当前位置: 仪器信息网 > 行业主题 > >

脉冲信号转换器

仪器信息网脉冲信号转换器专题为您提供2024年最新脉冲信号转换器价格报价、厂家品牌的相关信息, 包括脉冲信号转换器参数、型号等,不管是国产,还是进口品牌的脉冲信号转换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脉冲信号转换器相关的耗材配件、试剂标物,还有脉冲信号转换器相关的最新资讯、资料,以及脉冲信号转换器相关的解决方案。

脉冲信号转换器相关的论坛

  • 【白皮书】数字信号与脉冲序列调理

    【白皮书】数字信号与脉冲序列调理

    数字信号与脉冲序列调理数字IO接口数字信号采用数字信号进行通信是计算机和外设、仪器以及其他电子设备之间最常见的通信方式,因为这是计算机工作的基本元素。任何信号,都必须转换为数字信号之后,才能输入计算机,并进行处理。数字信号流入或流出系统时,或是单个信号,或是一串脉冲,可以只经过单一端口,也可以经过多个并行端口,并行端口上每根信号线代表字符中的一个bit。计算机的数字输出信号线往往用于控制继电器,以间接控制其他设备的开关。类似地,数字输入信号线可以代表某个传感器或开关的两种状态之一,而一串脉冲序列可以指示某个设备的当前位置或瞬时速度。输入信号可能来自继电器或其他固态设备。大电流、高电压数字IO通过继电器,可控制超出计算机内部处理范围的电压或电流,但信号或状态的响应速度受限于线圈的频率响应和触点移动。同时,当电感负载由闭合切换至断开时,两端的反向自感电动势必须被抑制,可将续流二极管反接在负载两端,为脉冲电流提供通路,以释放能量。如果没有这个二极管,继电器两端的电弧会缩短自身使用寿命(见图11.01)。[img=,315,349]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514034446_4291_3859729_3.jpg!w315x349.jpg[/img]TTL和CMOS设备通常用于连接高速低压信号,例如速度或位置传感器的输出信号。但是在需要用计算机去激励继电器线圈的应用中,TTL或CMOS设备也许无法满足电压和电流需求。因此需要在TTL信号和继电器之间接入一级缓冲,以提供30V,100mA的驱动能力。 [img=,315,323]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281514151811_8384_3859729_3.jpg!w315x323.jpg[/img]这种系统的一个例子是用于数字IO仪器的板卡,板载放大/衰减单元,由一个PNP晶体管、一个续流二极管和一个电阻组成(见图11.02)。为了控制标准的24V继电器,需要从外部引入24V电源。内部TTL输出高电平时,三极管导通,输出低电平(约0.7V);TTL输出低电平时,三极管进入截止区,输出被拉到24V。因为继电器线圈是感性负载,所以需要反接一个续流二极管,用于在开关切换时保护继电器。图11.03演示了高压数字输入的降压电路。这使得TTL电路可以处理高达48V的电压。高压信号接入电阻分压电路,得到衰减。选取一个阻值适当的电阻R,用于处理不同程度的高压信号。图11.04中的表格提供一些常用方案。[img=,368,288]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517039909_4386_3859729_3.jpg!w368x288.jpg[/img][img=,351,168]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517036364_4408_3859729_3.jpg!w351x168.jpg[/img]数字输入计算机处理数字输入的方法各种各样,有难有易。这一章节简要讨论软件触发,单字节读取;硬件控速,数字输入;外部触发,数字输入。数字输入的异步读取当计算机周期性的采样数字引脚时,需要使用软件触发的异步读取方式。有时,读取数字输入的速度和时机至关重要,但是采用软件触发的单字节读取方式,读取间隔很难保持稳定,尤其是当应用程序运行在多任务操作系统下的时候,例如在PC机上运行。原因是读取间隔受计算机的运行速度和其他并发任务的影响。读取间隔的不稳定可用软件定时器进行补偿,但是小于10ms的时间分辨率在PC上很难得到保证。数字输入的同步读取有些系统提供硬件控速的数字输入读取方式,用户可以设置数字输入端口的读取频率。例如,某系统能够以100kHz的频率读取16位IO口,某些系统可以达到1MHz的速度。硬件控制的读取,最大优点就是可以做到比软件快得多的速度。最后,此类设备可以在读取模拟输入的同时读取数字输入,使得模拟输入和数字输入的数据具有紧密的关联性。数字输入的外部触发读取某些外部设备以独立于数据采集系统的速率,产生以比特、字节或字为单位的数据。只有当新数据可读时才进行读数,并非以预先设置好的速率读数。因此,这些外部设备通常采用信号交换技术进行数据传输。当新的事件发生,例如外部数据就绪或门控信号输入时,外部设备在单独一根信号线上产生电平翻转。为了与这些设备交互,数据采集系统必须具备可被外部信号控制的输入锁存功能。这样,一个逻辑信号会提交到主控计算机,提示新数据准备就绪,可从锁存器中读取。举例来说,一个以此方式工作的设备,在其6根控制信号线中有一根线用来通知外部设备主机正在读取输入锁存器中的数据。这个动作使外部设备能够保持住新数据,直到本次读取完成。数字隔离由于多种原因,数字信号往往需要被隔离,比如保护系统一端免受另一端随时可能出现的高压信号的损害、使得不共地的两个设备之间正常通信或保证医学应用中用户的安全。常见的隔离方案是光耦。光耦包含一个用于发射数字信号的LED或激光二极管,和一个用于接收信号的光电二极管或光电三极管(见图11.05)。光耦体积虽小,但可以隔离500V高压,这种技术还可以用于控制并监控不共地的设备。[img=,554,221]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517178877_2957_3859729_3.jpg!w554x221.jpg[/img]脉冲序列信号调理在许多测量频率的应用中,脉冲信号被计数或与某个固定的时基单元做比较。脉冲也可作为一种数字信号,因为只有上升沿或下降沿会被计数。在很多情况下,脉冲序列甚至可能来自模拟信号源,比如电磁拾波器(magnetic pickup)。举例来说,数据采集系统中应用广泛的频率采集卡,提供4路频率输入通道,并包含2个独立的前端电路,一个用于数字信号输入,另一个用于模拟信号输入。采集卡将数字输入划分为不同逻辑状态,将模拟输入转换成一个随时间变化的纯净的数字脉冲序列。图11.06演示了原理框图:总共模拟输入和信号调理两部分。前端RC网络提供交流耦合,允许高于25Hz的信号通过。衰减比例可调的衰减器降低了波形的整体幅度,削弱了不必要的低压噪声的影响。当需要使用来自继电器闭合时的脉冲序列时,此电路单元为用户提供了软件可配置去抖时间的功能。数字电路监控着被调节的脉冲序列,保持高电平或低电平。如果没有去抖动环节,信号中额外的边沿将导致过高的、不稳定的频率读数。