当前位置: 仪器信息网 > 行业主题 > >

数字温度控制仪

仪器信息网数字温度控制仪专题为您提供2024年最新数字温度控制仪价格报价、厂家品牌的相关信息, 包括数字温度控制仪参数、型号等,不管是国产,还是进口品牌的数字温度控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字温度控制仪相关的耗材配件、试剂标物,还有数字温度控制仪相关的最新资讯、资料,以及数字温度控制仪相关的解决方案。

数字温度控制仪相关的论坛

  • 【资料】数字显示控制仪故障及排除方法

    数字显示控制仪故障及排除方法 http://simg.instrument.com.cn/bbs/images/brow/em09511.gif  1、判断故障在仪表之内还是仪表之外数字显示控制仪的对外接线有电源、输入信号和输出信号,所以当发现显示有异常现象时,首先应使用万用表测试其后部端子信号,应在仪表要求的数值之内。如:当仪表送电无显示时,首先应检查仪表供电电源是否异常,如正常而仪表仍无显示时,可断定仪表内部电源或有关元器件损坏;当显示有溢出或乱跳时,可测量其输入信号是否有开路或接触不良现象,如果测得开路,则故障发生在表外,查出信号开路处,排除后即可正常;当测量温度低于给定值而回路电流表仍为零时,可用万用表测量仪表后部端子输出信号,正常时应为10mA,如果没有则说明仪表本身有问题,如果有,而回路电流仍无指示时,可断定故障发生在仪表之外,即配套的ZK - 1可控硅电压调整器或电流表有问题,可进一步查找和判断。通过检查仪表后部端子上信号,即可断定所出故障是在仪表之内还是仪表之外。 当确认故障发生在仪表之内时,可根据故障现象进一步判断故障在仪表内的具体部位数字显示控制仪故障排除。2、数字显示控制仪常见故障及原因和排除方法故障原因如下数字显示控制仪故障排除:2.1 故障现象─显示数字不稳(乱跳)1) 仪表接地不良;2) 供电电源不稳;3) 电源变压器屏蔽开路;4) 表内基准电压和负电源有故障;5) 电位器接触不良;6) 7107 损坏;7) 电源滤波稳压不好;8) 室温补偿电路和基准电源有基础不良;9) 自动调零电路损坏;10) 表内连接、接插件或元器件有虚焊或接触不良;11) 集成运放内噪声太大。2.2 故障现象─输出为0mA1) 输出三极管损坏;2) 集成运放输出为负电位;3) 桥路电源损坏或其回路连接开路;4) 输出三极管发射极电阻或引线开路;5) 输出连线开路。2.3 故障现象─输出为10mA1) 输出三极管击穿;2) 集成运放输出为正电位使三极管导通;3) 集成运放损坏。

  • 生物冻存容器的温度控制问题

    生物冻存容器是用于保存冷冻细胞、组织和生物样品的设备。为了保证冷冻样品的质量和稳定性,温度控制是至关重要的。[b]  温度范围[/b]  生物冻存容器的温度通常在-196°C至-80°C之间。其中,-196°C是液氮的沸点,也被称为“液氮温度”,是最低的温度,适用于长期保存、维护和传递细胞系和生物样品。而-80°C是常用的冷冻温度,适用于短期或中期保存和运输样品。在选择温度范围时,需要根据样品的特性和需求进行考虑。[b]  温度分布[/b]  生物冻存容器内部的温度分布也是决定样品质量和稳定性的重要因素。温度均匀性可以通过容器设计、冷却系统和位置选择等因素来实现。一般来说,温度均匀性应控制在±1°C以内,以确保样品在整个保存过程中温度稳定。 [b] 温度控制方式[/b]  生物冻存容器的温度控制方式通常分为两种:机械式和电子式。机械式温度控制器采用机械装置和热敏元件来控制温度,具有成本低、操作简单等优点,但精度相对较低。而电子式温度控制器则采用数字显示屏和传感器等电子元件来控制温度,具有精度高、稳定性好等优点,但成本相对较高。在选择温度控制方式时,需要根据实际需求和预算进行考虑。[b]  [url=http://www.cnpetjy.com/]液氮容器[/url]设计[/b]  生物冻存容器的设计也是影响温度控制的重要因素。一方面,容器应该具备良好的绝热性能,以减少温度波动和能源消耗。另一方面,容器内部应该设计合理,以便于样品放置和取出,并且能够保证样品与容器内壁之间的距离,避免样品直接接触冷却介质。

  • 【分享】SWK-B型可控硅数显温度控制器

    SWK-B型可控硅数显温度控制器 该控制器可与箱形高温电阻炉(马弗炉),双管定硫炉、灰熔点测定炉或其它电热设备配合,实现对炉内温度自动控制,以适应不同的试验对升温速度及控制温度的不同要求。 ◆SWK-B型控制器采用数字显示指示温度,炉温显示清晰准确。 ◆使用双向可控硅输出控制,切换无触电,具有寿命长、无噪声等优点。 ◆具有PID调节功能,能有效克服炉温过冲的现象,使得温度控制更准确。 ◆输出电压0~220V连续可调,可适应不同的升温速度要求。 ◆电源:AC 220V±10% ,50HZ ◆全导通输出电压可调 ◆最大允许负载5KW 使用说明书(节选)一、概述SWK-B型数显温度控制器用于配合箱形高温电阻炉、定硫炉及其它电加热设备,实现对炉内温度的自动控制,以适应不同的试验项目对升温速度和温度的不同要求。其主要特点有:1. 温度设定与测量采用数字显示,直观准确 2. 采用双向可控硅控制输出,切换无触点,具有使用寿命长,无噪音等优点。3. 具有PID调节功能,能有效克服炉温过冲现象,使温度控制更准确。4. 输出电压无级调节,可适应不同的升温速度要求。二、主要参数1. 输入电压:220V±10%,50HZ2. 输出电压:0~220V连续可调3. 最大允许负载:5KW4. 精度等级:0.5级5. 配用电偶:镍铬-镍硅,K值,0~1000℃6. 工作环境:0~40℃,相对湿度≯85%三、使用方法1. 使用前应首先检查控制器的内部接线是否脱落,如有松动应按原理图接好,可控硅管壳与散热器应接触良好,保证元件工作是散热正常。2. 控制器不应放置在具有剧烈震动的场合,控制器内部应保持清洁。3. 按电控器上所标输入(220V),输出位置,将电源与负载接好。4. 控制原理图见下图5. 打开电源开关键,工作指示灯亮,表示电源已接通。6. 顺时针转动电压调节选钮,使电压表指示到合适强度(220v),拨动”数显调节仪”右下方开关到设定(OFF)后, 顺时针转动开关上面的调节选钮,使温度显示到需要设定值;设定后,开关拨到测量(ON),绿灯亮开始工作,温度达到设定值后红灯亮,停止工作。四、常见故障及产生原因:......

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 实验室温度控制问答的翻译

    我觉得慢慢读英文的过程也是慢慢理解这些问题的过程,再说让我改成中文难免会有些歪曲一部分理论。不过既然大家都要求,我也就花点时间翻译一下,直接翻译了,有些语句不顺或者拗口的地方请大家提出来我再做详细解释。先翻译了前一部分,我一有时间就会在这个帖上继续翻译的。整个的内容也在这个版的实验室温度控制常见问题那个帖中,大家也可以看看那个帖。有疑问的再提,我们再讨论:)1.什么是工作温度范围工作温度范围是指在没有外界制冷的情况下温度控制器自己所能达到的温度范围。这个温度限一般为20度的外界温度.2.什么是运行温度范围运行温度范围是被控制电信号限制的温度范围。举例来说,加热控制器的工作温度范围可以通过各种方式在操作温度范围中缩小。3.什么是温度稳定性温度稳定性就是在温度浴槽一个精确测量点上多次测量温度的差值。4.什么是温度均匀性?温度均匀性就是在温度浴槽中多个测量点上温度的差值。这对温度的校准特别重要。对JULABO温度循环器而言温度均匀性和稳定性只有微小的不同。其中黏度浴槽和温度专用校准槽提供了最好的温度均匀性。5.JULABO在显示方面有什么特点和优势?JULABO的显示屏在远距离和各个角度都能非常清晰的进行数据显示。多行LED显示屏不仅显示实际和设定温度,而且能显示最高和最低报警温度以及安全断电温度。另外,多行LED显示屏还可以显示电子控制水泵的泵压奇数以及振荡水浴的震荡频率。6.JULABO高端产品以高亮度VFD温度显示为其显示特色这种显示技术目的是为了提高显示亮度,清晰度和对比度和更简便的操作支持。它可以同时显示出浴槽内实际温度,设定温度和外循环实际温度,而且还可以显示出用户选择的泵压级别。7.JULABO什么型号的仪器可以提供交互式操作支持?JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器可以提供LED/LCD多重显示面板。除了显示实际和设定温度外,还可显示众多的系统参数。例如循环控制方式(外循环或者内循环)。加热和制冷功率以及外循环设定温度等。8.PID和ICC温度控制技术有什么不同?JULABO PID1 PID2 PID3控制技术有固定的XP TV TN参数。有时为了提高外循环控制的温度稳定性,这些参数在PID2 和PID3控制技术下可以手动更改。ICC是世界上最先进和绝对唯一的温度控制技术,它可以根据温度控制的具体需要自动更改和优化XP TV TN 参数,以获得最好的温度稳定性在上面提到过的高JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器中运用了这个先进的技术。9.TCF(特色温度控制技术)提供了什么优势?内外差极限:当仪器进行外部温度控制时,这个功能允许客户任意设定浴槽温度和外循环温度的最大差值。这样做可以保护温度控制设备,也可以保护整个反应釜中的玻璃设备,防止冷热变化引起的破裂。Dynamics:这个功能允许客户在内部温度控制时进行aperiodic和normal PID behavior中转换Aperiodic:从实际温度达到设定温度的精确度特别高,但可能因为要避免温度的过冲而花费较长的时间。normal PID behavior:能在很快的时间中到达设定温度,但可能因升温速度快而在达到设定温度时有一定的温度过冲。极限设定:在进行外部温度控制时可以设定控制浴槽内的最高和最低极限温度,控制器在工作过程中是不允许超过这个设定极限的。Co-speed factor:和Aperiodic一样,它也可以控制达到设定温度时的温度过冲现象,唯一的不同在于它的设定是在仪器进行外部温度控制时进行的。10.JULABO水泵的主要功能在Economy‘ and ‘TopTech‘ 系列中,水泵是无机械磨损和热磨损的设计,它主要是用来为浴槽内循环和一些小型的封闭体系的水循环提供动力。在MC, ME and ‘Presto‘中,水泵的泵压级别可以调节在HighTech‘系列中,所有的泵都有加压和抽吸两种模式,它可以达到设定的压力,抽吸力和流速来完成对外循环或者封闭体系的水循环。在外接各种反映釜时,它可以被调节到合适的压力,从而避免由于意外压力对反映釜体系造成的损伤

