当前位置: 仪器信息网 > 行业主题 > >

视频矩阵切换器

仪器信息网视频矩阵切换器专题为您提供2024年最新视频矩阵切换器价格报价、厂家品牌的相关信息, 包括视频矩阵切换器参数、型号等,不管是国产,还是进口品牌的视频矩阵切换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合视频矩阵切换器相关的耗材配件、试剂标物,还有视频矩阵切换器相关的最新资讯、资料,以及视频矩阵切换器相关的解决方案。

视频矩阵切换器相关的论坛

  • 【求助】TGA的气体切换器在哪里买?价格如何?

    目前用的气体切换器有问题了,切如氧气后碳黑烧不完全,而且,氮气也关不掉。(我用的是PE公司的TG,手动切换气体的)现在想换个气体切换器,但是在网上查不到,那位知道的朋友帮忙介绍一下,谢谢。

  • 【原创大赛】食醋感官评定方法――模糊数学矩阵法

    【原创大赛】食醋感官评定方法――模糊数学矩阵法

    E。应用数学法进行感官评定在一定程度上比单纯性的描述性更能克服个人喜爱、偏爱所带来的蔽端,更科学、合理化。对食品的感官评定有一定的借鉴作用。关键词:模糊数学矩阵法;感官评定;食醋 食醋是我国传统的一种调味品,它是以粮食、糖类或酒糟等为主要原料经发酵而成的。酿造食醋品种虽因选料和制法不同,感官评定也有一定的差异,但总的来说,以酸味纯正、香味浓郁、色泽鲜明者为佳。经过人体长期实践体验和专家们研究证明,长期食用酿造食醋对人体的健康有一定的益处。模糊数学矩阵法是用精确的数学矩阵方法来处理无法用数字精确描述的模糊概念或事物。模糊数学评判方法较适宜于评价因素多、结构层次多的对象系统,已经应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索等各个方面,在食品的感官评定中也得到了广泛的应用。食醋的感官指标主要是食醋的香气、色泽、滋味和体态,很难有一个统一的标准对其进行评价,也不能得到一个客观的评价结果,因此,本文采用模糊数学矩阵法对食醋进行感官评定,减少感官评定的主观因素,主要目的是为食醋的感官评定提供一种比较科学有效的方法。1 材料与方法1.1 材料与工具食醋:市售,编号为A、B、C、D、E、F、G、H感官评定的工具主要有量筒、杯子。1.2 感官评定的方法由10名从事食品专业人员组成评定小组,对食醋的色泽、香气、滋味、体态四个因素以四分制评定标准进行感官评定,GB18187-2000将食醋的感官分为四个等级见表1。要求感官评定人员在评定前12h不喝酒,不吸烟,不吃辛辣等刺激性食物,每感官评定一个样品后,要以清水漱口并间隔10min再感官评定下一个样品,然后填好评分表并签名。全部评定结束后,收集评定人员的评定表,进行统计分析。对于每个因素的质量等级及对应分数按优(5分),好(4分),较好(3分);一般(2分),差(1分)打分评定。http://ng1.17img.cn/bbsfiles/images/2012/12/201212091349_411152_2166779_3.jpg以色泽、香气、滋味、体态为因素集,以优、好、较好、一般、差为评语集,建立4个单因素评价矩阵,用模糊矩阵数学评价方法对其进行分析。1.3.1 食醋的评定因素权重的确定权重集X=,即色泽20分,香气30分,滋味40分,体态10分,共100分。1.3.2 模糊关系综合评判集模糊关系综合评判集Y=X·A,其中X为权重集,A为模糊矩阵。2 结果与分析[/size

  • 利用Keithley2400源表和通道切换器实现24通道太阳电池的最大功率点追踪

    利用Keithley2400源表和通道切换器实现24通道太阳电池的最大功率点追踪

    [font=punctuation, PingFangSC-Regular, &][size=16px] 利用Keithley2400源表、一个通道切换器和一个光源可以搭建多通道切换的MPPT测试系统,下图是测试界面。现在系统支持24通道太阳电池的最大功率点追踪(MPPT),实时显示最大功率、转换效率等电池参数,数据实时存储,全程无需人工干预,方便快捷![img=,690,411]https://ng1.17img.cn/bbsfiles/images/2020/04/202004271801230652_3475_3250017_3.jpg!w690x411.jpg[/img][/size][/font]

  • 矩阵匹配

    什么叫矩阵匹配,干扰矫正的方法有哪些?

