当前位置: 仪器信息网 > 行业主题 > >

时间相关光子计

仪器信息网时间相关光子计专题为您提供2024年最新时间相关光子计价格报价、厂家品牌的相关信息, 包括时间相关光子计参数、型号等,不管是国产,还是进口品牌的时间相关光子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合时间相关光子计相关的耗材配件、试剂标物,还有时间相关光子计相关的最新资讯、资料,以及时间相关光子计相关的解决方案。

时间相关光子计相关的资讯

  • 时间相关光子计数探测器研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 109" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 549" colspan=" 3" p style=" line-height: 1.75em " 时间相关拉曼-荧光光谱仪关键部件--时间相关光子计数探测器 /p /td /tr tr td width=" 109" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 549" colspan=" 3" p style=" line-height: 1.75em " 北京师范大学 /p /td /tr tr td width=" 109" p style=" line-height: 1.75em " 联系人 /p /td td width=" 132" p style=" line-height: 1.75em " 韩德俊 /p /td td width=" 95" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 322" p style=" line-height: 1.75em " djhan@bnu.edu.cn /p /td /tr tr td width=" 109" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 549" colspan=" 3" p style=" line-height: 1.75em " □正在研发 √已有样机 □通过小试 □通过中试 & nbsp & nbsp □可以量产 /p /td /tr tr td width=" 109" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 549" colspan=" 3" p style=" line-height: 1.75em " √技术转让 □技术入股 □合作开发& nbsp & nbsp □其他 /p /td /tr tr td width=" 658" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/d2651cc2-003a-47d8-8c21-0404be413e72.jpg" title=" 样机图片 时间相关拉曼-荧光光谱仪关键部件--时间相关光子计数探测器.jpg" width=" 350" height=" 229" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 229px " / /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 本项目研究了基于独创的外延层体电阻淬灭硅光电倍增器(SiPM)的时间相关光子计数探测器技术,验证以这种探测器为关键部件的一种新的光谱仪--时间相关拉曼-荧光谱仪的可行性和先进性。 br/ & nbsp & nbsp & nbsp 采用我们独创的外延层体电阻淬灭SiPM作为光子计数探测器,能够在较宽光强范围内对光脉冲进行光子计数测量,其时间分辨率高于CCD(包括ICCD)或光电倍增管(PMT)。 br/ & nbsp & nbsp & nbsp 采用我们提出基于SiPM的时间相关光子计数(TCPC)法,既能测量一个脉冲仅包含一个光子的情况,也能测量一个脉冲包含多个光子的情况。能够克服一般时间相关单光子计数(TCSPC)法测量效率较低、测量速度较慢的问题。 br/ & nbsp & nbsp & nbsp 研制出基于条形SiPM的时间相关光子计数探测器(TCPC)样机。其时间分辨率优于100皮秒,暗计数率低于200kHz,峰值探测效率大于15%。验证该新型光谱仪能够克服一般拉曼光谱仪存在荧光背底干扰以及一般荧光光谱仪不能测量荧光寿命的问题。 br/ /p /td /tr tr td width=" 658" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 一台以本项目研制的探测器为关键部件的低成本时间相关拉曼-荧光光谱仪的功能和应用范围好于或相当于现有拉曼光谱仪、荧光光谱仪以及荧光寿命测量仪三台仪器之和,而其制造成本只与这三种仪器中的一种相当。并且,能够克服一般拉曼光谱仪存在荧光背底或高温样品存在热辐射干扰以及一般荧光光谱仪不能测量荧光寿命的问题。预期在环境监测、食品安全及公共安全等领域,乃至单分子光谱、激光测距以及飞行时间(TOF)测量等方面都将有重要的应用。 /p /td /tr tr td width=" 658" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 开发研制出时间相关光子计数探测器(TCPC)样机,由条形SiPM探测器和前置放大器组成的探头,以及给SiPM和前放供电的电源组成。 br/ & nbsp & nbsp & nbsp 韩德俊、王慎远、苗泉龙,“拉曼散射光谱的测量装置及拉曼散射光谱仪”,专利申请号:201510394150.X,申请日:2015年7月7日。 /p /td /tr /tbody /table p br/ /p
  • 时间相关单光子计数器quTAG软件界面简介
    时间相关单光子计数器quTAG软件界面简介摘要在刚开始拿到设备的时候,往往不知道从哪里开始使用设备;本文主要介绍软件上常用的几个模块,并做简要说明,帮助读者快速熟悉设备。正文quTAG是一款时间-数字转换器,它测量电信号并记录相关时间标签。这种时间标签流可以用于各种各样的应用——测量范围从皮秒到几天。通用时间标记方法可用于相关测量(互相关、自相关)、寿命测量(start - stop)以及一次测量中的更多可能性。保存的时间标签流包含重建每次测量和分析所需的所有信息。1、软件安装。从附带的U盘中拷贝Daisy@QUTAG-V1.5.3.exe软件到目标目录下。正常完成软件安装。2、设备连接。将电源线与连接到设备背面110~230V交流接口。使用附带的USB 3.0线缆与PC连接。打开设备,启动Daisy.exe软件。3、切换到Detector Parameter标签下,在该界面可以使能通道,选择测试信号类型,计数器的甄别阈值,信号延时等参数;其中,如果信号输入但是计数器没有检测到信号,那么很有可能是阈值设置太大,获取信号幅值太小;每个通道的输入信号从-3.3V~+3.3V。4、在Counts界面,显示在积分时间Exposure Time下每个通道的计数率,其中Exopsure Time设置积分时间,在此界面以图、数值的方式显示每个通道的计数值,还可以以文件的形式保存数据;5、在Coincidence标签界面如下图,在此界面与Counts界面的显示类似;如果没有设置合适的Coincidence Window也不会出现计数值的;同样的,在此界面也可以保存每个符合通道的计数值。6、在Histogram标签界面如下图,在此图中可以测量start-stop模式下的时间信息、计数信息,以及start-(multi)stop模式下的时间、计数信息;所有通道还是在Integrate Time下显示的计数值;Input Channals决定了信号来源于那几个通道;Timetag Processing用于处理多个stop通道的时间差;在后面的选择框可以设置以及显示当前界面的分辨率、计数率等;其中Bin Width以1ps时间为基准。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询。
  • 8212万 南开单光子时间分辨成像光谱仪器专项获批
    日前,科技部下发了&ldquo 科技部关于2013年度国家重大科学仪器设备开发专项项目立项的通知&rdquo ,南开大学牵头的&ldquo 单光子时间分辨成像光谱仪研发与应用&rdquo 获得正式立项。   &ldquo 单光子时间分辨成像光谱仪研发与应用&rdquo 由南开大学作为项目牵头单位,联合中国科学院空间科学与应用研究中心、北京理工大学、北京东方锐镭科技有限公司等13家单位合作承担。项目起止时间为2013年10月至2018年9月。批复项目预算总经费8212万元,其中国家重大科学仪器设备开发专项经费5952万元。   项目的总体目标是通过一系列关键技术攻关、系统集成、软件开发和应用开发,形成具有自主知识产权的单光子时间分辨成像光谱仪。项目验收后3年内,建立单光子时间分辨成像光谱仪整机生产基地,形成整机批量生产能力,为我国材料科学和生命科学研究提供测试技术支撑。
  • 济南微纳创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”完成验收
    2013年12月11日,山东省济南市科技局邀请有关专家组成验收组,对济南微纳颗粒仪器股份有限公司承担的科技型中小企业技术创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”进行了验收。验收期间,专家组听取了有关报告,审查了相关资料,对项目开发的Winner801光子相关纳米粒度仪进行了现场考察,经山东省计量科学研究院测试,该项目主要性能指标优于粒度分析国家标准要求,用户使用效果良好。最终经质询、评议,鉴定委员会认为该项目成果整体达到国际先进水平。此次项目验收评定,是对微纳仪器综合性能的肯定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。微纳销售热线0531-88873312
  • 单光子时间分辨成像光谱仪研发与应用项目实施会议召开
    6月17日,国家重大科学仪器设备开发专项单光子时间分辨成像光谱仪研发与应用项目实施会议在南开大学省身楼召开。      南开大学校长龚克,科技部条财司条财处处长刘春晓、教育部科技司高新处处长邰忠智,中国工程院院士、天津大学教授叶声华,中国科学院院士、南开大学教授、项目负责人葛墨林出席。来自中国科学院、清华大学、哈尔滨工业大学等高校和科研院所的专家学者参加会议。   龚克代表南开大学向与会专家表示欢迎。他说,&ldquo 工欲善其事,必先利其器&rdquo ,以前我国的&ldquo 器&rdquo 主要依靠国外引进,如今随着国家的发展,开始组织专项来解决&ldquo 器&rdquo 的问题,这代表着中国科学技术水平的很大进步。希望相关研发人员准确把握设备开发项目的定位,掌握关键的应用需求,掌握批量生产的规律,大家共同努力,全力以赴把项目做好。      科技处负责人宣读项目技术专家组、用户委员会、总体组、监理组成员名单。葛墨林感谢科技部、教育部以及各位专家的大力支持,并对项目概况进行介绍。他希望各位专家群策群力,继续给予支持和帮助,争取早日研发出优秀成果,促成该项目圆满完成,给国家一个满意的交代。   科技部、教育部相关负责人分别对该项目的研发及应用提出希望,表示会继续关注支持这个项目的发展,促进其做大做强。项目技术负责人、工程化负责人分别汇报了项目进展与通用研制要求与质量管理措施。会议还开展了国家重大科学仪器设备开发专项财务培训。
  • 多光子电离飞行时间质谱检测小乳化液滴的发展
    据Applied Sciences报道,日本福井大学工学研究所材料科学与工程系的研究人员使用多光子电离飞行时间质谱法开发了一种用于测量水包油(O / W)乳液中的小油滴的系统。  在本研究中,使用内径为15μm的毛细管柱引入样品,同时构建了一个小巧的微观系统,用于观察流过毛细管柱的乳液。结果,缩短了样品引入的长度,这对直接评估乳液非常有利。使用该系统,O / W乳液中可检测的甲苯液滴的最小直径减小到1.7μm。本系统可用于评估乳液的局部微环境和稳定性。设备示意图,上部为用于样品引入的一对同心毛细管柱的放大图  Schematic diagram of the apparatus. An enlarged view of a pair of concentric capillary columns for sample introduction is also shown  引自:Article (PDF Available) ?in?Applied Sciences 8(3) March 2018?  原文可参考:  https://www.researchgate.net/publication/323836913_Development_of_Multiphoton_Ionization_Time-of-Flight_Mass_Spectrometry_for_the_Detection_of_Small_Emulsion_Droplets  符斌供稿
  • 230万!中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购