  • 超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    [size=14px][color=#ff0000]摘要:超低重力仪器中要求液氦池温度恒定,为实现小于0.1mK的波动度,气压控制的波动度要小于10Pa。为此本文提出了相应技术方案,核心内容是实现缓冲罐的气压精密控制,采用了双向控制模式,并使用了万分之一精度的气压传感器、电动针阀和PID控制器。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#ff0000]一、问题的提出[/color][size=14px]超导重力仪器有超导重力仪和超导重力梯度仪,都是用来对重力信号进行精密测量的仪器。超导重力仪器需要在低温条件对极微弱信号进行测量,所以对低温温度恒定有很高的要求,即要求液氦池温度波动在0.1mK以内。[/size]对于液氦池温度的精密控制可以通过控制液氦池内的气压来实现,这就要求气压的测量和控制达到极高水平。本文将针对超导重力仪器中液氦池内气压的高精密控制问题,提出相应的解决方案。此方案的优势是液氦池温度的控制精度主要受压力传感器精度的影响,选择超高精度的压力传感器,并通过精密数控针阀和高精度PID控制器,采用下游抽气流量控制模式,可使液氦温度的波动稳定控制在0.1mK以内。[size=14px][color=#ff0000]二、技术方案[/color][/size]液氦温度的精密控制原理是基于液氦饱和蒸气压与对应温度的关系。根据液氦饱和蒸气压与温度的对应关系,液氦温度要控制在4K左右,并要求温度波动小于0.1mK,则要求液氦上部气压控制在100kPa左右时,气压的波动要小于10Pa以内。[size=14px]为了实现上述气压控制精度,本文提出的技术方案具体包括以下几方面的内容:[/size][size=14px](1)液氦池上部的气压控制可以抽象为一个密闭容器内的压力控制。对于密闭容器的压力控制需要增加一个缓冲罐,通过缓冲罐的压力控制实现液氦池的压力控制,结构如图1所示。[/size][align=center][size=14px][img=气压控制,550,490]https://ng1.17img.cn/bbsfiles/images/2022/05/202205230927573218_8908_3384_3.png!w690x615.jpg[/img][/size][/align][align=center][size=14px]图1 高精度气压控制系统结构示意图[/size][/align][size=14px][/size][size=14px](2)缓冲罐的压力控制采用了上下游双向控制模式,通过调节进气和抽气流量进行控制。[/size](3)整个控制系统包括缓冲罐、气压传感器、PID控制器、数字针阀和真空泵。[size=14px](4)如果气压控制在100kPa并要求波动小于10Pa,则要求气压的测量和控制要有10/100k=0.0001(万分之一)的精度,由此需要配备万分之一精度的气压计和PID控制器。[/size]总之,本文所述的技术方案,其控制精度主要受气压传感器和PID控制器精度的限制,结合步进电机驱动的小流量电动针阀,通过高精度传感器和控制器,可以实现超导重力仪液氦温度的精密控制,温度波动可以控制在0.1mK以内,且不受外部环境温度变化影响。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595303_3112929_3.png图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595304_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595305_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595306_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595307_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 【原创大赛】电热恒温干燥箱的温度控制系统改造

    【原创大赛】电热恒温干燥箱的温度控制系统改造

    针对一些老式电加热恒温设备需要修理、改造而缺乏配件的困难,找出了在仪器设备原有基础上,利用数显温度控制仪表、接触器以及各种功率模块组合,代替原有温度控制部件,实现了更加直观、方便、可靠,精准的温度控制方案。通过几年来改造过的数台电加热恒温设备运行表明,改造方案是成功的,本文以电热恒温干燥箱改造为例,介绍改造原理及过程,以期对大家有所启发。 在实验室有一些老式电热烘箱,这些烘箱控制温度的方式采用热膨胀调温式即在其工作室内安装测温杆,将两种膨胀系数不同的金属片,或膨胀灵敏的金属杆,借热胀冷缩在不同温度下有不同的伸长或缩短长度来控制断电或通电,来达到温度控制的目的,温度显示需借助顶端的玻璃温度计,这种控制方式控温精度低、读数不直观。由于机械磨损,调温装置损坏,造成温度失控,因这种控温器已没有备件出售,有些烘箱已处于停用状态。若能修复这些设备,不仅能延长其使用寿命,还能为单位节约大量采购经费。存在的问题 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530969_1173612_3.jpg 该电热恒温干燥箱1983年生产,它主要由金属箱体、保温材料、电阻性加热部件、控制电路及控制面板等构成。其中箱体、保温材料等的机械结构还是完好的,托架、隔板齐全、完好,而这些又是设备价值较高的部分,但由于使用多年,温度调节器机械磨损严重,无法正常调节温度,找到同型号配件更换,已处于停用状态。 从以上情况来看,只要修复或更新温度控制系统,该电热恒温干燥箱还是可以恢复使用的。改造方案及实施原有的控制线路及原理 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530970_1173612_3.jpg 其控制温度的原理是:操作者将电源开关拨至接通位置,待箱体上面的水银温度计显示的温度值接近工艺温度时,操作者须不断调节温度调节器旋钮,处于“通——断”状态,直至温度计的稳态值刚好等于工艺温度。通常情况下,要调节出工艺温度需要时间较长,而且误差较大。改进前烘箱的控制缺陷分析 原有机械式温度调节方式:由于在控制过程中,设备的加热只有“通——断”两种状态,所以称为二位式机械控温,这种控温方式具有结构简单、价格低廉、使用维修方便的特点。但是调节精度不高,被调温度始终不能定在给予定值上,总是在给予定值上、下周期性的波动,其特性曲线见图 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530971_1173612_3.jpg 由于加热系统的的热惯性,在某一段时间温度仍然在继续下降,直到t4时才回升。这样反映温度变化的是一条在给定温度上、下一定范围内波动的曲线,这表时存在着“动差”。这种调节方式精度较低,对象的热惯性越大,仪表不灵敏区越大,动差就越大。因此,位式调节不适于热惯性较大的系统,也满足有些实验工艺的要求。改造方案 随着电子技术的飞速发展,数显温度控制仪表技术日益成熟,价格低,通用性更好,使用更为简捷和方便,在各种控制领域中应用越来越广泛。因此,可以利用数显控温仪表作为主控部件,针对不同的控制对象、控制要求及控制成本,合理选用接触器、可控硅、固态继电器等各种功率模块作为执行部件与之相配合,替代老设备原有的控制电路,对其进行改造升级,实现更为直观、方便、精准、可靠的温度控制。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530972_1173612_3.jpg 温度控制仪表选择:在改造中我们采用了AI808自整定专家PID控制仪表。AI调节器是控温系统的核心部分,AI仪表首创性地采用了平台概念,将非常专业化的数字调节仪表转为平台化设计的产品,采用的是AI人工智能调节算法是采用模糊规则进行PID调节的一种新型算法,在误差大时,运用模糊算法调节,以消除PID饱和积分现象,当误差趋小时,采用改进后的PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化。 控制元件:电热恒温干燥箱加热功率1000W,工作电流4.5A,工作电压220V。而我们选用的BTA41-600,双向可控硅,工作电流41A,耐压600V,完全能够满足要求,而且体积小,便于安装。 温度传感器:电热恒温干燥箱额度工作温度为200℃, Pt100铂热电阻,它用来测量(-200~850)℃范围内的温度,其物理、化学性能稳定,复现性好,铂热电阻与温度是近似线性关系。所以温度传感器选用Pt100。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021151_530978_1173612_3.jpg控制电路的设计 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021140_530975_1173612_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/01/201501021140_530976_1173612_3.jpg安装调试根据设计图纸,完成了安装、接线并进行调试。

