石英晶体传感器

仪器信息网石英晶体传感器专题为您提供2024年最新石英晶体传感器价格报价、厂家品牌的相关信息, 包括石英晶体传感器参数、型号等,不管是国产,还是进口品牌的石英晶体传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石英晶体传感器相关的耗材配件、试剂标物,还有石英晶体传感器相关的最新资讯、资料,以及石英晶体传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

石英晶体传感器相关的厂商

  • 山西科致成科技有限公司是专业从事气体传感器、报警仪校验检定装置研制开发、设计制造、技术服务和销售为一体的大型科技生产型企业,公司自创业以来,历经多年的市场风雨的洗礼,通过实施严格的区域代理制度及销售服务体制,以客户利益为最优先考虑来开展业务运营。在各级煤矿检测中心、经销商、用户和厂家的共同努力下,科致成校验装置得到了用户的广泛认可与信赖。科致成已成为国内同行业的领导品牌,成为了山西省煤矿行业的知名企业。 公司位于太原高新技术开发区,其前身太原科导电子有限公司始建于2002年,具有近十多年的光辉历程和先进的生产制造经验,是国内第一家生产KA型调校检测仪的厂家,产品畅销全国,山西科致成科技有限公司承继太原科导电子有限公司的产品品牌和生产优势。 公司技术力量雄厚,工艺设计先进,质量保证体系完善,检测手段先进、化验设备齐全,已通过GB/T19001-2008 idt ISO9001:2008质量管理体系认证。 企业主导产品为KA83J车载甲烷传感器检定装置、KA83型智能多路多功能校验台、KAJC-1型分站检测仪等KA系列产品,是国内品种最多、功能覆盖面最宽的气体传感器报警仪校验检定设备生产企业。KA83型、KA8316型品牌产品具有较高的声誉和市场知名度,不仅畅销省内,而且远销山东、河北、河南等省份和地区。 公司拥有通工艺、技术精的科研队伍,凭借着丰富的工作经验及专业知识,所生产的气体传感器校验台、气体报警仪检定装置始终保持着国内一流的技术水平,特别是KA83型智能多路多功能校验台在国内同行业中遥遥领先。 公司具有独特优势: 1、山西省内煤矿行业知名品牌; 2、具有东山煤矿、西山煤矿、华润联盛煤矿企业公司新品试验基地; 3、具有霍州煤电技术检测中心成熟产品培训基地; 4、和山西理工大学精诚合作,研发KA系列产品软件,拥有自主知识产权。 4、研发校验检定设备,属国内首创。 5、产品已通过山西省科技厅成果鉴定,具有国内领先地位; 6、产品已通过山西省经信委、煤炭厅新产品鉴定,可批量生产。 7、产品已在山西省质量技术监督局备案,并已申报多项国家专利。 公司可以根据用户要求,按照国家标准为您定做8路、16路、32路等多路甲烷、氧气、一氧化碳、二氧化碳等气体传感器报警仪校验台/检定装置,集设计,制造,安装,售后一体化,为您提供优质各种矿用气体检定装置/校验台;   未来,山西科致成科技有限公司将继续以高质量、低成本、全球化为战略目标,以高标准、精细化、零缺陷为作业路线,集成知识,整合创新,打造世界级品牌和全球最具竞争力的气体传感器报警仪校验检定设备制造基地。
    留言咨询
  • 安徽天光传感器有限公司创建于1991年,占地面积22000平方米。主要研发、生产、销售:称重传感器,电力覆冰检测传感器,扭矩传感器,拉力传感器,轴销传感器,压力传感器,拉压力传感器以及相配套测控仪表等产品。二十多年来天光不断吸取国内外的先进技术,引进国外领先的设备与工艺,学习与吸收现代企业管理理念,先后研发、生产了百余种测力传感器及配套仪器仪表,产品广泛应用于军工、航空航天、油田、交通、医药、冶金建材、教学等行业的计量与自动化过程中的检测等方面,其半导体应变计的生产工艺、设备及产量为国内领先,已申报发明专利。2008年我公司荣幸为北京奥运会主体育场鸟巢提供专用传感器,并获得好评。 陈圆圆180 5523 0933
    留言咨询
  • 常州科达传感器成套设备有限公司是专业生产冶金工业自动化生产线上在线位置检测仪的知名厂家,研制并开发出性能优良的几十种并能代替国内外同给产品的位置传感器,先后被武钢、攀钢、唐钢等100多家钢铁企业选用,并成为北京钢铁设计院位置传感器定点生产单位。
    留言咨询