  • 请教老师如何用spss软件得到相关系数的相似矩阵和夹角余弦的相似矩阵?

    新手,要做指纹图谱,刚接触spss软件,没有基础,请教老师如何用spss软件得到相关系数的相似矩阵和夹角余弦的相似矩阵?请告诉我每一步如何操作?谢谢!就是如下表格峰号S1S2S3S4S5S6S7S8S9S10平均值10.0810.0860.0740.0910.0890.0910.0800.0900.0600.0960.08420.1700.0930.1230.1210.1130.1030.1080.1130.2160.2670.14330.0310.0180.0240.0230.0220.0210.0210.0220.0400.047[font=Times New Roman

  • 【讨论】专业问题:关于Mie氏光能矩阵的计算

    我所了解的关于Mie氏光能矩阵中 系数an和bn的计算主要有正向递推、反向递推、连分式或者相结合等方法。他们之间的差别很大吗?对计算的M矩阵有很大影响吗?看了一些文献的介绍,觉得没有特别大的影响吧

  • 康耐视推出固定式数据矩阵校验器

    康耐视推出固定式数据矩阵校验器...用于DPM和打印代码的准确和合规验证全球领先的机器视觉系统,视觉传感器和工业ID读取器供应商康耐视公司。今天宣布推出全新的DataManTM 100V验证器。代码质量对于实现成功部件可追溯性所需的读取速率至关重要。DataMan 100V验证器检查Data MatrixTM代码的质量,以确保只有标记良好的部件才能进入制造和供应链。越来越多的汽车,航空航天,包装,电子,医疗保健和国防行业的公司需要进行验证,以符合要求标记达到一定质量水平的合同。其他人则使用验证来确定标记站的过程控制,以确保最高的读取率并最大限度地减少制造过程中的废品和停机时间。 “DataMan 100V为固定式验证器设定了新的价格和性能标准,”康耐视ID产品高级总监兼业务部经理Carl Gerst说。 “它们易于使用,包括自动生成报告,非常适合MIL-STD合规性应用。”DataMan 100V可测量标签并将零件标记质量指向所有行业标准,包括自动识别和移动协会(AIM)直接零件标记(DPM)质量指南,该指南可确保不同验证平台,制造环境和行业的一致结果作为ISO15415和AS9132。DataMan 100V现已上市,可轻松集成到打标,标签或其他类型的设备中,或作为合同合规性应用的完整交钥匙解决方案。[color=#ffffff][b]文章来源:康耐视视觉传感器 http://www.china-cognex.com/[/b][/color]

  • tcxuefeng读书笔记——自旋回波的密度矩阵演化及T2弛豫时间的测量

    tcxuefeng读书笔记——自旋回波的密度矩阵演化及T2弛豫时间的测量

    http://ng1.17img.cn/bbsfiles/images/2012/09/201209081116_389388_2071539_3.jpg上图是核磁序列中一个非常常见的单元——自旋回波的脉冲序列。我将以这一脉冲为例,通过追踪这一过程中密度矩阵的变化来向大家展示这一序列的特殊之处。①时刻自旋系统处在平衡状态,经过了(π/2)x脉冲后密度矩阵变化如下http://ng1.17img.cn/bbsfiles/images/2012/09/201209081117_389389_2071539_3.jpg为了简化讨论,我们将密度矩阵的”population parts”省略,因为这一部分自始自终没有转化为可以被核磁所检测到得相干信号。自此,根据之前的推导,经历了τ/2时间后(②-③时刻)的密度矩阵变化及图形化表示如下http://ng1.17img.cn/bbsfiles/images/2012/09/201209081120_389392_2071539_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209081120_389393_2071539_3.jpg时刻③,(π)y脉冲的激发使得密度矩阵变化如下http://ng1.17img.cn/bbsfiles/images/2012/09/201209081121_389394_2071539_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209081121_389395_2071539_3.jpg再经历了同样的τ/2时间后,时刻⑤的密度矩阵最终转化为http://ng1.17img.cn/bbsfiles/images/2012/09/201209081122_389396_2071539_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209081123_389397_2071539_3.jpg此时我们惊喜地发现,最终检测到得核磁信号S(τ, Ω)峰强度仅与时间τ以及T2弛豫时间有关,而与信号的相对频率Ωo无关——即外磁场强度无关。这样,我们就可以忽略掉外磁场不均匀所引起的谱线不均匀增宽效应,从而得到真实的λ即得到T2的值。