[img=,378,240]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517366706_1103_3859729_3.jpg!w378x240.jpg[/img]大量传感器输出调频信号,而不是调幅信号。比如用于测量转动和流体流速的传感器,通常属于这一类。光电倍增管(photomultiplier tubes)和带电粒子探测器(charged-particle detectors)常用于测量领域,并输出频率信号。原则上,这些信号也可以用AD采集,但这个方法将产生大量冗余数据,使得分析工作难以进行。直接进行频率测量效率则高得多。频率 - 电压转换数据采集系统可通过多种途径测量频率:对连续的AC信号或脉冲序列做积分,产生与频率成比例关系的DC电压,或用AD将交流电压转换成二进制的数字信号,或对数字脉冲计数。[img=,382,294]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281517493299_2073_3859729_3.jpg!w382x294.jpg[/img]脉冲序列积分一种常见的用于单通道的转换技术,模块化的信号调节:对输入脉冲做积分,并输出与频率成比例的电压信号。首先, AC信号经过一系列电容耦合,滤除超低频和DC分量,此输入信号每次经过零点,比较器产生一个恒定宽度的脉冲,脉冲再经过积分电路,如低通滤波器,然后输出一个变化缓慢的信号,信号电压将正比于输入信号频率(见图11.08)。[img=,387,297]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518092778_237_3859729_3.jpg!w387x297.jpg[/img]频压转换器的响应时间比较慢,约为低通滤波器截止频率的倒数。截止频率必须远低于待测信号频率,又要足够高,以保证所需的响应时间。若待测信号频率接近于截止频率,明显的纹波将会成为一个严重的问题,如图11.09所示。[img=,379,238]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518237403_2408_3859729_3.jpg!w379x238.jpg[/img]外部电容决定了专用频压转换的IC时间常数,使得电路可测量较宽频率范围内的信号,但频率改变时,电容也必须随之改变。不幸的是,这种频压转换器在频率低于100Hz时,表现得很差,因为截止频率低于10Hz的低通滤波器需要超级电容器。数字脉冲计数另一种用于测量数字脉冲或AC耦合模拟信号频率的技术。可输出正比于输入信号频率的DC电压,类似上面提到的积分法,只不过这里的DC电压来源于DAC。前端电路将输入的模拟或数字信号转换成纯净的脉冲序列,使其在进入DAC之前,不会带有来自继电器的毛刺,高频噪声以及其他多余信号(见图11.10)。[img=,554,257]https://ng1.17img.cn/bbsfiles/images/2019/05/201905281518331462_5120_3859729_3.jpg!w554x257.jpg[/img]举例来说,一个标准的带有频率输入的数据采集卡,模拟输入通道前置低通滤波器,截止频率可设置为100kHz、300Hz或30Hz,测频范围1Hz至100kHz,信号峰峰值50mV至80V。数字输入部分直流耦合至TTL电平的施密特触发器,可测量0.001Hz至950kHz,±15VDC的信号。采集卡通常具有上拉电阻,用于继电器或开关应用。微控制器准确测量几个脉冲的周期之和,频率分辨率取决于用户可配置的最小脉冲宽度。从测得的周期数据中可换算出频率,再根据频率值,控制DAC向数据采集系统输出相应的模拟信号,信号流入DC调理电路,最后,软件再将此电压转换成频率值。这种方法可以测量幅值和频率范围很宽的信号,且响应迅速。程序可控的频率量程可以最佳匹配ADC的量程,提高测量性能。DAC输出范围±5V,用户配置的最低频率对应-5V,最高频率对应+5V。实际上,用户可任意配置频带范围,如500Hz-10kHz、59.5Hz-60.5Hz。但ADC固定为12位分辨率,不管频宽如何,-5V至+5V的电压都会被按比例划分为4096个等级,所以设置的频宽越窄,频率分辨率越高。例如1Hz的频宽划分为4096份,分辨率高达1/4096Hz(0.00244Hz),而100Hz的频宽,分辨率则降至24.41Hz。虽然不同量程下,分辨率都是固定的12位,但测量速度却有所不同。从1Hz至自定义的频率上限,电压转换时间2至4ms,最长不超过输入信号的周期。0至10kHz范围内的信号,更新速率2至4ms;0至60Hz,则需要16.6ms。随着输入量程越来越窄,例如49至51Hz,12位分辨率去处理2Hz的带宽,消耗时间越来越长,转换时间大约59ms。除了低通滤波器,内置的迟滞功能也可防止由于高频噪声导致的错误计数。去抖时间可被软件配置为0.6ms至10ms,用于处理机电设备,如开关、继电器等切换状态时会产生毛刺的设备。基于门控脉冲计数的频率测量门控脉冲计数相对于频压转换法精准度更高。门控脉冲计数法记录在指定时间内出现的脉冲个数,除以计数时间即频率值,频率误差可以低至计数时间的倒数,例如以2s作为计数时间,频率误差低至0.5Hz。许多数据采集系统包含TTL电平兼容的计数器/定时器IC,可以产生门控脉冲、测量数字输入,然而并不适用于未经调理的模拟信号。所幸多数频率输出设备可以输出TTL电平。有些产品上的一个计数器/定时器IC,包含了5个计数器/定时器,而且通常使用数据采集系统的内部晶振,或外部晶振。这些IC通常使用多个通道配合完成计数功能,每路通道都包含一个输入部分,一个门控部分和一个输出部分。最简单的计数只需使用输入部分,PC以一定的周期读取计数值并复位计数器,这种方法的不足之处是读取周期不确定,函数执行过程中突然出现的情况可能随时启动或停止计数。另外,延时函数,例如延时50ms,依赖于不精确的软件定时器。这两点原因致使计数时间较短的频率测量毫无意义,但是,这种技术足以应对计数时间超过1秒的频率测量。门控信号控制着计数时间,所以改变门控信号可以获得更高的精准度。这样,频率测量就变得与软件方面的时间问题无关。可以配置门控信号,在其高电平时才进行脉冲计数。同样的,也可以配置成在检测到一个脉冲时开始计数,检测到另一个脉冲时停止计数。这种方法的一个缺点是需要额外的计数器用于控制。但在多通道频率采集的应用中,一个计数器可以控制多个通道。例如在5个通道的系统中,4通道用于计数,1通道用于控制。计时应用计数器/定时器同样可用于需要计时/定时的应用场合。将连接至输入通道的时钟信号作为门控信号是不错的选择,当信号为高电平时,使能计数。同样的方法可用于测量两个脉冲之间的时间间隔,只需配置成在第一个脉冲到来时开始计数,下一个脉冲到来时停止计数。由于16位计数器在计数到65535时,即将发生溢出,所以以1MHz的时钟频率计数时,可测脉宽不超过65.535ms,更宽的脉冲将会导致计数器溢出,除非降低时钟频率。如需了解更多内容请关注嘉兆科技嘉兆公司拥有40年测试测量行业经验,专业的销售、技术、服务团队,在众多领域都非常出色,包括:通用微波/射频测试、无线通信测试、数据采集记录与分析、振动与噪声分析、电磁兼容测试、汽车安全测试、精密可编程测量电源、微波/射频元器件、传感器等,并分别在深圳、北京、上海、武汉、西安、沈阳、珠海、成都设有全资分公司、生产工厂、办事处。