    项目编号:SXZB-2203 0189Z002/01项目名称:中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购预算金额:230.0000000 万元(人民币)采购需求:标的名称:原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统,数量:1套,技术需求:1、能够对煤及其他含碳原料热解中间体和自由基进行原位、实时探测;2、进样方式:毛细管进样、膜进样、大气压直接进样、原位分子束取样;3、EI&PI双电离源系统,原位取样及检测时间小于1ms 具体详见招标文件。合同履行期限:2023年4月30日之前本项目( 不接受 )联合体投标。
  • 230万!中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购
    项目编号:SXZB-2203 0189Z002/01项目名称:中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购预算金额:230.0000000 万元(人民币)采购需求:标的名称:原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统,数量:1套,技术需求:1、能够对煤及其他含碳原料热解中间体和自由基进行原位、实时探测;2、进样方式:毛细管进样、膜进样、大气压直接进样、原位分子束取样;3、EI&PI双电离源系统,原位取样及检测时间小于1ms 具体详见招标文件。合同履行期限:2023年4月30日之前本项目( 不接受 )联合体投标。
  • 230万!中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购
    项目编号:SXZB-2203 0189Z002/01项目名称:中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购预算金额:230.0000000 万元(人民币)采购需求:标的名称:原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统,数量:1套,技术需求:1、能够对煤及其他含碳原料热解中间体和自由基进行原位、实时探测;2、进样方式:毛细管进样、膜进样、大气压直接进样、原位分子束取样;3、EI&PI双电离源系统,原位取样及检测时间小于1ms 具体详见招标文件。合同履行期限:2023年4月30日之前本项目( 不接受 )联合体投标。
  • 预算680万元!兰州大学时间分辨双光子荧光显微成像仪采购项目公开招标
    p   近日,中国政府采购网发布公告称,兰州大学化学化工学院时间分辨双光子荧光显微成像仪采购项目进行公开招标,预算金额680万元,投标截止时间为2019年8月4日。以下为招标公告部分内容: /p p   一、项目名称:兰州大学化学化工学院时间分辨双光子荧光显微成像仪采购项目 /p p   二、项目编号:LZU-2019-079-HW-GK /p p   三、项目联系方式: /p p   项目联系人:唐老师 /p p   项目联系电话:13893196375 /p p   四、采购单位联系方式: /p p   采购单位:兰州大学 /p p   地址:兰州市城关区天水南路222号 /p p   联系方式:曹老师0931-8912932 /p p   五、预算金额:680.0 万元(人民币) /p p   六、招标文件的发售时间及地点等: /p p   时间:2019年07月09日 15:09 至 2019年07月15日 15:09(双休日及法定节假日除外) /p p   地点:自行通过兰州大学采购管理办公室网页公告链接下载 /p p   招标文件获取方式:自行通过兰州大学采购管理办公室网页公告链接下载 /p p   七、投标截止时间:2019年08月04日 08:45 /p p   八、开标时间:2019年08月04日 08:45 /p p   九、开标地点: /p p   兰州大学贵勤楼103室 /p
  • 南方科技大学665万预采购1套双光子激光共聚焦显微镜
    1月28日,南方科技大学发布一则招标公告,预算665万,采购一套双光子激光共聚焦显微镜,要求招标项目的潜在投标人于2021年02月08日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:0868-2144ZD090H项目名称:双光子激光共聚焦显微镜预算金额:665.0000000 万元(人民币)最高限价(如有):665.0000000 万元(人民币)采购需求:序号设备名称数量单位是否接受进口设备1双光子激光共聚焦显微镜1台是合同履行期限:签订合同后【180】日内交货本项目( 不接受 )联合体投标。二、获取招标文件时间:2021年01月28日 至 2021年02月05日,每天上午9:00至12:00,下午14:00至18:00。(北京时间,法定节假日除外)地点:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号方式:现金售价:¥300.0 元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2021年02月08日 09点30分(北京时间)开标时间:2021年02月08日 09点30分(北京时间)地点:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号四、公告期限自本公告发布之日起5个工作日。五、其他补充事宜1.获取招标文件相关事项:(1)凡有意参加投标者,请在“三、获取招标文件”所述时间内进行登记。如确认参加本项目投标,请于报名截止日前携带供应商获取招标文件时应提供材料(见下方要求)到深圳市振东招标代理有限公司进行现场报名,并缴纳标书费(仅接受现金或对公转账,招标文件售后不退不换),逾期不接受报名;若邮购,所产生费用由投标人自行承担)。采购代理机构将不对邮寄过程中可能发生的延误或丢失负责。(2)联系人:杨小姐。联系电话/传真:0755-82786028(仅提供招标文件获取相关咨询服务,其它投标事宜请联系下方采购代理机构联系人)。电子邮箱:339288519@qq.com(3)《投标登记表》下载地址:http://www.szzdzb.cn/ “下载中心”。2.获取招标文件需提供的资料:(1)投标登记表;(2)法定代表人授权书;(3)投标人须提供营业执照(法人证书或执业许可证等)副本扫描件;以上资料均需加盖投标人公章。注:需邮寄报名应将以上资料扫描后发至邮箱:339288519@qq.com邮件中标明项目名称、项目编号、联系人及联系方式,并与我公司杨小姐联系确认同时3个工作日内快递至采购代理机构留存备案,否则报名无效。3.采购代理机构开户银行及相关信息:开户银行:招商银行深圳分行安联支行开户名称:深圳市振东招标代理有限公司银行账号:755914788210601公示网址:①中国政府采购网(http://www.ccgp.gov.cn)②深圳公共资源交易中心市区政府采购统一平台(http://www.szzfcg.cn)③深圳市政府采购监管网(http://www.zfcg.sz.gov.cn)④深圳市振东招标代理有限公司网站(http://www.szzdzb.cn)投标人有义务在招标活动期间浏览以上网站,在以上网站公布的与本次招标项目有关的信息视为已送达各投标人。5.其他事项①为避免病毒传染的风险,各供应商法定代表人或其授权代表可通过“中国邮政”、“EMS”、“顺丰速运”的邮寄方式,按照规定的递交投标文件截至时间前”向我公司邮寄投标文件,快递单上写明供应商名称、招标编号,通过邮寄方式递交的投标文件递交时间以我公司代表签收时间为准。逾期或不符合规定的投标文件不予接受。②为确保项目顺利开展,通过邮寄方式递交投标文件的各供应商需盖章签署《供应商邮寄标书承诺书》(下载地址:http://www.szzdzb.cn/ “下载中心”),扫描件优先发送至项目负责人邮箱2778757549@qq.com,原件(无需密封)同投标文件一并邮寄至我公司。六、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南方科技大学     地址:深圳市南山区西丽学苑大道1088号        联系方式:万老师 0755-88018674      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号联系方式:李先生、黄先生 0755-82786018/82786038-821/822            3.项目联系方式项目联系人:李先生、黄先生电 话:  0755-82786018/82786038-821/822
  • 客户成就| Nanoscribe双光子微纳3D技术应用于光子引线键合技术
    光子引线键合技术实现多光子芯片混合组装近日,由Nanoscribe公司的Matthias Blaicher博士携手Muhammed Rodlin Billah博士组成了一个德国光子学,量子电子学和微结构技术研究团队,利用光子引线键合技术,实现了硅光子调制器阵列与激光器和单模光纤之间的键合,制造出光通信引擎。此项研究成果发表在《自然-光:科学与应用》国际学术期刊上。(Light: Science & Applications)研究人员利用Nanoscribe公司先进的3D光刻技术将光学引线键合到芯片上,从而有效地将各种光子集成平台连接起来。此外,研究人员还简化了先进的光学多阶模块的组装过程,从而实现了从高速通信到超快速信号处理、光传感和量子信息处理等多种应用的转换。什么是光子引线键合技术自由光波导三维(3D)纳米打印技术,即光子引线键合技术。该技术可以有效地耦合在光子芯片之间,从而大大简化了光学系统的组装。光子丝键合的形状和轨迹具有关键优势,可替代依赖于技术复杂且昂贵的高精度对准的常规光学装配技术。 光子引线键合技术的重要性光子集成是实现各种量子技术的关键方法。该领域的大多数商业产品都依赖于需要耦合元件的光子芯片的独立组装,如片上适配器和体微透镜或重定向镜等。组装这些系统需要复杂的主动对准技术,在器件开发过程中持续监控耦合效率,成本高且产量低,使得光子集成电路(PIC)晶圆量产困难重重。 研究人员使用Nanoscribe的增材纳米加工技术,结合了常规系统的性能和灵活性,实现整体集成的紧凑性和可扩展性。为了在光子器件上设计自由形式的聚合物波导,该团队依靠光子引线键合技术,实现全自动化高效光学耦合。光子引线键合技术的可微缩性和稳定性在实验室中,研究人员设计了100个间隔紧密的光学引线键(PWB)。实验结果为简化先进光子多芯片系统组装奠定了基础。实验模块包含多个基于不同材料体系的光子芯片,包括磷化铟(InP)和绝缘体上硅(SOI)。实验中的组装步骤不需要高精度对准,研究人员利用三维自由曲面光子引线键合技术实现了芯片到芯片和光纤到芯片的连接。 在制造PWB之前,研究人员使用三维成像和计算机视觉技术对芯片上的对准标记进行了检测。然后,使用Nanoscribe双光子光刻技术制造光学引线键,其分辨率达到了亚微米级。研究团队将光学夹并排放置在设备中,以防止高效热连接中的热瓶颈。混合多芯片组件(MCM)依赖于硅光子(SiP)芯片与磷化铟光源和输出传输光纤的有效连接。研究团队还将磷化铟光源作为水平腔面发射激光器(HCSEL),当他们将光学引线键与微透镜结合在一起时,可以方便地将光学平面外连接到芯片表面。验证实验1在第一个实验中,研究团队通过使用深紫外光刻技术制造了测试芯片,结果表明光学引线键能够提供低损耗的光学连接。每个测试芯片包含100个待测试的键合结构,以从光纤芯片耦合损耗中分离出光学引线键损耗。光学引线键的实验室制造可实现完全自动化,每个键的连接时间仅为30秒左右,实验表明该时间可进一步缩短。研究团队还在其他测试芯片上进行了重复实验,验证了该工艺优秀的可重复性。随后,研究人员还进行了-40℃至85℃的多温度循环实验,以证明该结构在技术相关环境条件下的可靠性。实验过程中,光学引线键没有发生性能降低或是结构改变的情况。为了解光学引线键结构的高功率处理能力,研究人员还对样品进行了1550纳米波长的连续激光照射,且光功率不断增加。研究结果显示,在工业相关环境及实际功率水平中,光学引线键可以保证高性能。验证实验2在第二个实验中,研究团队制造了一个用于相干通信的四通道多阶发射机模组。在该模组中,研究人员将包含光学引线键的混合多芯片集成系统与电光调制器的混合片上集成系统相结合,并将硅光子芯片纳米线波导与高效电光材料相结合。实验结果表明,该模组具有低功耗、效率高的优点。更多双光子微纳3D打印技术和产品请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备可应用于微光学,微型机械,生物医学工程,力学超材料,MEMS,微流体等不同领域。参考文献:Hybrid multi-chip assembly of optical communication engines via 3-D nanolithographyby Thamarasee Jeewandara , Phys.orghttps://phys.org/news/2020-05-hybrid-multi-chip-optical-d-nanolithography.html
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • qCMOS vs EMCCD,科研相机迎来“光子定量”新纪元!