石英晶体传感器相关的仪器

  • JSK-T(III)型 多通道石英晶体微天平传感仪JSK-T(III)型石英晶体微天平是本公司独自开发的多功能一体化多通道QCM-D型质量传感检测仪器,工作频率可达200MHz,精确测量纳克级物质质量的传感技术。仪器价格便宜、操作简单,可广泛用于聚合物表征、电池储能材料如Li+ 嵌入材料、金属腐蚀、自组装单层、生物传感器、免疫检测、 蛋白质的相互作用 、膜表面的吸附/解析 、细胞黏附行为、靶向药物筛选、高分子材料的生物相容性等研究领域。仪器原理: 对AT切型剪切振动石英晶振进行快速阻抗频谱测量,频谱测量可获得诸多信息,可在响应幅值最大处获得谐振频率,峰高、半峰宽也可作为特征参数用来表征压电石英体表面粗糙度、膜粘弹性变化情况。本仪器通过快速频谱扫描技术,获得压电石英体的谐振频率(F) 和耗散因子 D (定义为石英晶体品质因子 Q的倒数,通过半高峰宽近似求得)。 仪器特点l QCM-D石英晶体微天平基于快速阻抗频率谱测定技术,能够测定谐振频率、振幅、相位等参数,可用于常见压电石英晶体,例如基频5MHz、6MHz、8MHz、10MHz的石英晶体; 可进行奇数倍频测量,频率上限最高可达200MHz。可实现频率、相移、耗散因子等参数测量。根据需要预设参数、个性化定制。 l 1-8通道任意定制,仪器模块化结构、数据显示储存一体、抗干扰能力强。l 石英晶体基频 5MHz,6MHz,8MHz,10MHz,33MHz,100MHz可任选。可3、5、7、9、11、13倍频激励,扫频范围200MHz以内。l 提供两套检测池、满足不同实验需求。可配置注射泵或蠕动泵、PID自动控制温度。液相多倍频测试结果:
    留言咨询
  • 本公司研发团队开展石英晶体微天平化学生物传感分析研究已有三十余年,具有丰富的QCM应用研究经验,可根据客户需求提供个性化服务,解决客户QCM使用中出现的技术问题。该仪器融合多家著名高校相关领域研究成果,仪器模块化结构、便携式设计,可与电化学仪器光学仪器联用。仪器价格优惠、使用简单、性能稳定、检测结果可靠。石英晶体微天平(Quartz Crystal Microbalance,QCM)是一种非常灵敏的质量检测仪器。在一定条件下,石英晶体上沉积的质量变化和振动频率移动之间关系呈线性关系(Sauerbrey公式),其测量灵敏度可达纳克级,可以测到单原子层的质量变化。本仪器采用10 MHz石英晶体,每Hz的频率变化相当于0.85 ng/cm2。石英晶体微天平作为纳克质量传感器具有结构简单、成本低、灵敏度高的优点,被广泛应用于化学、物理、生物、医学和表面科学等领域中,可实现电化学、光化学、光电化学的现场动态监测分析。可广泛用以进行气体、液体成分分析以及微质量的测量、薄膜厚度、液体粘度(血凝)检测等。例如:电活性聚合物表征、Li+ 嵌入材料、金属腐蚀、自组装单层、生物传感器、免疫检测、 蛋白质的相互作用 、膜表面的吸附/解析 、DNA的杂交 、 细胞吸附 、靶向药物筛选、高分子材料的生物相容性等。 仪器特点l 仪器接触溶液的激励电极做工作电极与电化学仪器联用可构成EQCM测量技术。 l 仪器便携式设计、操作简单、方法选择、操作过程、步步提示。l 锂离子电池可作为电源、抗干扰能力强。l 仪器智能化模块化设计、结构可靠,可适应现场使用。l SD卡储存数据,方便后续数据处理。