  • 采用PID控制器实现温度、压力和振动等交变试验的自动控制

    采用PID控制器实现温度、压力和振动等交变试验的自动控制

    [size=16px][color=#339999]摘要:目前各种PID控制器仪表常用于简单的设定点(Set Point)和斜坡(Ramp)程序控制,但对于复杂的正弦波等周期性变量的控制则无能为力。为了采用标准PID控制器便捷和低成本的实现对正弦波等周期性变量的自动控制,本文介绍相应的解决方案。解决方案的主要内容一是采用具有远程设定点功能的PID控制器,二是采用外置信号发生器,发生器输出的周期信号作为PID控制器周期性改变的设定值,从而实现周期性变量的自动控制。[/color][/size][align=center][size=16px][img=正弦波等周期性变量PID自动控制的解决方案,600,365]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031128526531_6859_3221506_3.jpg!w690x420.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在各种科研生产中经常会设计一些周期性的温度、湿度、真空压力和振动等交变环境或边界条件来进行各种特定的测试和考核,这些周期性边界条件或环境所呈现出的常见形式往往会是方波、正弦波,三角波和梯形波等,这在各种物理参数的动态测试和产品构件的性能考核试验过程中体现的尤为明显,由此就要求相应的自动化系统能提供这些不同波形环境变量的准确控制,从而保证实际环境的变化与测试及试验数学模型对边界条件的描述尽可能的吻合,最终保证物理变量测试以及考核试验的准确性和可靠性。[/size][size=16px] 在各种温度、湿度、真空压力和振动等环境的形成和自动化控制过程中,基本都是采用各种小巧的工业级PID控制器和PLC可编程逻辑控制器,这些控制器非常适用于定点或变化速度较慢的线性变化控制,图1(a)所示就是这样一个非常典型温度控制变化过程曲线。[/size][align=center][size=16px][color=#339999][b][img=典型被控变量变化曲线,690,213]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031129551376_5834_3221506_3.jpg!w690x213.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 温度过程典型变化曲线:(a)折线形式;(b)正弦波形式[/b][/color][/size][/align][size=16px] 对于图1(a)所示的典型温度变化过程,采用普通的PID程序控制器进行编程设计就可以实现,并且还可以编辑多条这样的多折线控制程序进行存储和调用运行。但对于如图1(b)所示的正弦波形式的温度控制和线性升温加正弦波调制的温度控制,目前还未看到可进行这种周期性变量控制的标准化PID控制器。为了在实际应用中实现这种周期性变量的PID控制,往往需要采用计算机和PLC并进行复杂的控制程序编写才能实现这种复杂功能,但这具有较高的技术门槛。[/size][size=16px] 为了解决上述PID控制器对于复杂正弦波等周期性变量控制的无能为力,并能采用标准PID控制器便捷和低成本的实现对正弦波等周期性变量的自动控制,本文将提出以下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] PID调节器进行自动控制的基本原理是根据设定值与被控对象测量值之间的控制偏差,将偏差按比例、积分和微分通过线性组合形成控制输出量,对被控对象进行控制。这里的设定值是一种泛指,实际上包括了不随时间变化的固定设定值和随时间变化的设定曲线。[/size][size=16px] 由此可见,对于PID控制器要实现自动控制的必要前提是要已知被控对象的变化要求,并将此要求按照设定值曲线输入给PID控制器。通常的设定曲线如图1(a)所示,它可以通过设定不同的爬升速率构成控制程序曲线。如果采用此方式来进行如图1(b)所示正弦波那样的周期性被控对象,则需要设计很多个小折线才能准确代表波形曲线,而在实际应用中还需能不断调整被动对象的波幅和频率,由此可见采用这种折线方式来对正弦波类周期性变化被动对象进行设定值近似无可操作性。总之,这种问题最终可以归结到如何使得PID控制器的设定值变得符合周期性函数特征,并可以很方便的进行波形、波幅和频率的更改。[/size][size=16px] 为了可以很方便的将PID控制器设定值按照所需的函数波形进行设置,本文提出的解决方案具体内容如下:[/size][size=16px] (1)采用具有外部设定点功能的PID控制器,即PID控制器所接收到的外部任意波形信号都可以作为设定值。[/size][size=16px] (2)外置一个函数信号发生器,给PID控制器传输所需的波形信号。[/size][size=16px] 依据上述方案所确定的PID控制装置及其接线如图2所示。[/size][align=center][size=16px][color=#339999][b][img=正弦波等周期变量PID控制装置及接线图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031146347077_9300_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 正弦波等周期变量PID控制装置及接线图[/b][/color][/size][/align][size=16px][color=#339999][b]2.1 具有远程设定点功能的PID控制器[/b][/color][/size][size=16px] 所用的具有远程设定值功能的PID控制器一般配置有两个输入通道,第一主输入通道作为测量被控对象的传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,在程序控制模式下无此功能。[/size][size=16px][color=#339999][b]2.2 函数信号发生器[/b][/color][/size][size=16px] 对于所有被控对象而言,相应的传感器测量输出无外乎就是电压和电阻这两类信号输出。因此,为了实现被控对象周期性变化的控制,可以采用各种相应的函数信号发生器输出周期性设定值,对于热电偶和热电阻的周期信号输出,可以采用专门的过程校验仪输出相应的温度设定值。[/size][size=16px][color=#339999][b]2.3 接线、参数设置和操作[/b][/color][/size][size=16px] 在如图2所示的周期性变量PID控制系统中,在主输入通道上连接过程传感器,在主控输出通道连接的是执行机构,由此传感器、执行机构和PID调节器组成标准的闭环控制回路,在一般情况下可以通过内部设定点进行PID自动控制。[/size][size=16px] 如果要对被控对象进行周期性变化的控制,则使用远程设定点功能,此时需要在辅助输入通道接入远程设定点源,即函数信号发生器或过程校验仪。[/size][size=16px] 完成外部接线后,在运行使用远程设定值功能之前,需要对PID控制器的辅助输入通道相关参数进行设置,需要满足以下几方面要求:[/size][size=16px] (1) 辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2) 辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3) 显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1) 内部参数激活方式:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)外部开关切换激活:如图2所示可连接一个外部开关进行切换来选择远程设定点功能。同时,还需在PID控制器中,设置辅助输入通道2的功能为 “禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图2中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合时为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=16px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决正弦波等周期性变量的PID控制问题,而且使用简便和门槛较低,无需再进行复杂的程序编写。[/size][size=16px] 另外,本解决方案还可以进行多种拓展,如可实现被控对象周期性调制波的加载,非常便于实现更复杂的第二类和第三类边界条件的精密PID控制。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~[/align][size=16px][/size]