    帧速、分辨率、信噪比毋庸置疑,这是科研相机最重要的几项性能,它的发展主线,也始终紧紧围绕着“如何获得更快帧速、更高分辨率以及更优秀的信噪比”来展开。另一方面,光信号究竟有多强?各个像素上究竟收集到了多少光子?相机测得究竟准不准?诸如此类的“定量”需求,也是科研相机应用中一直会被问到的。 5月20日,滨松全球同步发布的ORCA-Quest qCMOS相机,在以上两个问题中都交出了一份突破性的答卷。接下来,工程师将会“掰开了揉碎了”,为大家详解新型定量qCMOS相机的各个“知识点”。鱼与熊掌可以兼得:高帧速、高分辨率以及高信噪比 早期的CCD相机中,像素数目越多(分辨率越高)、帧速越快,相机电路每秒钟需要读出的像素就越多,也就越不容易准确。换句话说,相机的读出速度越快,噪声就越高,继而影响到图像的信噪比和图像质量。针对这个问题,业界给出了两条解决的路子: (1)EMCCD与电子倍增技术当光子在芯片上转换为光电子之后,EMCCD利用电场将这些光电子加速,轰击材料产生更多电子,实现了信号的增益。由于电子倍增过程在数据读出之前,所以信号放大了但读出噪声维持原样——以此大幅提升了图像信噪比。(2)CMOS与极低的读出噪声 sCMOS(包括接下来我们要说的新发布的qCMOS)相机,则走了另外一条技术路线。sCMOS/qCMOS相机直接压制读出噪声——相比之前的CCD相机,sCMOS/qCMOS的读出速度大幅上涨,但读出噪声因为设计工艺的改进却反而下降了。这也是sCMOS在过去十年大行其道的根本原因。 站在2021年的时间关口上,当比较以上两个技术路线的产品,我们发现,CMOS技术路线中的滨松新型ORCA-Quest qCMOS相机,在参数上已经完全超过了EMCCD相机。 按照像素读出计算,ORCA-Quest的读出速度已经高出了EMCCD 1-2个数量级;而在信噪比上,即使在1个光子/像素的信号强度下,qCMOS的表现也已优于EMCCD。量变到质变:低读出噪声与光子定量得到今天这样碾压式的参数,源自于在CMOS势呈井喷的十年间,滨松一直关注更低的读出噪声。从最初Flash 4.0系列sCMOS相机1.4个电子的读出噪声,到Fusion系列sCMOS相机0.7个电子的读出噪声,直至ORCA-Quest qCMOS相机最低0.27个电子。 而当ORCA-Quest相机的读出噪声下降到0.27个电子时,量变终于产生了质变——实现了“光子定量”。 相机成像中,信号中的光子在像素中转化为电子被收集——称之为光电子。光子定量就是通过精确定量光电子的方式得到每个像素所收集到的光子数目。 在光子转换为光电子之后,光电子会在相机芯片中转化为电压/模拟信号。虽然会有一个转换系数存在(例如0.16mV/电子),但是由于读出噪声的原因,当一个像素中有3个光电子时,读出的电压并不一定就是 3e x 0.16mV/e = 0.48mV,而是一个0.48mV左右的一个不确定的电压数值,可能是0.43mV,也可能是0.62mV。 粗略地说,读出噪声越大,这个不确定性就越大。这就意味着,如果读出噪声比较大,当相机芯片中读出0.48mV的时候,对应像素中的光电子可能是3个,也可能是2个,4个,甚至1个,5个。 但如果读出噪声足够小,就不会出现上述情况——当读出0.48mV的时候,我们就能确定对应像素上是3个光电子,而非其他。通过概率理论计算,当RMS读出噪声(Readout noise rms)为0.3e时,这个准确度达到90%以上。 滨松ORCA-Quest qCMOS相机的最低读出噪声为0.27e rms,所以我们在相机中加入了上述“光子定量”(Photon number resolving)功能。用户可以直接读出每个像素中精确的光电子数目,从而获得像素所收集的光子数目。领跑背照的高分辨率:独特的“沟槽结构”芯片技术相机像素中,电子被硅等半导体材料转换为光电子之后,会被相应的电路收集;这些电路结构会阻挡光信号。为了消除这部分信号损失,背照技术中将这些电路结构放到了芯片的背后(如下图)。在理想的情况下,每个像素中的光电子会被本像素的电路通过电场进行收集,但在背照芯片中,由于结构毕竟有一定的厚度,收集光电子的电场可能并不容易将本像素对应的光电子全部收集——一部分光电子会扩散到相邻像素中,造成相机分辨率的下降。这也是为什么一般而言,前照式相机的分辨率会优于对应参数的背照式相机。在滨松ORCA-Quest qCMOS相机中,芯片采用了独特的“沟槽结构”(Trench structure),阻挡了相应的光电子扩散,配合4.6μm的像素大小,940W像素,极大提升了相机的分辨率。此外,EMCCD在近红外成像中存在干涉条纹的问题,而ORCA-Quest qCMOS相机通过特殊的背照芯片结构设计,也解决了这个问题,进一步保障了成像质量。我们对ORCA-Quest qCMOS相机的出现非常兴奋,并将之视为科研级相机“光子定量”纪元的开启。而未来我们也将继续前行,带来更多技术的革新。 滨松相机,从未停止追求巅峰的脚步。
  • 青海大学500万元购买1套双光子三维光刻机
    7月30日,青海大学公开招标购买1套双光子三维光刻机,预算500万元。  项目编号:青海鑫融公招(货物)2021-27  项目名称:青海大学大型科研仪器购置补贴专项(双光子三维光刻机)  预算金额(元):5000000  采购需求:  数量: 1台  预算金额(元): 5000000  简要规格描述或项目基本概况介绍、用途:/  备注:  合同履约期限:详见招标文件  本项目(否)接受联合体投标。  开标时间:2021年08月23日 09:002021-27公招(货物)法务已审.doc
  • 揭秘:微型光谱仪之光子历程
    在微型光纤光谱仪中,光子会经历一个曲折而漫长的过程,从光子的产生、传输,光电转换,模拟信号到数字信号,再到通过电脑将光谱展示出来。过程是曲折的,但结局是美好的。那么光子在微型光纤光谱仪中都发生了些什么?  光子历程将从光的激发开始。光子可以来自于大自然中的太阳、星辰,日常生活中的光源、LED或者激光,也可以来自于荧光物质或者由拉曼散射产生。无论光子源于哪里,不同光子都能产生特定的光谱谱线,而光谱的形成伴随着光子的一生,从产生到消亡。   光子在到达狭缝前,会经历一个崎岖的旅程。光子在自由空间中传播时,会被传输过程中其他物质反射、透射或者吸收。不同的物质会在不同波长情况下相互作用的时候过滤、更改或者消除不同波长的光子。光纤作为最基本最简单的耦合工具,可以将光从一个单点耦合至另一器件中,并且能防止其他杂散光的进入。光子在到达狭缝前,通过光纤可以更顺利的到达光谱仪,减小损耗,降低噪音影响。  狭缝是光子进入光谱仪狭长细小的入口,它能保证光子尽可能有效地耦合到光谱仪内部。狭缝越大,通光量越大,但是光学分辨率越差,所以狭缝在选择大小尺寸时,需要权衡通光量和光学分辨率的大小。  光子通过狭缝进入光谱仪内部,仍在一个自由空间内传播,到达第一个元器件为准直透镜。由于准直镜可以保证所有光子都以平行路径到达下一个元器件,确保所需测量的光束不发散或者散射,所以可以使光束最大利用率的得到使用。  准直镜将光反射至衍射光栅上,光栅将不同波长的光进行分光。分光作为一个重要的阶段,将光束分为不同波长段,使光谱仪有效地检测不同波长的光信息。  衍射光栅发射出来的光再通过聚焦镜进行聚焦,保证每个波长的光都尽可能地投射到检测器上。一维线性排列的CCD或CMOS检测器,每个像元能够接收窄范围波长的光子。  每个像元以量子阱的形式工作,收集特定范围的光子。当积分时间开始时,量子阱开始接收满电压电荷。当一个光子撞击量子阱时,同一时间量子阱内电荷就得到释放。积分时间越长,每个像元就会接收到更多的光子。一旦电荷释放完成,单个像元阱就会饱和,那新的光子信号就不会被采集。当光子撞击检测器的同时,即转换成了电信号,这时光子能量完成释放,光信号转换为电信号的过程也随之结束。  之后进入到数字模拟阶段,积分时间完成时可以通过检测像元读出电荷水平值。读出的模拟信号通过AD(模拟-数字)转换器,可以将每个像元的电压值读出成特征的“counts”强度值。通过数字处理,由光子信号而来的电信号就转换成数字信号,即光子转换成数据。当光子在光谱仪中的旅程结束也就意味着另一个旅程的开始——电信号的转换,软件的输出。  当从光谱仪读出相关光谱后,希望读出的光谱数据是非常平滑且不失真的数据,这时候就需要利用光谱处理技术对原始光谱进行平滑和过滤:电子暗噪声扣除,由“光学暗像素”获得的平均电子暗噪声,可以校准读出噪音和温度躁动偏移 非线性校准,使用出厂校准7阶函数对光谱仪进行校准,确保每个像素点的响应成线性关系 平滑度,通过设置平滑次数,可以对每个像素和与之相邻像素的测量值进行平均 平均次数,通过增加平均次数提高信噪比。  处理后的光谱数据可通过USB从micro的转接口与电脑连接进行数据传输。在未来产品中,除了USB通讯连接,光谱仪还提供其他的通信方式,如蓝牙、太网、WiFi等。  从光子的产生、光谱仪中的传输、到达检测器像元,数据的处理及传输,光子经历了一段崎岖的旅程。微处理器,检测器和光纤光学的不断发展,使得光谱技术不仅仅局限于实验室中,微型光纤光谱仪将把光谱技术带到人们的日常工作中,改善人们的生活方式。(来源:海洋光学)
  • 振镜扫描和光子反聚束的结合-帮你命中想要的色心