l 数据同时通过蓝牙无线传输到手机,可在手机上同步进行显示和储存。l 仪器可与其他分析仪器联用,如电化学仪器、光学仪器联用实现现场多信息传感分析。根据科研需要可进一步开发应用。 技术参数 l 使用晶体频率范围5MHz-20MHz,本仪器使用商用镀金10MHz AT切石英晶体。l 频率稳定性,空气中+1Hz/小时,液相中精确控制实验条件可达到相近的信号稳定性。l 3.5英寸触屏彩色液晶显示。l 提供2G SD卡储存数据,每隔2秒储存一组实验数据。l 便携式QCM 配备直流供电电压范围9V-18V,建议使用12V,2A 直流稳压源。l 可配备12V 5400mAh 锂离子电池(12.6V,1A 充电器)。l 便携式仪器尺寸:150*97*40mm;仪器重量:500 g。
    留言咨询
  • 石英晶体微天平 400-860-5168转6094
    QCM-D石英晶体微天平 对AT切型剪切振动石英晶振进行快速阻抗频谱测量,频谱测量可获得诸多信息,可在响应幅值最大处获得谐振频率,峰高、半峰宽也可作为特征参数用来表征压电石英体表面粗糙度、膜粘弹性变化情况。本仪器通过快速频谱扫描技术,获得压电石英体的谐振频率(F) 和耗散因子 D (定义为石英晶体品质因子 Q的倒数,通过半高峰宽近似求得)。 JSK-T(I)型石英晶体微天平是本公司独自开发的多功能一体化QCM-D型质量传感检测仪器,工作频率可达200MHz,精确测量纳克级物质质量的传感技术。QCM仪器价格便宜,操作简单,可实现电化学、光化学、光电化学的现场联用动态监测分析。可广泛用于电活性聚合物表征、电池储能材料如Li+ 嵌入材料、金属腐蚀、自组装单层、光电材料、生物传感器、免疫检测、 蛋白质的相互作用 、膜表面的吸附/解析 、细胞黏附行为、靶向药物筛选、高分子材料的生物相容性等。仪器特点 QCM-D石英晶体微天平基于快速阻抗频率谱测定技术,能够测定谐振频率、振幅、相位等参数,可用于常见压电石英晶体,例如基频5MHz、6MHz、8MHz、10MHz的石英晶体; 可进行奇数倍频测量,频率上限最高可达200MHz,优于目前常见QCM设备。可实现频率、相移、耗散因子等参数测量。根据需要预设参数、个性化定制。仪器模块化结构、数据显示储存一体、无需外接电脑、抗干扰能力强。l 石英晶体基频 5MHz,6MHz,8MHz,10MHz,33MHz,100MHz可任选。可3、5、7、9、11倍频激励,扫频范围200MHz以内。l 提供两套检测池、满足不同实验需求。可配置注射泵或蠕动泵、PID自动控制温度。技术参数l 本仪器使用商用镀金8MHzAT切石英晶体,稳定状态下液相中频率测定相邻数值波动可控制在±0.1Hz。l 3.5英寸触屏彩色液晶显示,U盘储存数据,无需外接电脑。l 仪器常规石英晶片直径14 mm,能够非常灵敏地检测非常薄的吸附层的质量、耗散、分子的结构(构象)变化。并可计算其他参数,如:厚度、粘度、弹性模量,同时可以进行分子间反应的动力学分析。l 仪器检测的耗散灵敏度可达10-7, 质量灵敏度为4ng Hz-1 cm-2(基频10MHz) 0.4 pg Hz-1 mm-2(基频100MHz) 频率测定模式数据采集0.2s一组数据 ;(可定制相移角测定模式,数据采集速度可达10微秒,可用于快速瞬态测定)。
    留言咨询

