荧光观测器

仪器信息网荧光观测器专题为您提供2024年最新荧光观测器价格报价、厂家品牌的相关信息, 包括荧光观测器参数、型号等,不管是国产,还是进口品牌的荧光观测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荧光观测器相关的耗材配件、试剂标物,还有荧光观测器相关的最新资讯、资料,以及荧光观测器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

荧光观测器相关的厂商

  • 山东塑邦荧光科技有限公司自1998年创始至今,只专注于荧光增白剂及其中间体的研发、生产和销售。此产品被广泛用于塑料、洗化、油墨油漆、水性涂料、鞋材、印染、纺织、建材等领域。山东塑邦产品科技含量高、生产设备先进、技术力量雄厚、检测手段齐全,并同国内知名大学:华东理工、山东大学、大连理工等建立了长期科研协作关系。并且有自营进出口权,可出口创汇。公司产品销售到全球50多个国家和地区,与数十家国际著名化工企业建立了长期稳定的供求关系。山东塑邦专注打造全球专用化学品领域的“领军”企业;坚持环保可持续发展;坚持科技创新发展;持续提升社会责任。山东塑邦全体员工欢迎业界人士共同发展,欢迎业界精英加盟和协作,为社会做出应有的贡献和努力!山东塑邦荧光科技有限公司是专业生产:塑料荧光增白剂OB-1,PVC塑料荧光增白剂、塑料荧光增白剂OB,扣板荧光增白剂、化纤荧光增白剂、塑编荧光增白剂,鞋材荧光增白剂、吹膜荧光增白剂、印染荧光增白剂、造纸荧光增白剂,洗涤荧光增白剂,水性油墨油漆荧光增白剂,涂料荧光增白剂的生产厂家
    留言咨询
  • 布鲁克(北京)科技有限公司是布鲁克在中国的全资子公司。布鲁克中国的总部位于北京海淀区,在上海和广州设有分公司。布鲁克AXS公司负责中国区X射线类产品的销售和售后服务工作,主要产品有X射线多晶衍射仪、X射线单晶衍射仪、X射线荧光光谱仪和三维X射线显微镜。关注AXS微信公众号,获取更多X射线分析技术和产品介绍。
    留言咨询
  • 主营:便携式光合作用测定仪,水质生物毒性检测仪,便携式光照强度测定仪,便携式叶绿素测定仪,叶绿素荧光测定仪,便携式叶面积仪,活体叶面积测定仪,叶水势测定仪,便携式植物光合荧光测定仪,植物冠层分析仪,土壤水分湿度测定仪,土壤三参数计,土壤水分盐分温度计,土壤温湿度速测仪,便携式土壤PH酸度仪,土壤氮磷钾养分速测仪,土壤紧实度计,土壤养分速测仪,田间小气候观测仪,小型便携式气象站,土壤温湿度记录仪,土壤重金属元素分析仪,土壤重金属污染分析仪,水中水下叶绿素测定仪,多参数水质测定仪,便携式发光菌毒性检测仪,植物冠层测温仪,光温湿记录仪,便携式水质硬度计,便携式余氯计,便携式流速流量计,植物根系测定扫描仪,超声波多普勒流速仪,土壤氧化还原电位仪,植物气孔计,植物叶水势测定仪,土壤呼吸测定系统,去离子蒸馏水机等销售与服务为一体。公司宗旨Tenet Of Company:以人为本,恪守诚信, 致富思源!客户是企业的财源 “诚信”使财源连绵不断 作为SINTEK公司员工,我感到非常高兴;作为SINTEK公司总经理,我感到任重道远。我的工作就是“留心”:留住员工的心 留住客户的心。
    留言咨询

