴的选择以及仪 器的负载、泵跟踪反馈调节的性能。[b]6.7如何准确含湿量[/b]HJ836中6.1规定,废气中水分含量的测定有冷凝法、重量法和仪器法。重量法、冷凝法准确度高,但操作复杂,不能现场出数据,干湿球法操作简单,可以现场出数据,目前国内普遍使用,但在烟气温度高于 100摄氏度测定结果均值间的相对偏差较大。目前测量湿度的新方法还有阻容法、光学发、干湿氧法等等,阻容法利用湿敏元件的电阻值和电阻率随环境湿度变化的特性,进行湿度测量。阻容式湿度传感器的工作原理为空气湿度改变引起敏感元件阻抗变化的特性,精度高, 所以在烟温低于180℃时,可以选用崂应1062A型阻容法烟气含湿量检测器, 完成湿度测量。[align=center][img=,690,805]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251513120205_8233_3254867_3.jpg!w690x805.jpg[/img][/align][align=center]崂应3012H-D型便携式大流量低浓度烟尘自动测试仪[/align][align=center][img=,690,143]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251513303035_2870_3254867_3.jpg!w690x143.jpg[/img][/align][align=center]崂应1085D型低浓度烟尘多功能取样管[/align][align=center][img=,690,487]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251513520248_2876_3254867_3.jpg!w690x487.jpg[/img][/align][align=center]崂应9020A型智能自动压膜机[/align][align=center][img=,690,164]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251514050908_884_3254867_3.jpg!w690x164.jpg[/img][/align][align=center]崂应1062A型阻容法烟气含湿量检测器[/align][align=center][/align][align=center]【免责声明】[/align][align=center]本资料未经许可不得擅自修改、转载、销售[/align][align=center]本资料中的信息仅供参考,不予任何保证。如有变动,恕不另行通知。[/align][align=center]更多的解决方案请您关注崂应。[/align][align=center][img=,690,195]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251512413508_3942_3254867_3.jpg!w690x195.jpg[/img][/align]

  • 一起再来学习一下燃烧秸秆的危害

    危害一:污染空气环境,危害人体健康。有数据表明,焚烧秸秆时,大气中二氧化硫、二氧化氮、可吸入颗粒物三项污染指数达到高峰值,其中二氧化硫的浓度比平时高出1倍,二氧化氮、可吸入颗粒物的浓度比平时高出3倍,相当于日均浓度的五级水平。当可吸入颗粒物浓度达到一定程度时,对人的眼睛、鼻子和咽喉含有黏膜的部分刺激较大,轻则造成咳嗽、胸闷、流泪,严重时可能导致支气管炎发生。 危害二:引发火灾,威胁群众的生命财产安全。秸秆焚烧,极易引燃周围的易燃物,尤其是在村庄附近,一旦引发火灾,后果将不堪设想。 危害三:引发交通事故,影响道路交通和航空安全。焚烧秸秆形成的烟雾,造成空气能见度下降,可见范围降低,容易引发交通事故。 危害四:破坏土壤结构,造成耕地质量下降。焚烧秸秆使地面温度急剧升高,能直接烧死、烫死土壤中的有益微生物,影响作物对土壤养分的充分吸收,直接影响农田作物的产量和质量,影响农业收益。 危害五:焚烧秸秆所形成的滚滚烟雾、片片焦土,对一个地区的环境形象是最大的破坏。 会不会致癌?

  • 中药颗粒剂如何质量控制?