石英晶体传感器相关的资讯

  • AWSensors发布AWS耗散型石英晶体微天平新品
    AWS X1石英晶体微天平基于声波传感原理,可通过石英传感器频率和耗散变化来检测芯片表面质量和结构变化。适用于刚性和粘弹性薄膜,具有倍频操作模式,可给出薄膜的粘度,弹性模量,粘性模量,厚度等信息。测试频率高达160MHz,灵敏度可达8pg/cm2。应用领域腐蚀研究 锂离子电池评价电镀研究,沉积层厚度测试气体检测、成分分析,环境监测表面涂层研究纳米粒子吸脱附离子和溶剂的传输表面活性剂去污能力评价创新点:1.AWS样品池采用专利的Q-Lock设计 2.通过AWS Suite® 一个软件可控制两台仪器,同步采集电化学和QCM信号,完美实现电化学与QCM的联用。 3.AWS X1系统可兼容标准QCM芯片、高频QCM芯片和叉指传感器芯片。 4.适用于刚性和粘弹性薄膜,具有倍频操作模式 5.模块化设计,可升级温度模块/液体控制单元 AWS耗散型石英晶体微天平
  • 复旦开发光增强化学晶体管传感器,实现中性小分子的高灵敏检测
    小分子作为分子量小于 1000 道尔顿的化合物,在生命活动中发挥着重要的作用。对小分子进行检测和分析,无论是在生物医学领域,还是在疾病的早期诊断中,都是非常必要的。目前,市场上已出现不少小分子检测方法,包括光谱学、电化学等技术,但它们也同时存在着各种缺点,比如操作复杂、通量小、设备昂贵等。与上述传统的检测技术相比,场效应晶体管(field-effect transistors,FET)这种传感器平台则具有诸多优点,如灵敏度高、响应速度快、即时检测等。在该平台中,石墨烯作为导电通道,当其与小分子相互作用时,和电荷转移相关的化学掺杂效应会改变它的电势,导致石墨烯 FET 通道的电导发生实时变化。其中,必须说明的是,小分子的电荷量或分析物的氧化还原性,对化学门控调制起着决定性作用。也就是说,这种晶体管传感器,更适用于检测那些带电量较多的分子,而无法很好地检测那些电荷很少、且氧化还原性能较弱的小分子。复旦大学魏大程研究员带领的课题组,以新型场效应晶体管材料的研发为研究重点(课题组主页:www.weigroupfudan.com)。近期,该课题组发现了一种光化学门控效应,可以通过引入额外的光门控调制,来提高小分子的检测灵敏度。基于此,他们在石墨烯 FET 通道上,生长了具有良好光敏性的共价有机框架材料,能够吸收大量的光能量,并产生丰富的光电子,进而放大对化学信号的电流响应。图丨团队合照(来源:魏大程)接着,该团队采用光门控和化学门控协同的策略,开发了一款光增强化学晶体管传感器,实现对不同小分子,包括中性分子在内的高灵敏检测。利用该器件,他们成功检测到由细胞产生的、浓度低于 10−19M 的二羰基代谢物甲基乙二醛(methylglyoxal,MGO),至少比现有的技术低 5 个数量级。需要说明的是,MGO 是糖尿病、心血管病等疾病的重要参与分子,此前传统的小分子检测方法,很少能够实现对浓度低于 10−9M 的 MGO 的检测。在检测 MGO 的基础上,该器件还可以通过在共价有机框架材料上设计活性位点的方式,实现对其他具有不同电荷性质的小分子的检测。并且,对共价有机框架材料的分子结构进行调整,还能满足对其他疾病标志物的检测,比如蛋白质、离子、核酸等。图丨光增强化学晶体管(来源:Journal of the American Chemical Society)据魏大程介绍,该研究开始于 2018 年左右,整个过程持续了两到三年时间。“我们先是发现了一些光增强的电学响应信号现象,但并不清楚其中的机理,后来做了很多对比实验,同时也进行反复的讨论分析,才明白其实际上是光栅效应和化学效应的协同作用导致的。”他说。同时,他也表示:“我们利用光增强技术的好处是,能够对信号放大,使晶体管传感器发展成一个通用平台,既可以检测带电量较高的小分子,也可以检测带电量较低的小分子。”图丨光增强化学晶体管(来源:Journal of the American Chemical Society)2023 年 4 月 25 日,相关论文以《用于小分子超灵敏检测的光增强化学晶体管平台》(Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of Small Molecules)为题在 Journal of the American Chemical Society 上发表[1]。图丨相关论文(来源:Journal of the American Chemical Society)复旦大学硕士研究生王乾坤、艾昭琳为该论文的共同第一作者,复旦大学魏大程研究员为论文的通讯作者。整体来看,该研究拓宽了晶体传感器平台的应用范围,具有快速、易于操作、高灵敏等优点的传感器件,有望在生物医学研究、健康监测和疾病诊断中实现应用。魏大程表示:“我们实验室主要想将晶体管传感器与医疗相结合,开展一些生化检测方面的研究。不过,实现小分子检测只是研究的一部分,这里面还有许多科学问题和技术问题有待解决。比如,我们想实现对癌症的检测。虽然这方面也已经有了很多相关技术,但在进一步提高检测的准确性上还有研究的空间,所以接下来我们也计划朝着这个方向进行探索。”此外,生化传感领域,尤其是晶体管传感技术,目前尚处于实验室阶段,现在,临床上还没有在大规模使用的产品。该团队也正在和相关企业进行交流,希望能够基于所开发的技术,打造一些具有较强实用性的产品,推动产业领域的应用。
