当前位置: 仪器信息网 > 行业主题 > >

模拟电视场强仪

仪器信息网模拟电视场强仪专题为您提供2024年最新模拟电视场强仪价格报价、厂家品牌的相关信息, 包括模拟电视场强仪参数、型号等,不管是国产,还是进口品牌的模拟电视场强仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合模拟电视场强仪相关的耗材配件、试剂标物,还有模拟电视场强仪相关的最新资讯、资料,以及模拟电视场强仪相关的解决方案。

模拟电视场强仪相关的资讯

  • 上海仪迈模拟旋光仪退市 数字旋光仪全线推出
    p   今年是上海仪迈仪器科技有限公司成立五周年,这五年来,上海仪迈取得了哪些业绩?又有哪些运营心得?日前,借第十六届北京分析测试学术报告会暨展览会(BCEIA 2015)召开之际,仪器信息网视频采访了上海仪迈市场总监郑炜以及产品经理(PM)王彤。 /p script type=" text/javascript" src=" https://p.bokecc.com/player?vid=0EAD6B58BDF35CCF9C33DC5901307461& amp siteid=D9180EE599D5BD46& amp autoStart=true& amp width=600& amp height=490& amp playerid=621F7722C6B7BD4E& amp playertype=1" /script p   郑炜介绍说,上海仪迈成立这五年来,始终专注于物理光学与电化学仪器的研发与推广,并采用了国产仪器企业少有的PM负责制进行产品管理,坚持打造本土精品仪器。 /p p   王彤则对上海仪迈PM负责制深有体会,对这种先进的产品管理模式表示十分认同。同时她表示,借助这种PM管理模式,上海仪迈先后推出了数字平台digi600、digi300系列以及120digi系列旋光仪,可以满足国内高中低端用户的全部应用需求,“就如同模拟电视向数字电视的转变一样,现在我们借本届BCEIA宣布,上海仪迈模拟平台旋光仪正式退市,接下来将是数字平台旋光仪的时代,上海仪迈现有产品已经可以替代市场中的所有产品。” /p
  • 上海微系统所在300mm大硅片晶体生长的数值模拟研究方面取得重要进展
    300mm大硅片是集成电路制造不可或缺的基础材料,对整个集成电路产业的发展起着关键支撑作用。针对我国集成电路制造行业对低氧高阻、近零缺陷等硅片产品的迫切需求,亟需解决大直径、高质量硅单晶晶体生长技术中的氧杂质输运、晶体缺陷调控等基础科学问题,进而开发大直径单晶晶体生长技术,实现特定的晶体杂质、缺陷的人工调控,满足射频、存储等领域的应用需求。   近日,中科院微系统所魏星研究员团队,在300mm晶体生长的数值模拟研究领域取得重要进展。该团队自主开发了耦合横向磁场的三维晶体生长传热传质模型,并首次揭示了晶体感应电流对硅熔体内对流和传热传质的影响机制,相关成果于2023年05月以 “Effects of induced current in crystal on melt flow and melt-crystal interface during industrial 300 mm Czochralski silicon crystal growth with transverse magnetic field”为题,发表在美国化学会旗下晶体学领域的旗舰期刊《Crystal growth & design》上。   在本工作中,通过对比三组仿真结果,系统的分析了晶体电导率、磁场强度、晶转速率这三个关键参数对晶体内感应电流的影响,进而分析了其对熔体对流、温度分布和界面形状的影响。结合实验数据,模型准确性得以验证,并预测了建模所需的合理的晶体电导率。研究结果表明,当晶体中感应电流增加时,界面下强制对流的驱动力逐渐从离心力转变为洛伦兹力,并改变强制对流的旋转方向,从而影响固液界面形状。这项研究弥补了传统模型的忽略晶体感应电流的不足,首次系统地揭示了晶转引起的感应电流以及关键工艺参数对传热传质、固液界面等的影响,大大提高了仿真结果的准确性,为近零缺陷硅片产品晶体生长技术的优化提供了理论支撑。   中科院上海微系统所陈松松助理研究员为文章的第一作者,魏星研究员为通讯作者。 中国科学院上海微系统与信息技术研究所原名中国科学院上海冶金研究所,前身是成立于1928年的国立中央研究院工程研究所,是中国最早的工学研究机构之一。中国科学院上海微系统与信息技术研究所学科领域为:电子科学与技术、信息与通信工程;学科方向为微小卫星、无线传感网络、未来移动通信、微系统技术、信息功能材料与器件。图 1 模型示意图2 (a)晶体感应电流,(b)强制对流驱动力示意图和熔体自由液面温场、流场分布图
  • 电化学储能市场增长 德州仪器专为储能推出BMS模拟芯片
    今年以来,宁德时代、晶科能源等原本优势业务为动力电池、光伏组件的厂商频频布局储能系统,随着储能市场活跃,第一财经记者了解到,产业链也感受到变化。芯片厂商德州仪器技术经理檀瑞安近日告诉第一财经记者,储能市场从去年至今需求上涨,公司储能系统方面的客户相比以往有所增多,其中一些厂商以往不直接做储能系统。  德州仪器是模拟芯片和嵌入式芯片厂商,为电化学储能系统提供BMS(电源管理系统)芯片,供给下游客户生产储能系统。檀瑞安感受到储能系统玩家增多,源于电化学储能需求迅猛增长下,电芯、光伏等厂商将业务延伸至储能系统。  国家能源局数据显示,截至今年上半年,国内可再生能源装机突破13亿千瓦,同比增长18.2%,历史性超过煤电。中国化学与物理电源行业协会储能应用分会数据则显示,今年上半年投运新型储能项目154个,其中电化学储能项目投运143个。随着电化学储能市场增长,储能系统安全性问题受到业内重视。储能市场活跃  德州仪器近期专门为储能领域推出一款BMS模拟芯片。檀瑞安告诉第一财经记者,电源管理芯片通常是汽车和储能共用的,但在汽车、储能场景需求都很大的情况下,德州仪器希望把AFE(模拟前端)分成储能、汽车两部分。  德州仪器对储能场景的重视具有代表性。集邦咨询数据显示,电源管理芯片海外IDM大厂以德州仪器、ADI、英飞凌、瑞萨、安森美、意法半导体、恩智浦为代表,IDM厂合计市占率63%,其中德州仪器市占率达22%。从集邦咨询的市场预估看,多类消费电子电源管理芯片需求不振,陷入降价,今年上半年仅少量工业与车用需求维持稳定,而工业和车用领域电源管理芯片有83%掌握在IDM大厂手上。  除上游芯片需求受行情催化外,中游的储能系统市场活跃度也较高。据梳理,今年以来完成新一轮融资的相关厂商包括上海电气储能、麦田能源、奇点能源、海辰储能、揽海能源等,多起融资金额过亿元,海博思创还在冲刺科创板上市。  不少储能系统厂商“跨界”而来。檀瑞安告诉第一财经记者,入局做储能系统的厂商可分为三类:储能品牌商、锂电池厂商和从风电、光伏跨界的厂商,市场此前以储能品牌商和锂电池厂商为主流,后来,随着市场盘子越来越大,做逆变器、光伏和风电的厂商也延伸至储能系统领域,以前这些逆变器、光伏厂商是给储能做配套的功率变换系统。  “以前做BMS的就做BMS,做Power(包括solar inverter和Power conversion system,光伏逆变器和储能逆变器)的就只做Power,现在大家都想扩展,市场越来越活跃。” 檀瑞安表示。  从市场格局看,据中关村储能产业技术联盟数据,去年中国储能系统集成商出货量排名前五是海博思创、中车株洲所、阳光电源、天合储能和远景能源,前十名的多家厂商出货量差距不大。TrendForce集邦咨询新能源总监王健告诉第一财经记者,储能系统集成格局较分散,竞争激烈,储能集成系统处于竞争初期,目前储能系统头部厂商排名变化较大,竞争格局处于演变重塑期。  王健表示,储能系统集成商向上游对接大量设备供应商,将各子系统集成为储能系统产品,向下游交付并提供后续质保服务,技术、渠道、资金构筑了行业壁垒,单个项目投资大、周期长,对资金实力要求高。预计技术领先、客户资源丰富、供应链整合能力强的企业市占率有望进一步提高。安全成为关键  从需求较大的储能场景看,檀瑞安告诉第一财经记者,欧洲家储(家庭储能)市场较成熟,国内以电网储能为主的大储(大功率储能)应用更多,电网储能增长形势较好。工商储(工商业储能)需求未来也可能爆发。  安全性则是储能行业发展的关键问题。在电芯厂商通过技术优化提高电芯安全性的同时,管理及维护电池单位、监管电池状态的电源管理BMS也是关键一环。  第一财经记者了解到,储能电池关注充放电次数,有使用寿命的要求,但瞬态充放电速度要求没有汽车那么高,系统方面,储能系统电池电压范围较宽。汽车和储能两个场景对BMS的要求有所不同。据檀瑞安介绍,针对储能系统,温度采样时公司会建议预留每颗电芯单独采样,而在汽车场景中一般不会。  檀瑞安表示,从家储到工商储、大储,电池容量从几千瓦时上升至几兆瓦时,随着容量增大,安全的重要性更加凸显。从保障电池安全性的角度,德州仪器的芯片会进行失效分析和寿命分析,以减少芯片失效风险,同时也在系统端助客户设计,通过合理失效分析避免单个器件失效影响整体系统安全性。  目前BMS已在汽车动力电池、储能电池中广泛应用。据国际能源网数据,电池占储能系统成本约60%,逆变器约占20%,BMS占5%。  檀瑞安表示,单纯从成本看,BMS占比不高,但没有BMS系统,储能系统就无法运转,一些储能站发生危险事故的案例,背后是因BMS没有做好。电化学储能最核心的问题是安全,大家现在关注储能电池能否安全运行10年、15年甚至20年。如果能长时间安全运行,且减少后期维护成本,成本实际上也会被摊薄。  国联证券研报指出,储能装置能量比动力电池系统高1~2个数量级,锂电池储能系统火灾的严重性远大于电动汽车电池火灾,今年7月,储能新国标开始实施,储能安全标准已趋严。储能电站系统由储能电池、储能逆变器、温控系统、消防系统、BMS和其他设备集成,系统集成商作为储能安全的第一责任人,对系统安全的重识或也将提高其竞争壁垒。
  • 托摩根—AO1000模拟生物降解仪新品上线!