    随着量子科学及技术的快速发展,单光子源已成为光量子信息研究中的关键器件,对量子计算起着至关重要的作用。NANOBASE将反聚束实验与快速拉曼和光致发光成像技术联用,该项技术将给科研工作者更便捷的手段进行与量子计算机等新兴技术密切相关的单光子源研究。单光子源具有独特的量子力学特性,其在量子技术和信息科学中得到了广泛的应用,包括量子计算机开发和密码学技术研究等等。常见的单光子源有金刚石中的氮空位(NV)色心、单个荧光分子、碳纳米管和量子点等。反聚束实验则是鉴别单光子源的重要表征方法。知识拓展”NV(Nitrogen-Vacancy)色心是金刚石中的一种点缺陷。金刚石晶格中一个碳原子缺失形成空位,近邻的位置有一个氮原子,这样就形成了一个NV色心。反聚束效应是一种量子力学效应,它揭示了光的类粒子行为。它是由于单光子源一次只能发射一个光子而产生的现象。由于两次光子发射之间必须完成一个激发和弛豫循环,两次光子发射之间的最小间隔主要取决于单光子源的激发态寿命。当将发光信号分成两束,采用两个检测器同时探测,每个光子只能被其中一个检测器探测到。即在同一时刻仅有一个检测器可以探测到光子。反聚束效应会导致两个探测器的信号在很短的延迟时间内呈现反相关(HBT实验)。“光子反聚束测试功能和常见的利用机械位移平台的mapping方式相比,采用扫描振镜的mapping方式无需样品发生任何位移,通过光斑在视场内的nm级位移来实现样品的成像。这种方式可以方便的和磁场,低温,CVD等其他设备结合在一起,实现“绝对”的原位测试,避免位移平台本身重复精度累积带来的成像扭曲和定位偏差。而全新推出的光子反聚束测量模块,在原本拉曼光谱、荧光寿命、光电流成像的基础上新增光子反聚束功能,在方便快捷的进行零声子线的测试的同时,还可以完成光子反聚束的测量,极大的简化色心的搜寻流程,迅速判断制备工艺水平。该模块有助于研究者用拉曼光谱和光致发光(PL)成像来表征样品,快速确定目标区域(可能有单光子源的区域),随后在同一仪器来进行反聚束实验。典型案例:对已经进行过氮离子注入处理过的纳米级金刚颗粒进行光谱分析,从而精准定位符合要求的潜在色心:上图1为在5X物镜下进行快速粗扫后得到的针对零声子线峰位强度成像,图2为40X物镜下粗扫获得的强度图像,可以看到十字标志处单独存在的一个潜在优质色心,图3为该点的PL光谱图,可以清晰看到637nm处的较窄的零声子线。利用扫描振镜直接将光斑移动至感兴趣的点位进行HBT测试,上图为测得的单个NV-所体现的光子反聚束现象。常见的处理金刚石样品的方法有很多,比如以浓硫酸和双氧水配备的食人鱼溶液浸泡和清洗,或者将金刚石样品放入空气中进行高温加热,经过处理后的金刚石样品表面氧化层被去除后,再通过飞秒激光辐射等方法进行N离子的注入,从而生成单个NV色心、多个NV色心发光点,以及高密度NV色心团簇。与显微共聚焦荧光系统联用的光子反聚束实验具有众多优势。不仅可以快速筛选NV色心的可能区域,还能实现空间分辨及对其单光子发光源特性的研究,这一技术可以有效地协助单光子源的前沿研究,助力新型量子技术的快速筛选和实验。 昊量光电作为NANOBASE公司在中国区域的du家代理商,全权负责其在中国的销售、售后与技术支持工作。如想进一步了解光子反聚束测试,或者有任何问题及反馈建议,欢迎与我们来联系
  • ALCOR 920性能再次提升!脑科学双光子显微成像系统理想飞秒激光光源——Spark Lasers
    自Spark Lasers公司推出ALCOR 920系列920nm飞秒光纤激光器以来,该系列产品就成为脑科学双光子显微成像系统主要使用的光纤飞秒激光器。凭借其高功率、窄脉宽、高稳定性、免维护等特性,ALCOR 920不仅成为传统钛蓝宝石飞秒激光器的高性价比替代产品,也成为同类产品的市场引领者。 ALCOR 920采用了Spark Lasers最新的HPC® 技术(High Pulse Contrast),功率有了进一步提高,同时脉冲形状也得到了优化。与前一代产品相比,ALCOR 920-1的平均功率从之前的1W提高到了1.5W;ALCOR 920-2的平均功率从之前的2W提高到了2.5W。ALCOR 920-4仍提供高达4W的平均功率,是目前市面上920nm飞秒光纤激光器中输出光功率最高的产品。图1 ALCOR系列产品主要参数列表 飞秒激光器作为双光子显微成像系统的核心部件之一,对系统成像效果是至关重要的。那么,如果想要得到好的成像效果,应该怎么办呢?我们有方法:1. 选择高峰值功率的激光器由于双光子效应是与光子密度正相关的非线性效应,越高的峰值功率就意味着越多的荧光分子能够同时吸收两个光子到达激发态,并在跃迁至基态的过程中发出荧光,也就是说最终被探测器采集到的荧光信号也就越强,最终生成的图像亮度和对比度也就越高。峰值功率的计算方式可以由下面的公式计算得出:例如,标准款ALCOR 920-2的平均功率为2.5W,重复频率为80MHz,脉冲宽度为100fs,那么ALCOR 920-2的峰值功率就高达312.5kW。 假如有一款飞秒激光器脉冲宽度只能做到150fs,平均功率和重复频率却能和ALCOR 920-2一样,那么会有什么影响呢?我们通过计算可以得到,这款激光器的峰值功率仅有208kW,仅有ALCOR 920-2的66.6%,这也就意味着相应的荧光强度也会有很大幅度的降低。同样地,假如有另一款产品,脉冲宽度也能达到100fs,但是平均功率却比较低,那么其峰值功率也是比较低的。 图2 使用低脉冲质量的激光器和Spark Lasers的高质量脉冲激光器的最终图像对比 2. 使用色散预补偿得到最优化的脉冲宽度然而,拥有一台激光器只是搭建双光子显微成像系统的第一步。由于成像系统内部有很多光学元器件,如反射镜、滤光片、光强调制器、空间光调制器、分光棱镜、物镜等等,而这些光学元器件中的大部分都会引入正色散,导致飞秒脉冲激光到达测量点处的过程中发生展宽,即脉冲宽度变宽。在上面的计算中我们可以看出,脉冲宽度变宽会导致激光峰值功率的下降,会在很大程度上降低荧光光强,以至于最终的图像亮度和对比度会变差。 ALCOR 920系列在激光头内部集成了色散预补偿模块,可以在激光发射时就带有负色散,这些负色散可以在激光脉冲传播过程中和光学器件引入的正色散相互抵消,从而使得在测量点处,脉冲宽度能保持比较窄。 标准款ALCOR带有0~-60000fs2的大色散补偿范围,同时提供0~-90000fs2的超大色散补偿范围选配,可以满足大部分双光子显微成像系统对色散补偿要求,甚至是最复杂的系统。根据我们的经验,一般复杂程度的双光子显微成像系统对色散补偿的要求在-30000fs2~-50000fs2。3. 对功率进行调制和精确控制ALCOR 920可提供XSight选配模块,即集成化内置AOM模块,以满足双光子显微成像系统对激光实现光强的开/关调制或模拟调制来实现复杂的功能的需要。内置模块可以在很大程度上节省光学平台的空间以及在光路中调试外置调制器的时间精力,同时,该模块能够提供:超高精度光强调节(分辨率高达0.1%)高带宽模拟调制(0~1MHz)高速光开关(上升/下降沿关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 华东师大实现超灵敏、高分辨、大视场的中红外单光子三维成像
    华东师大精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外三维成像领域取得进展,发展了宽视场、超灵敏、高分辨的中红外上转换三维成像技术,获得了单光子成像灵敏度与飞秒光学门控精度,可为芯片无损检测、远程红外遥感和生物医学诊断等重要应用提供有力支撑,相关成果以“Mid-infrared single-photon 3D imaging”为题于2023年6月9日在线发表于Light: Science & Applications。华东师大为论文的第一完成单位,博士研究生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。激光三维成像技术具有成像分辨率高、测量距离远、探测信息丰富等优点而被广泛应用于自动驾驶、卫星遥感、工业生产检测等众多领域。特别是,中红外波段位于分子指纹光谱区,涵盖多种官能团吸收峰,能够对三维目标进行化学特异性识别,在无损伤物质材料鉴定、无标记生物组织成像,以及非入侵医学病理诊断等领域备受关注。此外,该波段包含多个大气透射窗口,且相较于近红外光有更好穿透烟尘、雾霾的能力,在形貌测绘与遥感识别等方面具有独特优势。长期以来,如何实现趋近单光子水平的探测灵敏度都是中红外三维成像领域的国际研究热点,对于促进其在低光通量、光子稀疏的微光探测场景下的应用具有积极意义。然而,单光子水平的激光三维成像长期以来仅局限在可见光/近红外波段,主要制约因素在于中红外波段缺乏高探测灵敏度与高时间分辨率的光子探测与成像器件。近年来,随着红外器件工艺精进与新材料涌现,中红外探测器性能得到了长足发展,但依然面临着增强灵敏度、提升响应带宽、扩大像素规模、提高工作温度等亟待解决的难题。中红外三维测量可以采用光学相干层析、光热成像、光声成像等技术方案来实现,但往往需要逐点扫描,无法单次获取高性噪比的大面阵成像。因此,实现大视场、高分辨的中红外单光子三维成像仍颇具挑战。图3:中红外单光子三维成像装置图为此,华东师大研究团队发展了基于高精度非线性光学取样的中红外上转换测控技术,实现了超灵敏、高分辨、大视场的中红外三维成像,展示了单光子探测灵敏度、飞秒门控时间精度以及百万像素宽画幅。