  • 脉冲信号发生器

    脉冲信号发生器QA2系列函数信号发生器拥有比传统函数发生器更杰出的性能。稳定的输出频率,低失真度和微小的频率解析度都是这个系列产品的优秀特性。QA2系列系列包含有QA212D和QA206D产品两种,其中QA212D标准输出120MHz正弦波,25MHz脉冲波和方波,其他波形均为1MHz;QA206D标准输出60MHz正弦波,12MHz脉冲波和方波,其他波形均为0.5MHz。1. 采用DDS和可编程逻辑器件技术,双通道,实时500MSa/s采样率,16bits垂直分辨率,独特功能可以提高测试效率和测量置信度。2. 晶体振荡基准,频率精度高,分辨率高,任意模拟标量调制信号,矢量调制信号,逻辑信号产生。3. 多种内置函数信号产生(包括正弦,三角,锯齿, 方波,脉冲, 噪声, 直流等)。4. 优越的小失真,方便的存贮调用功能,可以设置精确的方波占空比及斜波对称度。5. 1ppm信号频率高度稳定,-120dBc/Hz相位噪声低达,波形失真小。6. 波形存储深度达56K样本/通道。7. USB连接PC端GUI界面,操控简洁自如。8.具备扫描和猝发脉冲模式,可调整扫描时间和扫描宽度。9.丰富的模拟和数字调制能力,以及图形显示功能。(AM,MASK,FM,MFSK,PM,MPSK调制和外部计频功能。) 10. 体积小(20*12.8*4.4CM),重量轻(0.9KG),方便携带。支持的波形有如下所示:非调制波形:周期波:正弦波,方波,三角波,脉冲波,斜波,直流,伪随机二进制序列,高斯白噪声,任意波:高斯脉冲,心电图,指数下降,指数上升,半正失曲线,D洛伦兹曲线,洛伦兹曲线,Sinc函数,负斜波,用户自定义波形调制波形:AM调幅,MASK幅移键控,FM调频,MFSK 频移键控,PM 调相,MPSK相移键控[/s

  • TC-2(5)电远传湿式气体流量计:每转50个开关量(或脉冲)信号。

    电远传湿式气体流量计可以将气体流量转换为脉冲信号,并将脉冲信号远传到操作室的显示仪表进行流量显示,这样,操作人员就可在很远的操作室中对现场的运行状态进行实时监测,发现问题及时处理。电远传湿式流量计还可以将脉冲信号送入自动化控制系统的模块中,实现数据的实时及历史显示。

  • 【求助】怎样针对脉冲信号测量发光光谱??

    [size=4]我的实验过程中,样品需要用一个连续激光和一个脉冲激光同时辐照,测量其发光光谱,因为脉冲激光的强度相对较弱,因此为了得到比较好的光谱信号,我想测量样品的发光光谱时,只对脉冲激光的那个时间段测量。我用的脉冲激光的长度大概几个纳秒,如果能在这个范围,或者几百纳秒的范围内记录光谱就会得到比较好的信号,也就是说和光谱的测量和脉冲激光的脉冲同时进行。我现在有一个oceanoptics的HR4000光纤光谱仪,有什么办法可以实现我想要的测量要求哪??[/size]

  • 【原创】X射线脉冲星导航原理

    X射线脉冲星导航系统由X射线成像仪和光子计数器(探测器)、星载原子时钟、星载计算设备、导航模型算法库和脉冲星模型数据库组成。从X射线脉冲星导航原理框图中可以看到,脉冲星导航定位和姿态测量分别在两个环路中实现,前者的输入信息为光子计数器提取的脉冲信号和相位,输出为卫星位置、速度和时间信息 后者的输入信息为X射线成像仪提取的脉冲星角位置,输出为卫星姿态角分量。 1.X射线脉冲星导航定位 基于X射线脉冲星的卫星自主导航定位的实现流程如下: (1)脉冲到达时间测量 星载探测器接收X射线光子,光子计数器输出脉冲信号和相位信息 脉冲信号进入原子时钟的锁相环路,修正本地时钟漂移,标定和输出脉冲到达时间。 (2)脉冲到达时间转换改正 调用基本参数数据库和脉冲星模型数据库,对罗默(Roemer)延迟、歇皮诺(Shapiro)延迟、爱因斯坦(Einstein)延迟、光行差延迟和星际色散效应等误差项进行改正,转换得到在太阳系质心坐标系中的脉冲到达时间测量值。 (3)脉冲到达时间与预报时间对比 调用脉冲星模型数据库,提取标准脉冲轮廓和脉冲计时模型,由脉冲计时模型预报脉冲到达时间 整合测量脉冲轮廓,并与标准轮廓进行相关处理,得到脉冲到达时间差(基本观测量)。 (4)卡尔曼滤波处理 利用多颗脉冲星组成基本观测向量,构造脉冲星导航定位测量方程,调用卫星摄动轨道力学方程、星载时钟系统状态方程和卡尔曼滤波器,得到卫星位置、速度和时间偏差估计。 (5)导航参数预报 利用导航定位偏差估计值,可以修正卫星近似位置、速度和时间等参数 分别采用数值积分方法和星载时钟模型短时预报卫星位置、速度和时间等导航参数,输出到卫星平台控制系统,自主进行轨道控制和钟差修正。 2.X射线脉冲星姿态测量 利用X射线脉冲星信号测定卫星姿态的方法与星体跟踪器类似,区别在于是用X射线代替可见光观测。一旦X射线成像仪提取脉冲星影像,脉冲星在探测器平面和星体坐标系的角位置也就随之确定。由于脉冲星相对于太阳系质心坐标系的位置已精确测定,因此可以进行星体坐标系与太阳系质心坐标系之间的旋转变换。于是,可以直接提取坐标变换的欧拉角信息,或利用姿态四元素方法进行滤波估计,最终获得卫星俯仰、滚动和偏航等姿态信息,并输出到卫星平台控制系统,自主进行飞行姿态控制。

  • 【求助】求助/关于脉冲信号采集模块

    做实验要求购买一个多路脉冲信号采集模块,用途采集脉冲流量计的输出信号(用于模拟海水的流量采集)具体要求:1,适用于笔记本,可以和ADAM_6017(研华)合用HUB2,人机交换软件可以合研华的连用在本周四前要确定下来,还请各位知情人士多多帮忙,告诉小弟去哪家公司购买!!可在此留言或者发本人邮箱jiayaorui@gmail.com,小弟不胜感激。

  • [请教]能谱仪的信号转换

    请问为什么能谱仪的信号要转换很多次呢,先转换成电荷脉冲,接着转换成电压脉冲,再转换成高斯型脉冲,再转换成数字脉冲,信号最后才到MCA啊??觉得好复杂哦!![em06]

  • 【求助】脉冲序列越长是不是会影响信号强弱

    是不是脉冲序列越长,信号就越弱.我做了一个普通的HMBC和ACCORD-HMBC。发展ACCORD-HMBC实验的目的就是因为HMBC实验选择8Hz时很多峰出不来,而ACCORD-HMBC可以选择一个较宽的长程J值范围如6-10,3-16,2-25等,但我做实验发现在ACCORD-HMBC选择6-10时反而比HMBC出的峰还少,是不是因为ACCORD-HMBC脉冲序列相比HMBC变长了的原因。当ACCORD-HMBC选择2-25时才跟普通的HMBC出的峰一样