  • 这家光学显微仪器企业欲打造高端创新型组织病理成像仪器矩阵

    深圳明准医疗科技有限公司(简称:明准医疗)于2023年5月完成首轮融,苏州比邻星创投领投了天使轮融资,融资金额逾千万元。明准医疗以前沿光学显微成像技术的首次临床应用为核心使命的创新型医疗器械公司。明准团队有着丰富的生物光学技术及组织成像应用经验,通过突破性的新型光学显微成像技术,开发国际领先的新型数字病理技术平台,打造高端创新型组织病理成像仪器矩阵。明准医疗将在临床医疗器械、高通量药物筛选以及科研仪器领域布局,成为国内领先,国际一流的光学显微仪器企业。中国科学院深圳先进技术研究院副院长、国创中心主任郑海荣院长在签约仪式上曾表示明准医疗是国创中心成功孵化的最有潜力的优质企业之一,作为国家级制造业创新中心,国创中心将为明准医疗持续提供技术和资源支持,实现国产高端医疗器械的突破和成长。比邻星创投合伙人李喆指出,比邻星创投持续关注全球创新科技在医疗健康领域的应用。明准医疗是比邻星非常重视的交叉学科创新应用,其团队具有多学科交叉的复合经验,将世界领先前沿的生物医用光学成像技术首次应用于组织病理临床诊断领域,打造全球领先的创新医疗设备。比邻星坚定看好明准医疗在医疗器械领域的领先布局和突破进展,将为其提供充足的临床和产业资源,给与全面的支持和赋能。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • GC/MS二维矩阵数据导出问题,很急

    GC/MS的二维矩阵数据怎么导出来,听说这个数据是需要解码的,应该打不开,但是化学计量学用来谱图解析就需要这些数据啊,请大侠们指点,非常谢谢!

  • 【转帖】用微计算机做分子简正振动分析 Ⅰ.GF矩阵法

    《化学通报》 1984年08期 用微计算机做分子简正振动分析 Ⅰ.GF矩阵法杨小震 【摘要】:正 红外光谱和拉曼光谱广泛应用于物质的结构研究及材料的性能研究,而振动谱带的归属工作是这些研究工作之首,进行分子振动的简正坐标分析是十分必要的。由于该分析过程计算复杂,不借助于电子计算机难以胜任,没有一个通用的程序也难以实施。我国从事振动光谱研究工作者多年来苦于缺乏得力的分子振动简正坐标分析工具之烦,已由1980年以来移植与输入日本与加拿大的分子简正振动计算程序而基本消除。然而,大型计算机昂贵的机时费用,使许多人望而生畏或浅尝辄止。为了推动国内简正振动分析工作的普及,本工作把自己编写的一套分子简正振动分【作者单位】: 中国科学院化学研究所 【关键词】: 振动分析 微计算机 分子振动 简正振动 力常数 简正坐标分析 拉曼光谱 振动光谱 红外光谱 基本消除

  • 【求助】如何构建荧光激发-发射光谱数据矩阵?

    平行因子算法PARAFACx[sub]ijk[/sub] = ∑a[sub]if[/sub]b[sub]jf[/sub]c[sub]kf[/sub] + e[sub]ijk[/sub]式中x[sub]ijk[/sub]为激发波长i、发射波长j时的荧光强度,a、b、c分别是激发波长、发射波长和浓度。如何将下列数据构建为EEM数据矩阵?荧光激发-发射光谱EEM数据浓度1:样品A 0.001M, 样品B 0.001M--2302352403002.4175.952.9513012.4426.4572.4633023.8077.584.4543035.2318.6315.029(第一行是激发波长,第一列是发射波长,其他为荧光强度)浓度2:样品A 0.001M, 样品B 0.002M--2302352403003.2286.2362.7183012.1746.7873.9583023.2557.7664.3073034.6778.7915.484