  • 热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    [color=#990000]摘要:本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的基本内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]在稳态法防护热板法导热系数测试过程中,要求在稳定状态下对加载在计量加热器上的电功率进行准确测量。在标准测试方法GB/T 10294中的具体规定是“测量施加于计量部分的平均电功率,准确度不低于0.2%,强烈建议使用直流电。推荐自动稳压的输入功率,输入功率的随机波动、变化引起的热板表面温度波动或变化应小于热板和冷板间温差的0.3%。由此可见,防护热板法导热仪计量单元上直流电功率的加载、控制和测量是保证导热系数测量准确性的关键因素之一。除了平均电功率准确度不低于0.2%之外,对于一般冷热板之间20℃温差的导热系数测试,热板表面温度波动或变化还应小于20℃×0.3%=0.06℃。为了满足稳态法防护热板法上述要求,多年来普遍采用的技术手段是采用直流恒流电源,即在计量加热器上施加高精度恒定的直流电流。尽管加载恒定直流电流可以达到标准方法的规定,但同时存在并带来一系列其他问题:(1)热板温度无法实现10的整数倍温度精确控制。(2)热板温度达到稳定时间长。(3)现有工业用PID控制仪表无法达到电功率准确度要求。(4)采用高精度数字电压表和源表,并结合计算机软件进行电功率的PID控制,虽然完全可以解决上述问题,但整体造价十分昂贵。本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的核心内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[size=18px][color=#990000]二、计量单元电加热功率和温度精密控制问题分析[/color][/size]在现有的防护热板法计量单元电加热功率和温度精密控制中,存在着以下几方面的矛盾。下文将对这些矛盾进行分析,并由此便于提出相应的解决方案。[size=16px][color=#990000]2.1 热板加热功率精度与整10℃倍数设定温度控制的矛盾[/color][/size]在许多防护热板法导热仪中,为了满足测试方法对施加在计量单元上的加热电功率准确度要求,往往会按照标准方法推荐而采用高精度直流电源。尽管采用直流电源可保证加热电功率的准确度,但在实际测试过程中则还需凭借测试数据积累和经验总结,才能确定出不同热板温度所对应的一系列不同的加载电流值。这种加热电流直接加载方式尽管能保证电功率的准确度,但最大的问题是无法将热板温度准确控制在任意所需的设定温度上,如无法准确控制整10℃倍数的设定温度,实际热板温度往往偏离设定温度而呈现为非整数形式。另外,在测试不同导热系数样品时,采用相同加热电流往往会表现出不同的热板温度。直接加载直流电流方式,还存在一个严重问题是升温速度较慢,计量单元达到稳定温度需要漫长时间。特别是对于较大样品尺寸的防护热板法导热仪,相应的计量单元体积和热容都较大,往往需要更长的温度稳定时间。相比于低导热样品的较小热容,计量单元温度稳定所需时间占用了更多的整体达到稳态的时间。由于上述问题的存在,这种直接加载直流电的加热方式很少在商业化导热仪上使用,一般用在早期热导仪和实验室自行搭建的导热系数测试设备上。[size=16px][color=#990000]2.2 现有工业用PID控温仪无法满足准确度要求问题[/color][/size]为了解决上述直接加载直流电流加热方式存在的问题,并同时提高导热仪的自动化水平,目前大多数商业化防护热板法导热仪都采用了PID控温仪技术。采用PID控温技术是将温度传感器、调功器、直流恒流源和PID控制器组成闭环控制回路,通过PID算法将计量单元自动控制在任意设定温度点上。采用PID控制技术,尽量在理论上可以完美的解决早期直接加载直流电流方式存在的问题,但带来的问题则是无法达到测试方法规定的加热电功率准确度要求,也就是使用工业PID控温仪势必要在测量精度上做出牺牲。出现不得不牺牲电功率控制精度的主要原因是目前的工业用PID控温仪存在以下几方面的问题:(1)采集精度不够:PID控制器的模数转换(A/D)精度大多都是8位或12位,极个别能达到16位,这明显不能满足高精度测量要求。(2)控制精度不够:PID控制器的数模转换(D/A)精度大多都是8位或12位,同样不能满足高精度控制要求。(3)浮点运算精度不够:PID控制器内微处理器运算一般都采用单精度浮点运算。对于较低位数的数模转换输出控制,单精度浮点运算已经足够,对应的最小输出百分比为0.1%。但对于防护热板法计量单元电加热功率的高精度控制,0.1%的最小输出百分比显然已经无法满足要求。[size=16px][color=#990000]2.3 能满足准确度要求的专用PID控制设备但造价昂贵问题[/color][/size]为解决上述PID控制中存在的问题,目前比较成熟的技术是采用高精度的专用仪器和仪表,并结合计算机组成超高精度的PID控制系统来实现护热板法计量单元电加热功率的控制,并在任意温度设定上实现超高精度的长时间恒定控制。这种超高精度的PID温度控制系统采用了分体式结构搭建而成,分别采用独立的五位半/六位半的数字电压表和数控直流电源来实现高精度的数据采集和控制输出功能,PID运算处理则采用计算机或微处理器实现双精度浮点运算,并将最小输出功率百分比提高到0.01%甚至更低。通过这种分体式结构的PID温度控制系统,同时完美的解决了上述防护热板法导热仪中计量单元电加热功率和温度的高精度控制问题,同时也可以大幅度缩短测试时间。尽管这种分体结构的PID温度控制系统满足了精密测量的各种技术要求,但同时带来的主要问题是造价太高,同时还需进行编程和复杂的调试,因此这种PID温控系统和控制技术在国内外多用于计量机构和对测量精度有较高要求的研究部门,并不适用于对价格比较敏感的商业化防护热板法导热仪,更不适合工业应用中的普通导热仪使用。[size=18px][color=#990000]三、工业用超高精度PID控制器解决方案[/color][/size]上述保护热板法导热仪计量单元的电加热功率和温度精密控制问题的分析以及相应的技术改进,也是多年来保护热板法导热系数测试技术进步的一个典型过程。从上述分析可以看出,这个测试设备的技术迭代过程显然还未真正达到更理想化的水平。为了既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了新的解决方案,即在现有的工业用PID控制器(调节器)技术基础上进行升级,充分发挥工业用PID调节器的运行操作简便、集成化程度高、体积尺寸小安装方便和价格上的优势。核心升级技术的具体内容如下:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)保持传统工业PID调节器的标准尺寸,如96×96、96×48和48×96规格,而屏幕显示采用真彩色IPS TFT全视角液晶显示,数字全5位显示。(5)全新的PID调节器具有单通道VPC 2021-1和VPC 2021-2两种规格系列,可满足不同变量(如真空、压力、温度和电压等)的高精度调节和控制。升级前后的PID调节器如图1和图2所示。[align=center][color=#990000][img=01.升级前的双通道PID调节器,690,321]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611027835_9284_3221506_3.jpg!w690x321.jpg[/img][/color][/align][align=center][color=#990000]图1 升级前的双通道PID调节器[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=升级后的单通道PID调节器,500,388]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611255867_7954_3221506_3.jpg!w690x536.jpg[/img][/color][/align][align=center][color=#990000]图2 升级后的单通道PID调节器[/color][/align]综上所述,解决方案通过对模数转换、数模转换、浮点运算精度和最小输出百分比的全面升级,可完美的实现防护热板法计量单元的电加热功率和温度的超高精度控制。同时,这种全新的超高精度工业用PID调节器也可能用于其他参数的精密控制,并具有很好的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    [align=center][size=16px] [img=温度调制式差示扫描量热法MTDSC中实现正弦波温度控制的方法,650,411]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241524097587_3670_3221506_3.jpg!w690x437.jpg[/img][/size][/align][size=16px][color=#990000]摘要:在调制温度式差式扫描量热仪(MTDSC)中,关键技术之一是正弦波加热温度的实现,此技术是制约目前国内无法生产MTDSC量热仪的重要障碍,这主要是因为现有的PID温控技术根本无法实现不同幅值和频率正弦波这样复杂的设定值输入。本文将针对此难题提出了相应的解决方案,即采用具有外置设定点功能的特制PID控制器来实现正弦波温度控制。[/color][/size][align=center][size=16px][color=#990000]~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 调制温度式差式扫描量热法(MTDSC)是由差示扫描量热法(DSC)演变而来的一种热分析方法,该方法是对温度程序施加正弦波扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统DSC线性变温基础上叠加一个正弦振荡温度程序,如图1所示,由此可随热容变化同时测量热流量,然后利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。[/size][align=center][size=16px][img=01.调制式差示扫描量热法正弦波温度变化曲线,606,395]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527062808_6964_3221506_3.jpg!w606x395.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图1 调制式差示扫描量热法正弦波温度变化曲线[/b][/color][/size][/align][size=16px] 与DSC(差式扫描量热仪)相比,MTDSC(温度调制式差式扫描量热仪)主要会涉及到两项完全不同的技术,一是正弦波温升变化的实现,二是测量信号的傅里叶变换分析。这两项技术作为MTDSC的核心技术,也是制约目前国内无法生产MTDSC量热仪的重要障碍。特别是在正弦波温度变化控制方面,现有的PID温度控制技术根本无法实现正弦波这样复杂的设定值输入。为此,本文将针对正弦波温度的实现提出相应的解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在温度自动控制方面一般常会使用PID调节器,PID温度调节器的基本原理是根据设定值与被控对象测量值之间的温度偏差,将偏差按比例、积分和微分通过计算后形成控制输出量,对被控对象的温度进行控制。这里的设定值是一种泛指,实际上包括了不随时间变化的固定设定值和随时间变化的设定曲线。对MTDSC量热仪而言,设定曲线则是正弦波和一条斜线的叠加而成的曲线,其中的斜线是需设定的平均升温速率,而正弦波则是需设定幅值和频率的正弦温度波。[/size][size=16px] 由此可见,解决MTDSC温度正弦波控制的关键是PID温度控制器的设定值可以按照所需的正弦波和线性曲线叠加后函数进行设置。为此,本文提出的解决方案具体内容如下:[/size][size=16px] (1)采用具有外置设定点功能的PID控制器,即PID控制器所接收到的外部任意波形信号都可以作为设定值。[/size][size=16px] (2)配套一个函数信号发生器,给PID控制器传输所需的正弦波和线性叠加信号。[/size][size=16px] 依据上述方案内容所确定的PID控制装置及其接线如图2所示,具体内容如下:[/size][align=center][size=16px][img=02.调制温度式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图,690,216]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527309145_3057_3221506_3.jpg!w690x216.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图2 调制式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图[/b][/color][/size][/align][size=16px] (1)具有外置设定点功能的PID控制器[/size][size=16px] 所用的具有外置设定值功能的PID控制器具有两个输入通道,主输入通道作为测量被控对象的温度传感器输入,辅助输入通道用来作为外置设定点输入。与主输入通道所能接收的信号一样,辅助输入通道的外置设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入辅助输入通道作为外置设定点源。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,在程序控制模式下无此功能。[/size][size=16px] (2)函数信号发生器[/size][size=16px] 对于MTDSC而言,相应的传感器测量输出无外乎就是电压和电阻这两类信号输出。因此,为了实现MTDSC的温度以正弦波形式的周期性变化,可以采用各种相应的信号发生器输出相应幅值和频率的正弦波信号和线性信号,对这两路电压信号进行叠加后传送给辅助输入通道。[/size][size=18px][color=#990000][b]3. 控制器的接线、设置和操作[/b][/color][/size][size=16px] 为了正常使用正弦波温度控制装置,还需进行相应的接线、设置和操作。[/size][size=16px] 首先,对于图2所示的正弦波温度PID控制装置,也可以用作常规PID温度控制器。即主输入通道连接温度传感器,主控输出1通道连接温控执行机构,由此传感器、执行机构和PID调节器组成标准的闭环控制回路,由此可以通过内部设定点或设定程序进行PID温度控制。[/size][size=16px] 如果要在MTDSC热分析仪上实施正弦波温度变化的控制,则使用外置设定点功能,此时需要在辅助输入通道接入远程设定点源,即函数信号发生器。[/size][size=16px] 完成外部接线后,在运行使用外置设定值功能之前,需要对PID控制器的辅助输入通道相关参数进行设置,且需要满足以下几方面要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的外置设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,在开始使用外置设定点功能之前,还需要激活外置设定值功能。外置设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1)内部参数激活方式:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)外部开关切换激活:如图2所示可连接一个外部开关进行切换来选择外置设定点功能。同时,还需在PID控制器中,设置辅助输入通道2的功能为 “禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图2中所示的开关实现外置设定点和本地设定点之间的切换,开关闭合时为外置设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种外置设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#990000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决温度调制式差式扫描量热仪(MTDSC)的正弦波温度的控制问题,温控器模块化结构可很容易与MTDSC热分析仪进行集成,无需再研发和配置复杂的控制电路和软件。随机配备的计算机软件可方便的进行控制运行和调试,便于热分析研发工作的开展。[/size][size=16px] 解决方案的另一个优势是所采用的PID温控器具有很高的测控精度,其中24位AD、16位DA、双精度浮点运算和0.01%的最小输出百分比,这可以满足MTDSC高精度温度控制需求。[/size][size=16px] 另外,本解决方案中的控制器还可以进行多种拓展,除可实现被控对象周期性调制波的加载之外,还可非常便于实现第二类和第三类边界条件的精密PID控制,同时还可以实现其他物理量,如真空、压力和张力等的串级控制、分程控制和比值控制等。[/size][align=center]~~~~~~~~~~~~~~~~~~~[/align]