  • 讲座预告 | 石英晶体微天平(QCM-D)技术在分离分析化学中的应用
    报告亮点阐述: 高纯度生物样品的获取是生物学功能研究的前提和基础,同时生物分离过程是生物技术产业化的必经之路。特别是“精准医疗”计划的提出为靶向富集和分离材料的开发,提出了更高的要求,迫切需要开发新一代对开发目标生物分子具有高亲和力,特异性识别的富集和分离材料。然而这类材料的开发非常具有挑战性,这是因为生物样品种类繁多,结构各异,高度复杂,同时有价值的生物样品在血液或组织液中的含量极低。蛋白等物质在细胞中分布还具有动态不均一性,在不同人种,年龄,性别,病理阶段具有非常显著的差异性。通过学习和模仿生物分子间特异性相互作用,结合智能聚合物构象转变,开发出的生物分子响应性聚合物很好地切合了这一需求,能够实现对目标生物分子的精准捕获,将在生物分离和分析领域,获得广泛的应用。这一方向融合了智能聚合物、主客体化学、微纳米器件构筑、精准测量和生物医学,是目前新兴涌现的一个学科方向,具有鲜明的开创性和广阔的应用前景。研究生物分子在材料表面的吸附动力学行为,对于揭示材料对目标分子的选择性吸附能力,以及材料吸附生物分子后,表面所发生的显著变化,是一项非常有趣的工作。报告将讲解石英晶体微天平(QCM-D)技术在分离分析化学中的应用,帮助研究人员更好地去理解生物界面行为,揭示吸附背后的精彩故事。 报告人简介:卿光焱,博士,中国科学院大连化学物理研究所研究员、博士生导师。长期从事生物分离材料与器件方面的基础研究,已在包括Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Chem. Sci.等化学和材料领域权威刊发表SCI论文100余篇,相关技术获得中国发明专利授权20项。主持国家自然科学基金优秀青年科学基金,面上项目4项等。目前担任《色谱》青年编委,Chin. Chem. Lett.编委,Chemical Synthesis青年编委等。 报告时间:2022年7月7日(周四) 上午10点报告地点:腾讯会议(会议号报名后另行通知)报名方式:复制下方报名链接至微信搜索框,点击“访问网页”在线填写https://doc.weixin.qq.com/forms/AHUAGgcQAAkACwA1AbmAHUKesSVrfzTHfQSense技术简介: 具有耗散因子检测功能的石英晶体微天平(QSense)是瑞典百欧林科技有限公司的专利技术,可提供多个频率和耗散因子数据,用于测定非常薄层的吸附层的质量,并同步提供粘弹性等结构信息。 该技术可对多种不同类型表面的分子相互作用和分子、纳米颗粒及细胞吸附进行研究,同时可以检测分子的结构变化以及吸附与解析的动态过程。 该仪器应用范围包括生物技术和医疗器械、蛋白质、核酸、多糖等生物分子和细胞/细菌、生物传感器、食品、高分子聚合物、环境膜处理、纳米颗粒、石墨烯、自组装材料、锂电池/超级电容器等,从纳米到微米尺度的物质与界面之间的相互作用及物质的环境响应。 既往相关讲座:Ÿ 马春风教授 华南理工大学报告题目:石英晶体微天平(QCM-D)技术如何解决海洋防污中面临的难题Ÿ 宋君龙教授 南京林业大学报告题目:石英晶体微天平(QCM-D)技术及其在木质纤维素利用中的应用Ÿ 郑靖研究员 西南交通大学报告题目:石英晶体微天平(QCM-D)技术在唾液润滑研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:QSense 耗散型石英晶体微天平技术(QCM-D)原理及应用Ÿ 申涛工程师 瑞典百欧林报告题目:QSense耗散型石英晶体微天平(QCM-D)在生物和食品领域的应用Ÿ 张洪斌教授 上海交通大学报告题目:石英晶体微天平(QCM-D)技术在乳状液界面膜粘弹性与物理稳定性研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:耗散型石英晶体微天平(QCM-D)在锂离子电池研究领域的新应用Ÿ 姜威教授 山东大学报告题目:石英晶体微天平技术探究颗粒污染物的环境界面过程Ÿ 杨晓泉教授 华南理工大学报告题目:Langmuir膜分析仪及石英晶体微天平(QCM-D)在食品科学研究的应用Ÿ 杨哲博士 香港大学报告题目:石英晶体微天平(QCM-D)技术及其在环境膜材料领域中的应用Ÿ 苗瑞副教授 西安建筑科技大学报告题目:QSense耗散型石英晶体微天平技术在超滤膜污染机理领域的应用研究Ÿ Netanel Shpigel博士 以色列巴伊兰大学/美国德雷塞尔大学报告题目:QSense耗散型电化学石英晶体微天平在电池及超级电容实时研究中的应用Ÿ 罗日方副研究员 四川大学报告题目:石英晶体微天平(QCM-D)技术在血液接触材料表面改性领域的应用 如需相关讲座视频请联系百欧林索要,联系电话: 400 860 5169 分机号1902