荧光观测器相关的仪器

  • 岛津Shimadzu超声波光探伤装置MIV-X基于岛津独有的光学成像技术,将超声波振子和频闪观测器相结合,可以轻松、无损地检测材料近表面的缺陷,包括不同材料的粘接剥落、以及油漆、热喷涂和涂层等。1、岛津独有的光学成像技术:超声波光探伤技术是通过激励试样表面,并以光学方式检测表面位移,从而观测超声波在表面传播情况的技术。2、任何人都能快速、简单的执行视觉表面检查:只需简单的将超声波振荡器放置于样品上,然后调整相机位置;短时间内即可显示超声波的传输情况,并且从视频中轻松识别缺陷;软件功能丰富、操作简单,标记缺陷、测量尺寸等功能显著增强。3、与超声波探伤的区别(UT):超声波光探伤装置MIV-X可弥补超声波检测(UT)难以检测的区域, 擅长表面和近表面区域检测。
    留言咨询
  • Leica MacroFluo,是一种轴上宏文件系统,具有Leica Z6 APO 6:1或Leica Z16 APO 16:1变焦光学器件,结合了无视差文档的大视场和长工作距离。同轴荧光照明器即使在低放大倍率下也能提供明亮的、高品质的、均匀的荧光照明,这对于应用颇为理想,如在斑马鱼和非洲爪蟾的基因表达,以及土壤或植物细胞分析。您的优势轴上宏文档轴上宏文档系统具备6:1或16:1的变焦光学器件 - 将长工作距离和物场与显微镜所特有的垂直光路相结合,保证了绝对无视差的成像和数字图像处理、分析和测量中高精度的最大精准度。落射荧光照明 落射荧光照明耦合进行变焦 - 即使在低放大倍率下也能提供高品质的极其明亮均匀的荧光。稳定的聚焦柱稳定的聚焦柱 - 有助于最大限度地减少外部振动对图像质量的影响。物镜选择广泛物镜选择广泛 - 允许对整个生物体或细胞内的精细结构进行高分辨率宏观和微观成像。模块化系统 模块化系统 - 允许对任何应用单独调节放大观测器的配置。
    留言咨询
  • 1 引言叶绿素荧光是反应植物光合作用等生理功能的重要指标之一。通过分析植物叶绿素荧光参数,可以直接反应植物的光合能力、胁迫状况等重要的生理状态。因此,叶绿素荧光参数的测量一直为学者所重视。而调制-饱和-脉冲式荧光仪的出现,使得叶绿素荧光野外测量变得方便,但仍然存在着不能在线测量,每次只能测量一个样品、无法长期监测等问题针对上述问题,我们推出了在线式叶绿素荧光监测系统,可以长时期的连续监测植物的叶绿素荧光参数,并且可以配合无线传输模块,远程传送数据,单个仪器可同时测量多达32个样品,并且简单的编程设置,可以选择任意时间或不同时间重复测量相同的参数,对更深入的研究植物的光合作用机制及环境对植物的影响具有重要的意义。2 观测系统设计2.1 目标1) 坚固紧凑2) 低维护3) 多样品同时测量 4) 用户自定义设置5) 多种测量协议6) 远程数据传输7) 安装方便8) 适用野外长期监测 9) 标准数据输出 2.2 系统组成及技术指标2.2.1 系统由如下部分组成:1) 光适应与暗适应单元;2) 主机;3) 分线器;4) 供电单元;5) 支架等附件6) 远红光单元(可选);7) 在线数据传输单元(标配WIFI)8) 气象单元(可选) 2.2.2 技术指标:光适应测量参数:l Y(II): (相关参数采用Loriaux 2013 方法校正)PSII的光量子产额,或ΔF/F’或Yl ETR:相对电子传递速率 l PAR: 光合有效辐射l T:叶片温度l FMS:或FM’,光化光下使用饱和脉冲测的的最大荧光l F:光化光下的荧光信号(饱和脉冲照射之前)暗适应测量参数l FV/FM: PSII的最大光化学效率l FV/FO对胁迫更敏感的一个参数,但不测量植物效率l Fo最小荧光l FM最大荧光l FVl FO’可变荧光远红光(暗适应模块)照射后的最小荧光l FO’计算值淬灭参数:l Hendrickson参数Y(NPQ), Y(NO), Y(II), NPQ, FV/FMl Kramer参数qL, Y(NPQ), Y(NO), Y(II), FV/FMKramer new:NPQ(T), qE(T), & qI(T) (近红色光源)l Puddle参数NPQ, qN,qP,Y(II), FV/FMl 淬灭弛豫(可选)qE、qM、qT、qZ和qIl Ruban/ Murchie 参数pNPQ & qPd快速光曲线:l rETRMAX 最大电子传递速率 l α是通过将ETR与PAR关联而创建的低PAR值处的初始斜率。 它提供了量子效率的量度l Ik光化光强l Im 最佳光化光强硬件参数:光源:蓝色饱和脉冲LED:FM’校正时7000 μmols/m2/s具有方形顶部脉冲的10000 μmols/m2/s可选红色饱和脉冲LED:FM’校正时7000 μmols/m2/s具有方形顶部脉冲的10000 μmols/m2/s调制光源:Blue 455nm – 半波宽18nm的蓝色(455nm)光源可选的半波宽18nm的640nm红色光源光化光源 蓝色,可达5000 μmols红色可选,可达5000 μmols远红光源:用于Fo’测量或者暗适应模式中的预照射。检测方法: 脉冲调制式检测器&滤波器: 具有700 ~ 750带通滤波器的PIN光电二极管 采样速率:1~10000点每秒,根据不同测量自动选择测量时间:使用太阳能或交流电对电池进行供电 存储空间:2GB算法:25ms内8点平均值计算FM, FM' , FO, & FS,降低噪音值输出: CSV文件,可以通过wifi,手机、SD卡、无线点对点,以太网,卫星电话或者U盘传输 供电:可以根据要求提供各种外部12伏电池。可以使用太阳能电源和主电源。操作温度: -10℃~+50℃3 数据处理数据通过主控制器获取,可以通过多种方式下载,所有系统标配Wi-Fi模块,方便客户使用。系统界面为彩色触摸屏,可用于数据采集的编程,也可以使用PC和手机进行远程控制,获得的数据格式同Excel兼容,也可以导入各种数据处理软件进行分析,数采内部自带各种算法,用于计算各种模型参数。 5 产地: 美国
    留言咨询