    模拟生物降解仪AO1000适用于生物降解性实验, 符合DIN/DEV38412-L24和OECD 303A实验要求,可用于实验室小规模污水处理。 AO1000AO1000模拟生物降解仪利用活性污泥对有机废物的分解消化作用,通过厌氧发酵,好氧生物降解,沉淀分离等流程,来达到对污水的模拟生物降解。托摩根将一如既往,将产品质量放在第一位,加大研发投入,为用户带去更优质的仪器、更完善的服务,为中国的科研事业添砖加瓦!Thmorgan产品咨询热线:4000-688-151. 市场部2017年4月26日
  • 生成式AI与模拟工具:正掀起科学仪器研发变革
    在科技飞速发展的时代,仪器研发正经历深刻变革。传统研发过程耗费大量时间、人力和资源,而生成式AI和模拟工具的引入,正在改变这一局面。生成式AI通过学习大量设计数据,迅速生成多种创新设计选项,不仅节省设计时间,还能在早期发现潜在问题,减少后期修改。无论是外观设计、功能布局还是材料选择,生成式AI都以超高速度和精度完成任务。确定设计方案后,模拟工具可以快速将其转化为可行产品。研发人员在虚拟环境中测试设计的可行性,从物理特性到操作性能,再到耐用性和安全性,模拟工具可以在制造前完成所有验证,降低研发成本,加快产品上市速度。当生成式AI与模拟工具结合,研发效率大幅提升。生成式AI提供多样设计选择,模拟工具帮助筛选最优方案。两者协同工作,使从创意到产品的全过程更加流畅,缩短研发周期,提升创新频率。生成式AI和模拟工具的结合,正改变仪器研发的规则,为企业带来前所未有的竞争优势。未来,随着技术进步,仪器研发将更加智能化和自动化,推动行业迈向新高峰。  在创新型仪器的研发过程中,涉及多个关键阶段,如设计与优化、原型制造以及设计验证测试(DVT)。每个阶段都至关重要,帮助研发团队从概念到产品的完整开发流程得以实现。分析维度内容 设计思路 以用户需求和市场需求为导向,结合前沿技术,提出创新型设计理念。 概念设计 通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观、材料等初步设计方案。 详细设计 使用CAD软件(如SolidWorks、AutoCAD)进行详细的结构设计、组件选型和系统布局。 性能优化 通过仿真与模拟(如热力学、流体力学、结构力学分析)优化设计,提高仪器性能和可靠性。 可制造性优化 考虑生产过程中的制造成本、装配便捷性、可维护性,优化设计以提高生产效率并降低成本。  在设计与优化阶段,研发人员基于用户需求和市场需求,结合前沿技术,提出了创新型设计理念。首先,研发团队通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观和材料的初步设计方案。接着,他们使用CAD软件(如SolidWorks和AutoCAD)进行详细的结构设计,定义零部件的精确尺寸和位置,确保所有组件的装配和互操作性。通过有限元分析(FEA)进行结构强度与应力分析,确保设计的安全性与可靠性。此外,团队还使用仿真工具进行热管理与散热设计,模拟设备内部的热流和温度分布,优化散热结构,以确保设备在安全的温度范围内运行。分析维度内容 原型开发 基于详细设计图纸,制造功能样机,通常使用3D打印、CNC加工或快速原型制造技术。 材料选择 选择适合的材料(如塑料、金属、复合材料)以平衡成本、重量、耐用性和功能需求。 部件制造与装配 制造和装配各个部件,构建完整的原型仪器,测试各个组件的互操作性。 功能测试 对原型进行初步的功能测试,确保仪器的基本功能符合设计预期,如电气测试、机械测试等。  原型制造阶段开始时,研发团队基于详细的设计图纸制造功能样机,这通常采用3D打印、CNC加工或其他快速原型制造技术。在这一过程中,他们仔细选择适合的材料,以平衡成本、重量、耐用性和功能需求。随后,团队制造和装配各个部件,构建完整的原型仪器,并对其进行初步的功能测试,以确保仪器的基本功能符合设计预期,包括电气和机械测试。分析维度内容 测试规划 制定详细的测试计划,包括测试目的、测试标准、测试方法和测试工具的选择。 环境测试 在极端环境条件下(如温度、湿度、震动)测试仪器的稳定性和耐用性,验证其是否能在实际工作环境中可靠运行。 性能测试测试仪器的关键性能指标(如精度、速度、灵敏度),确保其达到或超出设计要求。 安全测试 进行电气安全、机械安全、软件安全等方面的测试,确保仪器在操作中不会对用户和环境造成危害。 合规测试 确保仪器符合相关行业标准和法规(如ISO、CE、FDA等),获取必要的认证和许可。 测试结果分析 收集和分析测试数据,评估仪器的性能和质量,识别并解决设计中的潜在问题。 设计迭代与优化 根据DVT测试结果进行设计优化,修正问题,进行设计迭代,并在必要时制造新的原型进行重新测试。  设计验证测试(DVT)阶段是确保产品质量的关键。首先,团队制定详细的测试计划,明确测试目的、标准、方法和工具选择。在极端环境条件下(如温度、湿度、震动),对仪器进行环境测试,以验证其稳定性和耐用性。此外,团队还会进行性能测试,确保仪器的关键性能指标(如精度、速度、灵敏度)达到或超出设计要求。为了保证安全,团队还进行电气、机械和软件安全测试,确保仪器在操作中不会对用户和环境造成危害。最后,合规测试确保仪器符合相关行业标准和法规,获取必要的认证和许可。测试结果分析后,团队会根据DVT测试结果进行设计优化,修正问题,并在必要时制造新的原型进行重新测试。分析维度内容 定型设计 经过多次迭代和优化,最终确定设计方案,为批量生产做准备。 生产工艺确定 确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。 生产验证 通过试生产验证生产线的可靠性,确保产品质量满足量产要求。 市场反馈收集 初期产品投放市场后,收集用户反馈,进行必要的产品改进和升级。  在最终定型与量产准备阶段,经过多次迭代和优化后,研发团队最终确定设计方案,为批量生产做准备。这包括确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。在试生产阶段,团队验证生产线的可靠性,以确保产品质量满足量产要求。最后,在产品投放市场后,团队还会收集用户反馈,进行必要的产品改进和升级。设计步骤关键任务详细内容1. 结构设计 概念建模 创建初步的3D模型 根据设计需求,建立设备的初步3D模型,定义整体外观和结构。 详细结构设计 完成详细的几何建模 设计内部结构,包含零部件的精确尺寸和位置,确保所有组件的装配和互操作性。 强度分析 结构强度与应力分析 通过有限元分析(FEA)评估结构的应力分布,确保结构的安全性与可靠性。 热管理设计 热管理与散热设计 模拟设备内部的热流和散热情况,优化散热孔布局和冷却系统。2. 组件选型 电子元件选型 电子元器件选择 选择符合设计需求的电源模块、处理器、传感器、连接器等电子元件,并在设计中标注其位置。 机械部件选型 标准机械件选型 选择标准机械部件,如螺钉、螺母、轴承、齿轮等,并集成到设计中。 材料选型 材料选择与应用 根据力学、热学及其他性能要求,选择合适的材料(如铝合金、塑料、复合材料等)。 采购件选型 外购件选型 选择市场上可采购的标准件或外购件(如显示屏、接口模块等),并与制造商对接,确保供应链的可行性。3. 系统布局设计 内部布局设计 内部元件布局优化 根据功能需求和物理空间,优化内部元件的排列,确保结构紧凑、操作便捷及热管理合理。 电气系统布局 电路和布线设计 设计内部电路布局,包括信号线、供电线和地线的位置,确保电气系统的安全和高效运行。 接口与连接设计 接口模块与外部连接设计 设计设备的输入输出接口布局,包括电源接口、数据接口、冷却系统接口等,并确保连接方便、牢固。 人机交互布局 控制面板与用户界面设计 设计用户界面布局,如控制按钮、显示屏的位置,确保用户操作的便捷性和界面的直观性。4. 装配与制造准备 装配设计 装配顺序与工艺流程设计 确定各组件的装配顺序,优化装配流程,减少制造时间和成本,确保装配的可靠性。 制造工艺设计 制造工艺与加工方案 制定加工方案,选择合适的制造工艺(如CNC加工、3D打印),并在设计中考虑制造公差和装配间隙。 设计验证 仿真验证与优化 通过仿真工具验证整个系统的设计,包括结构强度、热管理、振动和冲击测试等,确保设计满足所有技术要求。5. 技术文档与图纸输出 工程图纸生成 工程图纸与BOM表输出 输出详细的2D工程图纸,包括各零部件的尺寸标注、装配关系图、材料清单(BOM)等,供生产和采购使用。 技术文档编制 制造与装配说明文档 编制详细的制造与装配说明文档,包括每个工艺步骤的描述、注意事项、质量控制要求等。 版本管理与修订 设计版本管理与修订 通过PDM系统管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。  为了实现这些步骤,研发团队使用多种软件工具支持设计过程。