    中药颗粒剂如何质量控制? 为了保证颗粒剂成品质量的一致性和稳定性,从休止角、堆密度、吸湿性三个方面对半成品的质量进行了控制,具体方法和结果如下: 一、 休止角的测定: 取适量半成品颗粒,用固定漏斗法测定休止角,结果见下表: https://ng1.17img.cn/bbsfiles/images/2024/09/202409182050407176_6502_2204446_3.png!w552x189.jpg 结果表明,该颗粒休止角小于40度,流动性好,易于分装。 二、堆密度的测定:称取一定量的半成品颗粒,装入10ml量筒中,以一定高度落下(尽可能控制高度一致),使松紧适宜,以重量及容积计算其堆密度,结果见下表: https://ng1.17img.cn/bbsfiles/images/2024/09/202409182052049344_2683_2204446_3.png!w533x205.jpg 实验结果表明,该颗粒剂的平均堆密度为0.50 g/ml,为成品的包装提供了依据。 三、颗粒剂吸湿性的研究: 取底部盛有NaCl过饱和溶液的玻璃干燥器,干燥器内置一称量瓶,放入25℃恒温干燥箱内恒温24小时,此时干燥器内的相对湿度为75%。取样品5g,精密称定,置称量瓶中, 将盛皿盖打开,与25℃恒温干燥箱内保存,每隔一定时间称重一次,计算各时间的吸湿百分率,结果见下表. https://ng1.17img.cn/bbsfiles/images/2024/09/202409182137529912_59_2204446_3.png!w511x182.jpg 以测定时间为横坐标,颗粒吸湿率为纵坐标绘制曲线,即得颗粒吸湿平衡曲线,结果见下图: https://ng1.17img.cn/bbsfiles/images/2024/09/202409182139027276_8927_2204446_3.png!w492x207.jpg 由颗粒吸湿平衡曲线可见,本颗粒剂在168小时内基本不在吸湿,吸湿百分率为19.21。 临界相对湿度的测定:水分对固体制剂稳定性影响很大,而环境的湿度是颗粒剂稀释的一个重要来源,为了尽量减少颗粒吸潮,本研究测定了扶正固本颗粒(无糖型)的临 界相对湿度,为控制该制剂的制备及分装车间的相对湿度提供参考依据。 测定方法:取样品颗粒14份,分为2组,每组7份,每份2g,置于敞口的称过重量并编号的称量瓶中,精密称定,打开称量瓶盖,分别放入不同湿度的玻璃干燥器中,在25℃ 烘箱放置168小时,取出称量瓶,加盖后精密称定,计算样品的水分含量,结果见下表.以水分百分含量为纵坐标,相对湿度为横坐标作曲线,结果见下图. https://ng1.17img.cn/bbsfiles/images/2024/09/202409182140178751_4701_2204446_3.png!w555x661.jpg 可见,相对湿度在[font=宋体]61%以下时,颗粒的吸水率较小,而在61%以上,颗粒吸湿性明显增加。同时,根据吸湿曲线显示,该品种的临界相对湿度为61%,故在制粒、分装的过程中,环境湿度必须控制在61%以下,以减少水分对药物性质及稳定性的影响。