荧光观测器相关的资讯

  • 荧光显微技术实现深层观测实现新突破
    借助荧光显微技术,研究人员可以深入观察活体动物内部器官组织和活细胞,但该技术局限于被观测物的表面厚度不能超过1毫米。现在,德国专家发明了一种新方法,可以观测更厚表层下的活体动物器官组织。   利用动物蛋白质对光的选择吸收特性,科学家早已发明了用荧光显微镜观测活体动物内部器官组织和活细胞的技术,但光在动物内部组织的聚焦性能太弱,使显微镜下的图像变得非常模糊,因此这项技术一直局限于研究表层厚度不超过1毫米的活体。德国慕尼黑技术大学和海姆赫茨研究中心的研究人员利用自己开发的“多谱耦合层析摄影”技术(MSOT),成功地拍摄了清晰度很高、表层厚度超过6毫米的斑马鱼三维脊椎图。在这项新技术开发中,研究人员利用声波聚焦取代了光学聚焦来重构图像,这一技术突破将使未来研究大型活体动物的内部器官组织和活细胞成为可能。   通过荧光显微镜技术,科学家还可以对生物分子进行光学标注,研究在纳米尺度内的分子图像。研究人员利用这种方法可以减少荧光着色活体组织的背景干扰信号,未来不仅可以研究其它脊椎动物的细胞功能,还可用于开发直接针对动物器官和组织的新药。
  • DFP荧光蛋白观测镜中科院华南植物园采购一台!
    托摩根DFP荧光蛋白观测镜可用于检测动植物以及微生物中绿色荧光蛋白(GFP)和红色荧光蛋白(DsRed)。 DFP荧光蛋白观测镜便于野外作业,检测效率高, 操作方便,开机后不需热机,可直接检测,系统稳定,可长时间持续作业,无需化学底物显色,直接进行观测,不损坏被检测对象的细胞。DFP荧光蛋白观测镜中科院华南植物园是我国历史最久、种类最多、面积最大的南亚热带植物园,此次购买托摩根DFP荧光蛋白观测镜,主要用于植物基因检测。托摩根一直致力于科研事业,产品凭借过硬的品质、完善的售后服务,赢得了众多用户的好评。 Thmorgan咨询热线:4000-688-151. 市场部2017年4月13日
  • 适用于单细胞内单分子动态观测的层状光超高分辨率扫描荧光显微系统的研究
    成果名称 适用于单细胞内单分子动态观测的层状光超高分辨率扫描荧光显微系统的研究 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 超分辨技术是利用随机光学重构等方法,突破光学衍射极限的一种新型显微技术,它使得我们有机会在单分子水平上观察亚细胞结构。但是传统意义的超分辨技术是基于全内反射照明的,这就使得我们可观测的样品厚度远小于细胞厚度,从而无法对细胞深处,如细胞核内的分子进行实时观测。层状光扫描技术是利用高斯光束的性质,通过光线的单方向汇聚产生亚微米级的层状光,从而可以对组织样品进行3D扫描。层状光荧光扫描显微系统有着成像速度快,光致漂白与光毒性效应小等优势,非常适合于组织及真核细胞的观测,但它的分辨率会受到衍射极限的限制。 生命科学学院孙育杰课题组将这两种技术进行了优势互补,发展了新型集成芯片技术,研发出了一种适用于单细胞内单分子动态观测的新型显微系统。在基金的资助下,通过相关设备的购置和材料的加工,有力地推动了项目组相关工作的开展,其主要工作包括:(1)层状光-荧光扫描系统的实现;(2)适用于单细胞层状光成像的新型细胞芯片技术的研究;(3)单分子超高分辨率荧光技术的实现;(4)超高分辨率一层状光荧光扫描复合光路的实现。通过以上工作的开展,单分子超高分辨率荧光显微系统的样机搭建已经完成,顺利通过了第四期项目的验收。这项工作获得了国家自然科学基金委重大项目的后续支持,项目名称为&ldquo 细胞中活性分子实时动态变化与相互作用的荧光探针研究&rdquo 。 应用前景: 该研究成果在细胞生物学,特别是干细胞定向分化、胚胎早期发育、胞内运输等生物过程的研究领域中有着重要的应用前景。