  • 检测器——光电转换器件

    光电转换器件是光电光谱仪接收系统的核心部分,主要是利用光电效应将不同波长的辐射能转化成光电流的信号。光电转换器件主要有两大类:一类是光电发射器件,例如光电管与光电倍增管,当辐射作用于器件中的光敏材料上,使发射的电子进入真空或气体中,并产生电流,这种效应称光电效应;另一类是半导体光电器件,包括固体成像器件,当辐射能作用于器件中光敏材料时,所产生的电子通常不脱离光敏材料,而是依靠吸收光子后所产生的电子—空穴对在半导体材料中自由运动的光电导(即吸收光子后半导体的电阻减小,而电导增加)产生电流的,这种效应称内光电效应。光电转换元件种类很多,但在光电光谱仪中的光电转换元件要求在紫外至可见光谱区域(160-800nm)很宽的波长范围内有很高的灵敏度和信噪比,很宽的线性响应范围,以及快的响应时间。目前可应用于光电光谱仪的光电转换元件有以下两类:即光电倍增管及固体成像器件。[b]光电倍增管[/b] 外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。它由一个光阴极、多个打拿极和一个阳极所组成(见下图),每一个电极保持比前一个电极高得多的电压(如100V)。当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极上。一个入射电子的能量给予打拿极中的多个电子,从而每一个入射电子平均使打拿极表面发射几个电子。二次发射的电子又被加速打到第二打拿极上,电子数目再度被二次发射过程倍增,如此逐级进一步倍增,直到电子聚集到管子阳极为止。通常光电倍增管约有十二个打拿极,电子放大系数(或称增益)可达10[sup]8[/sup],特别适合于对微弱光强的测量,普遍为光电直读光谱仪所采用。光电倍增管的窗口可分为侧窗式和端窗式两种[b]1.光电倍增管的基本特性[/b]1.1 灵敏度和工作光谱区 光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即1/2mv[sup]2[/sup]=hn-ф,( hn为光子能量,ф为电子的表面功函数,1/2mv[sup]2[/sup]为电子动能)。当hnф时,不会有表面光电发射,而当hn=ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/n称为这种材料表面的阈波长。随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或锑-碲阴极。光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即S=i/F,单位为µ A/lm。显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见右图),由此可确定光电倍增管的工作光谱区和最灵敏波长。例如我们常用的R427光电倍增管,其曲线偏码为250S,光谱响应范围为160-320nm,峰值波长200nm,光阴极材料Cs-Te,窗口材料为熔炼石英,典型电流放大率3.3×10[sup]6[/sup]。1.2 暗电流与线性响应范围光电倍增管在全暗条件下工作时,阳极所收集到的电流称为暗电流。对某种波长的入射光,光电倍增管输出的光电流为: i= KI[sub]i[/sub]+i[sub]0 [/sub],式中,I[sub]i[/sub]对应于产生光电流i的入射光强度,k为比例系数,i[sub]0[/sub]为暗电流。由此可见,在一定的范围内,光电流与入射光强度呈线性关系,即为光电倍增管的线性响应范围。当入射光强度过大时,输出的光电流随光强的增大而趋向于饱和(见上图)。线性响应范围的大小与光阴极的材料有关。暗电流的来源主要是由于极间的欧姆漏阻、阴极或其他部件的热电子发射以及残余气体的离子发射、场致发射和玻璃闪烁等引起。当光电倍增管在很低电压下工作时,玻璃芯柱和管座绝缘不良引起的欧姆漏阻是暗电流的主要成分,暗电流随工作电压的升高成正比增加;当工作电压较高时,暗电流主要来源于热电子发射,由于光电阴极和倍增极材料的电子溢出功很低,甚至在室温也可能有热电子发射,这种热电子发射随电压升高暗电流成指数倍增;当工作电压较高时,光电倍增管内的残余气体可被光电离,产生带正电荷的分子离子,当与阴极或打拿极碰撞时可产生二次电子,引起很大的输出噪声脉冲,另外高压时在强电场作用下也可产生场致发射电子引起噪声,另外当电子偏离正常轨迹打到玻壳上会出现闪烁现象引起暗电流脉冲,这一些暗电流均随工作电压升高而急剧增加,使光电倍增管工作不稳定,因此为了减少暗电流,对光电倍增管的最高工作电压均加以限制。

  • 安捷伦81110A脉冲信号源

    品牌: 安捷伦 | Agilent | 与外部时钟同步(固定和可变延迟) · 2ns可变跃变时间,在50Ω上达10Vpp(开路为20Vpp) · 达500ps(ECL)的快速跃变 · 2ps定时分辨率 · 0.01%的频率准确度 · 任何定时参数变化时无毛刺和陷落 · 脉冲、脉冲列、模式(数据)工作方式,数据序列 · 可增加模拟或数字通道 · 1或2个通道 · 4种型号的软件100%兼容 Agilent 81100脉冲/数据发生器家族使用同样的工作方式(前面板和程序),并与广为使用的8110A兼容,以保护您当前和未来的投资。81110A[/c

  • 如何区分脉冲高度值和X射线强度以及脉冲高度分布曲线和定性元素峰这两组概念的区别

    如题,每组概念没有放到一起感觉好像明白,一放到一起傻眼啦。以下均引自粱钰教材《X射线荧光光谱分析基础》 脉冲高度分布或脉冲高度分布曲线是进入探测器X射线的脉冲高度值的X射线强度分布----没理解其深层意思。 脉冲高度值和X射线强度:前者是X射线信号幅度(能量)的大小,后者是信号值得多少。脉冲高度分布曲线和定性元素峰:前者是在某2θ角度被衍射的X射线能量分布;后者是在一定的分光条件下,测得样品中元素在各自衍射角多对应的特征荧光X射线的强度分布。

  • Pico示波器高速脉冲信号采集测试系统NSAT-4000

    [size=16px][b][font=微软雅黑, &]1.系统优势[/font][/b][/size][font=微软雅黑, &][size=16px]实现对Pico示波器多路信号同时实时采集。[/size][/font][font=微软雅黑, &][size=16px][font=微软雅黑][/font]采集模块各个通道时延可进行独立调节。[/size][/font][font=微软雅黑, &][size=16px][font=微软雅黑][/font]自动保存配置信息、测试数据保存到本地电脑,方便随时查询。[/size][/font][font=微软雅黑, &][size=16px][font=微软雅黑][/font]自动生成测试报告,用户可根据需要定制报告模板。[/size][/font][size=16px][font=微软雅黑, &][font=微软雅黑][/font]操作方便简单,提高测试效率[/font][font=宋体]。[/font][/size][size=16px][b][font=微软雅黑, &]2. 系统概述[/font][/b][/size][size=16px][font=微软雅黑][/font][font=微软雅黑, &]NSAT-4000高速脉冲信号采集测试系统可完成对Pico示波器若干采集终端高速重复频率信号的波形与数据的实时采集,并完成更好的分析实验现[/font][/size][size=16px]象,且同时满足对测量通路时延的独立调节,并实时保存实验波形数据。[/size][align=center][img=多通道数据采集测试系统概述.png]http://www.namisoft.com/UserFiles/Article/image/6371165948156647876688062.png[/img][/align][font=微软雅黑, &][size=16px][b]3.系统组成[/b][/size][/font][size=16px][font=微软雅黑, &][size=14px][b] [/b][/size][/font][font=微软雅黑, &][size=14px][/size][/font][/size][size=16px][font=&][/font][font=微软雅黑, &] 控制模块(电脑或笔记本)[/font][/size][align=center][img=工控机.png,550,333]http://www.namisoft.com/UserFiles/Article/image/6373483454943733568043422.png[/img][/align][size=16px][font=&][size=21px][/size][/font][font=微软雅黑, &][size=14px]数据传输模块(各种数据传输转换装置)[/size][/font][/size][align=center][size=16px] [/size][img=数据采集传输模块图.png]http://www.namisoft.com/UserFiles/Article/image/6371165955813044872644089.png[/img][/align][size=16px][font=&][/font][font=微软雅黑, &]数据采集模块(各类数据采集设备)[/font][/size][align=center][img=测试仪器.png,550,302]http://www.namisoft.com/UserFiles/Article/image/6375271538737360991140300.png[/img][/align][font=微软雅黑, &][size=16px][b]4.系统流程图[/b][/size][/font][align=center][img=多通道信号记录测试流程图.png]http://www.namisoft.com/UserFiles/Article/image/6371165961075645915954657.png[/img][/align][size=16px][b][font=微软雅黑, &]5.系统界面[/font][/b][/size][align=center][img=多台实时信号分析仪同步数据采集界面.png,700,390]http://www.namisoft.com/UserFiles/Article/image/6371165987363650639964449.png[/img][/align][size=16px][b][font=微软雅黑, &]6. 应用背景[/font][font=微软雅黑, &][/font][/b][/size][align=center][img=应用场景修改图.png,650,248]http://www.namisoft.com/UserFiles/Article/image/6375348015424774591577526.png[/img][/align]