首先,在结构设计中,SolidWorks和AutoCAD被用于初步的3D建模和详细的几何建模,确保设备的整体外观和内部结构合理。随后,通过SolidWorks Simulation进行结构强度与应力分析,确保设计的安全性。此外,团队使用SolidWorks Flow Simulation进行热管理设计,模拟热流和散热情况,以优化散热系统。接下来,组件选型阶段涉及选择电子元件、机械部件和材料,这些选择影响到最终产品的性能和制造成本。团队还会利用AutoCAD Electrical进行电气系统布局设计,确保信号线、供电线和地线的布线合理且高效。在系统布局设计阶段,研发人员优化内部元件的排列,设计设备的接口模块与外部连接,并确保人机交互界面的设计便捷直观。最后,装配与制造准备阶段中,团队通过SolidWorks进行装配设计,确定组件的装配顺序和工艺流程,并通过仿真工具验证整个系统的设计,确保结构强度、热管理、振动和冲击测试结果达到所有技术要求。在工程图纸生成和技术文档编制方面,研发团队使用SolidWorks和AutoCAD输出详细的工程图纸和材料清单(BOM),并编制制造与装配说明文档,确保生产过程的顺利进行。  整个设计与研发过程不仅依赖于软件工具的支持,还通过多学科优化工具(如ModeFrontier)进行综合性能优化,结合热力学、流体力学和结构力学的仿真结果,确保每次设计迭代都能提升设备的整体性能和可靠性。通过这些详细的步骤和方法,创新型仪器的研发得以高效进行,并最终实现从概念到产品的完整转化。在这一复杂的研发过程中,每个阶段都扮演着至关重要的角色,从设计概念的初步构思到最终的产品定型和量产准备。每一个环节都要求精细的操作和严密的协同,以确保研发过程的顺利推进。在设计与优化阶段,概念建模是研发工作的开端。使用SolidWorks等CAD软件,团队根据设计需求建立初步的3D模型。这一步骤的目标是定义设备的整体外观和结构,以便在后续阶段进行更详细的设计工作。接着,详细结构设计进一步精细化设备内部结构,确保所有零部件的尺寸和位置精确无误,并且组件之间能够顺利装配和互操作。这些工作需要SolidWorks和AutoCAD等软件的支持,以保证设计的准确性和可行性。  在这个阶段,强度分析也是不可或缺的一部分。通过有限元分析(FEA),研发团队能够评估设计中可能存在的应力分布问题,确保设备的结构在各种工作条件下都能保持安全和稳定。与此同时,热管理设计通过SolidWorks Flow Simulation进行,研发人员模拟设备内部的热流和温度分布,优化散热系统,确保设备在运行过程中能够有效地控制温度。组件选型是研发中的另一关键步骤。团队需要根据设计需求选择适当的电子元件和机械部件,如电源模块、传感器、螺钉、轴承等。这些部件不仅影响到设备的性能,还对生产成本和制造难度产生重要影响。在材料选型过程中,团队必须权衡力学、热学等多方面性能要求,选择最适合的材料,如铝合金、塑料或复合材料。这一过程还涉及外购件的选择,团队需要确保这些外购件与整体设计的兼容性,并与供应商对接,确保供应链的顺畅运作。系统布局设计阶段,研发团队进一步优化设备内部的元件布局,确保结构紧凑、操作便捷,尤其是在涉及热管理的情况下,布局优化显得尤为重要。电气系统布局设计需要特别考虑信号线、供电线和地线的布线位置,以保证电气系统的安全和高效运行。接口与连接设计则专注于设备的输入输出接口布局,确保连接方便、牢固,并满足使用环境的需求。人机交互布局设计通过控制面板和用户界面的合理安排,提升设备的操作便捷性和用户体验。在装配与制造准备阶段,研发团队必须制定装配顺序和工艺流程,确保每个组件能够顺利装配,减少制造时间和成本。通过仿真工具验证整个系统的设计,确保设计满足所有技术要求,如结构强度、热管理、振动和冲击测试等。工程图纸生成是这一阶段的重要任务,团队需要输出详细的2D工程图纸,包括零部件的尺寸标注和装配关系图,这些图纸是生产和采购的基础。技术文档编制也是装配与制造准备阶段的核心工作之一。团队需要编制详细的制造与装配说明文档,描述每个工艺步骤的具体操作、注意事项和质量控制要求。通过版本管理与修订工具,如PDM系统(如SolidWorks PDM),团队可以管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。仿真与模拟类型关键任务详细内容热力学分析(SolidWorks Flow Simulation, ANSYS) 热源识别与建模 识别并建模关键热源 确定设备内部发热元件(如处理器、激光器)的热源位置,建立热源模型,分析热量产生与传递路径。 散热设计与优化 散热系统设计与仿真 设计散热方案,如散热片、风扇、液冷系统,模拟热流和温度分布,优化散热结构,确保设备运行温度在安全范围内。 热管理策略优化 热管理系统优化 通过仿真分析设备在不同工作条件下的温度变化,优化热管理策略,如主动冷却、被动散热等,提升设备的可靠性。流体力学分析(ANSYS Fluent, SolidWorks Flow Simulation) 空气流动分析 内部空气流动模拟与优化 模拟设备内部空气流动情况,评估空气流动对散热效果的影响,优化风道设计,确保空气流动的均匀性和效率。 冷却液流动分析 液冷系统流动分析 模拟液冷系统中冷却液的流动情况,分析冷却液在热源处的流动速度和散热效率,优化管路布局和泵的选择。 密封与防护设计 防水防尘设计与验证 模拟设备在湿度、粉尘等恶劣环境下的密封性能,确保设备能够防水防尘,避免外界环境对内部元件的损害。结构力学分析(ANSYS Mechanical, SolidWorks Simulation) 应力应变分析 结构强度与应力分布分析 通过有限元分析(FEA),模拟设备在外力作用下的应力和应变分布,优化结构设计,避免应力集中和结构失效。 振动与冲击分析 振动与冲击响应分析 模拟设备在运输和操作过程中的振动和冲击,优化支撑结构和缓冲材料,确保设备的抗振性和抗冲击性。 疲劳分析与寿命预测 结构疲劳寿命预测 通过疲劳分析,预测设备在长期使用中的疲劳寿命,优化关键部件的设计,延长设备使用寿命,减少故障率。综合优化与迭代(Multidisciplinary Optimization Tools (MDO)) 多学科优化 综合性能优化 结合热力学、流体力学和结构力学分析结果,通过多学科优化工具(MDO)进行综合性能优化,提升设备整体性能。 设计迭代与验证 基于仿真结果的设计迭代 根据仿真结果进行设计修改和迭代,重新验证修改后的设计性能,确保每次迭代都能够提升设备的可靠性和性能。  在整个研发过程中,仿真与模拟技术为设计优化提供了重要支持。例如,热力学分析通过识别和建模设备内部的关键热源,帮助团队优化散热设计。流体力学分析则用于模拟设备内部空气和冷却液的流动情况,确保散热系统的高效性和设备的密封性能。结构力学分析通过应力应变分析、振动与冲击分析、疲劳分析等手段,评估设备在不同条件下的结构强度和使用寿命,帮助研发团队在设计过程中避免潜在的结构失效。通过多学科优化工具(如ModeFrontier),团队能够将热力学、流体力学和结构力学的仿真结果综合起来,进行全方位的性能优化。这样的多学科优化不仅提高了设备的整体性能,还减少了设计迭代的次数,加快了研发进程。设计迭代是研发过程中的常规步骤。基于仿真和测试结果,团队不断调整设计,修正问题,并通过制造新的原型进行重新测试。这一过程确保了最终产品在各个方面都达到了设计要求和质量标准。最终,在经过多轮设计迭代和验证后,团队最终确定产品设计,进入量产准备阶段。这包括确定生产工艺、设备和流程,以保证产品在批量生产中的一致性和质量稳定性。在试生产阶段,团队会验证生产线的可靠性,确保产品质量符合量产标准。产品投入市场后,团队还会持续收集用户反馈,并根据需要进行产品改进和升级。  通过这些系统的步骤,创新型仪器的研发得以高效、精准地进行,从而实现从概念到产品的顺利转化。这一过程不仅推动了技术的进步,还为企业带来了显著的竞争优势,帮助其在快速变化的市场中保持领先地位。未来,随着技术的进一步发展,仪器研发将朝着更加智能化和自动化的方向发展,继续推动整个行业迈向新的高峰。  拓展阅读:  三代测序技术相关仪器工艺创新概述  2024站在巨人肩上的仪器研发(附资料)  2024年基于人工智能的仪器研发思路  2024年科学仪器供应链及核心零部件分析
  • 墨西哥就电视机及解码器制订新标准
    墨西哥政府目前正就拟议对电视机和电视信号解码器制定新的安全标准建立新的技术规范的提议向利益相关方寻求评议意见。评论提交的截止日期为9月3日。   PROY-NOM-192-SCFI/SCT1-2013标准对电视机及电视信号解码器建立了技术要求、测试方法、商业信息和符合性评估要求。除此之外,电视机还被要求至少能接收、转化和再现使用ATSC A/53标准传输的信号。此外,该提案建议但并不要求电视机能够接收使用A/72标准传输的视频信号。而兼容性电视机则必须要求能接收、转化和再现数字电视(TDT)、高清电视(HDTV)和标清电视(SDTV)信号。电视机还被要求符合NOM-001-SCFI-1993 (家用电子设备安全)技术规范或等效标准中提出的要求。电视解码器将要求至少能将使用ATSC A/53标准传输的信号接收、转化和再现为NTSC/M模拟格式信号,同时有能力接收使用A/72标准传输的视频信号。