具体而言,研究人员采用非线性光学和频过程将信号波长高效转换至可见光波段,利用高性能硅基相机即可实现红外成像,从而规避了现有红外焦平面阵列灵敏度不足的技术瓶颈。同时,该上转换成像系统采用同步脉冲泵浦方案,可将背景噪声限制在极窄时间窗口内,结合精密频谱滤波可以有效提升探测信噪比,进而实现单光子水平的成像灵敏度。此外,研究人员沿用课题组此前发展的非线性广角成像技术[Nature Commun. 13, 1077 (2022)],通过单次曝光即可获得大视场成像,免除了逐点机械扫描过程,大幅提升了成像速度。图4:中红外三维立体成像,被测信号强度约为1光子/像素/秒进一步,研究人员采用超快光学符合门控技术,精确测量中红外信号的相对飞行时间,从而得到被测物体表面的形貌信息。该时间飞行成像系统的时间分辨能力取决于光学脉冲宽度,可以达到飞秒水平的时间标记精度,通过高速延时扫描与宽场全幅采集,对被测场景进行快速时域切片,进而反演出目标界面的反射率、透射率以及材料的吸收率、折射率、色散量等丰富信息。图4展示了多角度中红外照明下三维数据信息融合重构出的被测目标立体形貌,其中被测信号强度约为1光子/像素/秒。图5:时空关联去噪算法,信号和噪声水平分别约为0.05和1000光子/像素/秒 在稀疏光子场景中,有效信号往往被淹没在严重的背景噪声中,仅从强度信息通常难以识别被测目标。为此,如何有效地区分信号和噪声光成为单光子成像的关键难点。为模拟极低照度、高噪声场景,该研究团队将红外信号衰减至0.05光子/像素/秒,对应的信噪比低至1:20000。如图5a-c所示,传统强度峰值识别算法并不能有效甄别信号。在主动成像中,成像系统接收的信号光子在时-空域上具有一定的连续性,而背景噪声光子则会随机分布在整个时间轴与空间像素点上。 基于该特性,研究人员发展了精确、高效和鲁棒的点云去噪算法,通过关联增强空间相邻像素与相邻时间帧的强度,有效提取与甄别信号光子,进而实现高背景噪声下的中红外单光子三维成像(图5d-i)。 所发展的中红外三维成像技术具备高灵敏与高分辨的独特优势,结合该波段优越的抗散射干扰能力,对于复杂环境下的红外场景恢复具有重要意义,可以发展出中红外散射成像与中红外非视域成像。此外,通过调谐中红外信号波长,可以实现四维高光谱成像,可为材料检测、无损探伤、生物成像等创新应用提供有力支撑。 近年来,曾和平教授与黄坤研究员课题组在红外单光子测控方面开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Commun. 13, 1077 (2022)],中红外单光子单像素成像[Nature Commun. 14, 1073 (2023)],以及高帧频中红外单光子光谱 [Laser Photonics Rev. 2300149 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。
  • 耐上千摄氏度高温的光子晶体问世
    据美国物理学家组织网近日报道,美国麻省理工学院(MIT)的一个研究小组找到了一种采用金属钨或钽制造出可耐受1200摄氏度高温的光子晶体途径。这种材料可广泛应用于智能手机、红外线化学探测器和传感器、深度探索太空的宇宙飞船等供电装置。相关论文刊登在最新一期的《美国国家科学院院刊》上。   光子晶体指能对光作出反应的特殊晶格,可影响光子运动的规则光学结构,类似于半导体晶体对于电子行为的影响。其晶格尺寸与光波的波长相当,是不同折射率的电介质材料在空间呈周期性排列构成的晶体结构。   MIT军用纳米技术研究所工程师赛拉诺维奇表示,几乎完全可以采用标准的微细加工技术和现有设备将这种新型耐高温、二维光子晶体制造成计算机芯片。与早期制造的高温光子晶体的方法相比,采用新方法制造出的材料具有“更高性能、简单操作、坚固耐用”等特点,适合低成本的大规模生产。   美国国家航空航天局也对这种材料很感兴趣,因为它具有为深度探索太空提供永续动力的潜力。完成这样的任务通常利用少量的放射性物质的能量,采用放射性同位素热电源(RTG)。例如,计划在今年夏天抵达火星的“好奇”号探测器使用的就是RTG系统,可以连续不间断作业多年,而不像太阳能供电站,到了冬天就会出现发电不足的情况。   这种耐高温光子晶体应用前景十分广阔,可用于太阳能光热转换或太阳能光化学转换装置、放射性同位素的供电设备、氮氢化合物发电机或工业领域电厂余热回收的配套设施等。但制造这种材料还存在许多障碍,高温会导致晶体蒸发、扩散、腐蚀、开裂、熔化或快速化学反应。为了克服这些挑战,MIT的研究小组正在对高纯度的钨在结构上进行专门精密的几何设计,以避免材料在被加热时损坏。   该材料还可以取代电池,为便携式电子设备有效供电,采用丁烷作燃料运行热光生电机产生能量,作业时间比电池长10倍。
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p   在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。 /p p   受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。 /p p   目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。 /p p   根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title=" 首台复合显微镜.png" alt=" 首台复合显微镜.png" / /p p style=" text-align: center " strong 国内外首台双光子-STED复合显微镜样机 /strong /p p   在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。 /p
  • 低噪声、高分辨、高帧速,滨松推出世界首台光子定量科研级相机
    滨松公司利用独有的设计技术,并采用以最新制造技术新研发出的2D CMOS图像传感器,成功研制出拥有0.27e rms的极致低噪声,且具备940万像素(4.6 μm像素尺寸)的超高分辨科研级相机“ORCAⓇ-Quest qCMOSTM C15550-20UP”。由于光电信号转换时的噪声是决定相机检测极限的重要因素,我们通过将噪声抑制到低于光的最小单位光子(光粒),在世界上首次实现了光子数的准确测量,并对所测到的2D光子数进行成像。这将使我们能够更准确地观察离子和中性原子等的量子状态,有望促进以量子计算机(*)等其他量子技术的研究和开发。本产品将于2021年5月20日(星期四)正式上市。※量子计算机:作为量子的离子和中性原子等可处于“即是1又是0”的重叠状态。利用这种特性可以进行并行处理,是一种有望解决目前在时间和规模维度上无法解决问题的计算机。ORCAⓇ-Quest qCMOSTM 相机 C15550-20UP产品概要该产品采用了新研发的高性能2D CMOS图像传感器,是世界上首台实现光子定量的科研级相机。 滨松公司一直从事研发,生产和销售用于微弱荧光,发光现象成像应用的低噪声科研级相机。这次利用滨松独有的设计技术,优化像素结构的设计,并利用先进的精密半导体制造技术,开发了世界首个具有极致低噪声,且高像素数,高分辨率,并可实现高速读取的2D CMOS图像传感器。此外,利用长年积累的低噪声相机电路设计技术,高精度探测器冷却技术,独有的信号处理技术,有效抑制了2D CMOS图像传感器各像素出现的不均匀现象。由此,我们成功地开发了世界首台可实现光子定量,且可获得高可靠性测定结果,有助于推动科学的进步以及未知领域研发的科研级相机。本产品通过对来自离子,中性原子等的光量进行定量成像,可以准确观察其量子状态,有望加速量子计算机为代表的各种量子技术的研究和开发。此外,由于它可以在宽广视场中对极弱的光现象进行成像,也预计有望应用于天文和生命科学领域。今后,我们将面向国内外大学和企业的研究人员进行销售,并在多个领域中开拓2D光子数识别测量的新应用。发射荧光的中性原子(左)和猎户座大星云(右)的成像图像产品特点1、采用新研发的高性能2D CMOS图像传感器利用滨松独有的设计技术和最新的制造技术,成功研发了世界首个具有极致低噪声的2D CMOS图像传感器。此外,采用沟槽结构,将2D CMOS图像传感器的像素一个一个地隔开,减少像素之间的串扰,且通过背照模式同时实现了高量子效率和高分辨率。再有,在具有940万像素的高像素的同时,其信号的读取速度从原来的约27百万像素每秒到约47百万像素每秒,提高了约1.7倍。2、世界上首台实现2D光子数识别测量的相机利用滨松长年积累的相机低噪声电路设计技术,高精度传感器冷却技术和独有的信号处理技术,通过抑制每个像素的电特性变动,最大限度发挥了2D CMOS图像传感器的性能。 以上种种,我们成功研发了世界首台用于2D光子数识别测量,实现噪音为传统产品约三分之一,仅0.27e rms的极致低噪声科研级相机。研发背景滨松公司自1980年以来一直研发,生产并销售低噪声的科研级相机。目前为生命科学等学术领域以及工厂自动化领域等需要对极弱荧光和发光现象进行成像技术的各种场景提供产品。为满足市场对进一步降低噪声的要求,我们致力研发具备极致的低噪声,并实现了2D光子数字计测的科研级相机。主要规格