  • 【资料】-微波功率控制方式,脉冲微波和非脉冲微波的概念

    化学反应过程一旦超越某一临界点,可能会迅速释放出大量气体以致超过消解各罐的压力上限(110bar)而难以驾御。因此需随时谨慎监视反应过程,并及时改变微波功率输出加以调控。一般根据控制能力可分低、中、高三档,控制能力不同,程序输入也不一样。1)开关式脉冲控制:传统的办法是采用固定功率输出,但间歇关闭微波以改变输出功率总量的方式,其特征是开关式脉冲微波。如:在10秒钟内关闭微波5次间隔1秒,功率为50%。开关式控制是第一代控制技术。研究人员发现这种控制方式不仅不易控制,还可能会直接影响到反应结果,且意外都是发生在开关方式下。根据功率发射方式把微波定义为脉冲和非脉冲,即间断发射为脉冲微波,而不间断发射为非脉冲微波。 研究表明,脉冲微波在开关瞬间会产生高阈值电磁脉冲,对消解含有机脂类和醇类的样品,其与硝酸的反应产物可能会刺激发生临界爆炸,其反应机理与炸药引爆相似。在萃取反应中也宜采用非脉冲技术,因为高阈值脉冲微波也极易破坏所萃取的有机分子形态,不能保证分子有机形态的完整,从而影响结果的一致性和可靠性。2)自动功率变频控制和非脉冲技术:这是第二代控制技术,特征是功率自动变化,输出均为非脉冲微波。特点是无须关闭微波发射,在连续微波发射条件下,根据温压反馈信号,自动线性改变微波功率输出,调整反应状态。不仅提高了反应速率,而且非常安全。由于闭环响应是基于精确可靠的在线罐内温压传感装置,从而提高了整机技术,当然成本也相应提高。非脉冲微波是在连续微波发射的条件下,自动线性调整微波的功率输出,其特征是无论功率如何变化,微波仍能持续输出,无脉冲刺激。实验结果表明,这种方式更易于控制微波辅助反应,提高消解反应的稳定性和安全性。且有机萃取反应回收率和稳定性也得到改善。大功率微波仪器最好采用非脉冲,因为其阈值太高,有潜在的危险。因此,非脉冲微波化学仪器的发展对反应动力学的研究十分有利,它实际上代表了微波技术发展的一个新方向。