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 富士电波在宝钢金属热模拟项目上中标
    由我司全权代理的日本富士电波公司的2台金属热模拟装置,新型双电源式拉压热模拟Thermemcmastor-Z,新型高频加热式扭转热模拟装置THermecmastor-TS在宝钢特钢研究所金属热模拟项竞标中高价胜出。   这2套装置是继1987年,1991年武钢和宝钢分别导入旧型号热模拟装置Thermecmastor-Z之后,日本公司再次进入中国钢铁业。打破了美国DSI公司Gleeble热模拟近20年独占市场的格局。日本钢铁界拥有富士电波公司仪器达70多台,新日铁等公司已经连续7-8次购买Thermecmastor-Z。相信日本热模拟的导入必定为中国钢铁业的自主创新/自主品牌的建立大有帮助。
  • 网络直播:默克为您解读《无菌工艺模拟试验指南》要点
    默克为您解读《无菌工艺模拟试验指南》时间:2017年7月21日 13:30-14:30 本次课堂针对《无菌工艺模拟试验指南》中相关内容,您可以了解到: 无菌制剂生产工艺及模拟范围 培养基的灭菌与除菌风险 最差条件的选择与干预设计 过往缺陷案例展开分析与讨论我们邀请您共同探讨,加深对无菌工艺模拟试验及指南的理解。相关法规无菌工艺模拟试验,培养基模拟灌装的相关要求GMP附录1 无菌药品 第十章第四十七条 无菌生产工艺验证要求培养基模拟灌装试验首次验证应连续进行3次合格试验。之后每班次半年进行1次,每次至少一批。《无菌工艺模拟试验指南》(无菌制剂)和(无菌原料药)国家食品药品监管总局食品药品审核查验中心组织起草了该指南,结合近年来在无菌药品生产企业GMP认证检查和跟踪检查中发现的无菌工艺模拟试验缺陷情况,以指导和规范无菌药品生产企业开展无菌工艺模拟试验。 日期: 2017年7月21日 下午: 13:30 - 14:30 主讲人: 韩璐璐 默克微生物监控市场部参与该《无菌工艺模拟试验指南》的编写工作,专注于微生物检测的应用与研究,先后就职于制药及医疗器械质量控制行业,从事微生物实验室及厂房设计及验证,质量管理,微生物检测等工作。熟悉食品药品微生物检测,生产过程环境监控,GMP管理。扫描以下二维码,报名赢取精美礼品!根据用户参与课堂的活跃度抽取:一等奖 象印保温杯 3名二等奖 充电宝 6名三等奖 魔方插座 10名根据用户参与课堂的时长抽取:时间达人奖 不倒杯 、笔记本 共30名
  • 一份关于1420万元单一来源采购热模拟试验机系统的论证公示
    近日,中国政府采购网发布一则“教育部中南大学单一来源采购材料科学与工程学院热模拟试验机系统采购项目征求意见公示”。根据公示内容,中南大学材料科学与工程学院热模拟试验机系统采用单一来源方式采购,预算金额 1420万元(人民币),拟由Dynamic System Inc.(地址:323 NY 355, Poestenkill NY USA)提供。三位专业人员已针对该项目单一来源采购方式进行论证:专家一(职称:教授 单位:国防科技大学)热模拟试验机系统主要用于(1)材料试验研究:应力松弛析出试验(PTT图测定);蠕变/应力破坏试验;液化脆性断裂研究;固/液界面研究熔化和凝固试验等。(2)冶金过程模拟:挤压、焊接,包括HAZ热影响区、焊缝金属铸造和连铸;固液两相区加工过程 热轧等。目前国际上真正能提供热/力模拟试验机的制造商仅2家:美国 Dynamic Systems Inc.(DSI)和日本富士电波公司。符合材料学院提出的技术要求:热扭转变形技术、多轴大变形(MaxStrain)技术、Cryo Quench 技术等只有美国 Dynamic Systems Inc.(DSI)公司的产品具有专利技术符合要求。因此,必须把美国 Dynamic Systems Inc.制造的 Gleeble 热模拟试验机系统作为单一采购来源才是正确的选择。2022年11月6日专家二(职称:教授 单位:湖南大学材料学院)热模拟试验机系统主要用于(1)材料试验研究:各种不同几何尺寸的热拉伸试验;热压缩试验,包括单向流变应力试验、平面应变压缩试验、应变诱导裂纹扩展试验;熔化和凝固试验等。(2)冶金过程模拟:铸造和连铸;固液两相区加工过程 热轧等。目前国际上真正能提供热/力模拟试验机的制造商仅2家:美国 Dynamic Systems Inc.(DSI)和日本富士电波公司。从产品市场占有率来看,DSI生产的Gleeble热/力模拟试验机绝对领先。在中国已有近200台(套),市场占有率在95%以上,享有极高的口碑,而其它公司的热/力模拟试验机在中国极少。如日本富士电波公司的数量屈指可数,而且是由于少数大钢企在已有多台Gleeble的情况下,为了防止试验机品牌过于集中才购买的。比如宝钢有 Gleeble系统10多套(包括多套3800/3500/液压楔系统,MaxStrain单元,Lumet等),富士电波公司的仅有1台。从整体技术来看,美国Dynamic Systems Inc.(DSI)已有60多年历史,在热模拟技术开发方面一直处于世界领先地位,是世界公认的顶级热模拟试验系统,至今全世界已有1000多台(套)各种型号Gleeble试验机在运行,全世界著名钢铁企业基本都采用Gleeble系统,并且每家都是多台(如国内的宝钢,鞍钢,沙钢等等)。从专利和专有技术来看,符合材料学院提出的技术要求:零强和低力系统、ISO-Q超快冷技术、板带退火技术等只有美国Dynamic Systems Inc.(DSI)公司的产品符合要求。从售后服务来看,只有美国Dynamic Systems Inc.(DSI)在中国设有专门的技术服务机构,且有4位受过DSI专业培训的专职售后技术维护工程师。3位高级应用技术专家,1位零部件供应服务人员,可提供良好技术支持和技术服务。综上所述,把美国Dynamic Systems Inc.制造的Gleeble热/模拟试验机系统作为单一采购来源是必须和有益的。2022年11月7日专家三(职称:教授 单位:长沙理工大学材料学院)热模拟试验机系统主要用于(1)材料试验研究:各种不同几何尺寸的热拉伸试验;热压缩试验,包括单向流变应力试验、平面应变压缩试验、应变诱导裂纹扩展试验 熔化和凝固试验等。(2)冶金过程模拟:铸造和连铸;固液两相区加工过程;热轧等。目前国际上真正能提供热/力模拟试验机的制造商仅2家:美国 Dynamic Systems Inc.(DSI)和日本富士电波公司。从产品市场占有率来看,DSI生产的Gleeble热/力模拟试验机绝对领先,在中国已有近200台(套),市场占有率在 95%以上,享有极高的口碑,而其它公司的热/力模拟试验机在中国极少。从整体技术来看,美国Dynamic Systems Inc.(DSI)已有60多年历史,在热模拟技术开发方面一直处于世界领先地位,是世界公认的顶级热模拟试验系统。从专利和专有技术来看,符合材料学院提出的技术要求:零强和低力系统、ISO-Q 超快冷技术、板带退火技术等只有美国 Dynamic Systems Inc.(DSI)公司的产品符合要求。从售后服务来看,只有美国 Dynamic Systems Inc.(DSI)在中国设有专门的技术服务机构,可为用户提供良好技术支持和技术服务。综上所述,必须把美国Dynamic SystemsInc.制造的Gleeble热模拟试验机系统作为单一采购才能买到合符要求产品。2022年11月7日
  • 高精度电子测量仪器研发商模拟感知获数千万元融资
    5月5日消息,以高精度电子测量为特色的西安模拟感知信息科技(模拟感知)有限公司近日宣布完成数千万元人民币的首轮融资,投资方为上海超越摩尔(超越摩尔)。模拟感知信息科技位于西安,公司核心团队利用在高精度仪器研发领域积攒的经验,“降维”研发了多种现场仪表电子测量模组。将低噪声模拟链路设计、温漂/零漂抑制和精度补偿等技术成功应用在工业现场领域。模拟感知团队表示我国在电子测量领域大幅落后于西方,目前远不能满足我国经济发展的要求,有巨大的市场机遇。模拟感知基于技术相通性和产品归一化和积木化的原则,在仪表和仪器领域同时布局:• 在仪表领域,公司提供测量的核心模组(电路板卡),目标客户群体是我国广大的仪表厂商。公司在首系列产品的研发过程中,深刻感受到了来自客户的热情与支持,产品在测试阶段就收到了数量可观的订单。在下游客户的鼎力支持下,目前公司超声波气体流量计核心模组已完成了市场的闭环验证,气超整表准确度达到了0.5%级。公司会持续在仪表核心测量领域投入,助力我国仪表厂商实现产品的升级换代。• 在测量仪器领域,公司将于近期陆续推出用于实验室研发、新能源汽车测试、电池测试、电源芯片测试和航空发动机发电系统测试的相关产品。超越摩尔表示现代测量的实质是电子测量,无论是流量、温度还是形变,都是将被测量作为电信号进行采集、抽象和处理。 在被测信号进入数字处理芯片之前的模拟电路部分是整个测量系统的重中之重,也是我国同西方集团在通用电子测量领域差距最大的部分。模拟感知核心技术团队在相关领域耕耘多年,主导过多款超高精度仪器的研发和上市工作,在通用电子测量方向有非常明显的技术和经验优势,有实力成为行业的领军企业。