石英晶体传感器相关的方案

石英晶体传感器相关的资料

石英晶体传感器相关的试剂

石英晶体传感器相关的论坛

  • 石英晶体微天平的特征及应用

    石英晶体微天平最基本的原理是利用了石英晶体的压电效应,主要构造由石英晶体传感器、信号检测和数据处理等部分组成。石英晶体为天平在探头电极上修饰具有生物活性的特异选择功能膜,即作了压电晶体生物传感器。石英晶体为天平因其对质量变化的高敏感性,传感器具有特异性好、灵敏度高、成本低廉和操作简便等优点。 石英晶体微天平利用了石英晶体谐振器的压电特性,将石英晶振电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的数据。石英晶体微天平是一种非常灵敏的质量检测仪器,其测量精度可达纳克级,比灵敏度在微克级的电子微天平高100 倍。 石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用,一般附属结构还包括振荡线路、频率计数器、计算机系统等。石英晶体微天平广泛应用于分子生物学、病理学、医学诊断学、细菌学等研究领域,在研究和检测蛋白质、微生物、核酸、酶、细胞等方面都发挥了重要的作用。

  • 【讨论】场效应晶体管传感器的相关问题

    【讨论】场效应晶体管传感器的相关问题

    对常用普通电极,我们通常采用电化学工作站和三电极系统进行检测.原理和过程都是大家比较熟悉的.场效应晶体管(FET)结构更为复杂(Fig 3),那么通过电化学工作站如何对其进行检测呢?具体接线时工作站与FET的三电极(源极,漏极,栅极)有怎样的对应关系?如果电化学工作站不能实现这种检测,有没有另外的检测系统?有心的朋友能不能贴张FET传感器的实物图来看看.Fig 1. Conducting polymer FETs[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608300852_25067_1618618_3.jpg[/img]Fig 2. ISFET[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608300853_25068_1618618_3.jpg[/img]Fig 3. MOSEF and ISFET[img]http://csrg.ch.pw.edu.pl/tutorials/isfet/images/fet1.gif[/img]