  • 电气转换器(I-P电流型、E-P电压型)与电气比例阀的基本原理和性能对比

    电气转换器(I-P电流型、E-P电压型)与电气比例阀的基本原理和性能对比

    [color=#ff0000]摘要:电气转换器和电气比例阀是目前常见了两类电控式气体压力调节器,尽管它们的基本功能相同,都属于电子式减压阀,但所用技术、功能和指标并不一样。本文详细介绍了这两类电子压力调节器,并做出对比,为选型和具体应用提供参考。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]一、概述[/b][/color][/size]从第一性原理来看,电气转换器和电气比例阀这两类器件都属于电子控制式的气体减压阀,都是通过电信号对输入的气体压力进行自动减压调节。从历史上来看,电气转换器是上世纪五十年代发展的比较典型的电子压力调节器,且市场占有率较大。但随着近一二十年来的技术进步,新兴出现了电气比例阀,且正在快速蚕食电气转换器的市场份额。面对目前这两类电子压力调节器共存的局面,在具体应用中会面临选型的问题,因此有必要对这两类气体压力调节器有比较深刻的了解,但国内在这方面的相关资料非常稀少。本文将详细介绍这两类电子压力调节器,并做出对比,为选型和具体应用提供参考。[color=#ff0000][b][size=18px]二、基本概念[/size][size=16px]2.1 电气转换器[/size][/b][/color]电气转换器(Electro-Pneumatic Transducer)在国内外有多种称谓,最常用的术语是:(1)电流/压力转换器(I/P Transducer 或 I/P Converter)。(2)电压/压力转换器(E/P Transducer或 E/P Converter)。(3)电子压力调节器(Electronic Pressure Regulator)上述这些术语很容易理解,其中“I”代表电流,“E”代表电压,“P”代表气动压力。作为典型的电子式气体减压装置,顾名思义,这些装置通过电流(通常为4~20mA)或电压(通常为0~5VDC或0~10VDC)将较大压力的进气进行减压调节。因此,I/P 是一种将电流转换为已知输出压力的电子设备,而 E/P 是将电压转换为已知输出压力的电子设备。电气转换器的一个重要特点是成正比,即随着电流或电压的增加,减压后的输出压力也相应增加。典型的电气转换器及其内部结构如图1所示。电气转换器的基本原理是通过磁线圈(类似于扬声器线圈)在导向膜片上产生力的不平衡来进行运行。除了线圈,没有控制压力输出的电子部件。从图1可以看出,电气转换器是一个简单的力机械天平,具有可调的零点和量程弹簧偏压。操作使用人员经过精心培训,可以调整零点和量程螺钉,以获得所需的精度和重复性。[align=center][img=电气转换器及其内部结构示意图,600,315]https://ng1.17img.cn/bbsfiles/images/2022/10/202210311127044971_7024_3221506_3.jpg!w690x363.jpg[/img][/align][align=center]图1 电气转换器及其内部结构示意图[/align]在电气转换器中通常还包含第二个流量增压级,该增压级使用力平衡隔膜和阀座在出口处产生比第一级阀更高的流量。电气转换器作为一种传统的电子压力调节装置,如果正确维护和经常校准,这些压力调节器工作得相当好。事实上,自上世纪五十年代后,电气转换器是气动控制的基础,在世界各地的工厂中配合了无数的控制阀和气缸进行工作。[size=16px][color=#ff0000][b]2.2 电气比例阀(伺服或电磁阀机构)[/b][/color][/size]电气比例阀是国内比较常用的术语,同样,电气比例阀也有以下多种称谓:(1)电子比例调节器/阀(Electronic Proportional Regulator)(2)电气调节器/电空比例阀(Electro-Pneumatic Regulator)(3)比例压力调节器/阀(Proportional Pressure Regulator)(4)比例压力控制阀(Propportional Pressure Control Valve)(5)电子压力控制器(Electronic Pressure Controller)在过去十多年中,发展最快的电子压力调节器类型是伺服阀形式设计的电气比例阀,它使用了两个高速伺服或电磁阀来根据需要增加或降低气体压力以实现减压压力。与以前的电气转换器技术相比,这些电子压力调节器提供了更高的压力和更大的灵活性和鲁棒性。典型的电气比例阀及其工作原理如图2所示。[align=center][img=电气比例阀及其工作原理示意图,600,395]https://ng1.17img.cn/bbsfiles/images/2022/10/202210311127280548_153_3221506_3.jpg!w690x455.jpg[/img][/align][align=center]图2 电气比例阀及其工作原理[/align]电气比例阀的基本工作原理是一种典型的气体动态平衡法,即通过使用一个进气阀和一个排气阀使内部压力保持动态平衡,使得出口压力保持在所需的设定值。一个压力传感器监控输出压力,一个数字或模拟控制器调节伺服阀(电磁阀)的快速开启关闭以控制设定点压力。从结构上来说,电气比例阀是一个完整的闭环控制阀,包括两个高速电磁阀、一个底座、一个积分压力传感器和一个电子PID控制电路。二个高速电磁阀分别控制进气、出气。进气阀门的操控与电子电路供给的压力信号成比例。内置压力传感器测量输出压力并提供反馈信号到PID控制电路。反馈信号与压力控制设定值相比较,当二者之间不同时,使其中一个阀门打开。如果要达到系统所需的压力,就会使进气阀动作,按比例消除比较信号中的差异。典型电气比例阀通常需要直流电源和代表压力设定点的模拟信号进行工作。控制器通常接受电流(4~20mA)或电压(通常0~10或0~5VDC)输入信号。除了常见的模拟信号标准外,带数字电路的型号还可以接受串口通信(如RS-485或DeviceNet)。大多数电气比例阀还提供代表压力传感器的模拟信号输出。有些型号的电气比例阀还会包含一个小放气阀(向大气排放少量气体),以便在非常低或无流量情况下使用。[b][size=18px][color=#ff0000]三、特性比较[/color][/size][/b]从上述的基本概念内容可以看出,电气转换器和电气比例阀的基本功能相同,都是用来进行压力的减压控制,都属于电子式减压阀,但所用技术、功能和指标并不一样。表1对这两类压力调节阀进行更详细的对比。[align=center]表1 电气转换器与电气比例阀对比表[/align][align=center][img=电气比例阀和电气转换器比较表,690,519]https://ng1.17img.cn/bbsfiles/images/2022/10/202210311127513875_1243_3221506_3.jpg!w690x519.jpg[/img][/align][align=center][/align][b][size=16px][color=#ff0000]四、结论[/color][/size][/b]从上述对比可以看出,电气比例阀采用了更新的技术,与传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。另外,由于电器比例阀内置了压力传感器和PID控制器,为很多压力控制应用场合提供了极其丰富的拓展应用,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的串级控制回路,实现更多工业应用领域中的精密控制功能。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 超声脉冲功率放大及接收模块

    超声脉冲功率放大及接收模块

    该模块是一个由脉冲功率发射电路和信号接收滤波放大电路高度集成的超声收发共用应用模块,它能够为高精度超声波检测系统的优化应用提供解决方案。本模块的脉冲功率发射电路主要集成了超声传感器的前置放大及功率驱动电路,它与匹配变压器相连后可直接驱动超声换能器产生超声波。通过改变MCU输出脉冲的频率,该驱动模块可以产生从20KHz~2MHz的频率,这个频段基本涵盖了目前常见的超声波应用频段。模块的供电范围为12V~24V,工作温度为工业级-40~+85oC,输出脉冲功率可调,最高可达300w,输出阻抗为25mΩ。本模块中的超声脉冲驱动电路基本可以满足目前国内所有超声脉冲功率发射的常规应用要求。接收部分电路主要提供的对接收到的信号进行滤波放大,可根据不同的应用需要调整接收部分的滤波频带和放大倍数,它的输入噪声在输入信号频率为500kHz的时候可低至50uV,对于接收信号特别微弱的应用场合,如超声波气体流量计中有良好的表现。本模块可满足超声波常见的工业上的应用,如超声测距、超声测流量计量、超声探伤、超声测厚等。可应用于双探头的单发单收方案中,也可以应用于收发共同的单探头系统中。模块的设计采用规范的设计方法和封装方式,并且该模块经过多种应用环境的可靠性测试,具有良好的稳定性,能够应用于复杂(如电磁干扰严重)的环境。选用该模块,研发人员可以在不需要对超声波产生和驱动电路有深刻的理解的条件下开发出超声波应用系统,开发的系统技术指标能够达到同类产品的先进水平。http://ng1.17img.cn/bbsfiles/images/2011/07/201107051107_303156_2333795_3.jpg

  • 【资料】空心阴极灯脉冲供电常用的词汇-占空比

    [size=6][b]占空比 [/b][/size]   [url=http://baike.baidu.com/image/9f1011b3e418a5b4d9335af5][img]http://imgsrc.baidu.com/baike/abpic/item/9f1011b3e418a5b4d9335af5.jpg[/img][/url] [size=4][b]占空比的图例[/b][/size]  占空比(Duty Cycle)在电信领域中有如下含义:   在一串理想的脉冲序列中(如方波),正脉冲的持续时间与脉冲总周期的比值。   例如:[url=http://baike.baidu.com/view/2069836.htm]脉冲宽度[/url]1μs,信号周期4μs的脉冲序列占空比为0.25。   在一段连续工作时间内脉冲占用的时间与总时间的比值。   在CVSD调制(continuously variable slope delta modulation)中,比特“1”的平均比例(未完成)。   在周期型的现象中,现象发生的时间与总时间的比。   负载周期在中文成语中有句话可以形容:「三天打渔,两天晒网」,则负载周期为0.6。   占空比是高电平所占周期时间与整个周期时间的比值。