  • 气相色谱温度控制原理简述及实现方式

    [font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器在正常进行工作时候,往往需要进行温度控制,如进样口温度控制可以使液体样品迅速气化,被载气带入色谱柱;柱温箱温度控制会影响混合样品的分离;检测器温度控制会影响检测器的灵敏度等。常用的温度控制主要是指加热升温(亦有降温和冷却控制)。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]本文介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器进行温度控制的一般原理。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1 [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]控温原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器控温原理简图如下[size=12px](供参考,不同厂家略有不同)[/size]:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d1/88/8d188c50a6ee9d7da973d4496a26fbd1.png[/img][/align][font=微软雅黑, sans-serif]控温过程中,进样口、检测器等部位的铂电阻(PT100)作为温度传感器,其电阻值会随外界温度的升高而增加;测温电路中含有恒流源电路,通过多路模拟开关在不同时刻为不同通道的铂电阻提供恒定电流,从而将温度信号转换为电压信号[i]U[/i][size=12px]1[/size];测温电路中获得电压信号[i]U[/i][size=12px]1[/size]较低,再通过温度调理电路对其进行放大和滤波,得到输出信号[i]U[/i][size=12px]2[/size];放大后的电压信号通过A/D转换电路,将模拟量转换成数字量[i]U[/i][size=12px]3[/size],传递给控制器做数字量运算处理;控制器接受温度数字信号[i]U[/i][size=12px]3[/size],比较设定温度值和实际温度的差异,经过PID算法输出PWM信号,通过双向固态继电器/可控硅等对220V交流信号进行斩波控制,调整加热部件功率,最终达到控温效果。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]控制器输出的信号一般通过光电耦合器(光耦)作用于可控硅,将输入端与输出端进行电气隔离,输出信号对输入端无影响,增强抗干扰能力。[/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]实现温度控制的部件[/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]温度控制电路板[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]仪器温度参数在色谱工作站或者仪器面板上设置后,下发到温度控制板上,仪器开始执行该参数,进行升温或者降温。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]温度控制电路板上具有进行控温的电路模块和控制器等,一般而言,在进行加热升温过程中,可控硅指示灯会持续闪烁,表示仪器在进行升温控制。各厂家设计大同小异,下图为某厂家控温电路板:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/30/38/230387aac5b41bf1345e5baa91c637b3.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.2 [/font][font=微软雅黑, sans-serif]升温和降温执行部件[/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]非柱温箱升温和降温[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]非柱温箱升温和降温指的是进样口、检测器和转化炉等部件。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/ae/caeaea3b8b069134c4a55a42ed8007e4.png[/img][/align][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]在进样口、检测器等部位一般使用加热棒+铂电阻,升温时利用220V交流电[size=12px](亦有采用24V直流)[/size]在加热棒[size=12px](高阻值)[/size]上产生热量,通过铂电阻(PT100)对温度进行测量和反馈,使进样口、检测器等部位达到设定温度。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d6/0d/7d60dec18c0f0bc732114323722ee982.png[/img][/align][font=微软雅黑, sans-serif]降温时,加热棒停止加热,进样口、检测器等部位自然冷却或者通过小风扇吹风冷却。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.2 [/font][font=微软雅黑, sans-serif]柱温箱升温和降温[/font][font=微软雅黑, sans-serif]2.2.1 [/font][font=微软雅黑, sans-serif]柱温箱升温和温度混合[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱一般使用加热丝+铂电阻,升温时利用220V交流电在加热丝上产生热量,通过铂电阻(PT100)对温度进行测量和反馈,使进样口、检测器等部位达到设定温度。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/23/87/b23875c3d851b88b446fb55ef59464b7.png[/img][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/96/12/79612fda0a57e20e1b38d292f437b402.png[/img][/align][font=微软雅黑, sans-serif]另外,柱温箱内部挡风板之后安装有风扇,通过风扇的转动和混匀作用,可以将加热丝产生的热量均匀分布在柱温箱内,保持柱温箱内具有合适的温度梯度。其工作的简单示意图如下,下左图为柱温箱风扇和加热丝的相对位置,下右图为升温和恒温时,柱温箱内部的气体流动方向[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/51/f1/851f15f7b55fa2fa82853692a64ab471.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.2.2 [/font][font=微软雅黑, sans-serif]柱温箱的降温[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]早期的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱在需要降温时,通过人工手动开启柱温箱门来实现,待温度降到指定温度后,关闭柱温箱门即可。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]目前的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱在程序升温结束恢复到初始较低温度,或者需要降温时,通过仪器自动实现。其主要实现机构主要为柱温箱内部的风扇和仪器后部的降温通道[size=12px](俗称“后开门”结构)[/size]。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/53/e7/b53e751decc03921882e8e8a7077793f.png[/img][/align][font=微软雅黑, sans-serif]仪器开始降温时,柱温箱后部的降温通道[size=12px](俗称“后开门”结构)[/size]在电机带动下开启,热风从上部出口吹出,冷风从下部进口进入,通过冷热交换,仪器柱温箱迅速降温;待温度达到接近指定温度,“后开门”结构短暂的反复进行开合关闭,对温度进行细调;温度达到指定温度后,“后开门”结构完全关闭。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]小结[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的温度控制在仪器分析中极为重要,除了文中常见的升温和降温之外,还涉及到快速升温、冷却剂降温、程序升温和程序降温等多个方面以及结构和设计上的改进与完善。因此了解相关原理,不仅有助于仪器的使用,也有利于仪器的维护和改进。[/font]

  • 温度控制器

    您好!我一朋友现在用的岛津的液相,想外配一个温度控制器,将其温度控制在10°左右,想请教一下您,一般有哪些型号,这个通用吗?

  • 半导体激光器自动温度控制设备配件故障解决办法

    半导体激光器自动温度控制中配件比较多,不同的配件在运行中如果使用不当的话,就会造成半导体激光器自动温度控制配件故障,如果发生故障,改怎么解决呢?  半导体激光器自动温度控制压缩机结霜,可能是循环水流通或阀未打开,检查水阀,所有管路,保证畅通,加装短路管道。可能是循环水管道配置过小,加大循环水管直径,保证水循环正常。  半导体激光器自动温度控制循环水箱内结冰可能是设定温度过低更正设定值;可能水箱内水无循环水,在冷冻水出口和进口之间短接一条循环水路;可能是温控表失控,更换温控表 高压故障 散热不良,散热器过脏,清洗散热器 能风不好,改善通风条件 散热风机不工作,检查风机马达是否烧坏短路维修或更换电机马达;高压擎损坏,更换高压擎; 制冷不良,冷媒不足或管道漏媒,补充冷媒或检漏后补焊,抽真空再补充冷媒 散热不良,散热器过脏、散热水阀门未打开或打开太小,将散热器清理干净,将阀门全开。  半导体激光器自动温度控制水泵故障可能是半导体激光器自动温度控制水泵电机线圈短,断路,修理电机线圈或更换电机,如果是水泵过载保护器自动跳开,将保护器的电流限数在允许的范围内适当调高半按下复位键。  半导体激光器自动温度控制温按表温度显示数字上下跳动可能是温控表损坏,修理或更换温控表,可能是感温线接触不良,修理或更换感温线,可能是感温线及测温体有污,将测温体擦干净。  半导体激光器自动温度控制压缩机故障可能是压缩机线圈短,断路,更换匹配的压缩机,压缩机过载保护器自动跳开,将保护器的电流限数在允许的范围内适当调高并按下复位键。  半导体激光器自动温度控制的配件要想避免一些故障的话,建议平时多多保养半导体激光器自动温度控制的有关说明,做好保养工作。