  • 深圳先进院提出梯度光场编码的双光子快速三维成像技术
    近日,中国科学院深圳先进技术研究院研究员郑炜团队提出一种基于激发光梯度编码的快速三维成像技术,可使双光子体成像速度比传统技术提升5至10倍。  双光子显微镜具有亚微米级的成像分辨率和毫米级的成像深度,被广泛应用在神经结构和功能成像以及其他活体成像研究中。传统的双光子三维成像是将双光子激发的焦点在样品中进行逐层的二维扫描来实现的,这种三维成像方法不仅速度受限且增加了样品暴露在高能激光中的时间,对生物组织造成光损伤和光漂白,不利于活体组织的长时间成像。  该研究提出的新型梯度光场双光子显微成像技术只需要进行两次二维扫描即可获得样品的三维信息,极大降低了激光对样品的损害。  在生活中,可利用编码来确定位置。与此类似,梯度光场技术设计了一对轴向拉长并且强度梯度变化的焦点,利用这对焦点的强度变化来编码并解析出物体的位置:横向扫描第一个梯度焦点得到的图像中,位置较浅处的样品荧光强度强,位置较深处的样品荧光强度弱,第二个焦点对应的图像则正好相反。两幅图像的和反映了样品的真实三维荧光强度,图像的比值则反映了荧光的深度信息。该方法可一次分辨深度12微米内三维信息,荧光点轴向定位精度为0.63微米。梯度光场双光子显微镜非常适合活体细胞的三维成像,在观测巨噬细胞吞噬荧光小球的实验中,能够快速捕捉荧光小球在巨噬细胞内外的三维运动轨迹,并精确定量出巨噬细胞运载小球的速度。  相关成果以Axial gradient excitation accelerates volumetric imaging of two-photon microscopy为题,发表在Photonics Research上。研究得到国家自然科学基金重大科研仪器研制项目、重大研究计划以及广东省重点实验室等支持。   论文链接 (a):梯度光场双光子显微成像原理、(b):巨噬细胞吞噬小球过程、(c):小球的运动轨迹、(d):小球运动轨迹的量化与评估
  • 首款可探测紫外自体荧光团的新型双光子显微镜
    中国科学院深圳先进技术研究院生物医学与健康工程研究所研发团队研发了首款短波长激发时间与光谱分辨新型双光子显微镜,该显微镜创新性地采用中心波长为520 纳米的锁模飞秒光纤激光器作为双光子激发光源,可以有效地激发短波长波段荧光团,利用连接光谱仪的时间相关单光子计数模块,可实现荧光光谱和荧光寿命的同时检测。该技术可以实现紫外波段自体荧光的有效激发与探测,极大地拓展了双光子成像技术的应用范围,为无创观测生物样品及生命过程提供了一种新的研究工具。该成果于近日发表于生物医学光学领域知名期刊《生物医学光学快报》上。生物体中,普遍存在着具有内源性荧光团的生物分子,内源性荧光团的三维成像可以在不干扰生物环境的情况下对重要生物过程进行无创体内检查,如代谢变化、形态改变和疾病进展,是组织成像和跟踪细胞代谢过程的有力工具。双光子显微镜具有天然的光学切片能力,无需物理切割就可以实现生物组织的三维高分辨成像。双光子显微镜跟内源性荧光团的结合可以实现活体生物组织无标记成像,对很多生命活动的研究具有非常重要的意义。然而,传统的双光子显微镜是以钛宝石激光器作为光源,只能对可见光波段的内源性荧光团进行探测,很难探测到信息更丰富的短波长荧光团。 深圳先进院郑炜团队首次研制出采用520纳米超快激发源搭建光谱分辨的双光子荧光寿命成像系统,可以有效激发和探测传统双光子显微系统无法成像的一系列短波长荧光团。为了验证该系统的实用性,研究团队首先系统地评估了生物组织中典型的短波内源性荧光团纯化学样品在520纳米激发下的荧光寿命和光谱特性,包括荧光分子酪氨酸、色氨酸、血清素、烟酸、吡哆醇和NADH,以及角蛋白、弹性蛋白和血红蛋白。 随后,研究团队对不同的生物组织进行了成像,包括离体大鼠食管组织和离体大鼠口腔面颊组织。结果表明,该系统可以在不需要任何外加造影剂的情况下,为生物系统提供高分辨率的三维形态信息和物理化学信息。此外,研究人员探索了短波长的内源性荧光团在食管壁中的分布,结果表明,该系统可以很清晰展示食管的不同分层结构。结合寿命和光谱信息,系统可以明确识别食管内部多层结构的不同信号来源,定量区分不同组织成分在食管壁的位置和数量,区分食管分层结构。 最后,研究团队进一步对小鼠皮肤进行了活体三维扫描成像,并基于短波内源荧光团在体内捕获了小鼠耳廓内白细胞的迁移,实现了典型免疫反应微环境中白细胞募集和变形运动的动力学过程的可视化,以及随时间的荧光寿命测量。“紫外荧光强度图像可以显示生物组织的精细结构,紫外荧光寿命信息可以区分红细胞和白细胞,两者结合可以无标记追踪免疫细胞在伤口和正常组织的运动情况,这些结果验证了我们开发的系统在天然组织环境中监测免疫反应的能力。”郑炜介绍。深圳先进院医工所助理研究员吴婷为文章第一作者,深圳先进院医工所郑炜研究员、李慧副研究员,北京大学物理学院施可彬研究员为共同通讯作者
  • III-V族半导体与硅的有效耦合,打破硅基光子半导体性能限制
    近几十年以来,伴随着大数据、传感器、云应用等多种新兴技术的快速发展,数据流量也呈现出指数级增长的态势。使用电子电路的传统集成电路,通过摩尔定律推动电子器件的体积缩小、性能增加,从而推动数据流量的进一步增长。根据摩尔定律,电子器件上可以容纳的晶体管数量,大概每两年增加一倍。而数据流量的不断激增,给电子器件的带宽、速度、成本和功耗等诸多方面都带来了较大的挑战。换言之,传统电子设备的发展即将到达极限。此时,使用光子或光粒子将光与电子进行结合的光子集成电路,尤其是硅基光电子器件,因能够建立高速、低成本的连接,并实现对大量数据的一次性处理,在数据通信领域具有显著优势。从硅基光电子学技术目前的发展来看,以硅材料为基础的微电子器件已经能够处理被动光学功能,但却很难有效地完成主动任务,比如产生光(激光)或检测光(光电探测器)等数据生成和读取时需要用到的关键步骤。那么,要想在完成主动功能的同时增强器件的性能,就必须在硅基底上集成 III-V 族半导体化合物,也就是元素周期表中 III 族和 V 族的材料。可问题是,如今 III-V 族半导体化合物还无法与硅实现良好的配合。近期,来自香港科技大学的薛莹研究助理教授和该校刘纪美(Kei-May Lau)教授,带领团队设计出一种名为横向纵横比捕获(lateral aspect ratio trapping,LART)的方法。薛莹据介绍,其作为一种选择性直接外延生长的技术,能够在不需要厚缓冲层的条件下,在绝缘的硅衬底(silicon-on-insulator,SOI)上,横向选择性地生长 III-V 族材料。基于该技术,研究人员在 SOI 晶圆上制造了 III-V 分布式反馈激光器,能与硅层呈共平面配置,实现 III-V 族激光器与硅波导之间的高效耦合。另外,这种特殊的 III-V 族绝缘层结构,还为激光器提供了良好的光学约束。据了解,该光泵浦分布式反馈激光器具有约 17.5µJcm-2 的低激光阈值、1.5µm 的稳定单模激光、超过 35dB 的边模抑制比和 0.7 的自发辐射系数。这些数据结果也充分表明,单片生长激光器在晶圆级硅光子集成电路方面迈出了重要一步,或将推动集成硅基光电子学领域的发展。近日,相关论文以《在(001)SOI 上选择性生长的面内 1.5µm 分布式反馈激光器》(In-Plane 1.5 µm Distributed Feedback Lasers Selectively Grown on(001)SOI)为题在Laser & Photonics Reviews上发表,并被选为期刊封面。薛莹是第一作者,刘纪美担任通讯作者。“我们的方法解决了 III-V 族器件与硅的不匹配问题,实现了 III-V 族器件的优异性能,并使 III-V 族器件与硅的耦合变得更加高效。”薛莹对媒体表示。Laser & Photonics Reviews期刊当期封面不过,需要说明的是,虽然该技术有望在传感和激光雷达、生物医学、人工智能、神经和量子网络等研究领域获得应用,但要想将它更好地应用于现实生活,还必须克服一些关键的科学挑战。因此,基于目前的研究,该课题组打算从高输出功率、长寿命、低阈值、高温下工作等维度入手,进一步增强与硅波导集成的 III-V 族激光器的能力。另外,值得一提的是,薛莹目前的研究兴趣主要集中在集成光子学、电子光子集成电路、硅光子学、纳米光子学等领域,并已经在以高效、可扩展和低成本的方式,缓解基于硅的光子集成电路的性能限制方面,做出了重要突破与创新。基于此,她曾在近期荣获 2023 年 Optica 基金会挑战赛资助的 10 万美元奖金,该奖项旨在表彰 10 名在利用光学和光子学,并解决全球问题方面具有杰出想法的早期职业专业人员。显而易见,这笔资助将有助于推进她接下来的研究。
  • 光子反冲成像:观察分子内部的新方法