  • 透射电镜样品台操作过程的矩阵分析

    透射电镜样品台操作过程的矩阵分析

    求各位大师们帮忙分析一下:φ是怎么求来的?是这样的,有的纳米颗粒,小于10nm,出不了菊池线,没法用菊池线来进行旋转。比如我想从,转到,双倾台的α和β角只能慢慢的试,这个过程有点麻烦。通过查找文献发现:在三坐标系中,双倾台的T1和T2轴分别对应α和β角,T1和X轴平行,T2位于YOX面上(如下图)http://ng1.17img.cn/bbsfiles/images/2012/12/201212311002_417594_2162238_3.png。这两个晶带轴的共有晶面(H0 K0 L0)以及两个晶带轴的方向之间的夹角γ是可以推算的,T1轴的初始位置α0是可以从样品台上读出来的,φ是指两晶带轴的共有晶体学面(H0 K0 L0)的法线和X轴间的夹角。然后我需要操作的角度α和β角可以写成γ,α0和 φ的函数(如下图),http://ng1.17img.cn/bbsfiles/images/2012/12/201212311003_417599_2162238_3.png如果知道了这三如果知道这三个数值,α和β就可以直接算出来,这样我如果想从晶带轴转到,就不用一个一个角度的试着转了,而是直接从转到相应的角度就好了。现在问题是,我不知道这个 φ是怎么求来的,文献上说,"只倾转T1轴时引起的菊池极的移动轨迹与T1轴方向的投射垂直,从而可以在荧光屏上确定在一定相机长度下X轴的投射位置和方向。这样可以在荧光屏上确定晶面(hkl)的法线与X轴之间的夹角 φ."这句话是什么意思啊相关文献是:“透射电镜样品台操作过程的矩阵分析,姚越,刘庆,哈尔滨工业大学”,1992年12月,兵器材料科学与工程,第15卷,第12期Tambuyser P. A simple method for the direct measurement of diffraction patterns in the EM 400T transmission electron microscope.这是相关连接:http://iopscience.iop.org/0022-3 ... 0022-3735_16_6_010.http://file.lw23.com/3/31/310/31 ... cd-2eb24ce09ead.pdf