  • 胶体金读数仪温度控制

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]胶体金读数仪温度控制,胶体金读数仪在温度控制方面有着特定的要求,这主要是因为胶体金卡免疫反应对温度十分敏感,反应速度与温度成正比。在不同的温度下,同样的样本测量结果可能会有所差异。因此,为了确保测量分析结果的可靠性和重复性,胶体金读数仪通常具备内置的温度控制功能。具体来说,一些胶体金读数仪如河南冠宇仪器有限公司生产的金标读卡仪,就具备内置37℃恒温控制测量的功能。这种设计可以确保在进行胶体金卡免疫反应时,反应环境温度保持稳定,从而减小因温度波动带来的测量误差。此外,对于胶体金读数仪的贮存温度也有一定要求。一般来说,胶体金读数仪的贮存温度范围在-20℃至55℃之间,以确保仪器在存放期间不受极端温度影响而损坏或性能下降。在使用胶体金读数仪时,除了要注意仪器的温度控制外,还需要注意其他环境因素对测量结果的影响。例如,湿度、无腐蚀性气体和通风良好的场所也是保证仪器正常运行和测量结果准确性的重要因素。综上所述,胶体金读数仪在温度控制方面有着严格的要求,通过内置恒温控制功能和合理的贮存温度范围,可以确保测量结果的可靠性和重复性。同时,在使用过程中还需要注意其他环境因素的影响,以保证仪器的正常运行和测量结果的准确性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407041006162715_1109_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 气相色谱仪温度控制系统简述

    气相色谱仪温度控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]温度控制的准确和可靠,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的可靠性而言至关重要。尤其是环境分析、生命科学、食品安全、石化分析、电子工业等样品较为复杂、分析方法较为复杂或者分析要求较高的领域,样品分析保留时间重现性的要求较高,对色谱系统温度的要求也比较高。本文简述色谱温度控制系统的基本原理和参与温度控制的主要元器件。[/font][align=center][font=宋体]简述[/font][/align][font=宋体]随着社会科技进步,分析工作者面临着日益增多的分析要求较高的工作,例如食品安全、环境分析、石化分析等方面存在较多复杂样品,一般对组分保留时间的重复性有较高的要求,这就要求[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]有更好的温度控制系统。[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的温度控制系统属于典型的反馈控制系统,控制装置对目标部件的温度施加的控制作用,是取自目标部件温度的反馈信息,用来不断修正设定温度与实际温度之间的偏差,从而实现目标部件的控制任务,温度系统的结构如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][img=,503,129]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836001297_3118_1604036_3.jpg!w690x176.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]温度控制系统框图[/font][/font][/align][font=宋体][font=宋体]以[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱为例对控制系统的工作过程予以说明,在分析工作过程中,如果柱温箱的实际温度发生异常扰动,温度传感器将测定温度值反馈给比较点,温度控制系统将设置温度与测定温度的偏差[/font][font=Times New Roman]e[/font][font=宋体]发送给温度控制器,温度控制器向执行器发出对应的指令——调节加热功率和冷却部件,执行器接受指令使柱温箱温度恢复为设定值。[/font][/font][align=center][font=宋体]温度控制系统元器件组成[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制元器件组成如图[/font][font=Times New Roman]2[/font][font=宋体]所示,被控部件(柱温箱、进样口、检测器或者其他部件)内安装的温度传感器测定其实际温度传送给控制器,控制器调节执行器(包括加热器和冷却器)的工作,使加热器释放的热量与被控部件耗散热量(包括部件自身耗散热量和冷却器消耗热量)达到平衡,被控部件的温度即可达到稳定状态。[/font][/font][align=center][img=,323,158]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836089450_6453_1604036_3.jpg!w690x338.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]温度控制系统元件示意图[/font][/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]温度传感器[/font][/font][font=宋体]常用的温度传感器为铂电阻、热敏电阻和热电偶。温度传感器可以及时准确的测定被控部件的温度反馈给控制器。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]执行器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]通常使用加热器、柱箱风扇、冷却组件、冷却风扇、液氮或液体二氧化碳控制器作为温度执行器。[/font][font=宋体]加热器一般选用加热丝、加热棒等电阻式加热器为进样口、色谱柱、检测器或者其他部件提供加热源,以升高各部件温度。[/font][font=宋体]柱箱一般采用流动空气浴方式加热,柱箱风扇可以使柱箱内温度分布更加均匀,并加快柱箱升温降温速度。[/font][font=宋体]柱箱冷却组件包括柱箱后开门、后开门控制电机、风道、辅助降温风扇以及液氮、液体二氧化碳等部件,以降低柱温箱温度。[/font][font=宋体]某些特殊场合下,某些形式的进样口带有冷却风扇、液氮、液体二氧化碳部件降低进样口温度。[/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]控制器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制器通常情况下由晶闸管之类的电器元件和控制线路组成。色谱系统工作时,由控制器协调加热器和冷却器工作,以获得稳定温度。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]其他部件[/font][/font][font=宋体]保护器(温度熔断器、热电偶或温度开关),当温度控制出现严重故障时,迅速切换系统加热。[/font][align=center][font=宋体]温度控制系统的需要注意的问题[/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]控制系统的时间常数[/font][/font][font=宋体]温度控制系统稳定工作需要传感器与执行器之间的响应时间配合良好,否则将会出现温度震荡的现象。色谱柱温箱要求控制系统响应速度较快,以满足高精度、高速度温度控制要求。一般需要选择响应速度快的薄膜铂电阻符合高速度的控制器工作要求。而检测器、进样口或者其他金属基体的部件,一般需要系统响应时间不要过快。[/font][font=宋体]以进样口为例,常见的进样口使用金属块作为基体,当温度传感器测量到进样口温度低于设定值,控制器发出指令使加热器提高加热功率提高进样口温度。但是进样口温度升高到设定值并不能瞬间完成,即进样口接收到加热指令直至温度上升到设定值之间需要一定的时间差异,如果系统控制时间常数过短,在此期间控制器仍旧发出加热指令,那么进样口温度就会较多超出设定值,降温过程也同样会存在此问题。色谱工作者就会观察到加样口温度在设定值附近发生震荡。[/font][font=宋体]进样口一般使用装配式铂电阻,感知温度也存在一定延迟,与金属块升温延迟都是进样口温度时间常数的重要组成部分,温控系统必须设定有良好的控制信号时间延迟。[/font][font=宋体]也就是说,对于进样口此类的加热惯性较大的部件,当温度控制系统检测到进样口温度发生偏差时,并非迅速给出加热或降温指令,而是首先延迟一段时间,然后再进行调节。[/font][font=宋体]柱温箱系统的加热惯性较小,温控系统需要较短的时间常数。[/font][font=宋体]温度控制不稳定,从而干扰色谱图基线和待测组分的保留时间,比较典型的结果是正弦波状态的基线。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]故障和保护[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度系统的基本原理和常用元器件功能。[/font]

  • 基于半导体制冷片的高精度温度控制系统

    基于半导体制冷片的高精度温度控制系统

    成果简介 半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/07/201607121459_600117_3112929_3.jpg图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600118_3112929_3.png图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600119_3112929_3.jpg图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600120_3112929_3.jpg图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600121_3112929_3.jpg图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571-86872415、0571-87676266;Email:yangsuijun1@sina.com;工贸所网址:http://itmt.cjlu.edu.cn;工贸所微信公众号:中国计量大学工贸所。中国计量大学工业与商贸计量技术研究所简介 中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。 中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。 “应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。 更多研究所介绍请登录研究所网站itmt.cjlu.edu.cn或微信公众号。

  • 【分享】流变仪温度精密控制技术

    通常大家进行流变测试时, 样品暴露在空气中, 如测试温度与室温有一定差距, 或测试粘度/模量-温度曲线时, 则会得到一定的温度梯度.影响实验结果.安东帕公司提供的ADVANCED PELTIER SYSTEM, 可精密控制温度, 采用上,下半导体附件, 并提供CSA, 用于样品内部多点温度测量. 该装置可以控制样品温度精度优于0.1K.