荧光观测器相关的方案

  • OCO-2通过日光诱导叶绿素荧光在太空进行光合作用观测
    从景观到全球尺度的初级生产总值(GPP)的可靠估计对于广泛的生态研究领域(如碳气候反馈)和农业应用(如作物产量和干旱监测)至关重要。然而在这些尺度下测量GPP仍然面临重大挑战。太阳诱导叶绿素荧光(SIF)是直接从光合机制的核心发出的信号。SIF集成了复杂的植物体内生理功能,实时反映光合动态。卫星SIF观测的出现预示着全球光合作用研究的新纪元。轨道碳观测站-2(OCO-2)的SIF产物是OCO-2主要任务目标大气柱CO2(XCO2)的一个偶然但关键的补充副产品。OCO-2 SIF消除了妨碍卫星SIF数据集广泛深入应用的重要障碍,为研究不同时空尺度下的SIF-GPP关系和植被功能梯度提供了新的机遇。
  • 植物生理生态系统应用于小流域生态系统观测
    近日,易科泰工程师在张家口崇礼山区完成植物生理生态监测系统各部件的安装,为华北电力大学小流域建设冀北山地生态系统物质和能量流动野外试验观测站项目提供基础数据。该系统由不间断光合测量模块和叶绿素荧光模块组成,可提供CO2交换速率、光合有效辐射、蒸腾速率、叶片温度、气孔导度、饱和水汽压差、茎流、茎杆生长、空气温湿度、大气压、土壤水分含量、降雨、叶绿素荧光参数等多项数据,可为自然气候条件下的多种植物生长提供科学数据,以比较和评估实验样地的物质和能量流动状态。
  • 便携式土壤呼吸和植物生理生态定点观测系统及其应用
    该系统由便携式土壤呼吸仪SoilBox-343、植物生理生态定点观测系统EMS-ET、叶绿素荧光自动监测仪Monitoring Pen MP110组成,可以很方便的在原位测量如下参数:土壤呼吸速率;植物生理生态指标,包括茎流、茎杆生长量、叶温、冠层温度、空气温湿度、风速风向、光合有效辐射、土壤水分、降雨量等;叶绿素荧光参数,如F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、PAR、Area、Mo、Sm、PI、ABS/RC等50多个叶绿素荧光参数,及3种给光程序的光响应曲线、3种荧光淬灭曲线、OJIP曲线等。