    p   近日,德国和瑞典科学家利用欧洲X射线自由电子激光装置(XFEL),通过创新的“光子反冲成像”(Photon-recoil imaging)技术,研究X射线与原子之间相互作用的基本过程。该方法可以使人们更好地了解原子级的化学反应,将成为探索非线性X射线物理学的有力工具。 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5f55c4a7-b32f-412f-9416-323e599f35f6.jpg" title=" 50177d68ee524f13991d9fe7ea5286d6.jpg" alt=" 50177d68ee524f13991d9fe7ea5286d6.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   a)自发x射线拉曼散射的受激原子分布。 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   b)受激x射线拉曼散射的增激发态原子分布(窄线)。? /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   图片来源:网络(mbi-berlin.de) /span /p p   观察X射线与原子之间相互作用 /p p   1921年,爱因斯坦因发现光的量化,即光子作为光粒子流与物质相互作用,获得了诺贝尔物理学奖。从量子力学的早期开始,人们就知道光子具有动量。原子对光子的吸收和发射是光与物质相互作用的基本过程。自1960年代以来,强激光束的出现推动了所谓的“非线性光学”的发展。于是科学家们进一步研究,用X射线代替可见光来操作非线性光学系统,即将非线性光学扩展到X射线光谱域。但由于非线性效应难以捉摸的性质,尽管理论概念数十年前就已提出,迄今科学家们仍在努力实现这一目标。随着2017年位于汉堡的XFEL的投入使用,科学界朝着这一目标更近了一步。 /p p   最近,德国柏林马克斯· 波恩非线性光学和超快光谱研究所(MBI)、瑞典乌普萨拉大学和位于汉堡的欧洲X射线自由电子激光装置(XFEL)的研究人员合作开发出“光子反冲成像”技术,用来观察X射线与原子之间相互作用的基本过程。该技术可以区分X射线范围内的自发和受激拉曼散射(SRS),使得人们几乎可以对单个原子上受激拉曼散射进行自由地研究。相关的理论分析和实验结果发表在《科学》杂志上。 /p p   为了测量实验中激发原子的散射,研究人员将准直的氖原子超声束与XFEL光束成直角相交。当X射线光子的能量与氖的俄歇跃迁能量发生共振时,瞬态激发原子会受到自发拉曼散射的影响。优化X射线的强度和光子能量,则瞬态激发原子在自发衰减之前会与另一个具有适当光子能量的XFEL光子相互作用,产生受激拉曼散射,并沿入射光子的方向发射光子。此过程需要来自X射线的两个光子,因此是非线性的。由受激拉曼散射引起的激发原子基本上不会发生偏转,在检测器上显示为一条锐利的直线。 /p p   有望更好地了解原子级化学反应 /p p   论文第一作者,柏林马克斯· 波恩研究所的乌利· 艾希曼教授解释说,在受激拉曼散射过程中,两个光子沿与两个入射光子完全相同的方向离开原子,原子不改变其动量,也不改变其飞行方向。这与更频繁的线性过程截然不同。在线性过程中,首先吸收一个光子,然后发射另一个光子。由于发射的光子通常以不同的方向发送,因此原子发生偏转。通过观察原子的飞行方向,研究人员能够清楚地将X射线激发的拉曼过程与其他过程区分开。 /p p   XFEL的迈克尔· 迈耶博士解释说:“如果将来我们将新方法与不同波长的X射线脉冲一起使用,就会带来特殊的可能性。”具有不同波长的X射线脉冲可以专门处理分子中的单个原子,因此可以详细了解分子中电子的波函数随时间变化的方式。这为研究非线性X射线过程建立了非常有前途的分析技术。 /p p   长远来看,科学家们还希望借助定制的激光脉冲对其产生影响。乌普萨拉大学的贾恩-埃里克· 鲁本森教授说:“我们的方法有望使人们更好地了解原子级的化学反应,将来甚至可能影响它们。” /p p br/ /p
  • 华东师范大学武愕教授团队在中红外单光子光谱学研究中取得重要突破
    近期,华东师范大学重庆研究院武愕教授科研团队在中红外单光子光谱学研究中取得重要突破,利用基于量子关联的波长-时间映射方案实现具有单光子探测灵敏度的中红外光谱学测量,无需依赖于光谱仪、干涉仪或阵列型探测器,有效降低了噪声对单光子光谱测量的影响,为样品的非破坏性检测提供了新方法。研究成果以“Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping”为题,于2024年4月19日在线发表于Science Advances。博士研究生蔡羽洁为论文第一作者,陈昱副研究员、Konstantin Dorfman教授和武愕教授为论文通讯作者。该项工作得到了国家重点研发计划、国家自然科学基金委等项目资助。中红外光谱能够揭示多种分子的基础吸收带和复杂化合物独特的光谱特征,是研究物质结构的重要工具。傅里叶变换红外(FTIR)光谱仪作为中红外光谱的常规测量仪器,主要构成部件为干涉仪系统,除结构复杂、体积庞大外,商售中红外探测器效率低、噪声大等问题严重影响了中红外光谱的研究。中红外频率上转换通过非线性和频过程,将中红外光子与强泵浦耦合并利用硅基单光子探测器实现有效探测。其优势是消除了对中红外探测器和干涉仪的需求,从而实现稳定且紧凑的结构。目前,使用高功率泵浦激光结合高亮度中红外照明是提取高信噪比光谱的直接方法。但在超灵敏中红外频率上转换的相关应用场景中,需要在复杂环境中有效地提取微弱信号,此时强泵浦在非线性晶体中产生的参量噪声难以滤除,影响了探测灵敏度。由于光敏样品和量子相干现象对光学探针的强度存在限制,在中红外上转换光谱中使用的明亮中红外照明并不适合此类应用场景。此外,红外光谱学研究均需要使用光谱仪、干涉仪或昂贵的多像素探测器才可实现中红外光谱采集。面对弱光照下进行样品高灵敏光谱分析的需求,提升探测灵敏度,降低噪声对光谱测量影响并避免机械扫描结构,是亟待解决的关键难点。通过自发参量下转换过程产生宽带关联光子对,分别为波长位于中红外波段的信号光子和近红外波段的预报光子。信号光子通过频率上转换到近红外波段,利用硅基单光子探测器探测。关联的近红外预报光子通过一根10公里的单模光纤,群速度色散允许波长到时间映射的实现。光纤介质内不同频率的光具有不同的速度,将在不同的时刻到达探测器,导致通过色散介质后的脉冲包络会在时域上展宽,从而可以反映出光脉冲的频谱信息。由于上转换光子继承了中红外信号光子的量子相关性,通过对上转换光子和近红外预报光子之间的量子相关性进行符合测量,可以非局域地将中红外信号光子所携带的光谱信息映射到相关测量的时间域中。得益于量子相关性,在每脉冲0.21个光子的中红外光强条件下,30分钟曝光时间的光谱平均信噪比达到了54.6,可以实现嘈杂环境中的弱中红外信号的检测。研究团队在无需光谱仪、单色仪或干涉仪,以及阵列型探测器的情况下,实现了1.18微米宽带中红外单光子上转换光谱探测。
  • 北京大学李文哲博士:双光子显微成像技术应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇为北京大学天然药物及仿生药物全国重点实验室李文哲博士供稿。双光子吸收的理论概念是1931年由德裔美国物理学家Maria Göppert-Mayer在她的博士论文中提出。到1960年,激光器被发明出来后双光子吸收在实验上被验证,但是直到1990年第一台双光子荧光显微镜才被美国康奈尔大学的Denk、Strickler和Webb开发出来,Denk很快就将双光子显微镜用于神经元成像。1997年,美国科学家Svoboda利用双光子显微镜测量完整老鼠大脑的锥体神经元,并记录其感官刺激诱导树突钙离子动态,自此双光子显微镜的潜能开始完全凸显。时至今日,双光子显微系统在神经科学、肿瘤学、心脑血管及药物研究等领域有了极大的发展,近年来,光遗传光刺激也更多地和双光子技术结合,广泛地应用于清醒小动物领域。双光子成像的原理和优势特点双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有 100 飞秒,而其周期可以达到 80至100兆赫兹。在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是最高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。图1.双光子激发原理(左)及双光子吸收现象(右)从双光子现象的原理,我们可以总结出双光子成像的特点及其相对于共聚焦成像的优势:1.光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对活体细胞和组织的光损伤小,适用于长时间的活体研究;2.穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力(图2),因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题,常规情况下,共聚焦的成像深度一般为100微米,双光子则能达到250到500微米,甚至超过1毫米;3.高分辨率:同时吸收两个光子意味只有高强度聚焦点处能被激发,由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收仅局限于焦点处的体积约为波长3次方的范围内;4.荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦针孔),这样就提高了对荧光的收集率;5.