  • 基于半导体制冷片的高精度温度控制系统-生命科学测试仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-生命科学测试仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302259_595308_3112929_3.png 图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302259_595309_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302314_595310_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302314_595311_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302315_595312_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    热电堆和热电阻温度跟踪控制方法及其超高精度多功能PID控制器

    [color=#990000]摘要:针对温度跟踪控制中存在热电堆信号小致使控制器温度跟踪控制精度差,以及热电阻形式的温度跟踪控制中需要额外配置惠斯特电桥进行转换的问题,本文提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此仅通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[/color][align=center][img=高精度温度跟踪控制,600,330]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051642301750_9704_3221506_3.jpg!w690x380.jpg[/img][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size] 在一些工业领域和热分析仪器领域内,常会用到温度自动跟踪功能,以达到以下目的: (1)保证温度均匀性:如一些高精度加热炉和半导体圆晶快速热处理炉等,为实现一定空间或面积内的温度均匀,一般会采取分区加热方式,即辅助加热区的温度会自动跟踪主加热区。 (2)绝热防护:在许多热分析仪器中,如绝热量热仪、热导率测试仪和量热计等,测试模型要求绝热边界条件。这些热分析仪器往往会采取等温绝热方式手段,由此来实现比采用隔热材料的被动绝热方式更高的测量精度。 自动温度跟踪功能的使用往往意味着要实现快速和准确的温度控制,其特征是具有多个温度传感器和加热器,其中温差探测器多为电压信号输出的热电偶和电阻输出的热电阻形式。对于采用这两种温差探测器的温度跟踪控制,在具体实施过程中还存在以下两方面的问题: (1)在以热电堆为温差传感器的跟踪温度控制过程中,往往会用多只热电偶构成热电堆来放大,N对热电偶组成的热电堆会将温差信号放大N倍,但即使放大了温差信号,总的温差信号对应的输出电压也是非常小。如对于K型热电偶,1℃温差对应40uV的电压信号,若使用10对K型热电偶组成温差热电堆,则1℃温差时热电堆只有400uV的电压信号输出。对于如此小的电压值作为PID控制器的输入信号,若要实现小于0.1℃的温度跟踪控制,一般精度的PID控制器很难实现高精度,因此必须采用更高精度的PID控制器。 (2)在以热电阻测温形式的跟踪温度控制过程中,情况将更为复杂,一般是采用复杂的惠斯登电桥(wheatstonebridge)将两只热电阻温度传感器的电阻差转换为电压信号,再采用PID控制器进行跟踪控制。但这样一方面是增加额外的电桥仪表,另一方面同样要面临普通PID控制器精度不高的问题。 为此,针对上述温度跟踪控制中存在的上述问题,本文将提出相应的解决方案。解决方案的核心是采用一个多功能的超高精度PID控制器,具有24AD和16位DA,可大幅提高温差热电堆跟踪温度控制精度。同时,此PID控制器具有远程设定点功能,两个热电阻温度传感器可直接接入控制器就能实现相应的温度自动跟踪控制。由此通过一个超高精度PID控制器,可实现热电偶和热电阻形式的高精度温度跟踪控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 为了实现热电堆和热电阻两种测温形式的温度跟踪控制,解决方案需要解决两个问题: (1)高精度的PID控制器,可检测由多只热电偶组成的温差热电堆输出小信号。 (2)不使用电桥仪器,直接采用PID控制器连接两只热电阻温度传感器进行跟踪控制。 为解决温度跟踪控制中的上述两个问题,解决方案将采用VPC-2021系列多功能超高精度的PID控制器。此控制器的外观和背面接线图如图1所示。[align=center][img=,600,177]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051656426331_2008_3221506_3.jpg!w690x204.jpg[/img][/align][align=center][b][color=#990000]图1 VPC 2021系列多功能超高精度PID控制器[/color][/b][/align] 针对温度跟踪控制,VPC 2021系列多功能超高精度PID程序控制器的主要特点如下: (1)24位AD,16位DA,双精度浮点运算,最小输出百分比为0.01%。 (2)可连接模拟电压小信号,可连接各种热电偶,可连接各种铂电阻和热敏电阻温度传感器,共有多达47种输入信号形式。 (3)具备远程设定点功能,即将外部传感器信号直接作为设定点来进行自动控制。 对于由热电偶组成的热电堆温差探测器形式的温度跟踪控制,具体接线形式如图2所示。[align=center][color=#990000][b][img=温差热电堆控制器接线图,500,194]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051643371408_3010_3221506_3.jpg!w690x268.jpg[/img][/b][/color][/align][align=center][b][color=#990000]图2 温差热电堆控制器接线图[/color][/b][/align] 图2是典型的温差热电堆控制器接线形式,其中用了两只或多只热电偶构成的热电堆检测物体AB之间的温差,温差信号(电压)直接连接到PID控制器的主输入端,PID控制器调节物体B的加热功率,使温差信号始终保持最小(近似零),从而实现物体B的温度始终跟踪物体A。 对于由热电阻温度传感器形式构成的温度跟踪控制,具体接线形式如图3所示。这里用了控制器的远程设定点功能,这时需要物体AB上分别安装两只热电阻温度计,其中物体B上的热电阻(两线制或三线制)连接到PID控制器的主输入端作为控制传感器,物体A上的热电阻(与物体B热电阻制式保持相同)连接到PID控制器的辅助输入端作为远程设定点传感器,由此实现物体B的温度调节始终跟踪物体A的温度变化。[align=center][img=热电阻温度传感器控制器接线图,500,195]https://ng1.17img.cn/bbsfiles/images/2023/01/202301051644317319_3570_3221506_3.jpg!w690x270.jpg[/img][/align][align=center][b][color=#990000]图3 热电阻温度传感器控制器接线图[/color][/b][/align][b][color=#990000][size=18px]3. 总结[/size][/color][/b] 高精度的温度跟踪控制一直以来都是一个技术难点,如对于热电偶组成的温差热电堆温度跟踪控制,若采用普通精度的PID控制器还有实现高精度的温度跟踪控制,通常需要增加外围辅助技术手段,一是通过增加热电偶对数来增大温差电压信号,但这种方式工程实现难度较大且带来导线漏热问题,二是采用较高品质的直流信号放大器对温差电压信号进行放大,这同时增加了控制设备的复杂程度和造价。 对于采用热电阻温度传感器进行温度跟踪控制,以往的实现方法是采用复杂的惠斯登电桥(wheatstone bridge)将两只热电阻温度传感器的电阻差转换为电压信号,这同样增加了控制设备的复杂程度和造价。 由此可见,采用VPC 2021系列多功能超高精度PID调节器,可直接与相应的温度传感器进行连接,简化了温度跟踪控制的实现难度和装置的体积,更主要的是超高精度的数据采集和控制可大幅提高温度跟踪的控制精度。[align=center]~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    [color=#990000][size=16px]摘要:现有的[/size][size=16px]ARC[/size][size=16px]加速量热仪普遍存在单热电偶温差测量误差大造成绝热效果不好,以及样品球较大壁厚造成热惰性因子较大,都使得[/size][size=16px]ARC[/size][size=16px]测量精度不高。为此本文提出了技术改进解决方案,一是采用多只热电偶组成的温差热电堆进行温差测量,二是采用样品球外的压力自动补偿减小样品球壁厚,三是用高导热金属制作样品球提高球体温度均匀性,四是采用具有远程设定点和串级控制高级功能的超高精度[/size][size=16px]PID[/size][size=16px]控制器,解决方案可大幅度提高[/size][size=16px]ARC[/size][size=16px]精度。[/size][/color][align=center][size=16px][color=#990000][b]==============================[/b][/color][/size][/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b][size=16px] 加速量热仪(Accelerating Rate Calorimeter)简称ARC,是一种用于危险品评估的热分析仪器,可以提供绝热条件下化学反应的时间-温度-压力数据。加速量热仪(ARC)基于绝热原理,能精确测得样品热分解初始温度、绝热分解过程中温度和压力随时间的变化曲线,尤其是能给出DTA和DSC等无法给出的物质在热分解初期的压力缓慢变化过程。典型的加速量热仪的结构如图1所示。为了保证加速量热计的测量精度,ARC装置需要实现以下两个重要条件:[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热计典型结构,500,267]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121740385310_8045_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 ARC加速量热仪典型结构[/b][/color][/size][/align][size=16px] (1)被测样品始终处于绝热环境。绝热环境的实施需采用等温绝热方式,即样品球周围的护热加热器温度始终与样品球温度保持一致,两者的温差越小,样品散失或吸收的热量则越小,量热仪测量精度越高。[/size][size=16px] (2)空心结构样品球(样品池或样品容器)的壁厚越薄越好,以最大限度减少热惰性因子,减少球体吸热和放热影响。[/size][size=16px] 在目前的各种商品化ARC加速量热仪中,并不能很好的实现上述两个边界条件,主要存在以下几方面的问题:[/size][size=16px] (1)样品温度和护热温度仅采用了两只热电偶温度传感器,而热电偶的测温精度和一致性本身就较差,仅靠两只热电偶测温和控温,很难保证达到很好的等温效果,往往会造成漏热严重的现象,导致测量精度较差。热电偶在使用一段时间后,这种现象会更加突出。[/size][size=16px] (2)因为化学反应过程中会产生高温高压,使得现有ARC的样品球壁厚必须较厚以具有较大的耐压强度,避免样品球或量热池产生形变或破裂,但这势必增大了热惰性因子。这种壁厚较厚和较大热惰性因子,是造成ARC加速量热仪测量误差较大的另一个主要原因。[/size][size=16px] (3)由于首先要保证壁厚和耐压强度,量热池所用材质往往是高强度金属,但这些金属材质相应的热导率往往较低,较低的热导率则会影响量热池侧壁温度的快速均匀。这种低导热材质所带来的样品球温度非均匀性问题,又会造成周边护热温度控制的误差,所带来的连锁效果会进一步降低测量精度。[/size][size=16px] 为了解决目前ARC加速量热仪存在的上述问题,本文提出了以下解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案主要包括两方面的技术改进,一是采用多只热电偶构成温差热电堆来提高温差检测的灵敏度和更好的保证绝热环境,二是在样品球外增加气体压力自动补偿。改进后的ARC加速量热仪的结构及控制装置如图2所示。[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热仪温度和压力控制装置结构示意图,550,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121741195817_6742_3221506_3.jpg!w690x356.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 ARC加速量热仪温度和压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在如图2所示的高温高压控制装置中,采用了4对热电偶组成的热电堆来检测样品球与护热加热器之间的温差,这样可以使温差测量灵敏度提高4倍,即可使原来采用单只热电偶的量热计测量精度得到大幅提高。在实际应用中,热电堆中的热电偶数量并不限制于4只,可以根据ARC结构和体积采用更多的热电偶,由此可进一步提高温差测量灵敏度,但在选择热电偶时,需要采用尽可能细的热电偶丝,以减少热量通过热电偶丝进行传递。[/size][size=16px] 对于补偿压力的控制,如图2所示,在ARC中增加了一路高压气路。压力控制回路由压力传感器、压力调节器和PID控制器构成,通过压力调节器将来自高压气源(如氮气)的压力进行自动减压控制,使得高温高压腔体内的压力始终跟踪样品球内的压力变化,从而尽可能降低样品球内外的压力差。压力调节器是一个内置压力传感器、PID控制器和两只高速进出气阀门的压力控制装置,可直接接收外部压力设定信号进行快速和准确的压力控制,非常适用于像ARC量热仪高温高压腔这样的密闭腔室的气体压力控制。压力调节器的压力控制范围为0~5MPa(表压),如需要更高压力调节,则需增加一个高压背压阀,但压力调节还是通过压力调节器。[/size][size=16px] 在图2所示的高温高压控制装置中,温差传感器的灵敏度、压力传感器测量精度以及压力调节器控制精度都决定了ARC加速量热计边界条件是否精确,但这些部件对ARC的最终测量精度贡献还需PID控制器来决定。PID控制器作为ARC绝热量热仪的核心仪表,需要满足以下要求才能真正保证最终精度:[/size][size=16px] (1)在量热仪绝热实现方面,采用温差热电堆,可灵敏检测出样品球与护热加热器之间的微小温差变化,但温差灵敏度最终是要通过PID控制器的检测精度得以保证,由此要求PID控制器应有尽可能高的采集精度。同样,绝热控制的最终效果是温差越小越好,这也对PID控制器的控制输出提出了很高的要求,即要求控制精度越高越好。本解决方案中选择了VPC2021系列的超高精度PID控制器,这是目前国际上最高精度的工业用小尺寸PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,可完全满足微小温差热电势信号高精度检测和高精度温度控制的要求。[/size][size=16px] (2)在量热仪高压补偿控制方面,需要对高温高压腔室内的气体压力进行跟踪控制以尽可能的减小样品球内外的压力差。在压力控制回路中,压力传感器用来检测样品球内部的压力变化,同时此传感器的输出压力值又作为高温高压腔室压力控制的设定值,PID控制器根据此设定值来动态控制高温高压腔室压力,这就要求PID控制器具有远程设定点功能,并具有与压力调节器组成串级控制回路的功能,而本解决方案配置的VPC2021系列PID控制器则具备这种高级控制功能。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案采用了温差热电堆和压力补偿两种技术手段对现有ARC加速量热仪进行改进,改进后的ARC加速量热仪具有以下特点:[/size][size=16px] (1)温差热电堆可明显提高温差检测灵敏度,可更好的实现绝热效果。[/size][size=16px] (2)压力补偿可使得样品球的壁厚更薄,并降低了样品球材质的强度要求,样品球就可以采用高导热金属,在降低样品球热惰性因子的同时,更能提高样品球整体的温度均匀性,可显著提高量热仪测量精度。[/size][size=16px] (3)采用了具有远程设定点和串级控制这些高级功能的超高精度PID控制器,可充分发挥上述技术改进措施的优势,真正使ARC加速量热仪测量精度的提高得到了保障。[/size][size=16px] (4)所采用的技术手段,可推广应用到其它形式的热反应量热仪中。[/size][align=center][color=#990000][b][/b][/color][/align][align=center][b]~~~~~~~~~~~~~~~[/b][/align][size=16px][/size]