  • 【原创大赛】关于无组织颗粒物监测方法与评价标准的探讨

    摘 要 由于现阶段工业企业无组织颗粒物排放已经成为环境空气主要来源之一,粉尘污染在大气污染中占据着重要的比重。我国的工业生产方式长期粗放,工业领域是我国粉尘污染最主要的来源,包括金属矿石、冶金、采石场、钢铁厂、建筑施工、堆场、港口、垃圾回收、火电厂等。  无组织排放粉尘是相对于有组织排放粉尘而言。在破碎车间、筛分车间、皮带、落料、堆料等作业环节,随着物料的破裂、移动,粉尘颗粒产生,并以不规则的形式散发到空气中,这就导致作业现场无组织粉尘污染,若不加以抑制,无组织排放粉尘会随着风力作用散发到更广的范围,造成更大的影响。 国内目前还没有对无组织颗粒物的采样方法进行详尽统一的规定,本文从无组织颗粒物的定义,以及目前现有的采样文献进行分析,通过对现有大气污染物综合排放标准、行业排放标准以及验收监测技术规范进行整理分析,以及通过实际采样分析和标准的比对分析,得出结论:无组织颗粒物应当参照《总悬浮物的测定 重量法》(GB/T15432-1995)制定统一规范的采样方法,增加采样时间,根据采样方法制定更为严格的排放标准。关键词: 粉尘,颗粒物,技术规范,无组织排放目 录摘 要II目 录III绪 论1一、 粉尘的来源2二、 粉尘对人体的健康危害2三、 降尘、扬尘、粉尘、无组织颗粒物、TSP(总悬浮颗粒物)的异同3四、 无组织颗粒物采样方法及仪器设备的研究41、无组织采样方法42、采样仪器及设备5(1) 无组织颗粒物采样方法的探究6(2) 实际监测结果和标准比对6五、 评价方法和行业排放标准之间的关系8结 论10参考文献11附 录12绪 论 雾霾天气对人类身体健康的影响越来越严重,其中工业企业无组织污染排放作为主要的污染源,现阶段无组织颗粒物的采样方法还没有相应的国家统一标准规定,各监测单位对无组织颗粒物规定不一,造成采样方法不一致,评价不统一。就目前的情况研究无组织颗粒物的采样方法及采样设备,对降尘、颗粒物、扬尘、TSP(总悬浮颗粒物)之间进行区别和联系。行业排放标准和综合排放标准之间的联系与异同等问题。就如何进行无组织颗粒物的的采样,建议统一监测方法,降低评价限值。 一、粉尘的来源 扬尘、汽车尾气、工业排放物等各种有害物质是形成雾霾的主要来源,而大部分雾霾属于无组织排放粉尘固体物质的机械加工或粉碎,如金属研磨、切削、钻孔、爆破、破碎、磨粉、农林产品加工等。物质加热时产生的蒸气在空气中凝结或被氧化所形成的尘粒,如金属熔炼,焊接、浇铸等。有机物质不完全燃烧所形成的微粒,如木材、油、煤类等燃烧时所产生的烟尘等。铸件的翻砂、清砂粉状物质的混合,过筛、包装、搬运等操作过程中,以及沉积的粉尘由于振动或气流运动,使沉积的粉尘重又浮游于空气中(产生二次扬尘)也是粉尘的来源。二、粉尘对人体的健康危害 无组织排放粉尘有别于有组织排放粉尘的集中性、易除性,治理难度大,给社会、人类生活带来了许多危害。其中,最直观的就是无组织排放粉尘对空气的污染,近段时间,雾霾出现得越来越频繁,笼罩了许多大中型城市,特别是一线城市的雾霾现象尤为严重,以北京和上海为例,经常被雾霾天气所笼罩。雾霾中含有如二氧化硫、氮氧化物和可吸入颗粒物等有毒物质,空气质量的下降直接诱发对人体的危害,引起呼吸道疾病;在突发性高浓度污染物的作用下可造成急性中毒,甚至死亡。长此以往,更多的后果是使人体质下降,精神不振。此外,无组织排放粉尘也间接影响到社会经济的发展。第一,由于大部分无组织排放粉尘来源于有用的原料和产品,大量粉尘的排放将无形中增加生产成本,降低经济效益。第二,无组织排放粉尘的超标,使得整改治理无望的工矿企业面临责令停产或关闭的威胁。第三、粉尘引发的火灾、爆炸事故,与企业的人员生命和财产损失息息相关。无组织排放粉尘所带来的危害不胜枚举,而它也随着社会的不断发展愈加污染严重,粉尘治理迫在眉睫。国内涉及到的无组织排放粉尘治理技术,主要有湿法喷雾除尘、苫盖、挡风、清灰等技术,以及现阶段比较先进的生物纳膜抑尘技术。物料在装卸、搬运过程中的二次污染和粉尘散发后捕捉与搜集,有效抑制无组织排放粉尘的产生。三、 降尘、扬尘、粉尘、无组织颗粒物、TSP(总悬浮颗粒物)的异同降尘,根据GB/T15265-94《环境空气降尘的测定 重量法》定义,指在空气环境条件下,靠重力自然沉降在集尘缸中的颗粒物,现阶段认为空气动力学当量直径大于10微米的固体颗粒物称为降尘。降尘监测是最简单直观的表现空气颗粒物污染的一项指标,然而由于采样周期长,无法合理有效的选择背景参照点,国内现阶段还无相应的排放标准。扬尘是指粉粒体在输送及加工过程中受到诱导空气流、室内通风造成的流动空气及设备运动部件转动生成的气流,都会将粉粒体中的微细粉尘首先由粉粒体中分离而飞扬,然后由于室内空气流动而引起粉尘的扩散,从而完成了从粉尘产生到扩散的过程。粉尘是指悬浮在空气中的固体微粒。习惯上对粉尘有许多名称,如灰尘、尘埃、烟尘、矿尘、砂尘、粉末等,这些名词没有明显的界限。国际标准化组织规定,粒径小于75μm的固体悬浮物定义为粉尘。而我国生产性粉尘指生产过程中排入到空气中的颗粒性物质,粉尘的粒径小的在0.01μm以下,最大的可达1000μm,是飘尘、悬浮颗粒物和降尘的混合体。颗粒物GB/T16157-1996中指燃料和其他物质在燃烧、合成、分解以及各种物料在机械处理中所产生的悬浮于排放气体中的固体和液体颗粒状物质。无组织排放指大气污染物不经过排气筒的无规则排放。所以无组织颗粒物为不经过排气筒无规则排放的悬浮于排气中的固体和液体颗粒状物质。TSP(总悬浮颗粒物),是漂浮在空气中的固态和液态颗粒物的总称,其空气动力学当量直径范围约为0.1~100 微米。它主要来源于燃料燃烧时产生的烟尘、生产加工过程中产生的粉尘、建筑和交通扬尘、风沙扬尘以及气态污染物经过复杂物理化学反应在空气中生成的相应的盐类颗粒。TSP是大气环境中的主要污染物。根据以上各项目定义可以得出其中的关系,见下表file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\ksohtml\wps3F

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制