  • tcxuefeng读书笔记——普通COSY实验的脉冲序列及密度矩阵演化

    tcxuefeng读书笔记——普通COSY实验的脉冲序列及密度矩阵演化

    对于刚接触核磁实验的初学者,二维核磁是一种非常神秘的东西。用“激发——跃迁”还能稍稍理解一维谱图的产生,但是对于二维实验,无论是用“激发——跃迁”还是bloch球都很难理解其谱图产生的原因,更不用说二维信号的内在意义了。而所有核磁实验中,COSY是具有历史意义的第一个二维实验,Ernst还因此获得了1991年的诺贝尔奖。在知晓了核磁信号产生的原因和密度矩阵演化的一些简单规律后,我将以COSY作为例子,向大家展现简单二维核磁序列的原理。如果大家对COSY的谱图解析不是很了解的话,可以参照我之前的“核磁实验专贴-以单一化合物为例向您呈现数十种核磁实验及谱图”帖子来做一个了解。在梯度场产生之前,许多二维实验都是通过相循环来进行相干路径的选择。所谓相循环,是指在核磁序列中的某些关键点的激发脉冲相位或者检测器相位循环地改变。下面这一脉冲是普通COSY在相循环某一阶段中的脉冲序列http://ng1.17img.cn/bbsfiles/images/2012/09/201209112111_390285_2071539_3.jpg假设AX系统处在平衡状态①,在第一个(π/2)x脉冲过后,密度矩阵变化如下http://ng1.17img.cn/bbsfiles/images/2012/09/201209112111_390286_2071539_3.jpg为了与相循环的其他阶段相区分,我们将这里的密度矩阵标记为ρcos,因此http://ng1.17img.cn/bbsfiles/images/2012/09/201209112112_390287_2071539_3.jpg这之后,在t1时刻内AX系统密度矩阵自由演化,正如前面讨论的那样,这里的自由演化需要考虑到I1化学位移Ω1t1,I2化学位移Ω2t2以及I1与I2耦合πJ12的影响http://ng1.17img.cn/bbsfiles/images/2012/09/201209112120_390303_2071539_3.jpg之后密度矩阵被(π/2)x脉冲转化如下http://ng1.17img.cn/bbsfiles/images/2012/09/201209112120_390302_2071539_3.jpg由于NMR只能直接检测到-1量子相干,如果大家感兴趣可以将上式中每一个算符用前面讲的构建方法转化成矩阵,含有-1量子相干的下面四项被保留下来http://ng1.17img.cn/bbsfiles/images/2012/09/201209112119_390301_2071539_3.jpg这样,相循环的一个阶段结束了。在下一个阶段,脉冲序列如下http://ng1.17img.cn/bbsfiles/images/2012/09/201209112119_390300_2071539_3.jpg与前一个阶段相比,第一个(π/2)脉冲的相位为-y,我们将这个阶段的密度矩阵表示为ρsin。在经过了与+x相同的过程后我们得到http://ng1.17img.cn/bbsfiles/images/2012/09/201209112118_390299_2071539_3.jpg为了简单起见,我们仅以四项中的-2I1zI2y作为研究对象,即http://ng1.17img.cn/bbsfiles/images/2012/09/201209112117_390296_2071539_3.jpg根据三角函数积化和差,我们得到http://ng1.17img.cn/bbsfiles/images/2012/09/201209112121_390304_2071539_3.jpg这里简单介绍一种二维谱图的信号处理方法States,这一处理的目的是为了在二维谱图中得到纯的吸收线型。对于诸如http://ng1.17img.cn/bbsfiles/images/2012/09/201209112122_390305_2071539_3.jpg这样的形式,我们先对t2做傅里叶变换http://ng1.17img.cn/bbsfiles/images/2012/09/201209112122_390306_2071539_3.jpg此时我们得到谱图http://ng1.17img.cn/bbsfiles/images/2012/09/201209112123_390307_2071539_3.jpg同样的,我们对http://ng1.17img.cn/bbsfiles/images/2012/09/201209112123_390308_2071539_3.jpg的t2傅里叶变换得到http://ng1.17img.cn/bbsfiles/images/2012/09/201209112123_390309_2071539_3.jpg如果大家还有印象的话,在前面“”帖子中提到了核磁信号的正交检测得到的sin,cos可以通过欧拉公式化为复数形式。因此我们可以按照如下规则构建“杂交”方程http://ng1.17img.cn/bbsfiles/images/2012/09/201209112124_390310_2071539_3.jpg这一方程的数学表示为http://ng1.17img.cn/bbsfiles/images/2012/09/201209112124_390311_2071539_3.jpg此时对t1做傅里叶变换得到http://ng1.17img.cn/bbsfiles/images/2012/09/201209112125_390312_2071539_3.jpg取这一结果的实部我们得到了纯的吸收谱图http://ng1.17img.cn/bbsfiles/images/2012/09/201209112125_390313_2071539_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209112126_390314_2071539_3.jpg回到我们COSY的例子中。我们经过上述States的变换,最终得到谱图http://ng1.17img.cn/bbsfiles/images/2012/09/201209112127_390315_2071539_3.jpg其中横向的被称为直接维,对应States变换中的t2。这部分即-2I1zI2y中的α-,β-分别对应Ω2+πJ12和Ω2-πJ12,因此上图中方框内横向在Ω2 ±πJ12的化学位移处有信号;而经过了States构造后的t1的FT变换,使得纵向Ω1 ±πJ12处均有信号。横向的Ω2 ±πJ12与纵向Ω1 ±πJ12相交叉,最终得到了图中方框内的四个点,这正是COSY信号的来源!

  • GC双柱双通道切换的时间

    各位大虾,您们好!您们哪家的GC是双柱双通道来做样品的初步定性和定量的,两条色谱柱的前端是由一个切换器来转换的,它们转换的时间那个品牌的GC会更快点???我们这边是做血液中乙醇含量的测试的