石英晶体传感器相关的耗材

  • CS526 pH传感器
    用途:CS526 pH传感器采用具有先进水平的ISFET(场效应晶体管)技术,内置了一个镀银/氯化银-氯化钾参比系统。ISFET技术是当前最先进的pH值检测技术,能够有效降低极端pH条件下的酸性或碱性测量误差,这使得CS526 pH传感器可以在含有腐蚀性化学品、生物制剂的水体环境中正常工作,而这是传统的玻璃材料的pH探头所无法实现的。特点:采用创新性设计的ISFET技术,可用于极端pH环境下;全密封设计,易清洗,有效防止积垢、污染;比传统的玻璃制pH传感器更耐磨,适合于野外的长期观测;设计优良,制作精湛,环境适应性强;每个探头经过单独出厂测试;符合ISO900、CE标准;具备全温度补偿功能。技术规格:pH量程1~14 pH供电5 VDC耗电最大15 mA输出串行TTL逻辑,2400bps,8个数据位,无奇偶校验,1个停止位精度±0.2 pH(10~40℃)工作温度10~40℃24小时漂移0.15 pH(温度25℃时pH7的溶液15分钟后)承受水压0~700 kPa最大电缆长度100米传感器材质聚醚醚酮尺寸长度102毫米×直径16毫米重量318克(带3米电缆)产地:美国
  • 光纤温度传感器OTGA
    光纤温度传感器OGT-A采用全球先进的GaAs晶体带隙决定温度的温度传导机理和温度传导机制,为广大用户提供精准高效的测温解决方案。 我们采用Opsens公司高灵敏度GaAs晶体安装到光纤温度传感器的顶尖位置,非常适合间隙测量应用。 结合Opsens GaAs信号和光纤光学固有的特性,为温度测量传感提供最佳重复精度和可靠性,并且测量精度不受恶劣环境影响,比如在高水平EM, RF,MR和微波环境下测量结果依然准确。 光纤温度传感器可在-40摄氏度到250摄氏度范围内工作,更高温度300摄氏度也可提供,采用全球领先的工艺级标准制作光纤,与信号采集器兼容使用,可提供不同长度的光纤线缆。 光纤温度传感器特点 尺寸小巧而坚固耐用 良好的精度和可靠性 不受EMI/RFI微波影响 超级安全 光纤温度传感器应用 EM,RF,和微波环境应用 高压环境测温 核物理和有毒环境测温 微波化学环境测温 高温高压杀菌环境测温 在线测温 RF和微波干燥应用 光纤温度传感器参数 工作温度范围:-40 °C to +250 °C 温度分辨率:0.01摄氏度 温度精度:+/-0.3摄氏度(20~45°C),0.8摄氏度(整体精度) 响应时间:0.5秒 工作湿度:0-100% EMI/RFI: 不受影响 校准:NIST 可追踪 线缆长度:1.5米 光学连接器接口:ST标准接口 线缆包裹:特氟龙 信号处理兼容:兼容所有Opsens GaAs信号处理器
  • 光纤温度传感器M280
    光纤温度传感器M360采用全球领先GaAs晶体带隙决定温度的温度传导机理和温度传导机制,非常适合医学或动物生理温度测量。 我们采用Opsens公司高灵敏度GaAs晶体安装到光纤温度传感器的顶尖位置,非常适合间隙测量应用。 结合Opsens GaAs信号和光纤光学固有的特性,为温度测量传感提供最佳重复精度和可靠性,并且测量精度不受恶劣环境影响,比如在高水平EM, RF,MR和微波环境下测量结果依然准确。 动态光纤温度传感器M270采用全球领先的工艺级标准制作光纤,与信号采集器兼容使用,可提供不同长度的光纤线缆。 光纤温度传感器特点 +/-0.3摄氏度精度 尺寸小巧而坚固耐用 良好的精度和可靠性 不受EMI/RFI微波影响 超级安全 光纤温度传感器应用 MRI表面或内部温度测量 EM,RF,和微波环境应用 高压环境测温 核物理和有毒环境测温 微波化学环境测温 高温高压杀菌环境测温 在线测温 RF和微波干燥应用 光纤温度传感器参数 工作温度范围:20 °C to +45°C 温度分辨率:0.01摄氏度 温度精度:+/-0.3摄氏度(20~45°C),0.8摄氏度(整体精度) 响应时间:0.22秒 工作湿度:0-100% EMI/RFI: 不受影响 校准:NIST 可追踪 线缆长度:1.5米 光学连接器接口:ST标准接口 传感器直径:0.360mm O.D. 线缆包裹:特氟龙 信号处理兼容:兼容所有Opsens GaAs信号处理器
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制