  • 色谱仪温度控制系统常见故障解析

    [align=center][font=宋体]色谱仪温度控制系统常见故障解析[/font][/align][font=宋体]首先需要保证实验室的电源电压、功率、温度、安装位置等满足色谱仪的工作要求。[/font][font=宋体][font=Calibri]1 [/font][font=宋体]电源:[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱加热功率较大(一般情况下,大于[/font][font=Calibri]2000W[/font][font=宋体]),实验室电源需要有正确的供电电压与足够的输出功率,否则可能造成温度控制问题,例如温度不能达到设定值或者程序升温过程中,实际柱温不能正确跟随温度程序。[/font][/font][font=宋体][font=Calibri]2 [/font][font=宋体]环境温度:[/font][/font][font=宋体][font=宋体]一般情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的柱温箱仅有加热功能并无制冷功能,柱箱的设置温度必须高于环境温度(一般要求高于环境温度[/font][font=Calibri]10[/font][font=宋体]℃左右)。当使用较低柱箱温度的色谱分析条件时,必须控制实验室温度。[/font][/font][font=宋体][font=Calibri]3 [/font][font=宋体]安装位置:[/font][/font][font=宋体]色谱仪重要的工作模块,例如柱温箱或者检测器,应当处于温度或者气流剧烈变动的位置,尽量避免空调之类的气流直吹。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的安装位置,需要保证散热环境良好。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱的背面设计有后开门以利于降温,日常使用中需要注意色谱仪与实验室墙壁之间保持一定距离,清理其他可能会阻碍气流的障碍物。[/font][font=宋体]色谱仪温度系统常见的故障有:[/font][font=宋体][font=Calibri]1 [/font][font=宋体]部件温度显示数值异常[/font][/font][font=宋体]色谱仪开机自检或者运行过程中出现部件的显示温度明显与真实温度不同,某些情况下会出现开机报警现象。[/font][font=宋体]故障原因可能为:温度传感器开路、短路、绝缘不良或者温度传感器内部或者与色谱仪测控线路之间的连接部分接触不良。[/font][font=宋体] [font=宋体]色谱仪温度测控线路存在异常。[/font][/font][font=宋体][font=Calibri]2 [/font][font=宋体]部件不能升温。[/font][/font][font=宋体]一般情况下与执行器损坏有关,例如加热丝或者加热棒内部开路,温度控制线路或者控制线路供电部分异常。[/font][font=宋体]温度控制系统的执行器一般由加热体、控制线路和电源部分组成。常见的问题有控制线路中的晶闸管、继电器或者电源供电部分损坏。[/font][font=宋体][font=Calibri]3 [/font][font=宋体]部件温度失控。[/font][/font][font=宋体]色谱系统启动之后,某模块温度持续上升,不能稳定于设定数值。一般与控制线路工作异常有关,例如晶闸管失效。[/font][font=宋体][font=Calibri]4 [/font][font=宋体]部件温度不能达到设定值。[/font][/font][font=宋体]色谱系统启动之后,部件温度低于或者高于设定值。一般与温度传感器异或者柱箱后开门有关。[/font][font=宋体]温度传感器氧化或者内部发生接触不良造成传感器总体电阻过大,会造成部件温度显示数值错误。色谱柱温箱后开门不能正常关闭,也会造成色谱柱箱温度不能达到较高的设定值。[/font][font=宋体][font=Calibri]5 [/font][font=宋体]部件温度显示数值不稳定[/font][/font][font=宋体][font=Calibri]5.1 [/font][font=宋体]部件温度显示数值发生震荡[/font][/font][font=宋体]环境影响,实验室温度不稳定或者色谱仪靠近气流,例如空调出口。[/font][font=宋体]温度传感器时间常数过大(尤其是检测器部分),或控制线路异常。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱需要使用时间常数较小的温度传感器,一般使用薄膜式铂电阻,可以迅速感知和传递柱温变化,不可以使用金属或陶瓷外壳的铂电阻代替。[/font][font=宋体]检测器部分的温度传感器一般需要与检测器的金属底座有良好的接触,某些仪器要求温度传感器外层包覆铝箔或者涂覆导热硅脂,如果物理接触不良,可能会造成温度的震荡。[/font][font=宋体][font=Calibri]5.2 [/font][font=宋体]部件温度显示数值发生剧烈变化[/font][/font][font=宋体]需要特别予以注意,受控部件尤其是检测器的真实温度是不会迅速发生变化的,尤其是高温迅速变化到低温。一般的原因是温度传感器内部的绝缘或者引线发生故障。[/font][font=宋体][font=Calibri]6 [/font][font=宋体]部件温度不能正常跟随温度程序。[/font][/font][font=宋体]程序升温过程中,色谱柱温箱温度不能跟随程序。[/font][font=宋体]考虑是否实验室电源的电压或者功率不足,或者柱箱后开门不能正常关闭。[/font][font=宋体][font=Calibri]7 [/font][font=宋体]程序升温降温恢复时间过长。[/font][/font][font=宋体]柱箱后开门不能正常开启,或色谱仪器散热环境较差,色谱柱温箱的热气流出口被阻挡。[/font][font=Calibri] [/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制