荧光观测器相关的资料

荧光观测器相关的试剂

荧光观测器相关的论坛

  • ICP光谱观察方式比较:垂直观测、水平观测、双向观测

    在ICP光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观测(Radial)、水平观测(Axial)和双向观测(DUO),下面介绍他们的区别:ICP光谱仪垂直观测:又称为垂直观测或者测试观察,是采用垂直放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向垂直;从光谱仪能够接收整个分析区的所有信号。  对不同的元素不用进行炬管调节,是分析测试的常用观察方式。具有更小的基体效应和干扰,特别是对有机样品;对复杂基体也有好的检出限。可以测定任何基体的溶液,如高盐分样品测定、复杂样品的分析、有机物而积炭相对不严重的分析。较低的氩气消耗量。侧向观测方式的炬管是垂直炬,热量和分析废气自然向上进入排气系统。ICP光谱仪垂直观测示意图ICP光谱仪水平观测:又称为轴向观察或端视观测,是采用水平放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向呈水平重合;可使整个火焰个个部分的光都全部通过狭缝。  水平观测方式的优点是:由于整个“火焰”各个部分的光都可以被采集导致灵敏度高,对简单样品有较好的检出限;其缺点:基体效应和电离干扰大,线性范围小,炬管溶液积炭和积盐而沾污,需要及时清洗和维护,RF功率设置不能一般不超过1350W;使用于光谱仪水质分析中。ICP光谱仪水平观测示意图总体而言,ICP垂直观测检测的只是最佳分析区给出的发射信号,其特点就是干扰信号少,但分析元素的发射强度不如水平观测的效果好;水平观测检测的是整个分析通道的发射信号,其特点是分析元素的发射强度大,但缺点是干扰信号比较大。双向观测:  传统双向观测是在水平观测ICP光源的基础上,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误;同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。ICP光谱仪双向观测示意图  在有上述考虑之后,需要改变传统,尤其是改变光路使其简单,几家都推出了双向观测技术。安捷伦的双向观测  首先是安捷伦的5100,它采用ZL的智能光谱组合技术 (DSC),以及全新的仪器设计理念,推出区别于传统的、极具创新的、全新概念的双向观测 5100 SVDV ICP-OES,可实现同步的水平和垂直双向观测分析。安捷伦5100同步垂直双向观测技术的设计原理  传统的双向观测 ICP-OES 需要人为定义测量 元素、分析波长及观测模式,无法完成同 步的双向观测分析。 某些系统甚至采用多狭缝模式,分别应对不同波段、不同观测方式以及不同灵敏度样品的分析要求,极大地降低了样品分析通量和测量效率。5100 SVDV ICP-OES 凭借独特的智能光谱组合技术 (DSC) 一次测量完成水平和垂直信号的同步采集读取,实现高速高效的样品分析,确保复杂基质样品的分析准确度斯派克的双向观测  斯派克公司也推出了双向观测技术  首先,斯派克专门开发了不需经过很多的光路反射、折射,而是采用了无需反射镜的MultiView 等离子体接口,让等离子体切换方向,真正实现直接观测。比如在贵金属分析中,贵金属作为基体元素,其含量90%多,其他微量元素含量极低;而对于贵金属冶炼厂家,矿样中贵金属则变成了微量元素,伴生元素很多;那么采用这种观测方式可以兼顾高含量元素的分析,也可以兼顾低含量元素的分析,同时还能满足复杂基体的分析。MultiView 的切换示意图  此外,斯派克的产品还采用垂直同步双观测(DSOI)技术,一种全新的等离子体视图设计方法,采用垂直等离子体炬,通过新的直接径向视图技术进行观察。两个光学接口捕获从等离子体两侧发射的光,仅使用一个额外的反射,以增加灵敏度和消除困扰新的垂直火炬双视图模型的问题。因此,垂直同步双观测(DSOI)提供了传统径向系统的两倍灵敏度,但是避免了垂直双视图模型的复杂性、缺点和成本。垂直同步双观测(DSOI)示意图  采用同步双向观测应用于斯派克的多款ICP光谱上,包括ACRO,SPECTROGREEN等。  除了观测方面,斯派克的ICP光谱整体采用的光学器件少,包括其不用中阶梯光栅,而用帕邢—龙格结构。优点包括:首先在很宽的光谱范围内分辨率是一个恒定的常数,因此能轻松区分谱线富集区域内相邻谱线,最大限度减少光谱干扰。而中阶梯光栅正相反,只是在200nm处有最好的分辨率,而到了300nm或400nm处分辨率会有大幅度的下降。其次是线性范围宽,例如在做固体金属分析时,几乎所有光谱仪器都是采用的帕邢—龙格结构,因为一个固体样品里既有主量元素也有微量元素,高低含量元素都要兼顾到。帕邢—龙格结构线性范围很宽。第三点,帕邢—龙格结构系统采用的光学器件最少,只有反射镜和光栅,由于光路设计越简单,光量损失就越少,仪器灵敏度越高。帕邢—龙格结构的缺点是:仪器体积大。

荧光观测器相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制