  • 关于公开征求《环境空气 颗粒物来源解析 正定矩阵因子分解(PMF)模型计算技术指南(征求意见稿)》等4项国家生态环境标准意见的通知

    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》等法律法规,规范环境空气颗粒物来源解析工作,我部组织编制了《环境空气 颗粒物来源解析 正定矩阵因子分解(PMF)模型计算技术指南》等四项国家生态环境标准。  目前,标准编制单位已编制完成标准的征求意见稿,按照《国家环境保护标准制修订工作管理办法》相关规定,现公开征求意见。标准相关资料可登录我部网站(http://www.mee.gov.cn/),在“意见征集”栏目或首页搜索栏输入本通知名称检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2022年11月29日前将书面意见反馈我部大气环境司,意见电子版发送电子邮箱。  联系人: 生态环境部大气环境司张宇哲  电话: (010)65645563  传真: (010)65645567  邮箱: daqichu@mee.gov.cn  [b]附件:[/b]  1.征集意见单位名单  [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202210/W020221031444443694258.pdf]2.环境空气 颗粒物来源解析 正定矩阵因子分解(PMF)模型计算技术指南(征求意见稿)[/url]  [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202210/W020221031444444296497.pdf]3.《环境空气 颗粒物来源解析 正定矩阵因子分解(PMF)模型计算技术指南(征求意见稿)》 编制说明[/url]  [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202210/W020221031444445825868.pdf]4.环境空气颗粒物来源解析 化学质量平衡(CMB)模型计算技术指南(征求意见稿)[/url]  [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202210/W020221031444446730446.pdf]5.《环境空气颗粒物来源解析 化学质量平衡(CMB)模型计算技术指南(征求意见稿)》 编制说明[/url]  [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202210/W020221031444453428426.pdf]6.环境空气 颗粒物来源解析 基于受体模型法的源解析技术规范(征求意见稿)[/url]  [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202210/W020221031444453972921.pdf]7.《环境空气 颗粒物来源解析 基于受体模型法的源解析技术规范(征求意见稿)》 编制说明[/url]  [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202210/W020221031444454652887.pdf]8.环境空气 颗粒物来源解析 受体模型法监测数据处理与检验技术规范(征求意见稿)[/url]  [url=https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202210/W020221031444455114003.pdf]9.《环境空气 颗粒物来源解析 受体模型法监测数据处理与检验技术规范(征求意见稿)》 编制说明[/url][align=right]  生态环境部办公厅[/align][align=right]  2022年10月26日[/align]  (此件社会公开) [b] 附件1[/b][align=center]  [b]征求意见单位名单[/b][/align]  1.各省、自治区、直辖市生态环境厅(局)  2.新疆生产建设兵团生态环境局  3.各省、自治区、直辖市生态环境监测站(中心)  4.新疆生产建设兵团生态环境第一监测站  5.各环境保护重点城市生态环境监测站(中心)  6.中国环境科学研究院  7.中国环境监测总站  8.生态环境部环境发展中心  9.生态环境部南京环境科学研究所  10.生态环境部华南环境科学研究所  (部内征求法规司、监测司、执法局意见)

  • 【讨论】日本巨震--会导致富士山喷发吗??

    【讨论】日本巨震--会导致富士山喷发吗??

    日本巨震--会导致富士山喷发吗??受日本大地震的影响,有日本的象征之称的富士山最近火山活动频繁,有喷发的迹象。报道指出,自11日日本发生大地震以来,在富士山周边出现了“群发地震”现象,包括最近发生的4.8级地震在内,总共观测到了850多次地震。http://ng1.17img.cn/bbsfiles/images/2011/03/201103172153_283536_1638489_3.jpg

  • 公安部食品药品犯罪侦查局对辽宁大连“711”非法采矿案?

    [font=system-ui, -apple-system, BlinkMacSystemFont, &][size=17px][color=rgba(0, 0, 0, 0.9)]记者3日从公安部获悉,近日,公安部食品药品犯罪侦查局对辽宁大连“711”非法采矿案等10起涉海砂犯罪大要案件进行集中挂牌督办。海砂属于食品药品吗?为什么要药品食品局侦办???[/color][/size][/font]

  • 拒绝高级操作工,教你玩转各种分析仪器阀切换

    拒绝高级操作工,教你玩转各种分析仪器阀切换

    各种样品前处理仪器、各种分析仪器,都存在各种阀切换哦,嘻嘻哈哈。带你去了解一下阀。阀的组合种类很多,我列举了一下自己涉猎过的,还有一下自己都没搞明白,以后会陆续更新哦!希望大家挑错,我会及时改正,互相学习。亲~阀种类很多:单向阀、多位选择阀、进样阀、隔膜阀等等,我下面介绍的以多位阀和进样阀为主。首先阀构成:转子、定子、阀体阀指标:材质(不锈钢、peek、ptfe、pps、ctfe==很多)、温度(主要指的是gc阀)、通径(0.25mm、0.5mm、0.75mm、1.5mm)压力(分耐气体压力、耐液体压力)0#:多位阀1#:进样阀2#:6通阀,实现2根色谱柱之前的切换3#:8通阀,同一样品连续定量进样4#:10通阀,实现2个不同样品进样5#:2个6位选择阀,实现色谱柱切换系统6#:应用案例哦首先认识一下多位选择阀,主要应用于液体、样品选择,一般固相萃取仪器、制备型自动进样器应用较多。http://ng1.17img.cn/bbsfiles/images/2011/11/201111291400_333900_2206832_3.jpg 上图是一个8位选择阀原理图http://ng1.17img.cn/bbsfiles/images/2011/11/201111291404_333903_2206832_3.jpg 上图是一个简单的应用,右侧是一个4位选择阀,通过阀切换选择 1234种样品进入左侧进样阀。