  • 记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修原创:大陆2015-11-13一、前言磁场设备是磁学研究中产生磁场的设备,根据可产生最高磁场强弱可以分为亥姆赫兹线圈、永磁场发生器、电磁铁、超导磁体与强脉冲磁场发生器几种,其中使用脉冲磁场发生器原理是短时间通大电流产生强磁场,在相同的散热及供电功率等配套条件下可以产生比稳恒磁体强一个数量级以上的磁场,因而可以在物理、化学与生物研究中需要强场的场合应用。目前脉冲强磁场能产生的最高磁场的世界纪录超过2千特斯拉,不过这些极端磁场的产生过程伴随爆炸冲击波作用,只是一次性的产生,线圈无法再次使用,而且需要防爆实验环境;能够重复使用同一个线圈可控产生的脉冲强磁场最高约1百特斯拉,这需要配套专门的实验室与供电通道;在普通实验室条件下对脉冲磁场发生装置的需求一是不需要专门的电力改造,且整个装置方便移动,不过产生的磁场最高超过10特斯拉,我们实验室(磁学国家重点实验室)就有一套这样的样机设备,是实验室几位老前辈在1990年前后自己做的,设备整体照片如图1,它的主体分为充放电控制模块、线圈负载与电容柜(如图02中肚子里主要装的是1kV,0.1mF的电容阵列,合计98个,总容量9.8毫法拉) 、。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573466_1611921_3.png图01 脉冲强磁场装置照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573467_1611921_3.jpeg图02 脉冲强磁场装置中的电容二、故障及诊断维修前段时间有使用者在使用过程中发现设备电容无法充到设定电压,从而无法放电产生磁场。首先通过沟通,获知设备是在用户更换自己的负载线圈之后引起,用户自己的负载线圈电感约10纳亨,而设备标配的负载线圈是280微亨,相差4个数量级;然后结合图03所示的脉冲强磁场的电路分析故障在充电模块;最后打开机柜,通过肉眼观察线路板与元器件,如图04所示,可以看到大功率晶闸管的散热固定木柱有裂纹,从而将故障诊断在晶闸管上。值得一提的是,必须赞一下实验室前辈们:在设备制造过程中保留着晶闸管的铭牌,这样尽管他们退休好多年了,设备出现问题,后人还可以找到配件的线索。将晶闸管拆下来后发现正反向都是导通状态,显然控制端无法控制其单向积累电荷给电容充电,因而根据铭牌上的最大电流500A、耐压1800V、控制电压1.5V指标购买替换晶闸管,幸运的是市场上还能找到同样规格的KP-500A晶闸管,买回来替换上后测试发现仪器可以正常充放电,至此维修工作完成。简单分析其原因是使用者将负载换成特别轻的电感,这样在最高800V充电后,电感几乎不能增加阻抗,此时放电回路电路中的阻抗幅值约0.5欧姆,导致放电回路中的电流瞬间超过1600安培,而晶闸管的最高承受电流只有500安培,所以损坏导致故障。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573468_1611921_3.gif图03 脉冲强磁场装置充放电原理电路图http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573469_1611921_3.png图04 脉冲强磁场装置充放电电路照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573470_1611921_3.jpeg图05 更换的晶闸管照片三、测试验证我们知道,设备维修让设备能工作与是否适合科学研究是两码事,为了让使用者更好的在该设备上开展研究,需要在正常工作的基础上对其性能做一次测试验证,测量不同充电电压对应在标准负载线圈中的放电脉冲磁场。测试用到的工具是带轴向(霍尔传感器)磁场探头的特斯拉计(高斯计),与一台示波器,如图06所示,由于仪器尾部自带有BNC模拟接口,将其连在示波器上,但初步测试发现仪器标配的模拟信号在较高磁场下有饱和截断平台,如图07所示。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573471_1611921_3.png图06 测试验证需要的仪器http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573472_1611921_3.png图07 直接使用模拟信号观测脉冲场波形经过与特斯拉计的工程师交流,得知其模拟输出的是原始霍尔电压信号放大10倍并做滤波限幅保护等电路处理之后输出的结果,而设备限幅4V,对应典型传感器最高只能测量4T的磁场。我们目前的应用明显要测量超过4T的磁场,那么要想获得高于4T的模拟脉冲信号,怎么办呢?使用原始(未经放大、调理、限幅处理的)霍尔电压信号!于是打开特斯拉计机箱,如图08所示,http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573473_1611921_3.png图08 特斯拉计内部电路结构http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573474_1611921_3.png图09 改变模拟BNC输入线的接入位置做好以上的准备工作后,开始进行测量系统标定,为了简便,这里使用一块永磁体产生磁场做动态模拟电压-磁场标定,放在探头边上,通过调节距离改变特斯拉计的输入磁场,记录特斯拉计与示波器上直流信号的平均值,绘制成曲线并拟合如图10所示。然后将磁场探头放入负载线圈的中心位置,测量不同放电电压下产生的脉冲磁场波形,并根据指数衰减放电函数拟合出峰值与脉宽,如图11所示。最后将所有的初始放电电压获得的脉冲磁场信号曲线的拟合结果汇总可得脉宽不随放电电压变化,恒定约1毫秒,峰值磁场与初始放电电压关系经拟合满足为B(特斯拉)=20V(千伏)关系,该设备在最高800V电压充电时产生峰值磁场约16T,使用相对简单的原理与低成本[c

  • 【资料】-脉冲放电检测器(PDD)

    [b]脉冲放电检测器[/b] 脉冲放电检测器(pulsed discharge detector)是一种氦光离子化检侧器,当用纯氮作载气和放电气体时,它具通用型检测器功能,像氦离子化检测器(HID)一样,既能灵敏检测无机气体。如H2、O2、CO、CO2、H2O等。又能灵敏检测有机化合物.如烃、含杂原子(氧、硫、卤素)化合物、农药、金属配合物等,称PDHID,最小可检度低至皮克级,线性范围是105。若放电气中有微量氩、氪或氙作掺杂气时,则会改变光子能里,使检测器具有相当于11.7eV, 10.2eV和9.5eV三种PID的功能,它们分别称为Ar-PDPID,Kr-PDPID和Xe-PDPID。如果氦中有CH4掺杂气,就可以改变为非放射源的电子俘获检测器(PDECD)。此外还可以在PDHID)上收集光谱信号以取得分析物的定性和定量信息,称脉冲放电发射检测器(PDED)。1.检测器结构 PDHID、PDECD是l992年Wentworth等在HID的基础上提出引入的,以后又逐步作了改进,近两年已正式成为商品仪器, PDHID和PDECD的结构基本一样,图2.90是PDECD池的横截面图。检侧池主体是一个长95mm内径14mm的中空不锈钢圆筒。分隔成放电区和反应区,放电区(1)是在一块20mm长3mm内径的石英圆筒块〔7)上装有两个放电电极〔3),放电电极的末端是ф0.25-0.5mm的铂金尖端,两个电极间距约1.6mm ,脉冲放电周期是300μs,脉冲宽度是20-40μs,放电电压20V,产生20mA放电电流,放电互径是0.1-0.15mm.在反应区(2)有两个偏压电极(4.5;150V,2V)和一个收集电极(6),它们之间用四块长8mm,内径3mm的蓝宝石绝缘(8),用黄金O型圈压紧密封,He(30mL/min)从检测池顶部(9)引进放电区,色谱柱(11)从检测池底部插人,柱出口在收集电极(6)和偏压电极(5)之间,PDECD的掺杂气亦是从检测池底部的管(12)引入,管直伸至两个偏压电极(4)和(5)之间,亦即掺杂气是在毛细管桂出口上方加人,也有从偏压电极(4)处加人掺杂气。色谱柱流出物、掺杂气流与He放电气逆流。在反应区发生离子化。PDECD很长容易就可以改成PDEID,PDHID不需加入掺杂气,收集电极(6)和偏压电极(5)的位置互换,收集极位于两个偏压电极之间.因为采用石英和蓝宝石作绝缘材料,检测器使用温度提高了,最高操作温度可达400℃。