  • THERMECMASTOR高性能热模拟试验机在燕山大学签约
    THERMECMASTOR高性能热模拟试验机在燕山大学签约 由世界老牌热模拟试验机制造厂商富士电波工机株式会社生产制造的THERMECMASTOR高性能热模拟试验机近日在燕山大学签约。随着材料研发与测试科研人员对测试设备的精度和自动化程度要求的不断提高,科研人员希望能获得一款有着更高测试性能和自动化程度的热模拟试验机设备。燕山大学的科研人员对当前市场上的热模拟设备进行考察和比较后,认为具备感应通电双加热及光学自动跟踪相变测量和全自动智能淬火冷却系统的热模拟试验机设备,在热压缩、热拉伸、CCT/TTT、焊接模拟、铸造模拟、淬火热处理,多向变形和大样品(30x30x150mm)大变形等材料测试和物理模拟实验方面,能满足更高的实验精度和自动化人机交互操作要求。由此可见,随着材料测试科技的不断进步,选择一款更好的热模拟试验机设备以满足科研实验要求已经逐渐成为业界共识。
  • MBR艺市污水处理模拟装置
    MBR艺市污水处理模拟装置 型号:H27986H27986 MBR艺市污水处理模拟装置术参数:设备本体材质:池体由有机玻璃制成;处理水量:10~18L/h;BOD去除率:95%~99%、COD去除率:90%~96% 、SS去除率:99%、NH3-N去除率:75%~83%、T-P去除率:94%~98%、MLSS:3000~15000mg/L;设备外形尺寸:1900mm×500mm×1400mm;电源 220V 率600W。H27986 MBR艺市污水处理模拟装置设备配置:1、200L原水箱(含提升泵1台、软管1套);2、格栅(8cm宽、3mm间距格栅网1套、机械转动电机1套);3、曝气沉砂池1套,10L;4、竖流式初沉池1套,20L;5、30L中间水箱1台;6、100L膜生物反应器(自动控制);7、水泵1台、液体流量计2台、曝气泵1台、曝气流量计1台、曝气管道1套、平板膜组件1套(PVDF平板膜,面积:0.1m2/片,共10片),出水蠕动泵1台,出水流量计1台、出水真空表1台等;8、混合液回流装置:回流泵1台、回流管道1套;9、30L有机玻璃清水池;10、紫外杀菌装置1套:紫外灯1套、有机玻璃柱1根、遮光铝铂纸1套;11、电控箱1只、漏电保护开关、按钮开关、连接管道和阀、带移动轮子不锈钢台架等组成
  • 宝钢-日本富士电波近日再次就热力模拟试验机签订技术协议
    宝钢-日本富士电波近日再次就热力模拟试验机签订技术协议 (原位晶粒观察/多方向变形/大吨位/大样品/双电源单体化热力模拟试验机或 带有薄板试验机构的大吨位/大样品/双电源单体化热力模拟试验机) 经过艰苦努力,近日宝钢研究院本部和日本富士电波工机公司终于完成了热力模拟试验机技术协议的签订。这是一件可喜可贺的事,这标志着世界上最先进的原位晶粒观察/多方向变形/大吨位/大样品/双电源单体化热力模拟试验机Thermecmastor-Z,200KN或带有薄板试验机构的大吨位/大样品/双电源单体化热力模拟试验机Thermecmastor-Z,300KN有可能首次进入中国市场。目前已经进入最后竞价阶段。 1991年宝钢继武钢之后迅速导入了该日本公司高频电源式小吨位热力模拟试验机Thermecmastor-Z,100KN.由于日本热模拟为宝钢的技术研发和中国钢铁领域热模拟研究作出了显著贡献,得到了用户充分肯定,尤其是在使用方便,相变点测量数据准确等方面获得业主好评。于是,时隔18年后宝钢研究院特钢研究所于2009年再次选择该家设备,一次购买了Thermecmastor-Z,150KN和Thermecmastor-TS.经过1年多运行。设备运行正常。没有出现任何故障。再次显示该公司热力模拟试验机技术成熟稳定可靠。 近期宝钢研究院本部再次和日本富士电波工机公司达成技术协议,表明宝钢对该公司技术的高度认可。希望宝钢能够如愿以偿成为中国第一家导入原位观察/多方向变形/大吨位/大样品/双电源单体化热力模拟试验机或第一家导入带有薄板试验机构的最先进的大吨位/大样品/双电源单体化热力模拟试验机Thermecmastor-Z,300KN的用户。 纵观世界上热模拟试验机领域,唯有日本公司可以同时提供2种加热电源-----高频电源和通电加热,分别使用或同时使用。唯有日本公司可以提供大载荷300KN和大样品30x30x150mm。这使得客户可以方便地在热模拟试验后从大样品中抽出完整拉伸或冲击试样。从而完成材料科学家蒙昧以求的夙愿之一------材料的成分-组织-性能能够在同一根试样上完成。 纵观世界上热模拟试验机领域,唯有日本公司可以同时使得原位晶粒观察,多方向变形,大吨位,大样品,双电源等功能集成为一个单体热力模拟试验机,操作十分方便,一个年轻女士即可单独完成所有试验。不同功能切换时不需要更换笨重试验模块。
  • 安捷伦隆重发布智能化系统模拟技术ISET
    安捷伦隆重发布智能化系统模拟技术   创造市场上首个通用 LC/HPLC/UHPLC 系统   2011 年 3月 15 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布隆重推出革命性的智能化系统模拟技术(Intelligent System Emulation Technology-ISET)。ISET 借助 Agilent 1290 Infinity LC 较宽的工作范围以及一流的精度与性能来模拟其它系统,实现不同品牌的液相色谱之间方法的无缝转换。   这一先进功能使得 1290 Infinity LC 成为世界上首个真正通用的 液相色谱系统,它可以运行其它高效和超高效液相色谱方法,并能提供与原仪器或原方法完全相同的色谱结果。   1290 Infinity LC 与 ISET 完美结合,可使研究者实现以下操作:    只需单击鼠标,即可模拟其它UHPLC 和 HPLC 仪器。    运行现有 UHPLC 和 HPLC 方法时无需调整方法或系统。    方法转换结果更出色,可得到相同的保留时间和色谱峰分离度。   ISET 促进并方便了实验室间 LC 方法的转换。QA/QC 实验室如今可以为未来做一项安全的投资了:因为实验室在继续运行传统方法的同时还能够充分利用1290 Infinity LC 的UHPLC 速度、分离度与灵敏度。现在,实验室能够通过 UHPLC 性能加快方法开发速度,并通过模拟目标系统对新方法进行微调,使方法更可靠地按照预期来运行。   安捷伦 1290 Infinity LC 产品经理 Christian Gotenfels 表示:“仪器间的方法转换通常是有困难的,尤其是在严格受法规制约的行业,因为要避免对仪器和原方法进行任何修改。安捷伦是全球首家提供方法无缝转换的公司,可在 1100 系列、1200 系列和新的 1220/1260 Infinity LC 之间实现方法无缝转换。”   安捷伦液相分析事业部高级市场总监 Stefan Schuette 说道:“这宣告了一个新纪元的到来。开发实验室、QA/QC 部门以及合同研究和生产机构如今可以在一台仪器上自由地开发、验证并运行所有的方法。”   配备 ISET 的 1290 Infinity LC 将于 2011 年第三季度面世。现有的 1290 Infinity LC 系统完全兼容并可升级到 ISET。   要了解更多信息,请访问: www.agilent.com/chem/1290:cn 。   关于安捷伦科技   安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18500 名员工为 100 多个国家的客户提供服务。在 2010 财政年度,安捷伦的业务净收入为 54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 地震模拟试验技术与装备