图像对比度高:由于双光子激光波长较长,瑞利散射产生的背景噪声只有单光子激发时的1/16,大大降低了散射的干扰(图2);6.避免组织自发荧光的干扰,获得较强的样品荧光:生物组织中的自发荧光物质的吸收波长一般在350-560nm范围内,采用近红外或红外波段的激光作为光源,能大大降低生物组织对激发光吸收(图2)。图2. 不同波长下的光穿透深度、光散射以及内源性物质对光的吸收情况基于以上优势,双光子显微镜自发明30年来,已成为较厚组织及活体动物显微成像中不可或缺的工具。我们平台双光子显微镜常用的应用研究如,在神经科学领域用于脑神经和脑血管成像,通过开颅对麻醉小鼠完整V层锥体神经元和更深层的海马神经元的三维结构进行深层成像,对脑血管进行高速动态实时成像;在肿瘤研究中,对于肿瘤细胞及肿瘤微环境中免疫细胞的行为进行成像;在药物研究中,对于药物在肿瘤或脏器中的靶向、释放及代谢等动力学行为进行实时可视化成像;得益于平台双光子显微镜双脉冲激光(一根700-1300nm可调激光,一根1040nm固定谱线激光)的配置,可进行双通道同时成像,特别是适用于比率型荧光生物传感器的研究,如果利用一根激光作为刺激光源,可进行边刺激边成像实验。双光子显微成像的“搭档”双光子显微镜用于活体动物的原位显微成像,为保证实验动物在成像时保持稳定且维持正常的生理状态,往往需要搭配一些辅助成像的设备或者配件。以下为我们常用的几种双光子成像辅助配件:1、可移动麻醉机进行双光子活体动物成像实验时,为保持动物处于稳定状态,需对其进行持续麻醉。吸入式麻醉起效快,麻醉效果稳定,麻醉的深度和维持时间易控制,麻醉撤离后动物复苏快,最重要的是其不会影响动物的生理指标,被认为是啮齿类动物最可靠的麻醉方式。异氟烷气体吸入式麻醉是目前国际惯用的麻醉方式,研究表明,异氟烷麻醉能维持动物的心率、血氧分压、血液pH等生理功能处于稳定状态,适合情况复杂且持续时间较长的动物实验,包括对小动物进行连续成像。因此小动物可移动麻醉机是双光子显微成像实验中必不可少的辅助设备。本平台配备的小动物可移动麻醉机适用于大鼠、小鼠、豚鼠,可保证动物在成像的同时进行可控的持续麻醉。2、小动物成像视窗由于光吸收和光散射,目前双光子成像深度≤1 mm。因此对于活体动物器官的成像一般需手术暴露成像部位。众所周知,大多数的生理和病理过程发生在较长时间内,需连续几天或更长时间内对同一只动物多次成像。因此对于双光子活体成像,待观察组织的暴露及固定技术非常重要。此外,正置双光子显微镜常用水镜,小鼠活体成像过程中会因稳定性不足发生抖动,造成样品与物镜间的水缺失,而活体动物自身的呼吸和心跳等影响因素也会造成成像焦面的丢失,一旦失焦,重新进行对焦十分耗时,大大影响成像的效率。基于以上问题,对于动物成像部位的维持与固定有非常高的要求,固定装置不能对动物有太大的损伤,既要保证能够得到清晰的图像,还要保证动物生命体征正常。目前已有多项研究通过构建和使用双光子活体成像窗口,实现对不同脏器进行固定和长期成像,其中脑部颅骨薄窗成像技术较为成熟,因其远离心脏的位置优势,前处理和固定相对较容易,结合荧光标记物已广泛应用于脑神经科学相关研究。腹部器官如肝脏、淋巴组织、肠、脾脏和肾等都很软且血管密布,由于解剖位置不同,缺乏可以固定成像窗的骨骼结构,给窗口适配器的固定增加了难度;而且腹部脏器普遍离心脏较近,拉伸距离有限,更需要较好的固定和麻醉来抵抗心跳造成的图像抖动。因此腹部器官的活体成像更具挑战性,固定适配器往往需根据具体实验自制或定制。3、气管插管工具及呼吸机对于小动物肺部成像或心脏成像,需对其进行开胸手术,为维持动物正常的生理活性,满足呼吸代谢的需求,一般借助呼吸机对其进行有节律的肺部供气。呼吸机的本质就是一种气体开关,控制系统通过对气体流路的控制而完成给实验动物肺部供气,保持实验动物生理活性的设备。而气管插管是呼吸机辅助呼吸的重要步骤,顺利的气管插管是实验成败的关键之一。气管插管(以下简称插管)是指将一特制的气管内导管经声门置入气管,进而打开小动物呼吸道,为气道通畅、通气供氧等提供最佳条件。气管插管推荐使用静脉留置针的套管,大鼠一般使用16-18G套管,小鼠一般使用22-24G套管。我们平台一般使用光纤辅助法经口插管,操作过程中先将动物固定到一个倾斜的平板上,光纤插入到气管插管中,然后利用这种带光源的气管插管在明视野条件下经口腔插入动物的气管,然后拔掉光纤,用专用的气泡接到气管插管中,吹泡检测是否气管插管到达需要的位置,如果确认插管到位,再将气管插管与呼吸机的Y型接口相连。光纤辅助法也是目前插管最快,成功率最高的方法,同时对动物的损伤小,对操作人员的技能要求低。国产双光子显微镜的现状和未来双光子显微镜目前已广泛应用于神经科学、肿瘤研究、免疫学、病毒学、化学生物学等研究领域,在基础科研和临床前研究中都有着不可替代的重要地位。一流的科研离不开一流的技术,但由于我国在显微镜行业起步较晚,当前我国高端双光子显微镜市场仍大多依赖进口,深度精密制造、光学核心部件设计及工艺严重制约产业升级,国内具备生产高端显微镜的企业屈指可数,必须承认的是国内厂商仍与国际高端水平有相当差距,在国际竞争中技术上处于相对劣势。我们平台的高端显微镜目前全部为进口品牌,在使用过程中一旦出现核心部件的严重的故障,涉及到需要连线国外厂家维修和维权非常不顺畅,耗费大量的人力和时间成本,严重影响了科研进度,面对此困境,国产高端显微镜的自立自强迫在眉睫。令人欣喜的是,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作。目前产品已销售到以色列耶路撒冷希伯来大学、北京大学分子生物研究所、中国科学院上海生命科学研究院神经科学研究所等国内外多家高校及研究所。2017 年,北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。该成果获得了中国科技部评选的2017年度“中国科学十大进展”,同时与其他自由运动成像技术被Nature Methods杂志评为2018年度方法——“无限制行为动物成像”。2021年,该团队在Nature Methods上报道了第二代微型化双光子荧光显微镜FHIRM-TPM 2.0,其成像视野是该团队于2017年发布的第一代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。目前该技术已产品化并销往海内外,销售额过亿。值得一提的是,2023年2月27日,该团队研制的空间站双光子显微镜随神舟十五号进入太空,航天员乘组使用空间站双光子显微镜开展在轨验证实验任务,成功获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。近五年来,国产高端显微镜科技成果产业化的飞速进步给了我们很多惊喜,也在逐渐努力打破当前被进口仪器垄断的市场格局。但由于我国显微镜行业起步较晚,发展缺乏技术沉淀,因此在核心部件设计、工艺及精密制造上仍与国外拥有百年历史的显微镜厂商有较大差距。未来,随着国内显微镜仪器行业新产品层出不穷,对光学元件组件加工技术(如光学玻璃非球面加工技术)、配套材料及高精度检测技术要求越来越高,只有解决了这些问题,才能将高端显微镜的知识产权和核心技术牢牢掌握在自己手里,以期真正实现高端显微镜的自主创新和国产替代。关于北京大学天然药物及仿生药物全国重点实验室生物影像平台在科技部国家重点实验室仪器专项和双一流学科建设经费的支持下,实验室建立了配套齐全、设备先进的大型仪器研究技术平台,设备总值约3.6亿元,按功能分为10个子平台,可为生物医学研究和新药研发提供全链条技术支持。其中,生物影像平台技术精专、设备一流、开放性强、是一个为科研人员提供合作研究和技术交流的多功能研究技术平台。生物影像平台拥有成熟的高内涵成像分析技术、STED/STORM/Airyscan超高分辨成像技术、共聚焦成像技术、双光子成像技术、多光谱全景组织切片成像及表型分析技术、小动物光学成像技术、多模式小动物光/超声成像技术等,同时平台集成了Imaris、Aivia、inForm、Nis-element、AutoQuant X3等多种智能图像处理分析软件,建立完备的图像分析工作站,获取大量基于图像的生物信息分析数据。平台成功建成从分子到细胞、组织、动物完整的生物成像及分析体系,已广泛应用于校内外的分子及细胞生物学研究、免疫学研究、疾病研究、原创药物研发及高通量药物筛选、新型纳米功能材料研究等领域。主持多项国家级课题和校级技术类开放课题,不断开发或拓展成像技术的应用领域,积累了丰富的生物成像研究经验。本成像平台目前的研究方向及技术服务内容有:1. 核酸、蛋白、糖类等生物分子的成像及相互作用分析;2. 细胞生物学成像及细胞器的动态相互作用超高分辨成像与分析;3. STED、STORM、Airyscan超分辨成像技术;4. FRET、FRAP、TIRF等成像技术及分析;5. FLIM、FLIM-FRET、FCS成像及定量分析;6. 信号传导通路分析及分子定位分析;7. 细胞内药效学及药物动力学可视化评价;8. 组织病理切片制备、染色、免疫组化、多色免疫荧光;9. 组织切片全景扫描、多色免疫组化荧光成像与空间组学分析;10.双光子小动物活体原位细胞动态成像;11. 小动物活体光学/超声/光声成像及活体中的药效、药物动力学评价等。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制