  • 中控系统是什么

    1. 同时支持IPAD平板电脑、安卓平板电脑、射频触摸屏、windows电脑控制(笔记本、台式机、一体机等),一个设计器支持所有平台,并且IPAD平板、安卓平板、射频触屏及windows电脑的控制界面完全相同,方便用户使用。多种方式,可同时使用,互为备份,让项目更健壮。中控系统,会议中控系统,多媒体中控系统,智能中控系统,IPAD中控系统,混合矩阵,高清混合矩阵,会议中控,多媒体中控2. 非网页式,各个平台(IPAD、安卓、windows)都有功能一致的专用操控软件,更显专业,易用,稳定。3. IPAD控制软件,通过美国苹果公司官方严格审核,可直接在app store上安装,确保稳定兼容,不需越狱,不需破解。4. 采用字体自动识别技术,在Windows电脑上设计界面时使用的任何字体,都能在IPAD平板、安卓平板上正确显示(不需制作图片)。5. 编程设计平台可自动生成各种3D按钮(不需设计图片);也支持图片按钮,支持PNG、WMF、ICO、GIF图片的透明效果,可实现任意形状的按钮,各种效果的界面。6. 设计平台采用先进的软件技术,不需使用任何电脑语言进行编程,不需使用各种复杂的逻辑模块与宏,以方便施工、后期维护及升级。7. 程序设计师勿需亲自到现场,可直接通过以太网络,利用Internet互联网传输来更改程序的内容。8. 专为高要求级场合设计,非电教中控改装,主机配有16个RS232串口、8个RS485\422、8个红外口、8-Relays 继电器口等控制口。不集成小矩阵等信号切换系统,增强控制接口,以降低整个系统崩溃的风险。9. 主机内置红外学习器,可把红外数据保存到电脑成为红外库文件,供后续工程或后续维护升级使用。10. 控制通讯:以太网(TCP/IP),10/100M自适应,TCP SERVER方式,也可定制为UDP方式,也可连接射频接收器。11. 处理器:双处理器。采用2颗嵌入式高速中央处理器(CPU)并行运算,可快速处理各种复杂的控制指令,提高响应用户的速

  • 云唐食品添加剂检测仪检测步骤

    云唐食品添加剂检测仪检测步骤

    云唐食品添加剂检测仪通常用于确定食品中是否存在特定的食品添加剂,并检测其浓度水平。以下是一般的食品添加剂检测步骤:  准备样品: 首先,需要准备待检测的食品样品。样品应当代表产品批次,并根据检测要求采取适当的样品制备方法。这可能包括样品的分割、粉碎、混合、稀释等处理。  提取: 对于某些添加剂,需要将其从食品样品中提取出来。这通常涉及使用适当的提取剂或溶剂来将添加剂从食品矩阵中分离出来。提取方法可能因添加剂的性质而异。  样品制备: 提取后的样品可能需要进行进一步的制备,以确保适合分析仪器的使用。这包括滤过、稀释、浓缩或其他样品处理步骤。  仪器分析: 将样品引入食品添加剂检测仪器中进行分析。检测仪器的选择取决于要检测的特定添加剂。  校准和标准曲线: 在分析过程中,需要使用标准物质来校准仪器,并建立标准曲线,以便确定样品中添加剂的浓度。这些标准物质应具有已知浓度和相似性质。  数据分析: 分析仪器将生成数据,通常以添加剂的浓度表示。数据需要进行分析,以确定样品是否符合法规要求或产品规格。  结果报告: 最后,将分析结果报告给相关部门或利益相关者。报告通常包括样品的标识信息、检测方法、浓度结果以及任何必要的注释或解释。  质控: 在整个检测过程中,需要进行质量控制以确保结果的准确性和可靠性。这包括运行质控样品、监控仪器性能、验证分析方法等。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309051043125698_5056_5604214_3.jpg!w690x690.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制