    地震模拟试验技术是集机、电、液与计算机控制等多学科知识为一体的综合性技术,是土木工程、岩土工程、结构工程中大型结构试件抗震减灾、性能验证和破坏机理研究的核心技术手段。该技术以电液伺服控制技术、自动控制理论、模拟电子技术和信号处理等课程为技术基础。8月16日,由仪器信息网、中国仪器仪表行业协会试验仪器分会联合主办的第二届试验机与试验技术网络研讨会将召开。届时,哈尔滨工业大学副教授杨志东将在线分享报告,介绍国内外地震工程与工程振动领域的地震模拟试验技术研究成果与相关技术。欢迎业内人士报名听会,在线交流。附:第二届试验机与试验技术网络研讨会 参会指南为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会。1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/testingmachine2023/)进行报名。2、报名开放时间为即日起至2023年8月15日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • ITW宣布收购MTS Systems测试与模拟业务
    仪器信息网讯 近日,伊利诺斯工具公司(Illinois Tool Works Inc.,NYSE: ITW)宣布从Amphenol公司(NYSE:APH)手中收购MTS Systems公司(Nasdaq:MTSC,简称“MTS”)的测试与模拟业务,交易的细节条款并未披露。  MTS系统公司成立于1966年,是全球著名力学测试系统和传感器供应商,其业务主要分为传感器以及测试与模拟两个部门,产品被广泛的应用于材料力学性能测试、土木工程结构测试、航空航天以及汽车耐久性、性能测试等领域。截至2018年9月28日,MTS系统公司全球共有3400名员工,2018年的营销总额为7.78亿美元。  伊利诺斯工具公司是一家专业的工程配件和工业系统产品的跨国生产企业。公司成立于1912年,总部位于美国伊立诺州的芝加哥,是高性能紧固系统,专用和通用设备及工业、民用消费系统的研发生产厂家。通过整合新产品的开发,增加对原有客户的渗透,部门的重组,以及对企业的收购行为,使得公司不断成长壮大。目前ITW在40多个国家中拥有超过500间个别独立的运做结构,员工超过5万名,是《财富》500强公司之一。  去年12月,全球领先的高科技互连、天线和传感器解决方案供应商Amphenol公司宣布以每股58.50美元的现金价格收购了MTS(约合17亿美元)。  此次从Amphenol手中接过MTS测试与模拟业务,ITW董事长兼首席执行官Scott Santi表示:“MTS的测试和模拟业务与我们现有的测试和测量及电子业务具有高度互补性,使我们能够定位于新的具有吸引力的垂直行业。在同行因为新冠大流行而被迫重组或削减成本时,我们能够利用其优势地位寻求更高的市场份额。”  在同意收购MTS Systems公司的产品后,ITW的股价上涨了2.8%。
  • 安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术
    安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术 2012 年 12 月 6 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)宣布了推出最新版革命性的智能系统模拟技术。新版的 ISET 可以模拟沃特世 Alliance 液相色谱系统。 拥有 ISET,科学家们能够将沃特世 Alliance 液相色谱系统所使用的传统方法无缝转移至最新的 Agilent 1290 Infinity 液相色谱平台上。利用这种独一无二的性能,Alliance LC 的用户现在可以用 Agilent 1290 Infinity 液相色谱系统更换他们的旧仪器,并能继续使用他们的传统方法获得相同的色谱结果。 1290 Infinity 液相色谱与 ISET 的联合可使用户: 只需单击鼠标,即可模拟其他 (U)HPLC 仪器。 运行现有 (U)HPLC 方法,无需修改方法或系统。 与现有变通方法(例如,增加一个等度保持)相比,方法模拟更为出色,可得到相同的保留时间和峰分离度。 对于需要在使用不同液相色谱仪器的不同部门和地点之间进行液相色谱方法转移的实验室来说,仪器到仪器的方法转移就显得特别重要。在严格监管的环境中,例如制药行业的质量控制,液相色谱方法的转换可能是一个挑战,因为需要避免对原始方法作出任何修改。 &ldquo 我们已经售出了 1000 多份 ISET 许可证,目前正在处理我们客户工作流程中的主要差距,&rdquo 安捷伦 1290 Infinity 液相色谱产品经理 Christian Gotenfels 说道。&ldquo 我们将通过模拟其他供应商(例如岛津和戴安)的液相色谱仪器继续扩展 ISET 的性能。&rdquo 关于安捷伦科技 安捷伦科技 (NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 阿泰可发布阿泰可 四立柱轮胎耦合道路模拟环境舱(带阳光模拟)新品
    ATEC阿泰可四立柱轮胎耦合道路模拟环境舱(带阳光模拟)该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷 主要技术指标1 温度指标1. 温度范围:-40℃~+80℃;2. 温度均匀度:≤±2℃(空载);3. 温度偏差:≤±2℃(空载);4. 温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)5. 升温速度:≥1℃/min(全程平均,带车辆,无热负载,出风口测量);6. 降温速度:≥0.7℃/min(全程平均,带车辆,无热负载,出风口测量);7. 湿度范围:10 %R.H.~95%R.H.8. 阳光模拟:红外线光谱辐射灯9. 辐射强度:600~1200W/㎡(可调节)10. 辐射区域(长×宽)6000×2500mm11. 垂直移动距离:辐射灯下距离舱底表面2.5~4.2m可调依据标准GB/T 2423.1-2008 试验A:低温试验方法GB/T 2423.2-2008 试验B:高温试验方法GB/T 2423.3-2006 试验Ca:恒定湿热试验GB/T 2423.4-2008 试验Db:交变湿热试验方法1,2QC/T 413-2002、ISO 16750-4《道路车辆电气及电子设备的环境条件和试验》QC/T 413-2002中关于3.11产品耐温度/湿度循环变化性能的要求ISO 16750-4《道路车辆电气及电子设备的环境条件和试验 第4部分:气候负荷》中5.2温度梯度、5.3.1规定变化率的温度循环、5.6湿热循环、5.7稳态湿热对测试的要求GB /T 2423.24-1995太阳辐射试验IEC60068-2-1:2007 低温试验方法AbIEC60068-2-2:2007 高温试验方法BbIEC60068-2-30:2005 交变湿热试验方法DbIEC60068-2-78:2007 恒定湿热试验方法CabGJB 150.3A-2009 高温试验GJB 150.4A-2009 低温试验GJB 150.9A-2009 湿热试验的试验标准要求 创新点:该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。 车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率 盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。   新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。   美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。   加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。   据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。   本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。   模拟执行太空任务   据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。   当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。   据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。   训练海中溅落   哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。   在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。   据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
  • Science | 超冷原子量子模拟研究取得重要进展