  • Pico示波器高速脉冲信号采集测试系统NSAT-4000

    [font=&][size=13px][color=#888888]*测试仪器:Pico示波器[/color][/size][/font][font=&][size=13px][color=#888888]*被测信号:终端高速重复信号的波形与数据的实时采集[/color][/size][/font][font=&][size=13px][color=#888888][b]1.系统优势[/b]实现对Pico示波器多路信号同时实时采集。采集模块各个通道时延可进行独立调节。自动保存配置信息、测试数据保存到本地电脑,方便随时查询。自动生成测试报告,用户可根据需要定制报告模板。操作方便简单,提高测试效率。[b]2. 系统概述[/b]NSAT-4000高速脉冲信号采集测试系统可完成对Pico示波器若干采集终端高速重复频率信号的波形与数据的实时采集,并完成更好的分析实验现象,且同时满足对测量通路时延的独立调节,并实时保存实验波形数据。[/color][/size][/font][align=center][img=多通道数据采集测试系统概述.png]http://www.namisoft.com/UserFiles/Article/image/6371165948156647876688062.png[/img][/align][font=微软雅黑, &][size=16px][b]3.系统组成[/b][/size][/font][size=16px][font=微软雅黑, &][size=14px][b] [/b][/size][/font][font=微软雅黑, &][size=14px][/size][/font][/size][size=16px][font=&][/font][font=微软雅黑, &] 控制模块(电脑或笔记本)[/font][/size][font=微软雅黑, &][size=16px][/size][/font][align=center][img=工控机.png,550,333]http://www.namisoft.com/UserFiles/Article/image/6373483454943733568043422.png[/img][/align][font=微软雅黑, &][b][/b][/font][font=微软雅黑, &][size=16px][b][size=14px][/size][/b][/size][/font][size=16px][font=&][size=21px][/size][/font][font=微软雅黑, &][size=14px]数据传输模块(各种数据传输转换装置)[/size][/font][/size][align=center][size=16px] [/size][img=数据采集传输模块图.png]http://www.namisoft.com/UserFiles/Article/image/6371165955813044872644089.png[/img][/align][size=16px][b][font=微软雅黑, &][size=14px][/size][/font][/b][/size][size=16px][font=&][/font][font=微软雅黑, &]数据采集模块(各类数据采集设备)[/font][/size][align=center][/align][font=微软雅黑, &][size=16px][/size][/font][align=center][img=测试仪器.png,550,302]http://www.namisoft.com/UserFiles/Article/image/6375271538737360991140300.png[/img][/align][size=16px][b][font=微软雅黑, &][size=14px][/size][/font][/b][/size][font=微软雅黑, &][size=16px][b]4.系统流程图[/b][/size][/font][align=center][img=多通道信号记录测试流程图.png]http://www.namisoft.com/UserFiles/Article/image/6371165961075645915954657.png[/img][/align][size=16px][b][font=微软雅黑, &]5.系统界面[/font][font=微软雅黑, &][/font][/b][/size][font=微软雅黑, &][size=16px][/size][/font][font=微软雅黑, &][size=16px][/size][/font][align=center][img=多台实时信号分析仪同步数据采集界面.png,700,390]http://www.namisoft.com/UserFiles/Article/image/6371165987363650639964449.png[/img][/align][font=微软雅黑, &][size=16px][/size][/font][size=16px][b][font=微软雅黑, &]6. 应用背景[/font][font=微软雅黑, &][/font][/b][/size][align=center][img=应用场景修改图.png,650,248]http://www.namisoft.com/UserFiles/Article/image/6375348015424774591577526.png[/img][/align][align=left]如果您想要免费试用[url=http://www.namisoft.com/Softwarecenterdetail/511.html]pico示波器软件[/url],请搜索 【纳米软件】至官网试用。http://www.namisoft.com/Softwarecenterdetail/511.html[/align]

  • DTM180系列微波脉冲/连续波功率检波器

    [font=Calibri][font=宋体]微波脉冲检测器意味着时间短、波形极其尖锐的微波信号。微波脉冲探测器的振幅和持续时间通常很短,但其频率很高,可以达到每秒数千亿次。微波脉冲检测器传输速率短,但功率高,能穿透墙壁和障碍物,广泛应用于雷达测量和通信对抗中。[/font][/font][font=Calibri][font=宋体]连续波功率检波器是指波形连续的微波信号,其频率通常在[/font]1GHz[font=宋体]到[/font][font=Calibri]100GHz[/font][font=宋体]之间。连续波功率检测器可以在超长距离传输中保持较高的信号强度,因此被广泛应用于卫星通信和机载雷达中。微波连续波与脉冲波相比,功率较低,一般用于数据通信通信等低功率技术应用。[/font][/font][url=https://www.leadwaytk.com/article/5053.html]DTM180[/url][font=宋体]系列检波器特征[/font][font=宋体][font=Calibri]1ms[/font][font=宋体]典型升高时间响应(通过[/font][font=Calibri]50[/font][font=宋体]Ω电缆线进到[/font][font=Calibri]50[/font][font=宋体]Ω负载)[/font][/font][font=宋体][font=宋体]内嵌[/font][font=Calibri]1[/font][font=宋体]瓦[/font][font=Calibri]CW[/font][font=宋体]保护电路[/font][/font][font=宋体][font=宋体]平整的频率响应(典型值[/font][font=宋体]±[/font][font=Calibri]0.5dB[/font][font=宋体])[/font][/font][font=宋体][font=宋体]适配输入能够实现低[/font][font=Calibri]VSWR[/font][font=宋体](功率高达[/font][font=Calibri]+10dBm[/font][font=宋体]时最高值为[/font][font=Calibri]2:1[/font][font=宋体])[/font][/font][font=宋体][font=宋体]在整体温度范围内持续输出(典型值[/font][font=宋体]±[/font][font=Calibri]0.5dB[/font][font=宋体],[/font][font=Calibri]-15[/font][font=宋体]°[/font][font=Calibri]C[/font][font=宋体]至[/font][font=Calibri]+85[/font][font=宋体]°[/font][font=Calibri]C[/font][font=宋体])[/font][/font][font=宋体]提供微型规格尺寸[/font][font=宋体]密封性模块经久耐用[/font][font=宋体]应用领域[/font][font=宋体]精确测量脉冲上升时间、脉冲宽度和脉冲功率[/font][font=宋体]连续波功率测量[/font][font=宋体]迅速反馈整平电源电路[/font]

  • 实验室常用插座及转换器

    最近实验室来了台生物安全柜,插座要用英标的,要不然无法转换。这个问题就提醒我们实验室存在的诸多问题,插座口有好多标准,有时候竟然很难统一。转换器是一个很有用的东西。但是要选好合适的转换器至关重要。

  • 关于90度/180度脉冲宽度测定与驰豫时间测定的关系

    1. 射频强度tpwr设定值不同,氢核的90度/180度脉冲值理论上说也会改变,平常测氢谱时tpwr需要设定在多大的值?如果要测驰豫时间tpwr是否需要重新设定?2. 同一化合物处于不同化学位移值的氢信号,使它们脉冲到90度/180度,是不是所需要的脉冲时间也会有所不同?如此一来,如果要测每个信号的驰豫时间,是不是需要分别测定各自对应的90度/180度的脉冲宽度?没测过驰豫时间,产生一些疑问!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制