    中国科学技术大学潘建伟、苑震生等与德国海德堡大学、奥地利因斯布鲁克大学、意大利特伦托大学的研究人员合作,在超冷原子量子模拟研究中取得进展。科研人员使用超冷原子量子模拟器,对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”,取得了利用量子模拟方法求解复杂物理问题的重要进展。相关研究成果发表在《科学》上。规范场理论是现代物理学的基础,如描述基本粒子相互作用的量子电动力学、标准模型等是满足特定群对称性的规范场理论,在粒子物理学、宇宙学以及凝聚态物理学等领域得到广泛应用。由于其求解复杂度高,规范场理论体系中仍有许多开放问题。其中,规范场理论描述的物理系统是否可以从远离平衡态经过演化达到热平衡备受关注。该问题的解决,有助于理解高能物理中重核碰撞的问题,也将为现代宇宙学中大爆炸早期物质的形成提供了物理解释。但是,使用经典计算机求解复杂的规范场理论是公认难题,量子模拟器为解决该问题提供了新路径。近年来,科学家尝试用离子阱、超冷原子气体、Rydberg原子阵列和超导量子比特等体系对格点规范场理论开展量子模拟研究。然而,由于格点规范理论中相互作用形式复杂,并要求物理系统始终处在局域规范对称性约束条件下,对格点规范场理论热化动力学的实验模拟造成了困难,因而还未在实验上实现。为解决量子模拟器中相干调控的粒子数太少和无法保证规范对称性约束的两个主要问题,中国科大科研人员开发了独特的自旋依赖超晶格、显微镜吸收成像、粒子数分辨探测等量子调控和测量技术,在超冷原子量子模拟器中提出并实现了光晶格中原子的深度制冷,解决了量子模拟器温度过高、缺陷过多的问题,实验制备了近百个原子级别的规模化量子模拟器【Science 369, 550 (2020)】;首次实现了利用大规模量子模拟器对格点规范场理论量子相变过程的实验模拟,验证了过程中的规范不变性【Nature 587, 392 (2020)】。在上述研究基础上,通过实验和理论结合,该团队将系统制备到远离平衡的初态,首次实验研究了规范对称性约束对量子多体系统热化动力学的影响,并观测到具有相同守恒量的不同初态热化到同一个平衡态的过程,验证了热化过程造成的量子多体系统初态信息的“丢失”,建立了规范场理论早期非平衡动力学与最终热平衡态之间的联系,在使用规模化的量子模拟器求解复杂物理问题的道路上取得了重要进展。未来,该团队将进一步使用量子模拟方法研究具有其他群对称性的、更高空间维度的规范场理论模型,以及真空衰变、动态拓扑量子相变等物理难题。《科学》杂志审稿人对此给予高度评价,认为该研究为超冷原子模拟格点规范场理论这一领域的发展做出了重要贡献,代表了量子模拟研究领域的前沿。研究工作得到科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。论文链接
  • 全国首个城市双碳模拟器在济南发布
    6月8日,第一届城市碳达峰碳中和高端战略研讨会暨济南双碳模拟器发布会召开,全国首个城市双碳模拟器——济南双碳模拟器正式发布。据介绍,济南双碳模拟器主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟等功能板块。模拟器的研发以济南市为应用目标,充分考虑了通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,服务各级政府、各行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。目前,济南双碳模拟器的大气二氧化碳模拟和同化反演子模块已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市双碳模拟器将对城市绿色低碳高质量发展提供重要数值模拟技术平台,能为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为我国众多城市实现碳达峰目标和碳中和愿景保驾护航。济南市科技局党组书记、局长陈西武介绍到,近年来,济南市紧紧围绕“双碳”工作目标,加快推动绿色低碳发展,成功申报国家碳监测评估试点城市,成为全国8个综合试点之一,率先开展了城市大气温室气体监测评估工作,为城市碳监测评估体系建设贡献了“济南案例”。中科院大气所在济南成立齐鲁中科碳中和研究院,为济南市聚集和培养了一批技术创新团队,为济南市碳排放监测和评估提供了技术支撑,特别是此次发布的济南双碳模拟器,必将推动相关绿色科技成果在济南落地转化,为济南市实现“双碳”目标奠定坚实基础。
  • 国内首个自主研发的地球模拟器正式投入使用
    p   记者从中国航天科工集团二院207所获悉,首个国内自主研发的用于真空模拟系统中的多波段复合地球模拟器顺利完成交付验收试验,正式投入使用。 /p p   207所专家表示,该地球模拟器是国内首个用于真空系统中的多波段复合地球模拟器,也是目前国内最大的地球模拟器,其主要作用是为真空测试环境提供地球背景环境模拟,通过多波段复合方式实现地球辐射特性的模拟。 /p p   据介绍,该地球模拟器具有多波段模拟、快速升温、快速降温、精确控温、均匀性和稳定性良好、可长时间持续工作等优势,各项技术指标均处于国内领先水平。 /p p   后续,地球模拟器研制团队将在现有地球模拟器的技术基础上,继续攻关,争取形成地球模拟器系列化产品,使地球模拟技术取得更大的发展。 /p
  • 英斯特朗全新TestProfiler模块,可真实模拟产品使用功能
    英斯特朗公司- 全球领先的力学性能测试设备的供应商,提供了一个全新创意设计的,基于BLUEHULL3软件平台的TestProfiler功能模块。新的 TestProfiler模块提供设置自动化产品的可靠性测试,真实模拟产品使用功能,软件使用方式前所未有的灵活性。随着BLUEHILL3软件广泛应用,您的产品设计和研发团队可以使用Instron电子万能测试设备和相关解决方案加速新产品检核和验证过程,从而缩短产品投放市场的周期。BLUEHILL3软件上仅需要简单的设置,就可以实现TestProfiler模块以下功能: 重复周期的构件检测,常用于客户测试泡沫和弹簧,或执行保载试验 按步骤加载模式用来模拟医疗设备和消费电子产品的一些使用功能 通过监测和响应内部和外部的传感器和数字状态而建立逻辑化测试流程 试验用Instron环境箱和高温炉对样品温度进行同步控制关于英斯特朗:英斯特朗(INSTRON )是全球领先的材料和构件物性测试试验机制造商,美国五百强公司ITW集团旗下品牌,从基本的软组织到先进的高强度合金材料,其产品被广泛运用于测试各种材料,组件和结构在不同环境下的力学性能和特性。 自1946年英斯特朗成立并研制了世界上第一台闭环控制的电子万能材料试验机和第一个应变片式载荷传感器以来,英斯特朗以成为公认的力学性能测试设备世界领导者为使命,通过提供最高品质的产品,专业的技术支持和世界水平的服务,从而使用户获得拥有英斯特朗产品的最佳体验。 更多新闻垂询请联系: 英斯特朗市场部Kelly Jiang Tel: +86 21-62158568* 8301E-Mail: jiang_min-hua@instron.com 或者您可访问英斯特朗官方网站: www.instron.cn用手机扫一扫,关注英斯特朗微信账号,获取更多英斯特朗的产品信息和测试tips
  • 2016年分子模拟学习体验日(免费)
    尊敬的老师和同学,您好! 近20年来,诺贝尔化学奖已两次授予计算化学学科(1998年度和2013年度),这充分说明了理论计算和模拟在科学研究中的重要性,不仅在化学和生命科学领域,科学计算和模拟结合高性能计算机,已经成为认识和解决所有复杂的科学和工程问题的重要方法。Discovery Studio(简称DS),作为面向生命科学领域的综合性分子模拟平台,通过高质量的图形界面、经多年验证的科学算法以及集成的环境,为科研工作者提供了易用高效的药物设计与大分子模拟技术和工具,从而得到了广大用户的认可与青睐。 2015年创腾科技有限公司在北京成功举办了Discovery Studio4.5体验日,共吸引超过120多位相关领域的科研工作者。为满足更广大客户的学习需求,我们计划于2016年在全国(暂定五大区:成都、沈阳、武汉、西安、南京)继续举办该学习体验活动,为更多科研人员提供一个免费交流学习Discovery Studio软件在药物设计和生物大分子模拟领域应用的机会与平台,帮助更多的科研人员了解Discovery Studio软件的应用并学以致用。 随着Discovery Studio2016版本的正式发布,本年度活动将以Discovery Studio2016软件为依托,介绍Discovery Studio2016新功能,并围绕经典的模拟技术手段进行介绍和案例分享,内容涵盖:基本界面和入门操作、分子对接、药效团模型、蛋白质理性设计等,从而帮助大家系统了解该模拟技术并应用于蛋白(核酸)-小分子相互作用机理解释、化合物的虚拟筛选、化合物构效关系的分析、反向找靶、抗体设计和酶设计等方面。活动具体信息如下: 一、活动城市和时间:二、活动日程安排: 详情见创腾科技网站活动页面(www.neotrident.com)三、参加对象: 对分子模拟感兴趣、希望了解分子模拟并将模拟技术应用于药物研发、蛋白结构功能研究、抗体研究或酶研究领域的高校或企业科研人员;对Discovery Studio软件感兴趣、希望了解Discovery Studio软件的高校或企业科研人员。 四、活动费用:免费活动(食宿交通等费用自理) 五、学习电脑: 学习体验日现场涉及上机操作,需自带电脑(具体会有后续通知)。请在活动开始前自行下载并安装DS软件。学员可根据自己手提电脑配置自行下载所对应的版本: Windows 32bit下载 链接: http://pan.baidu.com/s/1i4ho54x 密码: 4n4u Windows 64bit 下载 链接: http://pan.baidu.com/s/1qXtR8SG 密码: qh5m Linux 64bit下载 链接: http://pan.baidu.com/s/1qXiwsby 密码: bixs 六、报名方式:请填报名回执并发送到market@neotrident.com信箱,提交回执后3个工作日内会收到一封确认邮件,敬请留意!注:1)自通知发布后接受报名,以报名先后顺序安排座位,因场地名额限制,额满为止! 2)若临时取消报名,务必提前通知工作人员;活动当日请提早报到,若活动开前5分钟仍不到现场,为您预留的座位将由旁听席学员顶替。 报名邮箱:market@neotrident.com
  • 世界最先进大气环境模拟平台开工
    8月26日,“大气霾化学”基础科学中心启动会暨“大气环境模拟系统”开工仪式在山东大厦举行。“大气霾化学”基础科学中心、“大气霾化学”基础科学中心—清华大学分中心、“大气霾化学”基础科学中心—中国科学院化学研究所分中心同时揭牌,“大气环境模拟系统”同日正式开工。“大气霾化学”基础科学中心是目前我国环境领域唯一的基础科学中心,拟开展大气霾化学基础研究,聚焦环境化学领域的国际前沿,围绕细颗粒物和臭氧协同控制的迫切科技需求,建立霾化学理论。中心将通过大气科学、环境化学等相关领域高端创新资源的聚集,建设成为国际一流的科研平台,同时也将形成高水平人才技术交流和协同创新创业平台。“大气环境模拟系统”是目前世界上最先进、功能最全的大气环境模拟平台。系统将通过外场观测获得大气污染状况和气象参数,通过实验研究我国典型区域大气污染化学机制、健康影响和气候效应及其关键参数,结合大气化学模拟和地球数值模拟装置等宏观模型,为我国大气污染预测、诊断、控制决策及防治提供科技支撑。
  • Bruel & Kjaer 5128型高频头和躯干模拟器问世
    5128型高频头和躯干模拟器问世全新“小绿人” Bruel & Kjaer的全新高频头和躯干模拟器已问世。 它解决了可听声范围内逼真、精确和可重复的声学测量需求。 为了满足越来越高的手机音频品质需求,以及耳机在通信及娱乐中的日益普及,我们的电信/音频团队开发了5128型高频头和躯干模拟器(HATS)。 高频HATS解决了可听声范围内逼真、精确和可重复的声学测量需求。人工头还提供大面积的硅胶围绕耳廓,以实现头戴式耳机的完美密封。高频HATS将音频性能测量的频率范围扩展到比目前市场上的头和躯干模拟器更高的频率范围。此外,人工头的结构更易接近内部组件。 高频HATS具有真实人耳结构的耳道,可在整个频率范围内实现正确的声阻抗并通过传感器电子数据表(TEDS)提供耳模拟器相关的校准信息。通过精确地复现人耳的音频响应,高频HATS可以前所未有的精确度提供高达20 kHz的音频测试。此外,口模拟器的性能也得到提高,可提供12 kHz及以上的均衡输出。这显著提高了智能设备及其配件的音频性能的主、客观评估之间的相关性,确保了新产品在市场上的先进地位,缩短了开发时间。 请访问Bruel & Kjaer官方网站,查询有关5128型高频头和躯干模拟器的详细信息。 关于Bruel & KjaerBruel & Kjaer是先进的声学与振动测量系统制造商和供应商。我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。全面了解我们的解决方案、系统和产品,请访问我们的官方网站。Bruel & Kjaer是总部位于英国的思百吉集团旗下的子公司。思百吉集团2016年销售额达13亿英镑,集团的4个业务板块在全球共有大约7,500名员工。
  • THERMECMASTOR热模拟试验机在辽宁科技大学顺利验收
    THERMECMASTOR热模拟试验机在辽宁科技大学顺利验收 富士电波工机株式会社作为世界老牌静动态相变仪及热模拟试验机系列设备生产商,已经有六十年以上的制造经验,以其先进的测量技术和精良的制造工艺享誉业界。此次在辽宁科技大学顺利验收的热模拟试验机设备具有独特的先进科技,感应通电双电源加热系统、LED光学自动跟踪试样膨胀/变形测量系统、智能调节喷气速率的冷却控制系统,这是其它种类的热模拟设备所不具备的。THERMECMASTOR热模拟试验机是一台性能优异的能实现拉伸、压缩动态变形、动静态CCT/TTT、焊接热模拟和其他高温行为(连铸过程等)热模拟等诸多功能的高精度测量的试验机设备。相比市场上其它的热模拟设备,该款设备高度自动化和人性化的操控设计,最大程度减轻了操作人员的工作负荷,而且还以其测试的高精度和高可重现性而著称,它可以智能、高效的完成用户所需的各种热模拟测试工作。
  • 中国科大量子模拟取得新进展
    中国科学技术大学潘建伟、苑震生等与清华大学翟荟、兰州大学么志远等合作,使用自主开发的超冷原子量子模拟器,研究了格点规范场理论中的非平衡态热化过程与量子临界性之间的关系,揭示了具备规范对称性的多体系统处于量子相变临界区域时易于热化到平衡态的规律。这项研究成果近日以“编辑推荐”的形式发表于《物理评论快报》。规范理论和统计力学是物理学的两大重要基础理论。从经典电动力学的麦克斯韦方程组到描述基本粒子相互作用的量子电动力学、标准模型等,都是满足特定群对称性的规范理论。统计力学,则是基于玻尔兹曼等提出的最大熵原理,将大量微观粒子(原子、分子等)组成的系综的微观状态与其宏观统计规律连接起来的学科,如微观粒子的能量分布是如何影响其压力、体积或者温度等宏观量的。那么,由规范理论描述的、远离平衡态的量子多体系统会热化到热力学平衡态吗?回答这一问题将推动人们对规范理论、统计力学及两者关系的理解。虽然理论物理学家们提出了各种模型来分析这一问题,但是在实验上难于构建一个既由规范理论描述、又可人工操控并观测其热化过程的物理体系。近年来,超冷原子量子模拟器的出现为同时研究规范理论和统计物理提供了理想的实验平台。2020年,中国科大的研究团队开发了71个格点的超冷原子光晶格量子模拟器,首次对U(1)格点规范理论--施温格模型的量子相变过程进行了实验模拟;2022年,他们对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”。近期,此次工作的合作者翟荟和么志远等通过理论研究指出,在此类格点规范模型中,量子热化和量子相变之间存在关联,并从反铁磁Neel态出发,预言系统只有在量子相变点附近才能达到完全的热化 。进一步观测格点规范理论的量子热化和量子相变之间的关系,对之前的实验能力提出了新的挑战:如何在单格点精度原位地、可区分原子数地操控和探测多体量子态。潘建伟、苑震生团队在他们已有的超冷原子量子模拟器基础上,将量子气体显微镜、自旋依赖超晶格和可编程光学势阱等技术相结合,开发了单格点精度、粒子数可分辨的原子操作和检测技术。基于此,他们得以制备和探测任意原子构型的多原子量子态,并在满足规范对称性约束下,追踪多体量子态的动力学演化过程。在该工作中,他们在实验中制备了特殊原子构型的初态,利用绝热演化的方法研究了满足规范对称性约束的量子相变过程,通过有限尺寸标度理论首次在实验中精确地确定了相变点。同时,他们研究了同一构型初态在远离平衡条件时的退火动力学过程,揭示了具备规范对称性的多体系统处于量子相变临界点附近时易于热化到平衡态的规律。
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。   前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。   “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。   据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。   据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制